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Abstract—Real-time charging strategies, in the context of
vehicle to grid (V2G) technology, are needed to enable the use of
electric vehicle (EV) fleets batteries to provide ancillary services
(AS). In this paper we develop tools to manage charging and
discharging in a fleet to track an Automatic Generation Control
(AGC) signal when aggregated. We propose a real-time controller
that considers bidirectional charging efficiency and extend it to
study the effect of looking ahead when implementing Model
Predictive Control (MPC). Simulations show that the controller
improves tracking error as compared with benchmark scheduling
algorithms, as well as regulation capacity and battery cycling.

Index Terms—Electric Vehicles, Resource Scheduling, Ancil-
lary Services, Vehicle to Grid

I. INTRODUCTION

EW generation, demand, transmission and storage sys-

tems are presenting opportunities to increase power
system flexibility. To capitalize on these opportunities, algo-
rithms that coordinate distributed resources need to manage
charging cost, efficiency and energy and power constraints.
This paper focuses on the potential of a subset of flexible
storage technologies, specifically electric vehicles.

Increased variability in power generation due to renewable
energy integration makes storage capacity particularly valuable
[1]. However stationary batteries are currently too expensive
for most grid-tied applications despite their decreasing cost
[2], [3]. Electric vehicle (EV) batteries can be used during
their idle time when parked to extract/inject power from/to
the grid in the same way that stationary batteries might. By
creating revenue for EV owners — and lowering the total cost
of EV ownership — this vehicle to grid (V2G) framework could
provide a cost-effective means to add storage capacity to the
grid.

Large shares of renewable generation are being integrated
into the power grid mainly due to environmental concerns
and energy supply issues. However, the key characteristics
of renewable resources in terms of volatility, intermittency
and uncertainty present great operational challenges for power
systems. In particular, power system flexibility, defined as
the capacity to respond to changes in load and generation,
becomes critical for systems with large penetration of volatile
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resources [4]. Some authors show that the value of resources
with volatility above a certain threshold can be diminished
without proper flexibility capabilities [5], [6].

New ways to obtain the required flexibility are under
development. According to [7], flexibility is present in gen-
eration (ramping capability), transmission (bottlenecks and
access), demand (demand response, storage and load control)
and system operation (institutional factors, information and
real-time decisions). The idea of exploiting the flexibility
associated with the demand side has been widely investigated,
and markets aiming for flexible loads to be serviced by zero-
marginal cost renewable generation have been designed [8],
[9].

One possible way of adding flexibility to power systems
is through the V2G concept, for which several implemen-
tation projects and impact studies have been reported such
as [10], [11]. In the literature, the concept [12], [13] and
impacts [14], [15] of using EVs for grid stabilization have
been extensively investigated. Numerous charging strategies
to coordinate the response of EV fleets to provide frequency
regulation services have been developed in the recent years
[16]-[27]. These strategies can be separated into two main
groups: centralized strategies, which use an EV aggregator as
a middleman between the ISO and the EVs (e.g.: [23]-[27])
and decentralized strategies, which do not use an aggregator
to coordinate individual EV charging commands (e.g.: [16]-
[22]). While decentralized strategies preserve individual au-
thority over charging schedules, centralized strategies allow to
reduce the uncertainty over total available power and energy,
which simplifies the interaction between the electricity market
and each individual EV as shown in [28]. Furthermore, ag-
gregation is still necessary to fulfill minimum power capacity
requirements imposed by the ISO to participate in the ancillary
services (AS) market.

In general, centralized strategies provide frequency regula-
tion services by tracking regulation signals sent by the ISO;
however, it is also possible to follow other objectives, such as
reducing the Area Control Error (ACE) [24]. These regulation
signals may require both extracting and providing power
from/to the EV fleets, but only some papers [23], [26] consider
bidirectional charging in their models. From these works, only
[26] considers charging and discharging efficiencies, applied
to a discrete set of possible charging rates (charging, idle,
discharging). On the other hand, most of the works dealing
with decentralized charging strategies, (e.g., [17], [19], [21],
[22]) take into account bidirectional charging; however, only a
few consider bidirectional efficiencies [17], [19]. Nevertheless,
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the latter references do not optimize their charging commands
in response to market signals.

Due to the short period of regulation signals (4 seconds
in CAISO) EV aggregators require fast strategies that enable
them to distribute charging/discharging commands among EV's
in real-time, while achieving the best possible performance
[29]. This has led to the consideration of heuristic algorithms
such as Earliest Deadline First (EDF) or Least Laxity First
(LLF) for this purpose. However, these heuristics can neg-
atively impact the performance of the batteries, especially
when compared to alternative algorithms based on convex
optimization formulations, as discussed in [30].

Model Predictive Control (MPC) is an optimization-based
control method that can be used to track signals for which
forecasts are available in real-time [31]. In particular, it can
be used by an EV aggregator to track regulation signals,
as shown in [26], where the authors propose to schedule
charging/discharging commands based on a Linear Quadratic
Regulator (LQR) that tracks the regulation signal, with only
three possible charging rates.

A practical implementation of the V2G concept is being
demonstrated on an operational fleet at the LAAFB. This
project uses a hierarchical control framework, in which day-
ahead and hour-ahead electricity market participation and
charging schedule are handled by an optimization platform:
DER-CAM (Distributed Energy Resources Customer Adop-
tion Model) developed at Lawrence Berkeley National Lab-
oratory (LBNL). DER-CAM optimizes distributed energy re-
sources operation over economic and environmental objectives
[32], [33]. DER-CAM performs a constrained economic opti-
mization to generate bids for bulk energy and AS markets
based on the forecasts of vehicle usage by calculating the
vehicles’ state of charge (SoC). However, the time resolution
of DER-CAM’s optimization is not suitable for responding to
uncertain Automatic Generation Control (AGC) signals within
a few seconds, which is key for achieving an accurate response
to such signals. Scheduling methods must be designed to
allow real-time operation of the fleet, and these methods
must distribute power among the vehicles while following an
uncertain AGC signal. Figure 1 depicts a schematic diagram
of the control hierarchy for the LAAFB V2G project, showing
the interaction of the real-time distribution developed for
that project with the rest of the project. In previous work
[30], a real-time controller based on convex optimization was
described, and it was shown that better results can be achieved
with that controller as compared to some benchmarks. This
control algorithm is currently integrated into the EV fleet
management platform developed by Kisensum, Inc. [34] for
the project.

This paper develops a framework for designing real-time
charging controllers to operate an EVs fleet participating in the
AS market. We extend and refine an earlier conference paper
[30] to improve regulation capacity and accuracy in following
AGC signals' as compared with simpler approaches. A set
of different controllers is designed and tested, from which
the more complex approaches achieve better performance

I Accuracy is particularly relevant because of performance payments.

TABLE I
PARAMETER DESCRIPTION FOR TASK

Parameter Description
Tik Nominal trajectory for time step k
Ei State of Charge for time step k
,3;L B State of Charge physical limits
E;L B State of Charge goal at departure
a;,d; Arrival/departure time
Dik Charging/discharging rate for time step k
m;", m; Charging/discharging rate limits
77i+ My Charging/discharging efficiency
bik Laxity for time step k

(accuracy) and less cycling. In specific, the contributions
include:

o The development of a modelling framework capable of
handling bidirectional charging resources with efficiency
considerations.

o The design and assessment of several real-time controllers
with different levels of complexity (myopic, heuristic
based and predictive) and features (e.g., reduction of
cycling behaviour).

o The thorough performance assessment of the proposed
models in comparison with non-predictive benchmarks,
via extensive simulations under a range of scenarios,
for both the regulation signal and the efficiency of the
batteries.

This paper is organized as follows. Section II describes the
models used for the batteries, the task concept and market
participation. Section III presents the proposed controller and
the benchmarks. Section IV describes an MPC version of
the controller. Simulation results are presented and discussed
in Section V, and Section VI explains this work’s main
conclusions.

II. PROBLEM SETUP

In the proposed framework, the functional unit is the battery,
and it must be characterized in terms of a set of parameters.
The task concept is used to describe the characteristics of
a battery when it is active, and thus can be used within its
physical limits by the EV aggregator to provide frequency
regulation services, as opposed to an inactive task. The laxity
concept is used as well to describe each task’s flexibility [35].

A. Tasks and Batteries

An aggregator coordinating a fleet of EVs in real time faces,
at each time step k € {1, ..., T}, the challenge of fulfilling the
energy requirements associated with each EV i€ {1,...,V},
together with the power requirements associated with the AGC
signal. While the nominal trajectory, calculated by DER-CAM,
is a parameter for vehicle ¢ at time k, a feasible trajectory
is defined as any path for the SoC of a particular EV such
that both physical and scheduling requirements are fulfilled.
This means that for any vehicle ¢ at time k, its SoC must
lie within the interval [B;, ;7] to respect the limits of the
battery. Likewise, each vehicle arrives at time a; with a known

1949-3053 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/T$G.2017.2681961, IEEE

Transactions on Smart Grid

| |
Scheduling Arrival Trajectory Arrival  Min SoC : Real-time distribution :
Departure Departure  MaxSoC | |
DER-CAM Trajectqry Max F’ower : 1 Power [kW] 1 :
Awards Pre- | Generation Efficiency | |
—> processing ! £V FV :
IS0 Bids SoC ! I | !
I |
SoC SoC
< — < = 5 SoC [KWH |
AGCsignal AGCsignal L Power kW !
Fig. 1. Overview of the hierarchical control framework in the LAAFB project.
SoC and is scheduled to leave at time d; with a minimum
level of energy for the EV to be able to operate normally, so
Ei, € [E; ,Ej’ ]. For simplicity,.ﬂ;r = E;" is assumed. There i ”’”W‘
are power limits for the operation of each battery as well, EVs Batteries |~ %‘ Grid
so the charging/discharging (positive/negative) rate iS p;; € Pr ’MJM — pk’ @,

[m; ,m;]. This is illustrated in Figure 2.
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Fig. 2. Battery model for EV ¢ and feasible trajectories.

Definition 1: The laxity, ¢;i, is defined as the amount of
time left until vehicle ¢ must charge at its maximum charge
rate to reach its minimum scheduled State of Charge (SoC)
E;, at departure time d;.

7

E” — En
Gin = di —k — ———= ()

m;

It is common for battery models to consider an efficiency
scalar 0 < n < 1 to account for the difference between the
power they received and the power they were able to transform
into energy for storage. In the context of bidirectional charg-
ing, this effect must be considered both ways, as it is shown in
Figure 3. When the power variable is positive, the batteries are
being charged and when it is negative, the batteries are being
discharged. Let x;; be the power necessary from a source to
charge the battery of vehicle ¢ with p;;, and p;;, be the power
necessary from a battery to provide the grid with x;;. This
can be written in a compact way:

= O e (-

Pik = 9 277; ik 9 277; ik

The inverse relationship is defined F'(p;;) = x; and can
be easily derived from Equation 2.

2

Fig. 3. Efficiency of the batteries when charging and discharging.

Definition 2: A task T;, can be represented by its parameters
(m;,mf, 7, nt, a;, di, 7, BF, E;, E), with states Ej,
and ¢;1, as described in Table I. The index set of all active
tasks in time step k is defined as Ty, = {i : k € [a;,d;)}.
Each active task models an EV that is available to provide
regulation.

For notation simplicity, vectors are defined in bold symbols
when referring to their components associated with active
tasks: @y = {zik, 7 € Tr}, pr. = {Pir,i € Tx}, B = {Ei, i €
Ty}, 7 = {ri,i € Tg}, and T} 7 = {T 7 i e Ty}

B. Limits

If a task is close to its boundaries, depending on the energy
state, it is possible that the charging rate may need to be
reduced. The limits that guarantee that no upper or lower
boundaries are violated for task ¢ at time step k are denoted F;k
and I';; , respectively. These limits include all the information
needed to ensure that the SoC stays within physical limits and
is able to fulfill the task’s minimum energy requirements [30].

Ef —E;
+ s + i TR
I'}}, = min [mi , AL ] €)]
I';, = min [max[max[mi_, Bl%tElk], (1 — ¢ir)m;], F:;c]

“)
The additional terms of I'; , relative to ij, are only relevant
when ¢;; < 2. When laxity is in that range, the lower bound
of p;; will be pushed in order to fulfill the minimum energy
requirement at the time the task ceases to be active, and
saturated by physical limits. Additionally, when aggregating
these expressions for the fleet, the regulation capacity of the
system can be calculated.

DI F(TH), Ry =) F(Ty)

€Ty €Ty,

Ry

&)
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Therefore, the feasible regulation region for time step k will
be defined as the interval [R;, R ].

C. Market Participation

LAAFB project is being developed using CAISO’s rules
for AS, which take into account both energy and AS when
optimizing the system as a whole. Therefore, the EV fleet
participates, in aggregate, in two markets: the energy market
and the frequency regulation market?>. From these, the ag-
gregate resource receives a frequency regulation signal every
four seconds, which must be distributed among the individual
vehicles. This AGC signal g for each time step k£ has two
components: a fixed level of generation from the energy
market award (gF™), and a variable regulation quantity from
the hourly AS market award (gf ). The generation signal
gr = g,;EM + g,f R must be followed as accurately as possible
for different magnitudes of the variable component.

The error is defined as the difference between the loads
associated with the vehicles and the generation signal:

er = Z Tik — Gk (6)

’iGTk

Thus, to maximize the performance, |e;| must be mini-
mized. The relevant metric is the Accuracy, defined next.

T T
Accuracy =1 — Z lexl/ Z 178 7
k=1 k=1

This metric is tied to payments for AS providers, which
according to FERC’s order 755 [36], are proportional to
capacity and performance, which was already adopted by
CAISO’s AS market [37].

III. Myopric CONTROL

A myopic or short-sighted controller is presented, along
with benchmarks that use simpler approaches. The ease of
implementation is a relevant subject, so it will be useful to
compare simulation results.

A. Trajectory Following (TF)

The proposed TF controller relies on previously calculated
reference trajectories 7y for the SoC of each EV in a fleet,
considering their departures and arrivals, made by an external
optimizer (DER-CAM [32]). It takes as an input the reference
SoC trajectories, and reschedules at each operational time
the actual charging trajectory for each vehicle in order to
achieve the frequency regulation requirements, given by the
realization of an AGC signal that tells the fleet which instan-
taneous aggregated power input/output it should have. These
prespecified trajectories are calculated based on optimizing the
participation of the fleet in the frequency regulation market and
the charging of each EV under a retail electricity tariff. The

2While the resource settles its electricity costs at the retail price, in order
to effectively participate in frequency regulation, the EV fleet must create a
baseline electricity consumption on which it will regulate around, which is
done in the wholesale energy market.

trajectories can be understood as a nominal path for the SoC
of each vehicle, which enables the TF controller to incorporate
information about future arrivals and departures.

For each time step k, the following convex optimization
problem returns the optimal power vector, given the SoC of the
previous time step Ej_;. The proposed controller is defined
as TF(k) :=

arllrk — Exll2 + azlex| + [|as o pill1 + [|ees o pi|1

min

PPy
st. By = Ep_1 + (pf + pi)At (8)
ex = . pi/ni + pikni — g ©)

€Ty,
- c d +

Ly <pe+pi<Ty_, (10)
pi >0, pi<0 (11

Where o stands for element-wise vector multiplication, also
known as the Hadamard product. In the formulation of TF
controller, due to the non-convex relationship between pj, and
x (Equation 2), we split the power variable in the EVs’ side
into charging (p°) and discharging (p?) power, given that one
of them is 0. We relaxed the non-convex constraint p§ - p{ =
0, and added a penalty for the variables so that the solution
fulfills that requirement. This penalization also achieves non-
aggressive control moves, thus reducing the cycling of the
batteries compared to other benchmarks.

The real-time Trajectory Following (TF) controller consists
of an objective function that sums three terms with different
purposes: (1) tracking the SoC trajectories, (2) following
the AGC signal and (3) penalizing the power variables for
feasibility, with strictly positive penalties o, e, aes. As for
the constraints, Eq. 8 represents the dynamics of the batteries,
Eq. 9 represents the error in following the AGC signal and
Eqgs. 10 and 11 bound the decision variables.

If efficiencies ™, n~ are 100%, the optimal solution always
requires that py, - pz =0 VEk. When they are lower, it can be
shown that the constraint also holds when a sufficient condition
is fulfilled. Then, a convex relaxation based on tuning the
penalties in the objective function is described in Theorem 1.
Proof of this is presented in Appendix A.

Theorem 1. If the penalties s, as; are such that:

1—ntpn~
77:_771 v-7
2n;

the optimal solution to TF(k) will satisfy pS, -p% = 0 Vi € Ty

ag; > 09

The rationale behind Theorem 1 is intuitive: there should
be a threshold for the penalties of the control moves above
which it is not optimal to charge and discharge simultaneously,
because it would imply a higher cost for the objective function
while not making the fleet response more accurate. If there
was no penalty for p¢ and p?, the controller could do double-
charging (pj, - pg # 0) if it implied better accuracy.

It should be noted that TF controller will provide a fast
and feasible solution due to its convexity. Evidence suggests
that if pg - pg = 0 Vk constraint is included by using
binary variables instead of tuning the as penalty according
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to Theorem 1, the results of the non-convex problem are the
same as in the convex problem, but computation time grows
significantly.

A relevant subject for the implementation of the algorithm
is how to tune the penalties. Due to the direct impact of |e]
on the Accuracy results, as should be tuned as a large penalty
relative to o (given that E;” is always achieved).

B. Benchmarks

To benchmark the performance of the TF controller we con-
sider two methods from the Processor Time Allocation (PTA)
literature that have been applied to electric load scheduling
[35], as well as version of the TF controller that assumes
100% round trip battery efficiency, all of which are applied
in a sequential optimization simulation. In addition, a time-
invariant benchmark was used.

1) Earliest Deadline First (EDF): EDF creates a priority
list based on the departure time of the tasks, and therefore
will allow vehicles with the latest deadlines to remain at a low
SoC until sufficient resources are available to charge them. We
adapt this algorithm for discharging by coordinating vehicles
such that those with the latest departure times are discharged
first.

2) Least Laxity First (LLF): LLF creates a merit order list
sorted by laxity (see Eq. 1), and therefore will allow vehicles
with larger laxity to remain at a low SoC until sufficient
resources are available to charge them. Similarly to EDF, we
adapt the algorithm for discharging such that the vehicles with
the highest laxity are discharged first.

3) Trajectory Following with approximate battery state
(TFAPPROX): We remove the nonconvexity that results from
bidirectional charging by making the approximation p;; ~ =
in the battery dynamics equation. However, the quality of the
approximation degrades with declining efficiency.

4) Time-invariant Trajectory Following (Oracle): We de-
veloped an Oracle benchmark that solves the complete run
time at once. This additional benchmark provides a best-
possible-performance case.

IV. MODEL PREDICTIVE CONTROL

This section will explain how to extend the TF myopic
controller by implementing a predictive controller. We employ
model predictive control, which takes into account not only
the present current state of a system, but also its forecasted
states over a finite time horizon (of length V), when making
a decision. The underlying motivation is that MPC should
allow the algorithm to achieve better Accuracy, because it will
consider the EV arrivals and departures as well as a forecast
of the AGC signal when deciding how to update the SoC of
the vehicles.

A. Trajectory Following with Model Predictive Control
(TFMPC)

A first approach to use MPC with TF would be to sum up
the objective function values, while interpreting the bounds
ij’f as functions of the SoC. Including the upper bound

5

constraint with the future E;, as a variable is not a problem,
due to its concavity, but including the lower bound constraint
would imply using a nonconvex expression as a lower bound:

_ B —
i At

convex

] (1 - ¢zk)

pix = min[max|[max|[m; 1, ThH]
——

concave
(12)
In the myopic problem, this constraint’s objective was to
fulfill the task’s minimum energy requirements at departure,
which can also be achieved by transforming the laxity part
of the lower bound for power into an energy constraint, so
that the MPC problem is convex. For energy constraints to
work, efficiency effects must be fully considered by the MPC
controller in the time steps along the forecast horizon, so that
the SoC can be properly estimated. Before formulating the
MPC problem, some additional definitions are necessary:
o Fr={k,...,k+ N}.
* gk 1s the forecast for the AGC signal in period j, made
in time step k.
~ 9k, if j =k
97 Vg i >k
« Bold symbols must now include all tasks that may be
active in the forecast horizon: {i € U er, T;}.

For simulation purposes, the SoC of inactive tasks has to
be updated using a previously calculated vector for the power
variable. This represents the energy used by the EVs when
they are not grid connected, and the values for ;" must be
consistent with that vector. Thus, the MPC problem solved
for each time step k, with feasible region Zj, is defined as
TFEMPC(k) :=

rnln

p§.p]

>} aillry = Bjlla + azle;| + [las o p§ll1 + [las o pf|a
JEFK

st. Ej = Ej_1 + (p§ + p})At VjeFy (13)
e = D, pi/ni + i —d VieF, (14)

ie’]l‘j
2. ={m; <+l <mi, (15)
pfj > Oa ng = 07 (16)
B; < Eiy < B, (17)
Eij = E — (di — j)m *At} VieT;, VjeF, (18)

The terms in objective function of the real-time MPC
controller have the same meaning as in TF. As shown in
Theorem 1, properly tuning the penalties oo, s is critical
for satisfying the pj, - pz = ( constraint.

The constraints consider (1) the dynamics of the batteries
(Eq. 13), (2) the present and future error in following the AGC
signal (Eq. 14) and (3) the feasible set for both the power
variables and the energy state (Eqgs. 15 to 18). The purpose
of Eq. 18 is twofold. First, it is needed to ensure that the
task’s minimum energy requirements are fulfilled. Second, it
acts as a terminal constraint to ensure the feasibility of the
MPC controller, regardless of the length of Fy.
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B. AGC signal forecast

As mentioned earlier, the generation signal g has a random
component g,f R As this paper handles uncertainty with the
MPC approach, sequential forecasts are considered for g,f R by
using an ARIMA approach with the information available up
to each time step. This assumes that g¥"#* is a zero-mean signal,
which may not be true in real applications (when defining drive
cycles, non-zero means can be compensated [38]). To compare
results, a comparison was made between simulations with an
(1) an ARIMA forecast and a (2) a perfect forecast.

C. Operational capacity limits

There are some cases in which the input/output capacity
of the fleet may be limited by exogenous system conditions.
Let Cy,Cy € [0,1] denote the lower and upper operational
capacity limit at time step k, respectively, as a fraction of the
original regulation capacity of the fleet. In order to account for
this limitation in the MPC problem, the following constraint
is included for each time step k:

Crh Y, my <) Pu+ph<Cr ),
}

ie{l,...,V i€Tg ie{l,...,V}

m;i (19)

V. NUMERICAL RESULTS

The data set used in our numerical simulations is the
same as in [30], with a fleet of 18 EVs, with a maximum
regulation capacity of +15 kilowatts [kW] per vehicle, and a
run time of two days with time steps every five minutes, during
which the number of available vehicles changes according
to a fixed task schedule. TFMPC used a forecast horizon of
N = 10. Simulations were run using the MATLAB toolbox
YALMIP [39] along with the solver Gurobi [40]. The variable
component of the generation signal, g,f B was simulated as
an ARIMA time series for simulation purposes, based on
historical data for PIM’s regd test signal, meant to be used for
fast regulation resources such as EV batteries [41]. For each
time step, a forecast was made with the information of past
realizations of the AGC signal. Input data were obtained from
PIM’s AS website [42], where normalized dynamic (regd) and
traditional (rega) regulation signals are provided from seven
days in May 2014. The dynamic regulation signal was used for
this experiment. In terms of computation time, the simulations
were run in on a 2.5 GHz Intel Core 15-3210M processor, and
the TFMPC algorithm with N = 10 (the most computationally
expensive) took always less than 0.1 seconds to be solved.

A. Accuracy results

All of the proposed versions of the algorithms were tested
with six different test AGC signals and the Accuracy results
were averaged. These represent the performance of each
algorithm. Figure 4 shows the results for different magni-
tudes of the AGC signal and different battery efficiencies
(nt = n~ = n). Note that the AGC Magnitude value is a
higher bound for the signal’s absolute value. Table II shows a
comparison of the accuracy performance of each controller,
relative to the Oracle case. The results must be discussed
separately depending on the efficiency of the batteries. When

Accuracy,n=0.92

—a=—EDF
—+—LLF
TFAPPROX
—A—TF
—<4— TFMPC ARIMA Fcast
TFMPC Perfect Fcast
—oe— Oradle

0 50 700 150 200 250
AGC Magnitude (kW)

Accuracy,=0.85 Accuracy,n=10.8

/*\\x

250

50 100 150 200 250 0 50 100 ) 150
AGC Magnitude (kW) AGC Magnitude (kW)

Fig. 4. Accuracy for different algorithms, AGC signal magnitudes and battery
efficiencies n € {0.92,0.85,0.8}. Mean for all seeds.

TABLE 11
AVERAGE ACCURACY FOR EACH ALGORITHM, RELATIVE TO ORACLE

Oracle TFMPC Perfect ~TFMPC ARIMA TF TFAPPROX LLF EDF

100% 99.38% 99.31% 99.03% 98.43% 95.87%  94.61%

n = 0.92, the effective plugged in power capacity of each EV
is £13.8 [kW], and sorting the performance of the algorithm
and its benchmarks gives the following list: (1) Oracle, (2)
TFMPC Perfect Forecast, (3) TFMPC ARIMA Forecast, (4)
TF, (5) TFAPPROX, (6) LLF, and (7) EDF. The Accuracy
results for LLF and EDF, the only algorithms that do not track
predefined SoC trajectories, are noticeably worse than for the
other algorithms, for all the magnitudes of the AGC signal;
for the remainder of the algorithms the performance is similar.

When the efficiency of the batteries is decreased to n =
0.85, the effective plugged in power capacity of each EV is
reduced to +12.75 [kW], and the performance of all the algo-
rithms degrades but keeps the same order. In percentage terms,
EDF and LLF are farther from the rest for low magnitudes of
the AGC signal, and closer for high magnitudes. This happens
because the benefits of trajectory following are greatest when
real SoC trajectories are close to the reference trajectories —
which happens to be when the AGC magnitude is smallest. On
the other hand, when the AGC signal is large, the difference
between real and reference trajectories is inevitably large —
therefore reference trajectory following provides little benefit
relative to EDF and LLF.

Finally, when n = 0.8, the effective plugged in power
capacity of each EV is reduced to +12 [kW], and the
tendency described in the former paragraph is confirmed:
Earliest Deadline First (EDF) and Least Laxity First (LLF)
show bad performance for low Automatic Generation Control
(AGC) magnitudes, but their performance for high magnitudes
compared to the other algorithms is similar, due to the limited
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benefits to reference trajectory following when real trajecto-
ries are substantially different (as described in the previous
paragraph). Note that both TFMPC options achieve Accuracy
results that dominate over all the non-predictive algorithms.
These are close to the Oracle’s, but there is still some room to
improve, which could be done with longer forecast horizons
and more accurate forecasts.

1) Effect of exogenous system limitations: A case study
was performed for the TFMPC ARIMA controller with the
additional constraint (Eq. 19), where C}, = Cr =05 Vke
[20, 80], for 7 = 0.92. The results in Figure 5 show how the
controller struggles to track the AGC signal during an episode
of system limitations which translates into a tracking error.
Mild congestion episodes for short periods of time could be

2000 zoo§
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=
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Fig. 5. Effect of exogenous system limitations. Limiting the capacity of the
fleet to respond to the AGC signal reduces accuracy in the response.

an example of exogenous system limitations that the proposed
AGC controllers can handle. However, in general, limitations
associated with distribution congestion should be addressed
by modifying the reference signal (¢¥™), before the action
of the AGC controller. In the case of the LAAF project, this
task should be performed by the DER-CAM stage, as shown
in Figure 1.

2) Effect of delay: Figure 6a shows the accuracy of the
different control algorithms for the case with a delay of 1/10
of an AGC time-step. It can be observed that the accuracy
is reduced between 10-15% for all the algorithms, and for
different magnitudes of the AGC signal, when compared with
the case without delay (see Figure 4). Nevertheless, the results
still show a superior performance of MPC-based controllers
over non-predictive algorithms for the case of delayed fleet
response. An improved performance can be obtained using
the predictive feature of MPC controllers to anticipate the
AGC signal for a known, constant delay. In particular, Figure
6b shows the case in which the TFMPC ARIMA controller
anticipates the delay of the response to the AGC signal by
implementing its predicted response, achieving approximately
a 3% increase in accuracy with respect to the non-anticipative
case.

1 1
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(a) Accuracy of different algorithms (b) Accuracy of anticipative TFMPC
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Fig. 6. Delay effect on the response of the fleet. (a) Results for different
algorithms, AGC signal magnitudes and fixed battery efficiency n = 0.92.
Mean for all seeds. (b) Accuracy achieved by MPC fcast ARIMA algorithm,
for different AGC signal magnitudes and fixed battery efficiency n = 0.92.
Mean for all seeds.

B. Regulation capacity results

We define the feasible regulation region [R; , R}] as the
range of power in which a generation signal g; should lie so
that the fleet can provide regulation with no error, while being
able to fulfill the minimum energy requirements.

Outside the feasible region, the algorithms with a myopic
approach behave differently than TFMPC. For myopic algo-
rithms, their behavior is easy to understand: in that situation,
all the difference between g; and the fleet’s capacity to
provide regulation results in error. In contrast, the look-ahead
characteristic of the latter provides other possibility. TFMPC
algorithms may choose to save battery energy in a given
time step, resulting in avoidable error in the short run in
favor of reducing long-run error to minimize total error. This
emphasizes the relevance of properly tuning the parameters
a1, e, g in a way that the system makes desirable decisions
in the face of these trade-offs. The results for Rt and R~ are
shown in Figure 7.

When sorting the algorithms by the width of the mean
feasible regulation region they achieved, in general the order is
the same as in the ranking shown for Accuracy (not including
Oracle).

As for R* results (charging capacity), TF approaches
achieve better levels than EDF and LLF in all cases, which is
another benefit of tracking SoC trajectories. As the system
receives AGC signals with higher magnitude or uses less-
efficient batteries, batteries get drained, and therefore R*
increases because there is more room for the batteries to get
charged.

On the other hand, R~ (discharging capacity) is the real
bottleneck of the system for large AGC signals, because the
battery SoC is typically well below what is required to follow
the AGC signals. Furthermore, minimum energy requirements
at a task’s departure also constrain the discharging capacity of
each EV. Results for R~ are similar to the Accuracy results
when sorting the performance of the algorithms, except for
TFAPPROX when n = 0.8; the bad quality of the p;;, ~ =
approximation directly impacts the discharging capacity of the
batteries. It is clear that implementing MPC improves the
capacity of the EV fleet to discharge its batteries, and this
effect is magnified and therefore can be seen more clearly
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Fig. 7. Mean RT and R~ for different algorithms, AGC signal magnitudes and battery efficiencies 1 € {0.92,0.85,0.8}.

when the efficiency of the batteries decreases. Thus, the
importance of using MPC as opposed to myopic strategies
is greater when the system works closer to its limits.

C. Cycling results

Here we examine the impact of the control approaches on
cycling — which is believed to degrade battery state of health
— by using the arc length of the SoC curves as a proxy.
Table III shows the average value of this metric over all the
experiments, relative to the results of EDF. TF approaches

TABLE III
AVERAGE ARC LENGTH FOR EACH ALGORITHM, RELATIVE TO EDF

TFMPC Perfect TFMPC ARIMA TF TFAPPROX LLF EDF

90.63% 91.04% 92.24% 96.07% 99.78%  100%

lead to less cycling, and we attribute this result to one key
factor: by penalizing deviations from an SoC trajectory, each
of the TF approaches tend to cycle all batteries in roughly the
same way. This results in roughly equal distribution of ramping
across all the EVs, rather than distributing power changes to
EVs in the most extreme states (as with EDF and LLF). We
also see that, as one might expect, appropriately penalizing the
control variables (as with TF vs TFAPPROX) results in better
performance.

D. Individual AGC signal and EV results

Lastly, we show some results for seed 5, when n* =5~ =
0.85 and the AGC signal magnitude is of 100 kW. Figure 8
shows the varying EV availability, the AGC signal g, with its
two components, and the error in the EV fleet response e.
Noteworthy, the error’s magnitude is higher when fewer EVs
are available due to a reduced regulation capacity. However,

this error is reduced when more complex algorithms based
on convex optimization and MPC are used to track the AGC
signal. Figure 9 shows how the SoC of a particular EV changes

~
S

# of Available EVs

I I | I | | I
0 50 100 150 200 250 300 350 400 450 500

AGC Signal (kW)
oEM . gFR

I I I I | I I -
0 50 100 150 200 250 300 350 400 450 500

s |
= 4l ’
B 0 L v L L L L L ! L L L
0 50 100 150 200 250 300 350 400 450 500
5 |
5 s0- i 1
S 1
| | | | | | | Il | |
0 50 100 150 200 250 300 350 400 450 500
'I:n - -
= 1ol | =~ MPC fcast ARIMA
= 1001-| ——MPC fcast perfect b
B “)
s 1
| | | | | | | il | |
0 50 100 150 200 250 300 350 400 450 500

Time steps (x5 min)
Fig. 8. EV availability, AGC Signal and response error for different strategies.

during the simulation with each of the strategies. In this
particular case, the arc length of the SoC curves is noticeably
longer for EDF and LLF than for the rest of the strategies. It
can also be noted that the SoC trajectories were not followed
perfectly, given that the higher weight was assigned to aw
in order to prioritize following the complete AGC signal (and
therefore achieve better accuracy). Nevertheless, the minimum
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energy requirements are hard constraints in the trajectory-
following controllers; thus, they are always achieved.
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Fig. 9. State of Charge of EV 13 for different strategies.

VI. CONCLUSIONS

In this paper, we focus on the design of charging schedules
of EVs for the provision of frequency regulation services. In
particular, we propose several real-time scheduling schemes
differentiated by the way of handling future information
(myopic/non-myopic), the level of accuracy on following
regulation signals and the resulting cycling on the batteries. A
method for considering bidirectional efficiency while enabling
the estimation of the future state of charge of the EVs in the
fleet is provided, which allows the use of model predictive
control schemes.

Extensive simulation results show the trade-off between the
complexity of the controllers and their accuracy on following
regulation signals: for practical implementations, both the ease
of use and the performance are relevant. A key insight is that
higher accuracy in following regulation signals coincides with
less cycling of the batteries and, in most cases, with better
regulation capacity. This highlights the importance of keeping
the state of charge of the batteries away from their physical
boundaries when providing frequency regulation services.

The generality of the approach enables the use of the same
framework for any kind of energy battery, such as water reser-
voirs or HVAC loads. Other stochastic fast-response resources
suitable for demand response, such as buildings or industrial
processes, can be integrated into the proposed controller as
well. Future work should take into account uncertainty in
the EVs’ arrival and departure, in which MPC along with
advanced forecasting techniques can be specially valuable.
Moreover, a control formulation explicitly considering delays
in the EV fleet response should also be taken into account.
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APPENDIX
A. Proofs
Proof: Theorem 1. Assume that the optimal solution for
some 7,k is given by p, = t1 + tg,pglk = —t9 such that

t; > 0,t2 > 0 (so that (¢; + t2)ta # 0). For simplicity,
also assume that ;" = ™, n; = 7~ Vi, and let f(-) denote
the objective function. Condition p$, - p% = 0 would always
hold if a sufficient condition was found so that f(¢,0) <
f(t1+ta, —t2). When comparing f(t1 +ta, —t2) with f(t1,0),
the first term, oy ||ry — Ej||2, is the same in both cases. Thus,
the rest of f(-) remains to be compared. When replacing, the
following expression is obtained:

f(tl,O) < f(tl + ta2, 7t2)
1+ t2
7]+

t1 t _
az‘nj —gk| + azilt1] < (12| —tan —gk| + azi(|t1 + t2] + | — t2])

t t 1
— ag‘—l - gk| < a2|—1 + tg(j — 777) — gk‘ + 2asz;ts
n U n
(A1)
Note that because of the assumption on t; and 0 <7 < 1,
1?2(7%+ —n7) is a strictly positive term. Some cases must be
analyzed:
1 ;—1 —gr =0

t1 t1 1 _
042(*+ _gk) < Oéz(j +t2(7+ -n ) _gk) + 2a3;t2
n n ) n (A2)
— 0< a2t2(— — nf) + 2a3ita
nt+

Which holds because all the terms are positive.
t1 .

2) F — gk < 0:
This case must be split into three more cases:
a) %4—@(77%—777) -9k >0

t1 t1 1 —
*Oéz(nj - gk) < a2(nj +t2(* -n ) - gk) + 2a3ita

nt
= 0<2 <t1 +t<1 _) )
Q| — 2\ —1" — 9k
nt nt
1 _
+2a3it27a2t2(7+777 )
n

) (A3)
Because of the assumption,

t1 1 _
2a2(F+t2(n—+fn >7gk> >0 (A4)
So, a condition can be obtained if the rest is also
positive:

1 —
2(13¢t2 — Oéztg(* —-n ) >0
7]+

A5
1—ntn~ A-3)
— i > _
[07%:3 a9 277+
t1 1 ) o _
® ,,++t2(,,+ K ) gk =0
t1
- az(n—+ - gk) < 2asits (A6)
Because of the assumption,
1 _
uztz(j -n ) < 2ags;t2
n
. (A7)
1—n"n
= az; > ag———
2n+t

tq 1 _
c) F+t2<F_n )_gk <0

t1 t1 1
7Q2(7+ *gk) < *Oéz(nj + tQ(F -n ) - 91«) + 2a3ita
1
— 0< 70(2t2<7+ —-n ) + 2a3ita
n
1—n"n"

(A.8)
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Therefore, if the sufficient condition is respected for every
i, p$, - ph. = 0 will be satisfied for every 4, k in the optimal
solution.

[1]

[2]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

1949-3053 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

REFERENCES

N. G. Gast, J.-Y. Le Boudec, A. Proutiere, and D.-C. Tomozei, “Im-
pact of Storage on the Efficiency and Prices in Real-Time Electricity
Markets,” EPFL, Switzerland, Tech. Rep., 2013.

D. L. Anderson, “An evaluation of current and future costs for lithium-
ion batteries for use in electrified vehicle powertrains,” Ph.D. disserta-
tion, Duke University, 2009.

B. Nykvist and M. Nilsson, “Rapidly falling costs of battery packs for
electric vehicles,” Nature Climate Change, vol. 5, no. 4, pp. 329-332,
2015.

M. Alizadeh, M. P. Moghaddam, N. Amjady, P. Siano, and M. Sheikh-
El-Eslami, “Flexibility in future power systems with high renewable
penetration: A review,” Renewable and Sustainable Energy Reviews,
vol. 57, pp. 1186 — 1193, 2016.

S. Meyn, M. Negrete-Pincetic, G. Wang, A. Kowli, and E. Shafieep-
oorfard, “The value of volatile resources in electricity markets,” in
Proceedings of the 49th IEEE Conference on Decision and Control
(CDC), Dec 2010, pp. 1029-1036.

A. Papavasiliou, S. Oren, and R. O’Neill, “Reserve requirements
for wind power integration: A scenario-based stochastic programming
framework,” Power Systems, IEEE Transactions on, vol. 26, no. 4, pp.
2197-2206, 2011.

J. Cochran, M. Miller, O. Zinaman, M. Milligan, D. Arent,
B. Palmintier, M. O’Malley, S. Mueller, E. Lannoye, A. Tuohy,
B. Kujala, M. Sommer, H. Holttinen, J. Kiviluoma, and S. Soonee.
(2014) Flexibility in 21st century power systems. [Online]. Available:
http://www.nrel.gov/docs/fy140sti/61721.pdf

A. Nayyar, M. Negrete-Pincetic, K. Poolla, and P. Varaiya, “Duration-
differentiated energy services with a continuum of loads,” IEEE Trans-
actions on Control of Network Systems, vol. 3, no. 2, pp. 182-191, June
2016.

E. Bitar and Y. Xu, “Deadline differentiated pricing of deferrable electric
loads,” IEEE Transactions on Smart Grid, vol. PP, no. 99, pp. 1-1, 2016.
W. Kempton, V. Udo, K. Huber, K. Komara, S. Letendre, S. Baker,
D. Brunner, and N. Pearre. (2008) A test of vehicle-to-grid (v2g)
for energy storage and frequency regulation in the pjm system.
[Online]. Available: http://www1.udel.edu/V2G/resources/test-v2g-in-
pjm-jan09.pdf

PowerUp. (2013) Power
/Iwww.power-up.org/

K. Mets, T. Verschueren, W. Haerick, C. Develder, and F. De Turck,
“Optimizing smart energy control strategies for plug-in hybrid electric
vehicle charging,” in Proceedings of the Network Operations and
Management Symposium Workshops (NOMS Wksps), 2010 IEEE/IFIP,
April 2010, pp. 293-299.

J. Tomi¢ and W. Kempton, “Using fleets of electric-drive vehicles for
grid support,” Journal of Power Sources, vol. 168, no. 2, pp. 459 — 468,
2007.

L. Goransson, S. Karlsson, and F. Johnsson, “Integration of plug-in
hybrid electric vehicles in a regional wind-thermal power system,”
Energy Policy, vol. 38, no. 10, pp. 5482 — 5492, 2010.

J. Pillai and B. Bak-Jensen, “Electric vehicle based battery storages
for future power system regulation services,” in Proceedings of the 5th
Nordic Wind Power Conference.  Technical University of Denmark
(DTU), 2009.

C. T. Li, C. Ahn, H. Peng, and J. Sun, “Synergistic control of plug-in
vehicle charging and wind power scheduling,” IEEE Transactions on
Power Systems, vol. 28, no. 2, pp. 1113-1121, May 2013.

J. Lin, K. C. Leung, and V. O. K. Li, “Optimal scheduling with vehicle-
to-grid regulation service,” IEEE Internet of Things Journal, vol. 1, no. 6,
pp. 556-569, Dec 2014.

J. Donadee and M. D. Ili, “Stochastic optimization of grid to vehicle
frequency regulation capacity bids,” IEEE Transactions on Smart Grid,
vol. 5, no. 2, pp. 1061-1069, March 2014.

H. Liu, Z. Hu, Y. Song, and J. Lin, “Decentralized vehicle-to-grid control
for primary frequency regulation considering charging demands,” IEEE
Transactions on Power Systems, vol. 28, no. 3, pp. 3480-3489, Aug
2013.

up project. [Online]. Available: http:

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

[33]

(34]

[35]

[36]

[37]

(38]

[39]

[40]
[41]

[42]

10

Z. Ma, D. S. Callaway, and I. A. Hiskens, “Decentralized charging con-
trol of large populations of plug-in electric vehicles,” IEEE Transactions
on Control Systems Technology, vol. 21, no. 1, pp. 67-78, Jan 2013.
C. Wu, H. Mohsenian-Rad, and J. Huang, “Vehicle-to-aggregator in-
teraction game,” IEEE Transactions on Smart Grid, vol. 3, no. 1, pp.
434-442, March 2012.

J. J. Escudero-Garzas, A. Garcia-Armada, and G. Seco-Granados, “Fair
design of plug-in electric vehicles aggregator for v2g regulation,” IEEE
Transactions on Vehicular Technology, vol. 61, no. 8, pp. 3406-3419,
Oct 2012.

E. Yao, V. W. S. Wong, and R. Schober, “Robust frequency regulation
capacity scheduling algorithm for electric vehicles,” IEEE Transactions
on Smart Grid, vol. PP, no. 99, pp. 1-14, 2016.

H. Liu, Z. Hu, Y. Song, J. Wang, and X. Xie, “Vehicle-to-grid control
for supplementary frequency regulation considering charging demands,”
IEEE Transactions on Power Systems, vol. 30, no. 6, pp. 3110-3119,
Nov 2015.

S. 1. Vagropoulos, D. K. Kyriazidis, and A. G. Bakirtzis, “Real-time
charging management framework for electric vehicle aggregators in a
market environment,” IEEE Transactions on Smart Grid, vol. 7, no. 2,
pp. 948-957, March 2016.

C. L. Floch, E. Kara, and S. Moura, “Pde modeling and control of
electric vehicle fleets for ancillary services: A discrete charging case,”
IEEE Transactions on Smart Grid, vol. PP, no. 99, pp. 1-1, 2016.

S. Sun, M. Dong, and B. Liang, “Real-time welfare-maximizing regu-
lation allocation in dynamic aggregator-evs system,” IEEE Transactions
on Smart Grid, vol. 5, no. 3, pp. 1397-1409, May 2014.

R. J. Bessa and M. A. Matos, “Economic and technical management of
an aggregation agent for electric vehicles: a literature survey,” European
Transactions on Electrical Power, vol. 22, no. 3, pp. 334-350, 2012.
[Online]. Available: http://dx.doi.org/10.1002/etep.565

B. Xu, Y. Dvorkin, D. S. Kirschen, C. Silva-Monroy, and J.-P. Watson,
“A comparison of policies on the participation of storage in us frequency
regulation markets,” arXiv preprint arXiv:1602.04420, 2016.

F. Juul, M. Negrete-Pincetic, J. MacDonald, and D. Callaway, “Real-time
scheduling of electric vehicles for ancillary services,” in Proceedings of
the 2015 IEEE Power Energy Society General Meeting, July 2015, pp.
1-5.

M. Zeilinger, “Real-time Model Predictive Control,” Ph.D. dissertation,
ETH Zurich, ETH Zurich, Sep. 2011. [Online]. Available: https:
//control.ee.ethz.ch/index.cgi?page=publications;action=details;id=3977
C. Marnay, T. W. Chan, N. DeForest, J. Lai, J. MacDonald, M. Stadler,
T. Erdmann, A. Hoheisel, M. Mueller, S. Sabre, E. Koch, P. Lipkin,
R. W. Anderson, S. Gerber, and E. Reid, “Los angeles air force base
vehicle to grid pilot project.” ECEEE, 2013.

Lawrence Berkeley National Lab. DER-CAM. [Online]. Available:
https://building-microgrid.lbl.gov/projects/der-cam

Kisensum. (2016) Connecting electric vehicles and storage to the smart
grid. [Online]. Available: http://www.kisensum.com/#home

A. Subramanian, M. Garcia, A. Dominguez-Garcia, D. Callaway,
K. Poolla, and P. Varaiya, “Real-time scheduling of deferrable electric
loads,” in Proceedings of the 2012 American Control Conference (ACC),
June 2012, pp. 3643-3650.

FERC. (2011) Order 755: Frequency Regulation Compensation
in the Organized Wholesale Power Markets. [Online]. Available:
http://www.ferc.gov/whats-new/comm-meet/2011/102011/E-28.pdf
CAISO. (2015) Business practice manual for market oper-
ations, version 45. [Online]. Available: https://bpmcm.caiso.
com/BPM %20Document % 20Library/Market % 200perations/Market %
200perations%20BPM%20V45_redline.pdf

R. P. Hafen, V. V. Vishwanathan, K. Subbarao, and M. C. Kintner-
Meyer, Requirements for Defining Utility Drive Cycles: An Exploratory
Analysis of Grid Frequency Regulation Data for Establishing Battery
Performance Testing Standards. Pacific Northwest National Laboratory,
Oct 2011. [Online]. Available: http://www.osti.gov/scitech/servlets/purl/
1028571

J. Lofberg, “Yalmip : A toolbox for modeling and optimization in
MATLAB,” in Proceedings of the CACSD Conference, Taipei, Taiwan,
2004. [Online]. Available: http://users.isy.liu.se/johanl/yalmip

Gurobi Optimization, Inc., “Gurobi optimizer reference manual,” 2015.
[Online]. Available: http://www.gurobi.com

PJM. (2013) PIM ancillary services - regulation. [Online]. Available:
https://pjm.adobeconnect.com/_al6103949/p7ssg501jfn/

(2015) PJM ancillary services. [Online]. Available:
/Iwww.pjm.com/markets-and-operations/ancillary-services.aspx

http:


http://www.nrel.gov/docs/fy14osti/61721.pdf
http://www1.udel.edu/V2G/resources/test-v2g-in-pjm-jan09.pdf
http://www1.udel.edu/V2G/resources/test-v2g-in-pjm-jan09.pdf
http://www.power-up.org/
http://www.power-up.org/
http://dx.doi.org/10.1002/etep.565
https://control.ee.ethz.ch/index.cgi?page=publications;action=details;id=3977
https://control.ee.ethz.ch/index.cgi?page=publications;action=details;id=3977
https://building-microgrid.lbl.gov/projects/der-cam
http://www.kisensum.com/#home
http://www.ferc.gov/whats-new/comm-meet/2011/102011/E-28.pdf
https://bpmcm.caiso.com/BPM%20Document%20Library/Market%20Operations/Market%20Operations%20BPM%20V45_redline.pdf
https://bpmcm.caiso.com/BPM%20Document%20Library/Market%20Operations/Market%20Operations%20BPM%20V45_redline.pdf
https://bpmcm.caiso.com/BPM%20Document%20Library/Market%20Operations/Market%20Operations%20BPM%20V45_redline.pdf
http://www.osti.gov/scitech/servlets/purl/1028571
http://www.osti.gov/scitech/servlets/purl/1028571
http://users.isy.liu.se/johanl/yalmip
http://www.gurobi.com
https://pjm.adobeconnect.com/_a16103949/p7ssg501jfn/
http://www.pjm.com/markets-and-operations/ancillary-services.aspx
http://www.pjm.com/markets-and-operations/ancillary-services.aspx

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/T$G.2017.2681961, IEEE

Transactions on Smart Grid

George Wenzel was born in Santiago, Chile. He
received a B.Sc. and M.Sc. in Electrical Engineering
from Pontificia Universidad Catdlica de Chile, in
2014 and 2016, respectively. He is currently a R&D
engineer at the Energy Optimization, Control and
Markets Laboratory (OCM-Lab) at Pontificia Uni-
versidad Catdlica de Chile. His research activities
include electricity markets, demand response archi-
tecture and vehicle-to-grid control.

Matias Negrete-Pincetic received a B.Sc. in Elec-
trical Engineering and a M.Sc in Physics from Pon-
tificia Universidad Catdlica de Chile, and a M.Sc.
in Physics and a Ph.D. in Electrical and Com-
puter Engineering from the University of Illinois
at Urbana-Champaign, USA. He was a Postdoctoral
Associate at the University of California, Berkeley,
CA, USA. Currently, he is an Assistant Professor at
the Electrical Engineering Department at Pontificia
Universidad Catdlica de Chile. His current research
activities include operation, control and planning of
energy systems, stochastic control, electricity market design and energy policy.

Daniel E. Olivares (S’11-M’14) was born in San-
tiago, Chile. He received the B.Sc. and Engineer
degrees in electrical engineering from the University
of Chile, Santiago, in 2006 and 2008, respectively,
and the Ph.D. degree in electrical and computer en-
gineering from the University of Waterloo, Waterloo,
ON, Canada, in 2014.

He is currently an Assistant Professor with the De-
partment of Electrical Engineering, Pontificia Uni-
versidad Catélica de Chile, Santiago. His current
research interests include modeling, simulation, and
control and optimization of power systems in the context of smart grids.

Jason MacDonald (S’14) is a Scientific Research
Associate at Lawrence Berkeley National Labora-
tory, and a Ph.D. student in Energy and Resources at
the University of California, Berkeley. He received
an MS in Natural Resources and the Environment
and an MSE in Mechanical Engineering at the
University of Michigan, Ann Arbor in 2011. His
research is centered on electricity market participa-
tion of distributed energy resources, with particular
emphasis in the nexus of market interaction and
controls. His work history includes engineering and
research in plug-in electric vehicles, photovoltaic systems design, and demand
response for ancillary services.

1949-3053 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

11

Duncan S. Callaway (M’08) received the B.S.
degree in mechanical engineering from the Univer-
sity of Rochester, Rochester, NY, in 1995, and the
Ph.D. degree in theoretical and applied mechanics
from Cornell University, Ithaca, NY, in 2001. He
is currently an Assistant Professor of Energy and
Resources and Mechanical Engineering, University
of California, Berkeley. Prior to joining the Uni-
versity of California, he was first an NSF Postdoc-
toral Fellow with the Department of Environmental
Science and Policy, University of California, Davis,
subsequently worked as a Senior Engineer at Davis Energy Group, Davis, CA,
and PowerLight Corporation, Berkeley CA, and was most recently a Research
Scientist with the University of Michigan. His current research interests
include the areas of power management, modeling and control of aggregated
storage devices, spatially distributed energy resources, and environmental
impact assessment of energy technologies.



