Generating smartphone phishing applications for

deception based defense

BY
KRUTI SHARMA

B.E., Rajiv Gandhi Proudyogiki Vishwavidyalaya, India, 2010

THESIS
Submitted as partial fulfillment of the requirements
for the degree of Master in Computer Science
in the Graduate College of the

University of Illinois at Chicago, 2017

Chicago, Illinois

Defense Committee:
Dr. Mark Grechanik, Chair and Advisor
Dr. Aravinda Prasad Sistla
Dr. Chris Kanich

Dr. Mohak Shah, Bosch Research

ACKNOWLEDGMENTS

First of all, I would like to thank my advisor Professor Mark Grechanik for giving me the opportu-
nity to work under him as his Research Assistant. Research field was entirely new for me and with his
guidance I was able to work in this thesis.

I would also like to thank my committee members - Professor Aravinda Sistla, Professor Chris
Kanich and Dr. Mohak Shah for taking out their valuable time and served as committee members for

my Master’s thesis.

11 KS

Contribution of Authors

The subsections: Overview of GUI and Background on the GUI Structure have been referenced from
Dr. Mark Grechanik’s previously published work [45,66-69, 123] and Dr. Grechanik has authorized

me to use the content as published by him in my master’s thesis. The subsection Overview of GUI

gives a general idea about the interface used across all the operating systems/platforms and helps my

thesis work to give a general idea about the interface. The subsection Background on the GUI Structure

helps my thesis work to elaborate on the general architecture of interface across different platform.

il

TABLE OF CONTENTS

CHAPTER PAGE
1 Introduction e e e, 1
1.1 Mobile app Overview e e e e 2
1.2 Overview of GUI 5
1.3 Background on the GUI Structure 6
1.4 Android User Interface Overview o v i i e 7
1.5 Architecture of Accessibility Framework in Android 11
1.6 Accessibility Service 11
1.7 Accessibility Events 14
1.8 Android Permissions Model 15
1.9 The Attacker Model 16
1.10 Our Contribution o o e e e e e 18
2 Background and Related Worko 20
3 Motivation, Challenges, and Proposed Framework 23
4 Solution e e 26
4.1 ASSUMPLIONS . . . v v vt s e e e e e e e e e e e e e e e e e e e 26
42 GUIEXtraction o o e e e e e 27
4.3 Implementation details of Accessibility Service 30
4.4 Phishing: GUICreation e 34
4.5 GUI Analysis o e e e 43
5 Experimental Results 52
5.1 Tree Edit Distance Algorithm Overview 63
5.2 Resultsfromotherapps 66
5.3 Snapshots comparing Original vs Phished GUIs 68
6 Conclusion L s, 70
References L 71
Appendix e e 81
VITA . s, 82

v

LIST OF TABLES

TABLE PAGE
I GITHUB DOWNLOADED APPLICATIONS OVERVIEW 44

I GRAPHICAL USER INTERFACE, HIERARCHY AND ACCESSIBILITY LOG ANAL-
YSIS FOR GITHUB DOWNLOADED APPS 66

FIGURE

1
2

10
11
12
13
14
15
16
17
18
19
20
21

LIST OF FIGURES

PAGE
Mobile App Example 2
CitiBank Mobile App Snapshot L oL 4
Framework Model 5
Android Ul Hierarchy 7
Using assistive technologies (MAZPs) in attacks on Users With Disabilities (UWD) . . 17
A model of GUI accessibility. 26
Andlytics App: Original App Screen Lo 35
Andlytics App: File created from AS sample Log 35
Test Activity for analyzing Phished GUIs 36
Chase Bank: Comparing Original Vs Phished App 48
CitiBank: Comparing Original Vs Phished App 51
Android Project Structure Part -1 L L 52
Android Full Project Structure L 54
Hierarchy Viewer GUl analysis 57
Hierarchy Viewer Layout analysis 57
Comparing XML Log for Login Activity 64
Comparing Login Activity - Snapshots, 65
Accessibility Log for Login Activities. oo 65
Original vs Phished GUI for Andlytics App 68
Original vs Phished GUI for Commons App 69
Original vs Phished GUI for SmartGadget App 69

vi

MAZP
UWD
AS
GUI
GAP

App

LIST OF ABBREVIATIONS

Mobile Assistive APplications

Users With Disability

Accessibility Services

Graphical User Interface

Graphical User Interface- based APplication

Application

vii

SUMMARY

Graphical User Interface (GUI)-based APplications (GAPs) are ubiquitous, both in business and
personal use and they are deployed on diverse software and hardware platforms. Unfortunately, close
to 5S0Mil people have disabilities in the USA alone and over 600Mil worldwide, and it is difficult for
Users With Disabilities (UWDs) to work with GAPs on their smartphones. Since there are hundreds of
disabilities that impair people in vision, movement, thinking, remembering, learning, communicating,
and hearing, UWDs need specialized enhancements to GUIs. Mobile Assistive APplications (MA?Ps)
provide these enhancement services using specialized accessibility technologies that are fundamen-
tally insecure, thus exposing all smartphone users to a variety of attacks. The goal of this framework
is therefore to investigate security problems with accessibility technologies and to explore a novel
theoretical foundation to allow stakeholders to create, analyze, and predict the security and privacy
behavior of complex MA?Ps for UWDs.

A connecting thread in the research thrusts is a combination of GAP and MA”P modeling and
compositional intercomponent analysis using these models to create a prototype that can predict and
mitigate security threats posed by accessiblity technologies for smartphone users. Also, the results of
the proposed framework should inform the GUI security and assistive technologies communities about
the possibilities and limits of program analyses and machine learning in dealing with security problems

posed by accessibility technologies that make users unsafe.

Key Words: graphical user interface, security, program analysis, assistive technologies, smartphone

apps

viii

1. Introduction

All major operating systems on smartphones provide the accessibility service for creating Mobile-
Assistive APplications (MA*Ps) for Users With Disabities (UWDs). Since there are hundreds of dis-
abilities that impair people in vision, movement, thinking, remembering, learning, communicating, and
hearing, UWDs need assistance in using Graphical User Interface (GUI)-based APplications (GAPs)
by enhancing their GUIs [45, 66-69], and MAZ?Ps provide these enhancement services. Google Play
Store has thousands of applications that requests for Accessibility Service [80,85] and two
applications which have a rating of 4.3 out of 5 [104, 116] are popular and have been downloaded
by more than ten million users. Making GAPs accessible for UWDs is extremely important nowa-
days [97], since GAPs are ubiquitous, both in business and personal use and they are deployed on di-
verse software and hardware platforms [34,77] including TVs and cars [37]. Making GAPs accessible
for users with various types of disabilities is legally required [63,92], and a large MA”P marketplace
exists where there is no control over how applications use accessibility services.

On the 4" March, of the past year 2016, it was announced that an evolutionary malware that
exploits the accessibility service using clickjacking impacted more than half a billion Android devices
globally [29,30,42,61,87,90,108,109,128,129]. A report at the annual cyber-security RSA conference
stated: “this very modern mobile malware had the capability to not be detected in scanner detection,
which is usually based on signatures, static and dynamic analysis approaches.” The malware can steal
all sensitive information and take automated actions using other applications and even the operating
system. On the 5 of May 2016, Symantec announced that Android banking malware tricks users into
turning on the accessibility service, so that it can steal sensitive information from all users, not just
from UWDs [126].

Moreover, security researchers from Symantec reported that the protection that Google released
in May was not fool proof [127]. As of the 18" of May 2016 it is confirmed that the attack is not
limited to older versions of Android and over 95% of Android devices are under this rapidly expanding
threat [59]. Different attacks that use accessibility services were reported as early as in November
last year [46] although security weaknesses of the accessiblity services were discussed as early as
2014 [88], and these attacks are expanding on a massive scale. If accessibility services are enabled,

then applications with accessibility permissions are allowed to interact with GUIs on behalf of the user

and do almost anything that the user can do and currently there is no protection against this attack.

1.1 Mobile app Overview

A Mobile App is a software application designed to run
on mobile devices such as smartphones and tablet comput-
ers [121]. These apps allow users to access different ap-
plications easily on their smartphones like calendar, email
etc. Different variety of platforms/operating systems like
I0S, Android, Windows, Blackberry have an in-built sup-

port for many apps and extra set of apps may be installed

from app stores. These apps are designed to provide users
with services that they can access on their PCs [17]. Each
app has specific and limited functions that it can perform
Figure 1: Mobile App Example [15]
and is designed to support the limited hardware and mem-
ory resources of a smartphone.

Each smartphone can have any number of apps (highly depends on the memory and support given
by each smartphones platform) ranging from providing weather forecast services to allowing users to
access their mailbox. For example, as shown in Firgure: 1, there can be mulitple apps with some in-
built provided by the platforms and other may be downloaded. The popularity of Google’s Android
has been increasing and is popularly accepted operating system for many smartphones [21]. There
are around 2,600,000 apps [18] available for users to download from Google Play Store - the official
market for publishing and downloading android apps. The variety of apps available for user’s ranges
from basic apps such as calendar, email to important apps such as banking/financial apps. The apps are
designed specifically for smartphones, providing a compatible view and an easy one click for accessing
them.

But how do the services and operations of a website varies on laptop and smartphone. There are
various differences like:

@ The memory, computing power, hardware and software resources of a smartphone is very less
as compared to a laptop or PC. A smartphone generally has 512 MB - 6 GB of RAM, processors of

very less computing power and small screen size ranging from 2.5" to 4.8". Thus loading a website on

smartphone and PC is not always same.

@ Accessing a website on a PC mostly requires navigation either through keyboard or through
mouse, whereas for a smartphone the main access is through touch events. So a button click on PC is
basically a touch event which is equivalent to a click event on smartphone. But for events like hover -
which may be used by many websites to show information just on hover (like when a mouse pointer is
pointing to some text/button/link, extra information may be given about that element) does not works
for smartphones as there is no hover event in smartphones.

@ Many websites require extra plugins for supporting video or music streaming which may not
be supported by smartphones browsers due to limited resources.

Many websites are specifically desgined with smartphone compatible view which require less mem-
ory and can work with limited resources. Let us explore an app, CitiBank Mobile App. The app
is used by user’s holding a CitiBank account and have netbanking enabled. The app gives a quick
overview to the logged in user about their account, the balance for all associated accounts including
checking, savings and credit cards. All other services which are provided by the CitiBank website
(www.myciti.com) (like: adding account, transferring money etc.) are supported by the app too.
A user can access their CitiBank account through the website also on their smartphone provided the
smartphone has a browser (e.g.: chrome or any other browser supported by smartphones). But these
apps are easy to use because the user can just click on the app to start interacting with CitiBank di-
rectly. Whereas when a user tries to access the website for CitiBank on their smartphone, they must
first have a browser compatible with their smartphone and then they can open CitiBank website (i.e.:
www.myciti.com. A major challenge with accessing these websites on smartphones is their com-
patibility. Sometimes the website may not have a smartphone compatible view i.e. the a website
may not load properly on a small screen of the smartphone, may have overlapping content and many
services and operations may not work in the desired way due to the limited resources in smartphone.

Thus apps play an important role in smartphones allowing users to access various services and they
are designed as per the smartphones platform i.e. small screen, limited hardware, software resources
and low processing power. Figure: 2 is a small snapshot of how CitiBank app looks like: (after the user

has logged in)

www.myciti.com
www.myciti.com

O W/ @346 ® W E13:46

Sign Off

Checking
& = a2

Person-to-F
Paymen

Checking xxx Payment & Mobile

Transfer Deposit

S X, XXXXX available now

My Accounts

Credit Cards

Profile
citi ThankYou® Prefe... yyvy Payments & Transfers 3 ’
Citi® MasterPass™
S XX XXX current balance
Manage Your Cards >

Offers For You My Rewards

Paperless Settings
Your FICO® Score

Offers For You

ATM/Branch Locations

Contact Us

Figure 2: CitiBank Mobile App Snapshot

Each of the platforms (IOS, Android, Windows, Blackberry etc) have an official store for down-
loading their platform compatible apps. Google Play Store is the official store for downloading android
apps, Apple Store for IOS apps , Windows Store for Windows apps etc. With the third party support
and open nature of Android, there are many unofficial party stores that allows users to download and
install android apps. The apps available on these stores can be downloaded for free or paid. The apps
available on other third party source are generally not verified and any malwares or viruses or even
apps (can perform unauthorized operations) can be easily distributed through these sources. The open
source nature of android allowing installation of apps downloaded from third party/unverified sources
makes it a target. Even though Google Play Store authenticates each app distributed from their store,
still certain malicious apps can take advantage of side channels such as advertisements, using these
as a medium and tricking the users to install some other packaged applications or perform some other

operation from behind the scenes.

1.2 Overview of GUI

A GUI framework is a reusable and extensible set of GUI objects with well-defined interfaces that can
be specialized to produce and to run custom GAPs [99]. A schematics of a model of GUI frameworks
is shown in Figure 3. A purpose of this model is to show that there are four main components in GUI
frameworks: GUI representation layer, GUI object library, GUI interfaces and the accessibility layer.
GUI representation layer defines how GUI objects are represented programmatically as data structures
in computer memory. For example, HTML pages are represented using a generic document object
model in browsers while programming documentation for Windows defines proprietary data structures
for GUIs and the events that they receive and send. The visualization/graphics engine interprets these
data structures and visualizes them using some predefined settings for styles and layouts.

To allow users to interact with GUI objects, the underlying operating system or a virtual machine
provides queues for receiving user inputs from peripheral devices (e.g., mouse, keyboard or a touch
screen) and translates these inputs into event data structures that are passed to the corresponding GUI
objects using its interfaces. GUI object libraries contain implementations of GUI objects and expose
their interfaces; these libraries are extensible and many third-party vendors offer implementations of
sophisticated GUI objects for different GUI frameworks. In general, GUI libraries developed by dif-

ferent vendors expose diverse interfaces.

Acessibility technologies provide assistance to Users ’
Interfaces
With Disabilities in many ways [63] [103], for example: Accessibility GUI Object
Toagew Library
screen reader helps in assisting users with visual impair- And its
. i GUI Representation
ment, users with hearing loss are assisted via captions or - P
Interfaces Layer
visual indicators and many software compensate for users

Visualization Graphics Engine

with motion impairments. In order to meet the requirements

of Electronic and Information Accessibility Standards [63], Opesatingiysteny or il Machire

accessibility technologies are provided by many platform- .

Figure 3: Framework Model
s/operating systems. For example, applications running on
Windows [50, 70] provide assistance to its users via Microsoft Active Accessibility (MSAA), android
has its own Android Accessibility framework to assist users in accessing mobile applications [2] on

smartphones. With amendment of laws [4], [3], many latest platforms/operating system incorporate

accessibility technologies which helps all the users to access applications on these platforms.

In order to retrieve the GUI objects, accessibility technologies provide services which can be used
to set and retrieve the values of each GUI object [123]. A key element of accessibility technologies
is that they provide a generic set of Application Programming Interface (API) calls that different GUI
libraries should implement as a common programming standard for applications that use the accessi-
bility layer. For example, for any Windows GUI objects to be accessible and controlled through MSAA
API calls, it must implement the TAccessible interface [69,123] . This helps the programmers to
access and control the GUI objects of GAPs in their code like as if they are accessing the objects of a

standard programs.

1.3 Background on the GUI Structure

Chapter 4.3 The Structure of GAPs (Previously published as K. M. Conroy and M. Grechanik and M.
Hellige and E. S. Liongosari and Q. Xie (2007) Automatic Test Generation From GUI Applications
For Testing Web Services, pages=345-354.)

In event-based windowing systems (e.g., Windows, Android), each GAP has the main window
(which may be invisible), which is associated with the event processing loop [66, 123]. Closing this
window causes the application to exit by sending a corresponding event to the loop. The main window
contains other GUI objects of the GAP. A GAP can be represented as a tree, where nodes are GUI
objects and edges specify that children objects are contained inside their parents. The root of the
tree is the main window, the nodes are container objects, and the leaves of the tree are basic objects
[45,66-69].

While topologies of different GUI trees (i.e., the connectivity among its nodes) may be same, the
actual GUIs can differ from one another because of the different types of GUI objects and their at-
tributes. Each GUI object is assigned a category (class) that describes its functionality. For example, in
Windows, the basic class of all GUI objects is the class window. Some GUI objects serve as contain-
ers for other objects, for example, dialog windows, while basic objects (e.g., buttons and edit boxes)
cannot contain other objects and are designed to perform some basic functions. Thus, differentiating

the GUI trees includes their topologies and labels of their nodes [45,66—69].

I N

"‘u’l&w‘ ‘\'l&w‘

‘Wew‘ ‘\ﬂew‘ ‘Wew‘

Figure 4: Android UI Hierarchy [12]

1.4 Android User Interface Overview

View and ViewGroup [12] forms the base for all the elements on the Android User Interface (UI). The
layout of an interface can be defined as: the ViewGroup holds the View and ViewGroup where View is
an object with which the user can interact, for example: textbox, button etc. Android has a collection
of subclasses of View and ViewGroup that allows user to choose specific controls like textbox, button
etc. and different layout models like frame, linear, relative etc. Figure: 12 shows the basic hierarchy of
GUI elements in and Android app.

The View and ViewGroup class are extended by several classes and these subclasses define the var-
ious control collection. The various subclasses of View are ImageView, TextView, ProgressBar, etc and
for ViewGroup are DrawerLayout, LinearLayout, RelativeLayout, etc. In order to bind the elements
on an interface for developing any mobile app, Android Studio can be used as the Integrated Devel-
opment Environment (IDE) which has all the packages for different API levels and android versions.
The IDE has several shortcuts for creating activities and generates codes for certain commonly used
layouts such as Login Apps. Android apps have java as their base language. The compiled code, data
and resources are packaged into a single file knows as Android PacKage (APK) file which can be
installed on an android smartphone [9].

In order to understand how an android apps function, let first look into the basic building blocks
for Android [9] :

@ Activity - An Activity is the interface of an android app and the entry point for any user to

start interacting with the app. An activity can be created either using XML or programmatically using

java language. Generally the developers use XML to generate the activity but when the activity needs

to load controls dynamically or bind some custom controls, then developer’s opt to code for those

controls programmatically. Listing: 1 shows a sample of Activity created using XML.

Listing 1: Sample Activity Creation Code in XML

22

23

24

25

26

28

29

30

31

7<?xml version="1.0" encoding="utf—-877>"

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android”
xmlns:tools="http: //schemas.android.com/tools”
android:layout_width="match_parent”
android:layout_height="match_parent”
android:paddingBottom="@dimen/ activity_vertical _margin”
android:paddingLeft="@dimen/ activity_horizontal_margin”
android:paddingRight="@dimen/ activity _horizontal _margin”
android:paddingTop="@dimen/ activity_vertical _margin”
tools:context="example.com. seaphish.uicarise.writenodesxml. SimpleActivity”
android:baselineAligned=""false”
android:orientation="vertical”

android:id="@+id/mainLayout”™>

<TextView
android:layout_width="wrap_content”
android:layout_height="wrap_content”
android:paddingBottom="20dp”

android:text="Hello, Welcome!” />

<<TextView>
<android:layout_width="wrap_content”>
<android:layout_height="wrap_content”™>
<android:paddingBottom="15dp”">

<android:text="User Name”/>>

<<EditText>
<android:layout_width="match_parent”>
<android:layout_height="wrap_content”™>
<android:paddingBottom="15dp”">

<android:id="@+id /etUserName” />>

32

33 <<TextView>

34 <android:layout_width="wrap_content”>
35 <android:layout_height="wrap_content”™>
36 <android:paddingBottom="15dp”>

37 <android:paddingTop="10dp”>

38 <android:text="Password” />>

39

40 <<EditText>

41 <android:layout_width="match_parent”>
42 <android:layout_height="wrap_content”™>
3 <android:paddingBottom="15dp”">

44 <android:id="@+id/etPassword ">

45 <android:inputType="textPassword” />

46 </LinearLayout>

@ Services - The Services component of android allows an app to work in background even when

the user has switched or started interacting with another app. For example, a music player continues
to play songs in background even when the user has locked the phone screen or starts interacting with
some other screen. This component plays an important role for apps working which may require some
long running tasks and hence does not requires the user to wait or keep the app open till the tasks are
finished.

@ Content Providers - Android provides a shared set of app data which can be stored on a file
system, on server or SQLite Database where the app can access data and if proper permissions are
requested and granted, other apps can query/access/modify this data. For example, an app may request
to access/modify user’s Contacts List, so if the permission is granted by the user to other apps, these
apps can access the data through Content Provider.

@ Broadcast receivers - This component helps the app to receive notifications even if when they
are not running. This helps the apps to respond to certain events or announcements. Every app needs
to register for broadcast events to get notified about the changes. For example, some app may require
to restart whenever the smartphone is restarted or upgraded. Thus when a notification is sent by the
system about smartphone restart or upgrade, these apps can again restart on receiving this broadcast.

For our SEAPHISH framework, we focus mainly on Activity and Services. All the configurations

10

of registering all the components must be done in AndroidManifest.xml. Listing: 2 is the sample
configuration code which must be added for each activity/service in order to be recognized by Android
SDK: (Note: this is just a sample code which shows the configuration of an activity and service, does

not contain all the android tags/options which are provided for activity)

Listing 2: Activity/Service config in AndroidManifest.xml [8]

1 <application>
2 <!— decalring activity —>

3 <activity

4 android:name=".MainActivity”
5 android:label=" @string/app_name”
6 android:theme=" @style/AppTheme. NoActionBar” >

8 <[activity>

10 <!— decalring service —>

1 <service

12 android:name=". Service WriteXML”
13 android:enabled="true”

14 android:exported="true”

s oL

16 </service>

17 </ application

The Service component of android can be extended to create different types of services. There are
three types of services:

@ Scheduled - When certain jobs or tasks needs to be executed at some point of time or after
some event (as per the requirement) are known as Scheduled Services.

@ Started - When an application component (like activity) calls the startService() function to
initiate a service explicitly, the specified service is started and now it can run in background which can
be used to run any long processes or any tasks as desired by the app. The service keeps on running
even if the app is closed and generally stops itself on completing its tasks.

@ Bound - A service that provides client-server interface allowing users to interact with the ser-

vice component of an app , perform inter process communication (IPC) etc. are known as Bound

11

services. These services can be created when the application component calls bindService() and can
run as long as the application component(s) is bound to it.
For SEAPHISH framework, we focus on Accessibility Service which are extended from Service.

A more detailed explanation of these services is given in later section.

1.5 Architecture of Accessibility Framework in Android

The Accessibility Framework in the android operating system allows an android developer to interact
with the GUI controls and simulate a human-user interaction which helps in assisting UWDs to interact
with the GAPs. For example: TalkBack is Google’s Accessibility Service that can be enabled on an
android smartphone and used by vision-impaired in accessing all android apps and features. Vision-
impaired users can use TalkBack to access android features via different feed backs like spoken word,
vibration and other audible feed back which helps the user understand what is there on the screen, what
are they touching and what can they do with it [71].

The developer’s generally develop the apps to be accessible allowing it to be usable by any user
including UWD’s. The android list a set of simple design guidelines which can be incorporated in
individual apps. For example, an app may be developed with wrappers i.e. the controls may not
be exposed directly but at the same time these controls are fed with extra information which helps
the accessibility layer to identify each controls function. On Analyzing and retrieving all the GUI
Controls from CitiBank Mobile android app, we found that each control is wrapped and only exposed
as android.view.View. This is the basic building block class for user interface controls and all the
controls extends from this class. Thus when the accessibility layer wants to understand what the
control is actually, they can fetch the content of android:ContentDescription tag along with values
from other tag: clickable. So if there is a clickable text (a link), the androidContentDescription tag

will contain the text for the link and it will have the clickable tag set as true.

1.6 Accessibility Service

Accessibility Service [7] runs in background and are mainly used to assist users with disability. Ac-
cessibilityEvents are received as a callback by Accessibility Services which are nothing but the user’s

interaction with the smartphone.

12

Accessibility Service can be extended and developers can create their own accessibility services
which can be used either to serve the developer’s app specifically or they may intend it to serve other
apps installed on the smartphone. There are various events which the service receives as callbacks
and as per the assistance required, these service can provide feed back to the users. Each service
can register for specific or all events and can provide specific or all feed backs. Listing: 3 shows the

configuration for the accessibility service which can be done in a separate xml.

Listing 3: Accessibility XML Config

1 <?xml version="1.0" encoding="utf—-8"7>
2

3 <accessibility —service xmlns:android="http://schemas.android.com/apk/res/

android”
4 android:description="@string/accessibility_service_name”
5 android:accessibilityFlags="flagRetrievelnteractiveWindows |

flagRequestFilterKeyEvents | flagReportViewlIds |

flagRequestEnhancedWebAccessibility | flagRequestTouchExplorationMode”

6 android:accessibilityFeedbackType="feedbackSpoken |feedbackHaptic |
feedbackAudible | feedbackVisual | feedbackGeneric | feedbackAllMask”

7 android:canRetrieveWindowContent="true”

8 android:settingsActivity="com.example.android.accessibility .

ServiceSettingsActivity”

The Listing: 3 is a basic sample of XML configuration of Accessibility Service. The important tags

present in Listing: 3 can be summarized as:

¢ android:accessibilityFlags : This tag specifies the flags for service indicating what operations or
resources it can access from an app. For example: flagRetrievelnteractiveWindows specifies the
service can retrieve the contents of interactive windows i.e. the window that is currently being
used by user. Each flags are associated with certain set of Accessibility Events. These events are
basically the callbacks which the service can receive. Any event like button click or screen scroll
are specified in accessibility service and in developing a service, these events are registered in

order to receive callbacks when user performs any action.

¢ android:accessibilityFeedbackType : This tag specifies the feed back or output that can be gener-

13

ated by service in response to an accessibility event i.e. any event received as a callback by the
service on user’s action. For example: feedbackSpoken is one of the feedback that provides a
voice feedback to the user in response to an action performed (like clicking a button) by user on

an apps window.

¢ android:canRetrieveWindowContent : This tag is set as true when the service wants to access all
the GUI Controls on the interactive window. This flag when set true along with flagRetrieveln-

teractiveWindows gives the service ability to fetch all GUI elements.

Listing 4: Accessibility Service Configuration in AndroidManifest.xml

1 <application>

2 <service

3 android:name=". Service WriteXML"”

4 android:enabled="true”

5 android:exported="true”

6 android:permission="android . permission . BIND_ACCESSIBILITY_SERVICE”>
7 <intent—filter>

8 <action android:name="android.accessibilityservice.

AccessibilityService” />

9 </intent—filter>

1 <meta—data

12 android:name="android. accessibilityservice”
13 android:resource="@xml/AS_XML”

14 />

15 </service>

16 </application>

The Listing: 4 shows the configruation for accessibility service is added in the AndroidMani-
fest.xml like any other service but it in order to qualify the service as an Accessibility Service, it
must bind the permission: BIND_ACCESSIBILITY_SERVICE and define the intent-filter specifying
it as accessibility service. The meta-data tag specifies the xml configuration of service i.e. the xml as

defined in Listing: 3, must be referenced in the meta-data tag as declared in Listing: 4 [16]

14

1.7 Accessibility Events

An accessibility service [6] can receive accessibility events as a callback which helps the service to
identify the user’s interaction with the smartphone. There are various accessibility events for each type
of action that a user can perform on a smartphone. The events can be categorized as follows:

@ For VIEW TYPES: events like TYPE_VIEW_CLICKED, TYPE_VIEW_LONG_CLICKED,
TYPE_VIEW SELECTED etc. These all events come under the click/touch event performed by user
in accessing any element. For example: when a button is clicked or when a textview link is clicked.

@ For TRANSITION TYPES: events like TYPE_-WINDOW_STATE CHANGED,
TYPE_WINDOWS_CHANGED etc. These events occur when there is a change in the state of the
screen 1.e. of a user opens an app or there is some content loaded on the screen after some click event.

@ For NOTIFICATION TYPES: events like TYPE_NOTIFICATION_STATE_CHANGED. These
events occur when there are any notification messages sent by either the platform (like phone restart)
or by other apps (a calendar meeting notification)

@ For EXPLORATION TYPES: events like TYPE_VIEW_HOVER ENTER,
TYPE_TOUCH_INTERACTION_START etc. These events occur when a user starts interacting with
the screen, like when a user clicks on edit text box, then first a hover enter event is fired showing the
user is focusing on this element.

@ For MISCELLANEOUS TYPES: events like TYPE_ANNOUNCEMENT. These events can
occur when there some general announcements by the platform like if the smartphones operating sys-
tem is updated.

Each event has some properties associated that helps in fetching the information about the event
being performed.Below are few events and their properties which we have used in developing our
framework:

e TYPE WINDOW STATE CHANGED: When there is a state change of window i.e. if a user
scrolls the screen, opens a new app etc. shows a change in the state of window and this event is
received.

e TYPE_WINDOW _CONTENT_CHANGED: This event occurs specifically when the content on
the current window is changed i.e. when a user is interacting with a screen or opens an app, this event is
also fired along with TYPE_WINDOW _STATE_CHANGED depending on the loading of the elements

on interface. Some content like an image, may load after the entire screen is loaded.

15

e TYPE_VIEW_CLICKED: Whenever a user clicks on any button, textviews or any elements, this

event is fired showing a click or touch event performed by user.
Properties: The properties associated with above (1-3) transition type events (mainly used in out

framework) are:

e getPackageName(): Returns the package name of the current app being used by user. This helps
to identify which app or screen the user is interacting.

e getSource(): Returns the current screen element. With the help of this, we can fetch all the
elements of a screen by accessing and looping through this elements all children.

e getEventType(): Returns the type of action performed by user.

There are many other events and properties, which can be checked from [6]

1.8 Android Permissions Model

With the increasing popularity of android, users tend to download apps not only from Google Play
Store but also from several third party app stores. While installing any app, the users generally ignore
the list of permissions that the app is requesting. The Android’s Permission System plays an important
role in allowing the apps to work functionally correct on a smartphone and also protect the users
sensitive data. Each app can request for a set of permissions from the user which allows them to
access/modity the resources of smartphone. For example: Lyft is a popular app used by many people
for booking rides. When the user installs this app for the first time, it asks for a set of permissions to
be granted which ranges from accessing user’s location, calendar, camera, sending/receiving messages
etc. and generally the users tend to accept and grant all permissions to the app. Only the latest version
of android (>= 6.0) allows the users to select the permissions which they wish to grant to the apps and
can revoke some permissions as per their choice. But for the older versions of Android, if a user is
intending to install an app, then it is mandatory for the user to grant all permissions requested by the
app. With different types of apps requesting different sets of permissions, users tend to accept all the
requested permissions blindly. Even though with latest version of Android, user’s can revoke certain
permissions, but this may lead to the app not functioning properly. With a large number of users still
using Android <= 5.0 version [13], leaves a huge chunk of smartphones for open attacks.
The accessibility service largely bypass permission-based models. A general problem with permission-

based security models is that the users do not follow the least privilege principle when granting per-

16

missions, and even in the absence of disabilities users cannot make informed decisions about which
permissions are really needed. UWDs routinely approve the accessibility permission requested by the
MAZP, and it is given access to the accessibility Application Programming Interface (API). In gen-
eral, operating systems do not properly enforce permissions [23, 32, 33, 35,44, 51, 54,57, 64,73, 83,
106,111, 119]. As a result, GAPs obtain permissions that are unnecessary, and an investigation of
of 940 applications showed that one-third are overprivileged [32,53, 64,78, 81,98]. Moreover, studies
showed that users often are not prepared to make informed privacy and security decisions to select from
over 130 different permissions [55,56,78,86,94, 113, 115], especially considering high complexity of
GUIs [110]. A key component of the accessibility API calls is to simulate a user of the smartphone,
so that programmers can mimic user interactions with GAP by accessing and controlling GUI objects
programmatically from MA?Ps. This fundamental strength of assistive technologies is also their fun-
damental security weakness, since it is very difficult to create general permissions that will not affect
the usability of MA?Ps when considering hundreds of different impairments of UWDs [80].

This is what makes this security threat unique and impossible to address with existing secu-
rity algorithms and techniques. The accessibility service creates a legitimate and a very powerful
backdoor into the smartphone that cannot be easily disabled without affecting UWDs thereby violat-
ing the Americans with Disabilities Act of 1990. On the other hand, the current fast-spreading attack
puts our financial and defense systems under direct threat. Understanding this attack and developing
solutions is a task of the utmost urgency.

The specific permission of enabling AS for an app can be provided only by the users and in order
to make the user understand about the possible threat, android alerts the user about the actions. But
generally users neglect such warnings, thus leaving the smartphone susceptible to malware attacks.
Once a user enables AS for an app, this app can utilize different accessibility events that have the
capability to read and control the GUI elements of not only their own app, but can also interact with

all the other installed apps on the phone.

1.9 The Attacker Model

Using the workflow that is shown in Figure 5 we show how MA?Ps can attack UWDs by stealing sen-
sitive information, which could cause serious harm to the individual, organization or company owning

it if this information is compromised through alteration, corruption, loss, misuse, or unauthorized dis-

17

closure [118] [24, pages 137-156]. Removing the accessibility services from smartphones will prevent
a wide array of security exploits [80]; however, a brute-force solution like this has a nasty downside.
Unfortunately, close to 5S0Mil people have disabilities in the USA alone and over 600Mil worldwide,
which makes it very difficult for them to use GAPs without accessibility services [60, 95,96, 100]. It
has been said by many distinguished people including Mahatma Gandhi, Hubert H. Humphrey, and
Cardinal Roger Mahony, that the measure of a civilization is how it treats its weakest members. It is
a formidable challenge to achieve a measure in which no UWD feels different from other users when
working with GAPs to accomplish everyday tasks [39,41,47,72,91, 101, 102], and disabling the ac-
cessibility services is not an option. Even though the accessibility service is created for UWDs, recent
massive security breaches showed that all smartphone users are the victims of the following attacks.
Hackers do not just use accessibility services to target UWDs only, but rather the general population
of smartphone users who use accessibility services to implement functionality that is otherwise not
available.

@ A MAZP obtains the data from the GUI objects of some GAP, enhances this data for UWDs,
and transmits it to the MA”P server, thus releasing sensitive information in this data into the wild.
Interestingly, the MAZP may not be malicious, it may use the power of server offloading for additional
processing of the data. In general, distinguishing clearly between malicious and unwanted behaviours
is a very difficult problem [40,62,75,124]. Of course, the MAZP that requests accessibility permissions
may not even use the accessibility to provide assistive services, and it can masquerade as an assistive
application to steals sensitive information.

@ MAZP developers use the accessibility API calls to inject threads and register callback functions
(or hooks) which are basically the events or actions performed by users on GUI objects of some GAP.

For example, MAZ2P called InputObserver utilizes these hooks to measure UWD’s usage statistics [52].

De\i'eh::oper|I
NN),
> MAZP Server_

Figure 5: Using assistive technologies (MAZPs) in attacks on Users With Disabilities (UWD)

18

In general, such MA?Ps may be viewed as a case of plagiarizing other smartphone apps [105] or
a library modification threat [74]. Thus, an attacking MA?P can avoid protection mechanisms that
analyze it to determine if it tries to send sensitive data outside the smartphone [53]. Hacker tools like
this have been used to attack desktop GAPs for a few years [48]. Moreover, recent sophisticated screen
overlay malware lays screens over legitimate applications to capture users’ inputs [128, 129].

@ MAZ2Ps can compose others GAPs with access to smartphone on-board sensors to attack UWDs
[49,82]. It is an instance of the documented attack where sensory malware can convey raw sensor data
(e.g., video and audio) to a remote server [112]. For example, consider a MAZP that reads a financial
statement to a UWD and it spawns a third party background application on the same smartphone that
uses API calls to access the microphone and the phone hardware to capture the voice that is read by
the MAZP and to send it to an external server or even an answering machine. We easily realized this
attack as it uses a display-centric text recorder known as Capture, which has an access to real-time
foreground and background process of windows which integrates with the accessibility layer [89]. Of
course, attacking sensors on smartphone is not new — PlaceRaider constructs rich, three dimensional
models of indoor environments for remote burglars [117], but combining different GAPs under the
guise of assistive technologies is a new type of attack. Currently, there is no unified approach to
protect all users and not just UWDs from these attacks that the accessibility API calls while preserving

usability, which is extremely important for UWDs [26].

1.10 Our Contribution

In our proposed of SEAPHISH framework for securing assistive technologies for smartphone users we
will investigate whether it is possible to effectively protect users from security attacks. We advocate an
untested, but a potentially transformative alternative research idea that will enable researchers to create
solutions using a common abstraction from a unified perspective to protect UWDs while balancing
compatibility with accessibility APIs, usability, and security. The proposed research program will

consist of the following tasks.

Task 1: Define a novel abstraction for creating application-specific security models automatically.
We abstract MA?Ps and GAPs as relations that map their I/O endpoints using information flow

that is computed and controlled via placing restrictions on dataflow paths automatically that

19

connect the mapped I/O endpoints. Using these security models, we will investigate the applica-
bility of different security analysis frameworks that will determine if MA?Ps can reveal sensitive
information of its UWDs. Moreover, whereas finding sensitive information leaks is important,
using accessibility services enables attackers to navigate and control the GUI, which means that

security-related settings can be modified, making it more than a dataflow problem.

Task 2: Create a prototype that uses obtained models to pinpoint security violations that can be
caused by using accessibility API calls in MAZPs with a high degree of precision and to create
and apply remedial actions to prevent release of UWDs’ sensitive information. We will perform

initial experiments and case studies to evaluate our prototype.

20

2. Background and Related Work

The UI Redressing attack [76] aims at presenting a sensitive Ul element of target application out of
context to the user. Thus when a user is interacting with the target application Ul element like clicking
or voice controlling, it is actually triggering some other action behind the scenes not intended by the
user. The clickjacking attack by malwares tricks the users to click on a Ul element for example: the
Like button on Facebook and post some other feeds stating that the user ”Liked” this feed. The new
InContext defense technique allows a user to ensure and verify their activity on sensitive Ul element.
This implementation helps in maintaining context integrity and defeat clickjacking attacks.

The security of smartphone GUI frameworks remains an important yet under-scrutinized topic. In
this paper [43], we report that on the Android system (and likely other OSes), a weaker form of GUI
confidentiality can be breached in the form of UI state (not the pixels) by a background app without
requiring any permissions. Our finding leads to a class of attacks which we name Ul state inference
attack. The underlying problem is that popular GUI frameworks by design can potentially reveal every
UI state change through a newly-discovered public side channel — shared memory. In our evaluation,
we show that for 6 out of 7 popular Android apps, the Ul state inference accuracies are 80-90% for the
first candidate Ul states, and over 93% for the top 3 candidates.

Graphical User Interface (GUI)-based APplications (GAPs) [65] are ubiquitous and provide a
wealth of sophisticated services. Nontrivial GAPs evolve through many versions, and understand-
ing how GUIs of different versions of GAPs differ is crucial for various tasks such as testing, cross-
platform UI comparison and project effort estimation. We offer a novel approach for differencing GUIs
that combines tree edit distance measure algorithms with accessibility technologies for obtaining GUI
models in a non-intrusive, platform and language-independent way, and it does not require the source
code of GAPs.

Leveraging openness of Android app markets and the lack of security testing, malware authors
commonly employ a suite of widely available tools to facilitate the app development. Analysis of
individual apps for malware detection often requires understanding of app functionality and complex,
time-consuming analysis of its behavior. Since tools tend to leave traces in the program structure,
we can potentially use visual exploration of these artifacts to enrich reverse engineering of malware

analysis. In this paper [79], we focus on this approach and investigate internal structure of Android

21

executable files and their characteristics under various tools and development conditions.

Android Debug Bridge [93] is a developer tool provided by Google which has the permissions
to use critical resources. These may be used by developers to perform programmatic screenshots.
On analyzing ADB permission which may be granted along with internet permissions can be easily
exploited by malwares to stealthily steal sensitive and private data from user’s smartphone. There
is no third party API available for android developers to perform screenshot and thus enabling such
permissions which are not well-guarded by android can be misused to peak into sensitive data like
passwords through key strokes or bank cheques screenshots. Thus we present a mitigation mechanism
which helps in exposure of ADB to only authorized apps.

The dynamic analysis of malicious applications on smarthphones are more comprehensive but run-
ning them in real time is expensive and a big overhead on the operating system. We devise a new
static analysis [122] for detecting malicious applications. The AndroidManifest.xml file contains the
information of all activities, permissions required by an app. Using this information along with the
API calls, an application can be characterized for its behavior and with different algorithms modelling
malware behavior, we can distinguish and detect Android malware.

Many Android vulnerabilities share a root cause of malicious unauthorized applications executing
without user’s consent. In this paper [28], we propose the use of a technique called process authentica-
tion for Android applications to overcome the shortcomings of current Android security practices. We
demonstrate the process authentication model for Android by designing and implementing our runtime
authentication and detection system referred to as DroidBarrier.

Malicious applications pose a threat to the security of the Android platform. The growing amount
and diversity of these applications render conventional defenses largely ineffective and thus Android
smartphones often remain unprotected from novel malware. In this paper [31], we propose DREBIN,
a lightweight method for detection of Android malware that enables identifying malicious applications
directly on the smartphone.

Some platforms, such as Android, are more open than others and are therefore easier to exploit
than other platforms. In order to curb such attacks it is important to know how these attacks originate.
We take a previously unexplored step in this direction and look for the answer at the interface between
mobile apps and the Web. Numerous in-app advertisements work at this interface: when the user taps

on an advertisement, she is led to a web page which may further redirect until the user reaches the

22

final destination. In order to study such attacks we develop a systematic methodology [107] consisting
of three components related to triggering web links and advertisements, detecting malware and scam
campaigns, and determining the provenance of such campaigns reaching the user.

Driven in part by federal law, accessibility (ally) support for disabled users is becoming ubiqui-
tous in commodity OSs. Assistive technologies can be defined as computing subsystems that either
transform user input into interaction requests for other applications and the underlying OS, or trans-
form application and OS output for display on alternative devices. Inadequate security checks on these
new I/O paths make it possible to launch attacks from accessibility interfaces. In this paper [80], we
present the first security evaluation of accessibility support for four of the most popular computing
platforms: Microsoft Windows, Ubuntu Linux, i0OS, and Android. We identify twelve attacks that can
bypass state-of-the-art defense mechanisms deployed on these OSs, including UAC, the Yama security

module, the 10S sandbox, and the Android sandbox.

23

3. Motivation, Challenges, and Proposed Framework

The accessibility framework was developed by the android developers with an intention to support
UWDs in accessing the apps on android smartphones. These services once enabled allows reading
the text from the smartphone, perform actions on behalf of the user etc. But such enhancements and
modifications in input output controls may have inadequate security checks and certain malwares or
malicious apps can attack using these interfaces. The Skycure demonstration of a simple game which
was able to trick users to give accessibility permission via clickjacking and read all content from any
apps used by user shows an attack which can leak personal data from a users smartphone . This was
demonstrated for android with version <= 4.4 (between froyo - kitkat). The new smartphones although
are not prone to these type of attacks, but accessibility framework can still be misused by malicious
applications. The design of our framework is inspired by the below researches:

@ MockDroid [36] is a modified version of the Android operating system which allows a user
to 'mock’ an application’s access to a resource. This resource is subsequently reported as empty or
unavailable whenever the application requests access. This approach allows users to revoke access to
particular resources at run-time, encouraging users to consider the trade-off between functionality and
the disclosure of personal information whilst they use an application. We demonstrate the practicality
of our approach by successfully running a random sample of 23 popular applications from the Android
Market.

The above implementation uses mocking of resources as a way to allow the users to revoke the
access at run-time. They take advantage of the apps running with reduced functionality i.e. in the
absence of network or resources. Our motivation is to design a framework that mocks not just the
resources but the entire GUI of app dynamically i.e. mock the original app with a phishing app.

@ The number of Android malware has been increasing dramatically in recent years. Android
malware can violate users’ security, privacy and damage their economic situation. Study of new mal-
ware will allow us to better understand the threat and design effective anti-malware strategies. In this
paper, we introduce a new type of malware exploiting Android’s accessibility framework and describe
a condition which allows malicious payloads to usurp control of the screen, steal user credentials and
compromise user privacy and security. We implement a proof of concept malware [88] to demonstrate

such vulnerabilities and present experimental findings on the success rates of this attack. We show that

24

100% of application launches can be detected using this malware, and 100% of the time a malicious
Activity can gain control of the screen.

@ Digital conflicts are no different as the use of deception has found its way to computing since
at least the 1980s. However, many computer defenses that use deception were ad-hoc attempts to
incorporate deceptive elements. In this paper [27], we present a model that can be used to plan and
integrate deception in computer security defenses. We present an overview of fundamental reasons
why deception works and the essential principles involved in using such techniques. We investigate
the unique advantages deception-based mechanisms bring to traditional computer security defenses. A
successful deception should present plausible alternative(s) to the truth and these should be designed
to exploit specific adversaries’ biases. We investigate these biases and discuss how can they be used
by presenting a number of examples.

@ Mobile applications are part of the everyday lives of billions of people, who often trust them
with sensitive information. These users identify the currently focused app solely by its visual appear-
ance, since the GUIs of the most popular mobile OSes do not show any trusted indication of the app
origin. In this paper [38], we analyze in detail the many ways in which Android users can be confused
into misidentifying an app, thus, for instance, being deceived into giving sensitive information to a
malicious app. Our analysis of the Android platform APIs, assisted by an automated state-exploration
tool, led us to identify and categorize a variety of attack vectors (some previously known, others novel,
such as a non-escapable full screen overlay) that allow a malicious app to surreptitiously replace or
mimic the GUI of other apps and mount phishing and click-jacking attacks. Limitations in the system
GUI make these attacks significantly harder to notice than on a desktop machine, leaving users com-
pletely defenseless against them. To mitigate GUI attacks, we have developed a two-layer defense. To
detect malicious apps at the market level, we developed a tool that uses static analysis to identify code
that could launch GUI confusion attacks.

@ App-based deception attacks are increasingly a problem on mobile devices and they are used to
steal passwords, credit card numbers, text messages, etc. Current versions of Android are susceptible
to these attacks. Recently, Bianchi et al. proposed a novel solution [38] that included a host-based
system to identify apps to users via a security indicator and help assure them that their input goes to the
identified apps. Unfortunately, we found that the solution has a significant side channel vulnerability

as well as susceptibility to clickjacking that allow non-privileged malware to completely compromise

25

the defenses, and successfully steal passwords or other keyboard input. We discuss the vulnerabilities
found, propose possible defenses [58], and then evaluate the defenses against different types of Ul
deception attacks.

The results and analysis from above papers reflect how AS can be exploited by malwares. The
main challenge which lies in analyzing an app is: whether the app is actually harmful/malicious or not.
Some apps may use the data (like user’s current location) as per their requirement and some apps may
maintain log. These information may never be used or apps may distribute it to third party advertisers,
but still this does not quantifies the app to be malicious. Security leak can be different for different
people. For example: TrueCaller is a very popular app used by many people to reveal a user’s name
if that number is not present in the user’s contacts. The simple concept followed by TrueCaller is to
access the contacts of each smartphone on which it is installed and this is how the entire database is
built which helps them in showing the name of any number. The accessing and storing of each user’s
contacts list on their own server may be considered as a information leak and at the same time it may
not be of a big concern. Thus simulating an actual malicious behavior and quantifying if an app is
actually performing some serious unauthorized actions is challenging.

The research from the previous papers helps in uncovering the possible threats due to AS. We get
many important insights about how AS can be exploited, but we aim to use the same AS to defend
such malwares. Since AS allows to read the screen contents, it is possible to extract all GUI elements
for each app which are accessed by a user. We can extract which app is being currently used, what
are the controls on that screen and a sufficient information about the location of each control which
can help us to build the phished app alone from this log. The app contains all the controls as exposed
by AS. Each control has a set of properties which is required to bind that control on Ul. Running
the test of accessibility services on more than 30 apps, we found that most of the apps reveal all the
controls bindings and even if the controls are wrapped, sufficient information is provided in tags such
as android:ContentDescription which helps us to decode what this control is meant for. We propose

the phishing app for deceiving a malware and analyze the actions performed by them on these phishing

apps.

26

4. Solution

The research plan for this SEAPHISH proposal includes
GAP GUI Representation MAZP

abstracting smartphone GAPs automatically for security Layer
Visualization/Graphics Engine

analyses, and predicting security and privacy attacks using

| Accessibility Layer — Assistive Technology |
Operating System/Virtual Machine

these abstractions. We concentrate on Android in this pro-

posal, since it has a dominating share in the mobile market ~ Figure 6: A model of GUI accessibility.

and Android malware accounts for over 90% of all mobile threats [114, 125]. Our proposal is at the
intersection of the use of assistive technologies and smartphone GAP security, and little work exists
at this intersection. Although a recent study with 14 visually impaired participants shows that their
unique privacy and security needs remain largely unaddressed when using smartphone GAPs [25]. A
GAP may use different GUI object libraries (e.g., Swing, TCL/Tk) that use services from the under-
lying GUI Representation Layer, also known as a windows manager that controls the placement and
appearance of windows within a windowing system [120]. The lower-level Visualization/Graphics En-
gine paints GUIs on the screen. GAPs and MA?Ps are generally run in separate protected memory
address spaces from each other, and therefore the GUI objects cannot be accessed and manipulated as
programming objects by MAZPs. These objects are a part of GAP and GAP has its own single process
space which cannot be accessed directly but requires MA?Ps to use GUI objects of GAPS through

accessibility layers that is a part of all major operating systems.

4.1 Assumptions

Following are the assumption about Malicious application that we have assumed while developing this
framework:

@ Malicious applications are time-sensitive; once they “believe” that they have access to sensitive
data, they will attempt to use the data within a short period of time.

@ Malicious applications do not perform any sophisticated control and data flow analyses on
user’s smartphone as this will lead to significant performance problems that the users will notice and
identify the malicious application as the offender.

@ Malicious application can use other applications (e.g., phone dialer or email clients) to transmit
sensitive data from the smartphone to some other server, from which the attack may be hosted using

the stolen sensitive data.

27

@ Once captured and transmitted, sensitive information can be used both from the victim smart-
phone and from some external computing device to mount an attack.

@ Malicious applications stealing sensitive information from GUI objects of victim applications
do not use other form of attacks, e.g., rootkits or OS binary code manipulation as rootkit attacks
generally require malicious app to modify the platform configurations and are generally distributed
through unverified sources. We focus on apps which may exploit accessibility services or permission
model to steal sensitive information.

@ The nature of sensitive data is that they can be used to perform operations like authorized
transactions on the behalf of the victims to obtain material benefits. For example, stealing bank login
information will lead to using the victim’s banking application to login into the account to steal money
or some malwares may deceive users by presenting a phished application instead of a real one where
the user may believe its interaction with a real application but instead the application is fake and
just steals the login information when the user interacts with this phished application. Stealing contact
information will lead to calling these contacts or emailing them with spam. We also consider photo and
video capturing GUI applications that can be manipulated into taking pictures of sensitive documents
and transmitting these pictures to the attackers.

@ Malicious applications can analyze stolen data to determine if they are fake. For example, a
malicious application may determine if the password is too long and thus is unlikely to be real or it can

examine the state of the GUI after the user attempts to login to determine if the login action succeeded.

4.2 GUI Extraction

SEAPHISH generates a phishing application using the real application as its reference. The generated
phishing app resembles the GUI of the real application, except its functionality is fake. The framework
proposes to use android’s accessibility service for extracting the GUI elements from any android app.
As these services can run continuously in background once started by the user (till the user does not
stops it manually again), we aim to extend this service for our framework. Once the user has installed
SEAPHISH framework and enables the SEAPHISH’s accessibility service, this service will be able to
track the activities of smartphone. For the first time, when the SEAPHISH’s accessibility service is

started, following operations are performed in background:

28

@ When the user enables SEAPHIHS’s accessibility service, the onserviceConnected method
(overridden in each class which extends accessibility service) is called. This method adds few banking
apps like CitiBank, Chase Bank, Bank of America etc. into the tracking list of our service. For
example: Listings 5, this sample code shows how we can add apps i.e. their package names to the
collection list: packageName_Track or add these package names in info.packageName which allows
us to monitor apps of our choice. Now our service will receive accessibility events from the smartphone
for the apps added in the collection packageName_Track or in info.packageNames. We also propose
to get the list of apps installed on the smartphone (using PackageManager) and add few commonly
used and important apps automatically for tracking and monitoring. In general if we do not provide
any filter in accessibility service for apps (i.e. package names for apps to be tracked), all activities
performed by the user on smartphone will be tracked and monitored. In order to reduce the overhead
of processing , we focus and monitor only few apps as per our choice. For each of these apps added

into the tracking list, we will be able to fetch the window contents i.e. all the GUI elements.

Listing 5: onServiceConnected Sample Code

1 @TargetApi(Build.VERSION_CODES . LOLLIPOP)

2 @Override

3 public void onServiceConnected ()

+

5 AccessibilityServicelnfo info = new AccessibilityServicelnfo ();

6 /+ packageName_Track is a collection maintained to track the apps.

7 It has the package names added of apps which will be monitored by this
service %/

8 packageName_Track.add(”com. citi.citimobile”);

9 packageName_Track.add(”com.chase.sig.android”);

10 /+ We could have also used the property of AccessibilityServicelnfo to
track packages.

1 For our intiial implementation, we are maintaining this in a separete
collection . =/

12 /+ Tracking apps using the property of AccessibilityServicelnfo =/

13 info .packageNames = new String[]

14 { 7com.citi.citimobile”,”com.chase.sig.android”};

29

@ The method : onAccessibilityEvent is overridden in each class extending from accessibility
service to receive callbacks for accessibility events and then perform desired function. We override
this method and focus on two specific events : window state changed and window content changed
along with that we check if the user has opened an app which is being monitored by our service. For
example: Listings 6, is a sample code showing how we override the method: onAccessibilityEvent.
As seen in the sample code: if the current app opened by user is monitored by our service i.e. Line 14
which checks if the tracking package collection contains the package of the currently opened app, then
only for the two events with eventType = 2048 or 32, we pass the source node (element) of current
screen and iterate recursively on the source node to obtain all its children, then its children’s children
and till we fetch all GUI elements. Finally all these fetched GUI elements are written in a file with

each app having its own file to maintain all elements.

Listing 6: onAccessibilityEvent Sample Code

1 public void onAccessibilityEvent(AccessibilityEvent event)
|
3 /+ Get the source node when an accessibility event is received by the
service #/
4 AccessibilityNodelnfo source = event.getSource();
5 /+ Get the current event type =/
6 int eventType = event.getEventType () ;
7 /+ get the package name of the current app being used by ther user =/
8 if (event.getPackageName () != null && event.getPackageName() != 77)
9 currentPackageName = event.getPackageName ().toString ();
10 /% if the current app used by user is being monitored by our service, then
only we will track the elements
1 avoiding unnecessary processing on each event received =/
12 if (packageName_Track.contains (currentPackageName)){
13 /% We track the elements of the app only when we have the below two
accessibility events received
14 We maintain two seperate collections for maintaining all elements
from both events =/
15 if (eventType == 2048) /:xWINDOW_CONTENT CHANGED :/
16 {
17 if (source != null)

30

18 {

19 /+ Collection to maintain all nodes for event = 2048/

20 allNodesInfo_2048 = new ArrayList <>();

21 allNodesInfo_2048 .add(source.toString ());

2 /% function to recursively fetch all the GUI elements from the
parent element. =/

23 getAllNodes (source , 2048);

o }

. }

2 else if (eventType == 32) /:WINDOW_STATE . CHANGED :/

. {

28 if (source != null)

» {

30 /+ Collection to maintain all nodes for event = 32/

31 allNodesInfo_32 = new ArrayList <>();

32 allNodesInfo_32 .add(source.toString ());

33 /+ function to recursively fetch all the GUI elements from the
parent element. =/

34 getAllNodes (source , 32);

4.3 Implementation details of Accessibility Service

Following are the details about each function implemented in SEAPHISH Accessibility Service:

@ Track Apps to be monitored - SEAPHISH’s accessibility service will be monitoring a set
of apps which an individual user can specify. Any type of events like button click, text entered or
extracting the GUI elements will be performed only for these specific apps. For now the interface
is not developed for SEAPHISH and hence for evaluation purpose, we add the apps that needs to be
monitored manually in the onServiceConnected method present in SEAPHISH’s accessibility service.
Adding the app for monitoring basically means adding the package name of that app to our monitoring

list i.e. to the collection: packageName Track.

31

@ GUI Controls Extraction - The accessibility service receives callback events i.e. accessibility
events like when a button is clicked or when an apps window loads or its window contents changes
etc. For GUI extraction, we focus on mainly two events : TYPE WINDOW_CONTENT_CHANGED and
TYPE WINDOW_STATE_CHANGED. Both the events occur when the GUI elements are being loaded
on the screen or in simple words, when an app is opened by the user on their smartphone. Each of
the events may trigger multiple times as per the apps functions to load the elements. We add all the
GUI elements obtained from both the events in two different collections, one collection for window
content changed and another collection for window state changed. Finally once the loading of GUI
is completed, all the tracked GUI elements in both the collections (of both events) are written in a
file. Adding and writing the GUI elements as obtained in the two accessibility event means: write
all the GUI elements properties as obtained from accessibility service. Each apps GUI elements are
maintained in a separate file (stored in the smartphone’s memory which is few kBs) where the file name
for each app is unique as it is derived from the package name of the app. Each screen of an individual

app can be tracked provided there is a either a button click or text view click event.

Listing 7: Function to get all elements from parent element

1 public AccessibilityNodeInfo getAllNodes(AccessibilityNodelnfo source, int
event)

> {

3 /+ Once we get a node from accessibility , we check if its not null and if
it has any more children s/

4 if (source != null)

s

6 /% Get the child GUI element from the parent GUI object */

7 if (source.getChildCount() > 0)

8 {

9 /% iterate through all the nodes recursively i.e. from the parent —

10 getChildNodes — for each of these child nodes again iterate to

11 get their child nodes and so on till we reach the leaf nodes

12 i.e. nodes which have no children =/

13 for (int allNodes = 0 ; allNodes < source.getChildCount() ; allNodes

++) {
14 if (source.getChild (allNodes) != null) {
15 if (event == 2048)

32

16 allNodesInfo_2048 .add ((String . valueOf(source. getChild (
allNodes))).replace (”\n”,” 7));

17 else if(event == 32)

18 allNodesInfo_32 .add ((String . valueOf(source.getChild (allNodes

))).replace(”\n”,” 7));
19 }

20 /+ iterate recursively to get all elements =/

21 getAllNodes (source . getChild (allNodes) ,event);

[5] Accessibility Service gives a detailed information about each GUI element and each of the
fetched GUI elements have the type as AccessibilityNodeInfo which contains the following attributes

about the GUI elements:

¢ android.view.accessibility.AccessibilityNodelnfo : This represents a unique id for each of the el-
ements which can be tracked in the smartphone screen. Each element loaded can be tracked
using this id and is important when we bind our phished app. When we write these elements to
the file, there is a possibility of a same element being written twice. This is because we track
all elements in two separate accessibility events and write all elements tracked in both events.
An app can load in different manner, with some elements loaded after few seconds and thus all

elements may not appear in one state change event.

e boundsInScreen : This property gives the bounds of a node with respect to screen coordinates. This

helps us to determine the location of an element on the screen.

e packageName : This property gives the apps package name which is currently used by user. With
the help of this package name, we can match if the current app being used by user needs to be
monitored or not. For our implementation, we create a file with the package name and this file

maintains all GUI elements as tracked by accessibility events for that package name or app.

e className : This property gives the class name of the element which denotes the element type i.e.

whether the element is a button or text view etc.

e text : This property gives the text information associated with the element. If there is no text associ-

33

ated, the value is either blank or null. Generally elements like button, text views etc. have value

for this property.

e contentDescription : This property gives the content description associated with the control. In
order to make the elements accessible, developers add this extra information while binding the

elements on GUI allowing any accessibility service to understand the element.

The full trace log for accessibility node info containing all properties about each GUI element is:

android.view.accessibility.AccessibilityNodelnfo @80007553;
boundsInParent: Rect(0, 0 - 1440, 2560);

boundsInScreen: Rect(0, 0 - 1440, 2560);

packageName: com.github.andlyticsproject;

className: android.widget.FrameLayout;

text: null; error: null;

maxTextLength: -1;

contentDescription: null;

viewldResName: null;

checkable: false; checked: false;

focusable: false; focused: false;

selected: false;

clickable: false; longClickable: false;

contextClickable: false;

enabled: true;

password: false;

scrollable: false;

actions: [AccessibilityAction: ACTION_SELECT - null,
AccessibilityAction: ACTION_CLEAR_SELECTION - null,
AccessibilityAction: ACTION_ACCESSIBILITY _FOCUS - null,
AccessibilityAction: ACTION_UNKNOWN - null]

34

4.4 Phishing: GUI Creation

Once we have acquired the GUI elements for an app, we can now create our Phished GUI. Each GUI
in android can be created either using XML layouts or programmatically adding each control on the

GUI. A sample code for adding an element (like: button) on a screen using XML layout file: Listings 8

Listing 8: Add Button using XML Layout

1 <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android”

2 xmlns:tools="http: //schemas.android.com/tools”

3 android:layout_width="match_parent”

4 android:layout_height="match_parent”

5 tools:context="example.com.seaphish.uicarise.writenodesxml.SimpleActivity”
6 android:orientation="vertical”

7 android:id="@+id/mainLayout™>

8 <Button

9 android:layout_width="match_parent”
10 android:layout_height="wrap_content”
1 android:paddingTop="10dp”

12 android:text="Log On”

13 android:id="@+id/login” />

14 </LinearLayout>

Listing 9: Add Button programmtically using java code

1 protected void onCreate (Bundle savedInstanceState) {

2 super.onCreate(savedInstanceState) ;

3 /+ add a new button to the screen =/

4 Button myButton = new Button (this);

5 RelativeLayout myLayout = new RelativeLayout(this);
6 /+ add the button to the current screen layout =/

7 myLayout.addView (myButton) ;

8 setContentView (myLayout);}

For our phished GUI generation, we will add each element programmatically in a java code file as

logged and written by our accessibility service. Sample code for adding an element (like: button) on a
screen programmatically 1.e. using java code: Listings 9

A file created by SEAPHISH’s accessibility service for an app(when the app is opened by user),

35

B PG T O 73%4 12:28

B Andiytics -+

Please select the accounts that you wish to use with
Andlytics.

Accounts must be registered developer accounts
with apps published on Google Play (‘Google Apps for
Business' and accounts linked to multiple developer
consoles are not supported yet).

cs441.ksharma@gmail.com]

Figure 7: Andlytics App: Original App Screen

1 Reading from file: /data/user/0/example.com.seaphish.uicarise.writenodesxml/app MyFileStorage/com github_andlyticsproject.txt

: Rect(0, 0 - 1440, 2560); packageName: com.github.andlyticsproject; className: android.widget.FrameLayout; text: null;

: Rect (0, 96 - 1440, 288); packageName: com.github.andlytic: ; className: 2 : null;

: Rect (193, 143 - 488, 240); packageName: com.github.andlytic: ; className: text: Andlytics;

: Recl (1216, 96 - 1440, 288); packageName: com.github.andlytic: lassName: text: null;

: Rect(0, 288 - 1440, 2364); packageName: com.github.andlytic: ; className: : null;

: Rect (20, 328 - 1420, 470); packageName: com.github.andlytic: ; className: text: Please select the accounts that you wish to use with Andlytics.;

: Rect (20, 490 - 1420, 764); packageNane : lassName: text: Accounts must be registered developer accounts with apps published
J boundsinScreen: Rect (40, 892 - 815, 1048); packageName: ; classiane: text: cs44l.ksharma@gmail.com;

10 boundsInScreen: Rect (1232, 906 - 1440, 1034); packageName: github.andlytic: ; className: android.widget.CheckBo text: null;

11 boundsInScreen: Rect (80, 2384 - 1360, 2540); packageName: com.github.andlyticsproject; className: android.widget.Relativelayouty text: null;

12 boundsInScreen: Rect (662, 2404 - 777, 2520); packageName: com.github.andlyticsproject; className: android.widget.Textview; text: OK;

Figure 8: Andlytics App: File created from AS sample Log

contains the information about each GUI element and its associated properties. In order to process and
bind each apps GUI, we configure a TestActivity which will load each apps Phished GUI. Initially this
TestActivity will not have any interface and the interface for this activity will be generated program-
matically by adding elements to its layout. The GUI elements for this TestActivity will be added from
the file which contains the elements properties as saved by SEAPHISH accessibility service. A sample
app: Andylytics Figure 7 shows one of the apps downloaded from GitHub.

Sample of traced accessibility log for Andylytics app in Figure 8 for creating phished GUI: (we
have shown only three properties which are mainly used to bind an element). If we analyze the GUI,
as per our interpretation, we can see the following GUI elements:

@ A Title on top.

@ An image of ’+” on the top right corner.

@ Text areas count=3.

@ Checkbox count=1.

@ Button count=1 with OK text.

Now if we analyze the GUI elements information as traced by accessibility service, we can see
there are total 12 lines traced, thus we can say, we have 12 GUI elements. Analyzing the classNames

: we find there are four text views, which is similar to what we had observed. One textview equivalent

36

0O . m20:34

WriteNodesXML

This is a Test Activity. Click on Buttons to
generate the Phished GUIs.

Click to Test the Phished Apps GUI
COM_CITI_CITIMOBILE
COM_CHASE_SIG_ANDROID
COM_GITHUB_POCKETHUB_ANDROID
ORG_JSL_WFWT
COM_GH4A
COM_SANDKLEF_COACHAPP
FR_FREE_NRW_COMMONS

STUDIP_APP

Figure 9: Test Activity for analyzing Phished GUIs

to title, 3 other textviews reflecting to the content present in body of the app. Two other GUI elements
in log traced are: button and checkbox, which is similar to what we see on the app. As a part of any
interface on android, each app has some layouts, the other elements in log reflect to those extra layouts.

For creating an interface from the log as shown in Figure: 8, we follow the below steps:

Step 1. Open the file (for example: com_github_andlyticsproject.txt which is the file created for
Andlytics app from its package name: com.github.andlyticsproject) for which you want to create the
phished GUI. For testing the creation of Phished GUI, we have created a TestActivity which loads
the package names of all the apps which are been monitored by accessibility service. Each of these
package names are loaded on a button, so on clicking the button it will load the GUI of that app. Figure:
9 shows the sample of TestActivity used for creating Phished GUT’s various apps.

Step 2. Now as we click on any button (e.g: com_github_andlyticsproject.txt), a file is loaded from
the smartphone’s internal memory. This file is the same file as created by SEAPHISH accessibility
service for apps. The file contains the properties for each GUI element and we maintain the properties

of each element in a new object of our defined class: GenerateMedata. In order to understand how an

37

element is bound to an interface and what are the basic minimum properties required, Listing: 10 is a

sample of XML file which shows a simple login activity containing: labels, text box (for entering user

name and password) and button.

Listing 10: Sample Activity Code in XML

20

21

22

23

24

25

26

27

28

29

30

31

7<?xml version="1.0" encoding="utf—-877>"

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android”

xmlns:tools="http: //schemas.android.com/tools”
android:layout_width="match_parent”
android:layout_height="match_parent”
android:paddingBottom="@dimen/ activity_vertical _margin”
android:paddingLeft="@dimen/ activity_horizontal_margin”
android:paddingRight="@dimen/ activity _horizontal _margin”

android:paddingTop="@dimen/ activity_vertical _margin”

tools:context="example.com. seaphish.uicarise.writenodesxml. SimpleActivity”

android:baselineAligned=""false”
android:orientation="vertical”

android:id="@+id/mainLayout”™>

<TextView
android:layout_width="wrap_content”
android:layout_height="wrap_content”
android:paddingBottom="20dp”

android:text="Hello, Welcome!” />

<<TextView>
<android:layout_width="wrap_content”>
<android:layout_height="wrap_content”™>
<android:paddingBottom="15dp”">

<android:text="User Name”/>>

<<EditText>
<android:layout_width="match_parent”>
<android:layout_height="wrap_content”™>
<android:paddingBottom="15dp”">

<android:id="@+id /etUserName” />>

38

32

33 <<TextView>

34 <android:layout_width="wrap_content”>
35 <android:layout_height="wrap_content”™>
36 <android:paddingBottom="15dp”>

37 <android:paddingTop="10dp”>

38 <android:text="Password” />>

39

40 <<EditText>

41 <android:layout_width="match_parent”>
42 <android:layout_height="wrap_content”™>
3 <android:paddingBottom="15dp”">

44 <android:id="@+id/etPassword ">

45 <android:inputType="textPassword” />

46 </LinearLayout>

The Listing: 10 XML layout file shows the basic properties: layout_width, layout_height and id

required by any element . android:text is associated for elements that need to display some text,
android:orientation defines how the elements are positioned on the screen either horizontally or ver-
tically. For building a phished app which looks visually similar to the original app, we mainly focus
on the following properties:

@ We read each line from the file (i.e. the file which contains the information traced from ac-
cessibility service of GUI elements for an app) and split the read line with separator as semicolon (;).
Now we have an array of strings which has information in the form of property : value. For example:

Reading the first line from file: com_github_andlyticsproject.txt, we get:

Line : 1 ; android.view.accessibility.AccessibilityNodelnfo @80007553;
boundsInParent: Rect(0, 0 - 1440, 2560);

boundsInScreen: Rect(0, 0 - 1440, 2560);

packageName: com.github.andlyticsproject;

className: android.widget.FrameLayout;

text: null;

error: null;

39

maxTextLength: -1;
contentDescription: null;
viewldResName: null;
checkable: false;
checked: false;
focusable: false;
focused: false;
selected: false;
clickable: false;
longClickable: false;
contextClickable: false;
enabled: true;
password: false;
scrollable: false;

;END

and when we split this line with split variable as >’semicolon (;)” we get all the properties and their
value in an array of string as: packageName: com.github.andlyticsproject, where
property of an element is packageName and the value of packageName is com.github.andlyticsproject.

@ We create an array of objects for GenerateMetadata (self defined class for tracking each GUI
elements property) which has each data member representing a property. Each of these data members
are initialized by the value as obtained from the file.

Listing: 11 shows the sample code for reading the properties of GUI elements as traced and saved

from SEAPHISH’s accessibility service and using these properties to bind the GUI.

40

Listing 11: Read File and split each line to obtain and set each elements properties for GUI reconstruction

1try{
2 /+ read the file for which the phished GUI needs to be generated =/

3 FileInputStream fis = new FilelnputStream (mylInternalFile);

4 InputStreamReader in = new InputStreamReader(fis);

5 BufferedReader br = new BufferedReader(in);

6 String strLine;

7 /+ read each line from the traced accessibility log saved in file %/

8 while ((strLine = br.readLine()) != null) {

9 System.out. println (”Data :” + strLine);

10 if (!strLine.equals(””)) {

11 count++;

12 /+ maintain an array of objects for storing the properties of each
element.

13 We have defined a class GenerateMedata to track each elements

properties x/
14 objects[count] = new GenerateMedata() ;
15 /+ fetch each line and split it with ”;” to obtain each property of

element =/

16 String [] tempArray = strLine.split(”;”);

17 String [] tempSplit;

18 if (tempArray != null & tempArray.length > 0){

19 for (int i = 0; i < tempArray.length; i++){

20 /+ match each property and accordingly save it in the object’s

matched property =/
21 if (tempArray[i].toLowerCase().contains(”android.view.
accessibility .accessibilitynodeinfo™)){

2 tempSplit = tempArray[i].split(7@”);

23 objects[count].setNodeld(tempSplit[1].toString ().trim());

@ className is an important attribute which helps in classifying which element needs to be
bound on interface. The value represents the class of the object and thus we create an instance of this
object.

@ Once we know which class the elements belong to, we can set the properties like: the position

41

of each of the elements, is that element enabled, clickable etc. The position that we obtain is relative to
the screen and is fetched from boundsInScreen property. The Rect(Left,Right,Top,Bottom) shows
the bounds of a node with respect to the screen. Each of the elements are assigned the position using
setX and setY properties where setX is assigned the value of Left and setY is assigned the value of Top,
as obtained from boundsInScreen Rect. The other two values Right and Bottom of boundsInScreen are
used to calculate the height and width of an element.

Listing: reflst:bindPhisedGUI is a sample code to show how we position each element on the GUI

as per the properties obtained from the SEAPHISH accessibility service.

Listing 12: Bind the elements on the interface as per their class names

1 FrameLayout 11 = new FrameLayout(ctx);
2 /%% after reading and assigning each elements properties to objects, iterating
through all objects and binding the elements on Interface s/
3 /% In order to bind any element to the interface , we must know its class, so
here we first check if the class name is “textview” =/
4 if (objects[objCount] != null &% objects[objCount]. getClassName () != null &&
5 (!objects[objCount]. getClassName () .equals(””)) &&

6 objects[objCount]. getClassName () . toLowerCase () . contains ("textview”)){
7 /+ make an element for textview which will be added to the parent view =x/
8 final TextView tt = new TextView (this);

9 if (objects[objCount]. getText() != null &&
10 (!objects[objCount]. getText().equals(””)) && (!objects[objCount]. getText ()
.equals (" null™)))
11 /%« setText is one of the properties of textview which displays the text
w/
12 tt.setText(objects[objCount]. getText (), TextView.BufferType .SPANNABLE) ;
13 /+ this tag is generally assinged value in order to make accessibility

service understand about the element =/

14 if (objects[objCount]. getContentDescription() != null

15 && (!objects[objCount]. getContentDescription ().equals(””))

16 && (!objects[objCount]. getContentDescription ().equals(’null™)))

0 g

18 tt.setContentDescription (objects[objCount]. getContentDescription());

19 /+ for security reasons, sometimes the text is wrapped and may come as

null , thus we make use of contentDescription to bind the text

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

42

to the textview =/
if(tt.getText() == null || tt.getText().equals(””) || tt.getText().

equals ("null”))

tt.setText(objects[objCount]. getContentDescription (), TextView.

BufferType .SPANNABLE) ;

}

/+ generate the id for the element. By default the value is —1, which may
cause malware to think of this as some suspicious or fake screen =/
String tempID = objects[objCount]. getViewldResName () ;

tt.setld (getID (tempID));

/+ Get the cordinates of the element with respect to the screen and assign
setX and setY property to position the element =/

String [] tempRect = objects[objCount]. getBoundsInScreen (). split(”\\(”);

String [] tempRect2 tempRect[1]. split(”.,”);

String [] tempRect3 = tempRect2[1].split("=");

tt.setX (Integer.parselnt(tempRect2[0]. trim()));

/+ since we have removed the action tool bar from top and we try to create
it on our own, thus we need to subtract some offset value,
this helps us to predict which elements may be present in the header (
aciton bar) of an app =/
if (Integer.parselnt(tempRect3[0].trim ()) > 250){
tt.setY ((Integer.parselnt(tempRect3[0].trim()) — offset_y));
11.addView (tt);
}
else{
/+ now we bind these elements separetly as a part of custom tool bar =/

System.out. println (”Part of custom action bar”);

customCount ++;
customObjects [customCount] = new GenerateMedata () ;
customObjects[customCount] = objects[objCount];

tt.setY ((Integer.parselnt(tempRect3[0].trim()))); .o

43

@ The elements for which we obtain only the base class i.e. if the className property has the
value as android.view.View, we need extra information to bind such elements. Thus for under-
standing the actual class for these elements, we check the contentDescriptionand isClickable
which gives us an idea about the element type. For example, an element having attributes value for
contentDescription as checkbox and isClickable : true, gives the clarification about the class of the
element as android.view.CheckBox and thus we can bind a checkbox to the interface.

@ Other properties like isEnabled, isFocusable, isClickable are set to all the el-
ements. For example, isEnabled plays an important role for elements like buttons. We try to maintain
all the properties and features of the elements as present in original app and then build the phished app.

@ For elements present in the topmost section of an app i.e. the elements that basically forms
the header part of app are added separately. In the initial and base configuration of our phished app,
we specify NoActionBar, thus the header of phished app is also painted programmatically. For all the
elements which have the boundsInScreen(Left,Right,Top,Bottom) - Top value ranging between 0 to
250 are considered to be present as a part of top action bar. We add these elements as a part of custom

elements and later bind them as a part of ToolBar.

4.5 GUI Analysis

In order to understand the binding of GUI on interface, we used 15 apps downloaded from Github and
two android apps from Google Play Store: CitiBank and ChaseBank to see the variations of how can
we re-create the GUI in a generic way allowing us to write single common functions which can re-
produce GUI from any android app. We extracted the GitHub projects using OpenHub [1] a community
and directory providing users with search tools and services. Ohloh, a free RESTful Application
Programming Interface to OpenHub allows to search projects from the large repository of projects
listing added on OpenHub. We used some filters in the query by focusing the search just on android
apps and projects which were hosted on GitHub. Below is the search query used to browse the through

android apps hosted on GitHub:

www .openhub.net//projects.xml?query=android+app&page=1&api_key=

c3943bda503b24b9%ed76bal00add525ecd330720aad437£82fa3bcdcbeab330b7b

www.openhub.net//projects.xml?query=android+app&page=1&api_key=c3943bda503b24b9ed76ba00add525ecd330720aa437f82fa3bc4cbeab330b7b
www.openhub.net//projects.xml?query=android+app&page=1&api_key=c3943bda503b24b9ed76ba00add525ecd330720aa437f82fa3bc4cbeab330b7b

Table I: GITHUB DOWNLOADED APPLICATIONS OVERVIEW

44

App Name Package Name Apps Overview

App Name Package Name Apps Overview

PocketHub com.github.pockethub.android This app is a small version to connect to
GitHub repository and sync repositories

WiFiTalkie org.jsl.wfwt App transmits sound recorded from mi-

crophone to some other devices running
the same program on the same network

segment

Coach Assistant

com.sandklef.coachapp

An app to assist instructors with coaching

Commons fr.free.nrw.commons This app allows users to upload pictures
from their Android phone/tablet to Wiki-
media Commons

StudIPApp studip.app A basic app that provides facilities and au-

thorization to registered users to connect
to their server and get information about

courses

Jupiter Broadcast-

jupiter.broadcasting.live.tv

An app that allows users to

ing stream and download videos from
www. jupiterbroadcasting.com

Andlytics com.github.andlyticsproject =~ The app collects statistics from the
Google Play Developer Console

BeeExample com.BeeFramework.example This app allows users to create their own
mobile apps using Objective-C and XML
or CSS

Wikivoyage org.github.OxygenGuide This is an offline app for android and data

Offline comes from OxygenGuide.

www.jupiterbroadcasting.com

45

Table I Continued: GITHUB DOWNLOADED APPLICATIONS OVERVIEW

App Name Package Name Apps Overview

Meta Filter mpt.metafilter This app displays the latest metafilter RSS
feeds.

SmartGadget com.sensirion.smartgadget app allows you to establish a BLE (Blue-

tooth Low Energy) connection to your

Sensirion Smart Gadget

NFC on Android | com.fernandocejas.example. This app allows user to write data to NFC

Example android.nfc tags with custom mime-types

Try Haskell nl.bneijt.tryhaskell This app supports Haskell language few
commands.

WTF (The MirOS | de.naturalnet.mirwtfapp Android front end to resolve acronyms

Project) on the command line as included in The

MirOS Project

SMS Spoofer net.thomascannon.smsspoofer This app is a proof of concept which
shows how SmsReceiverService permis-

sion of android is exploited to fake an in-

coming message.

The apps contained activities having GUI with elements like buttons, text boxes, edit text boxes,
images etc. For elements like grid views or list views, the datasource is generally bound to these
elements in code behind files and thus this information for such elements cannot be obtained from
accessibility service. For elements like images, the source is generally present in the drawable folder
(present under res) or sometimes the image may have an online web page source in which the image
may not be the same every time. For all such elements - grid views, list views, images, etc. we just
add a stub for these elements with the data source as blank. This is done in order to preserve the Ul
hierarchy and make the UI appear almost same as the original. The creation of the first phished GUI
was done using the accessibility log obtained from Chase Bank app. This app has all the basic elements
that are present in most of the apps for example: textviews, edittextviews, buttons, checkbox, image.

While binding the elements for phished GUI, we make sure the elements have all the properties as

46

present in original app. Let us analyze one line from the file of Chase Bank app which contains the

elements as presented below:

Line : 15;

android.view.accessibility. AccessibilityNodeInfo @80009b5e;
boundsInParent: Rect(0, 0 - 1080, 164);
boundsInScreen: Rect(180, 1413 - 1260, 1577);
packageName: com.chase.sig.android;
className: android.widget.EditText;

text: null;

error: null;

maxTextLength: -1;

contentDescription: Password;
viewldResName: com.chase.sig.android:id;
checkable: false;

checked: false;

focusable: true;

focused: false;

selected: false;

clickable: true;

longClickable: true;

contextClickable: false;

enabled: true;

password: true;

scrollable: false; ;END

Considering only the important properties, we first check the className - in this case it EditText i.e.
an input text box. The contentDescription - explains the element will contain password, additionally,
we have another property: password which has the value as true which means that the element must
take an input type as password. Listing: 13 is the sample of configuration for an edit text box which

takes input as password type.

47

Listing 13: Edit Text Sample Configuration with property as Password

1 EditText et = new EditText(this);

2

3 if (objects[objCount]. getText() != null && (!objects[objCount]. getText ().
equals (”7)) && (!objects[objCount]. getText().equals(”null”)))

4 et.setHint(objects[objCount]. getText());

s else if (objects[objCount]. getContentDescription() != null && (!objects|[
objCount]. getContentDescription ().equals(””)) && (!objects[objCount].

getContentDescription () .equals(’null™)))

0 {
7 et.setHint(objects[objCount]. getContentDescription());

8 et.setContentDescription(objects[objCount]. getContentDescription());
9}

10 if (objects[objCount]. getPassword ())
1 et.setInputType (InputType . TYPE_.CCLASS_TEXT | InputType.

TYPE_TEXT_VARIATION_PASSWORD) ;

A sample of original app vs phished app for ChaseBank can be seen in Figure: 10 (NextPage).

48

amm
-

NEW! Free credit score
access. Checking won't
impact your credit.

user 1D User ID
Password Password
Remember me \:\ Use token LJ D Remember I—_—I Use
me token
LOG ON
Forgot User ID or Password? Forgot User ID or Password?
ATM & Branch | Contact
Enroll Enroll | ATM&Branch | Contact

FAQs Privacy Info
Equal Opportunity Lender
Deposit products provided by JPMorgan Chase Bank, N.A. Member FDIC §
Credit cards are issued by Chase Bank USA, N.A.
© 2017 JPMorgan Chase & Co.

FAQs | Privacy| Info
Equal Opportunity Lender Deposit products provided by
JPMorgan Chase Bank, N.A. Member FDIC Credit cards

are issued by Chase Bank USA, N.A. © 2017
Chase & Co. e

Figure 10: Chase Bank: Comparing Original Vs Phished App

Once we obtain a good structure of the GUI for the Chase Bank app, we proceeded and tested the
same code on Citi Bank app. Every app may be developed in different ways. For Chase Bank app, the
accessibility log helped us easily to understand each and every element as the log specified the actual
class name of the element. For CitBank app we observed that for each element, only the base class
name (android.view.View) was logged through accessibility service. Thus this introduced another set
of conditions to be implemented and handled when we do not have the clarity about the actual class
name of element. Consider the lines in box: ?? (Line: 50), which shows only one line of log from Citi

Bank app file,the information traced from accessibility service.

49

Line : 50 ;

android.view.accessibility. AccessibilityNodeInfo @90ec;
boundsInParent: Rect(10, 10 - 37, 37);
boundsInScreen: Rect(120, 1040 - 228, 1148);
packageName: com.citi.citimobile;
className: android.view.View;

text: null;

error: null;

maxTextLength: -1;

contentDescription: Remember user id checkbox;
viewldResName: rememberUserIDcheckBox;
checkable: false;

checked: false;

focusable: false;

focused: false;

selected: false;

clickable: true;

longClickable: false;

contextClickable: false;

enabled: true;

password: false;

scrollable: false;

;END

Analyzing the log, we see the className value as android.view.View which does not gives any
information which element do we need to bind. So now we analyze contentDescription and clickable
properties. We get the clickable property as true and contentDescription as Remember user id checkbox
which gives us the information about the element - this is a checkbox with text for the checkbox same

as content description. Thus we bind a checkbox for this as presented in Listing: 14.

50

Listing 14: CheckBox element identified from android.view.View class

1 /% check if the class name contains android.view.View x/

> else if (objects[objCount] != null && objects[objCount]. getClassName () != null
&&

3 (!objects[objCount]. getClassName () .equals(7”)) &&

4 objects [objCount]. getClassName () . equals (”android . view.View”)){

5 /+ first check if the element is clickable =/

6 if (objects[objCount]. getClickable ()){

7 /+ now checking the content description to understand what type of
element do we need to bind =/

8 if (objects[objCount]. getContentDescription() != null && (!objects|[
objCount]. getContentDescription ().equals(””)) && (!objects[objCount
].getContentDescription () .equals(”null”))){

9 if (objects[objCount]. getContentDescription ().toLowerCase().contains (

”checkbox™))

10 {

1 objCount++;

12 /+ create the new element as CheckBox =/

13 CheckBox chkBox = new CheckBox(this);

14 if (objects[objCount].getText() != null && (!objects[objCount
].getText().equals(””)) && (! objects[objCount]. getText() .
equals (”null™)))

15 chkBox.setText(objects[objCount]. getText());

16 else

17 {

18 chkBox.setContentDescription (objects[objCount].
getContentDescription ());

19 chkBox.setText(objects [objCount]. getContentDescription ());

2 oo

21 /+ setting other properties as obtained from accessibility =/

2 chkBox.setEnabled (objects[objCount]. getEnabled ());

23 chkBox.setFocusable (objects[objCount]. getFocusable ());

24 chkBox.setClickable (objects [objCount]. getClickable ());

2 chkBox .setChecked (objects [objCount]. getChecked ());....}}}}

51

N T O 100%M015:10 N T O 100% M0 17:31

citr

User ID leer ID
Password Password
D Remember
. Remember User ID lIser ID
Sign On CLICK HERE TO SIGN ON
Register Forgot User ID or Password Register Linkorgot credentials Link
Dt Vi e Terms and Conditions | Privacy Statement
Citibank, N.A. Member FDIC, Equal Housing Lender. " .
© 2017 Citigroup Inc. Clté%alr%kC,i\%igAr'o’\dSmtc):?r FDIC, Equal Housing Lender.

Figure 11: CitiBank: Comparing Original Vs Phished App

A sample of original app vs phished app for CitiBank can be seen as in Figure: 11. We can see
the difference in the text and the difference is there because we build the phished GUI using the

contentDescription as for the property of text is either null or blank for all the elements.

52

S. Experimental Results

SEAPHISH framework extends android’s accessibility

= SeaPhishUl app src
: . g eqe . . f%‘ Android v
service to develop its own accessibility service which ex- E
= manifests
. . . 25
tracts the GUI elements and its properties for an android ; java
Zres
app and re-creates Phished GUI using the extracted GUI el- g .
& # Gradle Scripts
~
ements and their properties. Our framework aims to detect v

and defend malicious apps which may be stealing sensitive Figure 12: Android Project Structure Part - 1
information from user’s smartphone. These malicious apps

may use various permissions granted by users or use other mechanisms to steal information, send it
over network, or with apps having accessibility service enabled can perform different unauthorized op-
erations. For making our framework function successfully, we need to analyze the phished app being
generated. For our analysis, we downloaded a set of 15 apps from GitHub repository using BlackDuck
OpenHub (as explained in Solutions) and obtained the phished GUI for these apps. Following were
the first set of analysis performed:

@ Analyze the resources of an app: Resources for an android app consists of images, styles
definitions, text (strings) bound on GUI etc. All these information are maintained in different XML
files. As we analyze the phished GUI, certain elements which need resources cannot be obtained from
accessibility service. These resources are present in res folder of the project. Figure: 12 is the snapshot
of how a folder structure for any android app looks like in Android SDK. This is the Android View (in
Android SDK - IDE used for developing android apps), where we can see: app as the root (our main
application) and on expanding - as in Figure: 13 we have sub-folders: manifest, java and res. This is
the initial project structure for SEAPHISH framework. A brief overview about each folder:

e manifests - This folder contains AndroidManifest.xml which is the main file for any android ap-

plication defining about each of the activities, services, permissions which will be used by the

app.
e java - This folder contains our code files including the code behind file for all activity and services.

e xml - This folder contains the extra metadata information for any services bound to an app. In our

design, we add the metadata information for SEAPHISH’s accessibility service. Listing: 15 is

53

sample file which contains the metadata information for SEAPHISH’s accessibility service.

Listing 15: Mets-data for SEAPHISH accessibility service

1 <?xml version="1.0" encoding="utf —-8"7>
2

3 <accessibility —service xmlns:android="http://schemas.android.com/apk/res/

android”
4 android:description=" @string/service_6"
5 android:accessibilityFlags="flagRetrievelnteractiveWindows |

flagRequestFilterKeyEvents | flagReportViewlIds |
6 flagRequestEnhancedWebAccessibility |
flagRequestTouchExplorationMode”
7 android:accessibilityFeedbackType="feedbackSpoken |feedbackHaptic |
feedbackAudible | feedbackVisual | feedbackGeneric | feedbackAllMask”
8 android:canRetrieveWindowContent="true”

9 android:settingsActivity="com.example.android.accessibility .

ServiceSettingsActivity”

e res - This folder serves as a repository for all resources that are used in an android app. It contains
four sub-folders with each folder containing some resources which are used across the entire
app in single or multiple activities. Each of the four sub-folders contain xml files maintaining

resource in the form of key-value pair.

* drawable : contains images which are used across all the activities in app. In order to ac-
cess any image from this folder, user can write @drawable/image_1 in their XML file for
binding an image to an element. image_I represents a key in XML file and it will have a
value corresponding to an image. Similarly to bind the image in code behind file, user can
specify R.drawable.image 1 where R represents the resources and each of the folders can

be accessed using R.

* layout : contains the xml layout files defining the GUI for each activity. A user can add
elements to their GUI directly by adding elements in the XML file or they can add elements
in the code behind file (present in java folder). XML layouts are easy to configure and also

allows user to preview their GUL

54

ject

| 1§ Android v |

manifests

'+ 1: Proj

% AndroidManifest.xml
java

example.com.seaphish.uicarise.writenodesxml
c GeneratedActivity
c GenerateMedata
(o Service_WriteXML
C SimpleActivity

example.com.seaphish.uicarise.writenodesxml (androidTest)

« 7: Structure

@ Captures

example.com.seaphish.uicarise.writenodesxml (test)
res
drawable
layout
< activity_simplexml
mipmap
ic_launcher.png (5)
i| ic_launcher.png (hdpi)
P ic_launcher.png (mdpi)

i ic_launcher.png (xhdpi)

¥ Build Variants

P ic_launcher.png (xxhdpi)
i ic_launcher.png (oochdpi)
values

@1 colors.xml

dimens.xml (2)

X 2 Favorites

»w
v

@l strings.xml
© styles.xml

=1 xml

© access_service6.xml

Figure 13: Android Full Project Structure

* minmap : contains the icons that may be used in general by apps. By default this folder has
an android launcher icon in different sizes. A user can bind any icon present in this folder
using code: @mipmap/ic_launcher, where ic_launcher is one of the icons present under

this folder.

* values : contains four xml files each file acting as a common resource for all the activities.
The four files are: values.xml - contains key value pair for any strings used in activities.
So instead of developers providing a text to a button, the same text is added in this xml
and now instead of using the text, we use its key to bind the value, colors.xml, dimens.xml
and styles.xml contains the key-value pair for defining styles, colors and dimensions (like

padding, width, height etc.) which is common across the app.

While creating the phished app, we need certain resources, like images present on original app. For
binding these images in our phished app, we require a prior knowledge about the images being used
and which set of images are bound to which elements on the GUIL. One way of gaining access to all
resources is by using APKTOOL [22] which is a reverse engineering tool for 3rd party, closed, binary
Android apps. Apktool [14] can extract all XML files including the layout files, resources files from the

apk file as its input. Apk [10] is Android application package file format which contains the android

55

code files, resources and data compiled and packaged in one single file. Apk is used in distribution of
android apps. Unzipping apk file will give us all compiled java code with files such as file/.dex and
resources.arsc which is not readable. We used Apktool to reverse engineer an android app and obtain
all files in readable format.

Using Apktool: apktool d testapp.apk is the command for running Apktool on a testapp.apk (any
android app apk file) where d represents decode. The output from Apktool is a folder that contains all
the code files, resources and XML files. This reverse engineering can be used in order to either extend
any project or for analysis purpose. But even after we receive the original resources, we have few other
problems:

@ Using Apktool for decoding just for minor resources is too much of overhead for framework
and it looses its dynamic behavior.

@ Even after we receive the resources (like :images, all XML resource files), it is still difficult
to match the elements with their respective resources. For example: from the accessibility service we
understand what type of GUI element we are binding, so if the element is an Image, we require the
source of this GUI element i.e. we require an image present in one of the resource folder. Analyzing the
properties of each GUI element obtained via accessibility service, we still do not get any information
about the image resource bound to a GUI element. Thus we may have 3 GUI elements with 3 different
images and from our reverse engineered apk, we have a resource folder which may contain any number
of images. So we have insufficient information about the resource that needs to be matched with
a particular GUI element. The insufficient information applies for all other resources that we may
require for any GUI element.

We also tried using SilkuliX [19] which automates anything we see on our screen (Windows, Mac
etc.). This is used when the user does not have an easy access to the source code or GUI internals of
the application or web page that the user wants to analyze. It helps in locating images on a screen,
can be used to search text in images etc. For using it on a android device, Sikuli can be used with an
emulator or with Android Debugging Bridge (ADB). ADB [11] is a command line tool that allows
to install or debug apps either on emulator or a connected android device. It is a client-server program
which allows various device actions (installing/debugging) and has three components:

@ client - runs on the development machine and can be invoked using adb command from a

command-line terminal.

56

@ daemon (adbd) - a background process on each device and runs command on the device.

@ server - for managing communication between the client and daemon and runs as a background
process on the development machine.

Sikuli can be used in integration with ADB to obtain images for a running app (i.e. the app is
currently used by user) either on emulator or on a connected android device. But this process needs
to have the source code of the app and again requires pre-processing of the entire source code. This
may help us to obtain the images for an app, but we still have to analyze the co-ordinates of the
obtained image and then process these co-ordinates to match with the respective GUI element. Even
after achieving the images, there are possibilities that the individual apps may update - either change
the image or remove the GUI element with image. For Chase Bank app, we observed the background
image used was different most of the time, the image may differ or has some extra texts. Even after we
resolve the issue of image, we still do not obtain other resources including the styles, background color
etc. These problems gives us an understanding that just for an image, this pre-processing of code is a
big overhead. We want the framework to be very simple, it should run dynamically not depending on
the source code at all. In simple, we want the framework to be very generic and not depending highly
on apps source code.

On creating the phished GUI, although we are not able to show the actual image, but we bind a
stub for each image, which has its resource as blank. The image resource may be empty, but still it will
be present in the Ul hierarchy and on analyzing this GUI’s elements hierarchy we find each element as
present in the original app.

Further we tried using the in-built tool of Android Studio: Android Device Monitor (ADM). This
is generally used to enhance and improve the GUI structure as it gives a tree-structure type view to
analyze the GUI of an app. The pre-requisites in order to analyze the Ul hierarchy [20] for an app
using ADM are:

@ For running the app on a hardware instead on an emulator, connect the device using USB to
the computer and check if the computer is able to detect the device.

@ Enable Android Debugging Bridge (ADB). In Android Studio -> Tools -> Android -> if
there is a check on ADB, means its enabled, if there is no check, click on Enable ADB integration to
enable.

@ If there is any instance of Android Device Monitor, it must be shutdown.

57

Q Windows |*2Z View Properties 28 =a Tree View 23 =g

Property Value
Accessibility
Attributes
android:drawable/scrollbar_handle_material
android:drawable/scrollbar_handle_material

res/drawable/scrollbar_handle_material.xml
res/drawable/scrollbar_handle_material.xm|

layout_height)
layout_width & -2
text Name

Drawing

Focus

Layout

Measurement

Miscellaneous

Padding

Scrolling

Text
rawTextAlignment GRAVITY
rawTextDirection INHERIT
scaledTextSize 12.0
selectionEnd -1
selectionStart =
textAlignment GRAVITY
textDirection FIRST_STRONG
textSize 36.0
typefaceStyle NORMAL
mCurTextColor -1979711488
mGravity 8388659
mText Name

Theme

Filter by class or id: 20%

Figure 14: Hierarchy Viewer GUI analysis

Tree Overview 2 =0

Layout View 32 | E Console - @

Figure 15: Hierarchy Viewer Layout analysis

58

Figure: 14 is a snaphshot of the HierarchyViewer tree-structure obtained for a sample app. In
Firgure: 14, the right side of the figure shows a snapshot of some GUI elements present in the app
and the elements (like AppCompatTextView, AppCompatEditText etc.)- marked in Red Box are the
children element for LinearLayout (Parent Element for these elements). With this structure obtained,
it was still difficult to compare as when we tried to dump the entire hierarchy log and save it to a file,
we still have to manually format the hierarchy of nodes. Listing: 16 is a small sample of log obtained

from hierarchy viewer:

Listing 16: Mets-data for SEAPHISH accessibility service

1 Start display list (0x7f7522c400, ActionBarOverlayLayout)
2 Save 3

3 ClipRect 0, 0, 1440, 2560

4 Draw RenderNode 0x7f7522¢c800 FrameLayout

5 Start display list (0x7f7522c800, FrameLayout)
6 Save 3

7 Translate (left, top) O, 320

8 ClipRect 0, 0, 1440, 2240

9 Draw RenderNode 0x7f750b5800 LinearLayout

10 Start display list (0x7f750b5800, LinearLayout)
11 Save 3

12 ClipRect 0, 0, 1440, 2240

13 Draw RenderNode 0x7f75208000 TextView

14 Start display list (0x7f75208000, TextView)
15 Save 3

16 ClipRect 0, 0, 1440, 76

17 Save flags 3

18 ClipRect 0.00 0.00 1440.00 76.00

19 Draw Text of count 52, bytes 104

20 Restore to count 1

21 Done (0x7f75208000, TextView)

Since we obtain the log in a raw format, forming this to obtain a proper structure to compare the

hierarchy for two GUIs is an extra overhead. It would be much easier if we can obtain a log of the GUI

59

elements written in a proper hierarchy. For analysis and evaluation of phished GUI, we followed the
analysis as:

@ In order to compare the original GUI and phished GUI, we downloaded 15 working apps from
GitHub.

@ With these 15 android apps, we generated the phished GUI.

@ We built a common library : hierarchyviewerlibrary that will be used to fetch the GUI ele-
ments and its entire hierarchy. The library contains the code which obtains the root node of the GUI
after the app is loaded on the screen and with this root node, it will iterate to fetch each of its children.

Listing: 17 is the main function that is used to build the hierarchy:

Listing 17: Hierarchy Viewer class function to obtain GUI Elements

1 private static void debugChildViewldsl (View view, String logtag, int spaces) {
2 /+ check if the element as a part of viewGroup — the main base class for any
element in android =/

3 if (view instanceof ViewGroup) {

4 /% get the group of the element =/

5 ViewGroup group = (ViewGroup)view;

6 countElements+=group. getChildCount () ;

7 /+ iterate through the child of the current element — if the count > 0 =/
8 for (int i = 0; i < group.getChildCount(); i++) {

9 /+ get the child element which is part of the view =/

10 View child = group.getChildAt(i);

11 /+ Log the element with proper tags — GUIObject is a tag given to each
element =/

12 Log.v(logtag , padString ("<GUIObject><Name>" + child. getClass ().
getSimpleName () +” </Name><Id>"+ child. getld () +”</Id><Location x=\""+
child.getX ()+”\” y=\""+child.getY ()+”\” bottom=\""+child. getBottom ()+”

\” right=\""+child. getRight ()+”\” />”, spaces));

13 /+ if the current element has any more child, first fetch those. =/
14 debugChildViewldsl (child , logtag , spaces + 1);
15 /+ once the element has no more children, we can close the GUIObject tag

for the element =/

16 Log.v(logtag ,padString (”</GUIObject>" ,spaces)); }}}

The code as shown in Listing: 17 generates a log of GUI elements, with each parent element

60

wrapping its children element within its tag. Each element is wrapped in GUIObject tag and the name

for these objects denote the className of each element. This className is basically the classifier about

each element present on the screen. We tried evaluating other elements, like position, width, height

etc. but due to the varying size of screen and with difference in the pixels density of each smartphone,

evne if we obtain the positions, width, height etc. this might still change when rendered on different

smartphones. Thus we focus mainly on the className that is assigned to each GUIObject. Listing: 18

is the sample of log generated from above function:

Listing 18: Output of log generated from Hierarchy Viewer class function

2

1 <State Alias="al” ScreenName="Andlytics”™>

<GUIObject><Name>LinearLayout</Name><Location x="0.0" y="0.0" bottom="0"

right="0" />
<GUIObject><Name>ViewStub</Name><Location x="0.0" y="0.0" bottom="0" right="
0 />
</ GUIObject>
<GUIObject><Name>FrameLayout</Name><Location x="0.0" y="0.0" bottom="0"
right="0" />
<GUIObject><Name>ActionBarOverlayLayout</Name><Location x="0.0" y="0.0"
bottom="0" right="0" />
<GUIObject><Name>ContentFrameLayout</Name><Location x="0.0" y="0.0" bottom
=70" right="0" />
<GUIObject><Name>FrameLayout</Name><Location x="0.0" y="0.0" bottom="0"
right="0" />
<GUIObject><Name>TextView</Name><Location x="20.0" y="78.0" bottom="0"
right="0" />
</ GUIObject>
<GUIObject><Name>TextView</Name><Location x="20.0" y="240.0" bottom="0"
right="0" />
</ GUIObject>
<GUIObject><Name>TextView</Name><Location x="40.0" y="642.0" bottom="0"
right="0" />
</ GUIObject>
<GUIObject><Name>CheckBox</Name><Location x="1232.0" y="656.0" bottom="0
7 oright="0" />
</ GUIObject>

61

17 <GUIObject><Name>TextView</Name><Location x="662.0" y="2154.0" bottom="0

7 right="0" />

18 </ GUIObject>

19 </ GUIObject>

20 </ GUIObject>

21 <GUIObject><Name>ActionBarContainer</Name><Location x="0.0" y=70.0" bottom

=70” right="0" />

2 <GUIObject><Name>Toolbar</Name><Location x="0.0" y="0.0" bottom="0" right
="0" />
23 <GUIObject><Name>AppCompatTextView</Name><Location x="0.0" y="0.0"

bottom="0" right="0" />

2 </ GUIObject>
25 </ GUIObject>
2 <GUIObject><Name>ActionBarContextView</Name><Location x="0.0" y="0.0"

bottom="0" right="0" />

27 </GUIObject>.....

2% </ State>

In Listing: 18, we get all the elements represented as a GUIObject and we try to build it in a
tree structure with each GUI element having its start tag as <GUIObject> with properties : Name
and Location. Although location property did not give us proper information about the element as
it changes with respect to API level being used and gives different information with different screen
sizes. The Name property is the main classifier. Each GUIObject has its starting and ending tags. If
there are any GUIObjects present between the start and end tag of another GUIObject, it means the
GUIObjects (or GUI elements) are actually the child of the enclosing GUIObject and thus each child
in our log is shifted by one space to right which gives us a clear indication about the parent and child
elements and overall gives us a clear picture about the UI hierarchy of the app.

At first we tried importing the library directly into the project and use the functions defined in this
library. But since the downloaded projects had varying versions of Android, thus importing this library,
changing its configuration in each project for making it compatible was time consuming. So we used
the functions written in this library directly in the main activity of each app. The main activity of each
app is defined in AndoridManifest.xml with intent-filter tag having action as MAIN and category as

LAUNCHER. Listing: 19 is the sample code showing the configuration of Main Activity present in

62

AndoridManifest.xml under <application>

Listing 19: Main Activity Definition in AndroidManifest.xml

1 <activity android:name=".SimpleActivity >

2 <intent—filter>

3 <action android:name="android.intent.action.MAIN” />

4 <category android:name="android.intent.category .LAUNCHER” />

5 </intent—filter>

6 </activity>

After getting the knowledge about the main activity of each app, we search for onCreate method
in the main activity. This function is overridden in each activity and once the elements are bound to
the interface, we can take the root node or element of the GUI and pass this element as the parameter
to the hierarchy viewer function. Obtaining the current screen’s root element can be done using:
getWindow().getDecorView(). Listing: 20 is a sample code of onCreate method with the function call

to hierarchy viewer:

Listing 20: onCreate method calling hierarchy viewer function

1 public void onCreate(Bundle savedInstanceState)

> {

3 super.onCreate(savedInstanceState);

4 Log.d(LOG.TAG, “onCreate”);

5 getWindow () . addFlags (WindowManager. LayoutParams . FLAG_KEEP_SCREEN_ON) ;

6 /+ setContentView shows the binding of ui elements is done =/

7 setContentView (R.layout.main);

8 /+ we fetch the current window and then get the root node to pass it to
another function

9 which iterates through all the parent and child nodes. =/

10 debugViewlds (this . getWindow () . getDecorView () , “andylytics”);

11 System.out. println (”Total Count: “"+countElements);

After obtaining the logs for each of original and phished app, we used the Tree-Edit algorithm
with original app xml and phished app xml containing nodes in a tree structure with main focus on
comparing the the name property associated with each GUIObject. The tree-edit algorithm can take

input either two trees or two xmls.

63

5.1 Tree Edit Distance Algorithm Overview

Edit distance [65] is a popular approach for quantifying how dissimilar two strings are to one another
by counting the minimum number of operations required to transform one string into the other [84].
Algorithms based on edit distances are used in different areas, e.g., for automatic spelling correction in
natural language processing and in bioinformatics to quantify the similarity of DNA molecules. Edit
distance algorithms are based on relabeling, inserting and deletion of nodes, the same key operations
that stakeholders use to modify GUIs. We use tree edit distance algorithms to difference GUIs by
computing the minimum cost solution where the solution comprises of operations like deleting and
relabeling existing GUI objects, inserting new GUI objects which transforms one tree into the another.

When we try to compare the two GUI XMLs for our original and phished app, we get the results
indicating the two GUIs do no match at all i.e. the operations consisting of deleting, relabeling involves
almost all elements. The reason behind the negative results were:

@ When we try to build an android app, there are certain elements which may be embedded by
Android SDK. For example: for an app developed with pre-configured templates can have many extra
elements which are not visible and may not be scanned by accessibility service. Figure: 16 shows
a sample of XML for a login application in which one was manually developed (without using any
pre-configured templates of login as present in Android SDK) and the other was developed using the
login activity provided by Android SDK.

As highlighted in Figure: 16 (next page), which is comparing the GUI elements log, we can see
that the activity created using the template has an additional element just after the 3rd element - Frame-
Layout (highlighted on left). So if we try to compare the two XML’s, the results shows no match with
maximum elements as a part of mismatch and having no similarity.

Although when we clearly observe the two XML’s we can see that the middle portion (highlighted
in green) of the two XML’s match to some extent with the Name property not entirely same. This
is because now android has introduced compatible elements in the latest version and thus we obtain
the elements name as defined with compatibility. Although the elements are same (like AppComp-
patEditText and EditText are same elements representing an Edit Text Box), but there Name property
differs which gives us negative results on using Tree-Edit Algorithm. Scanning till the end we observe
an extra section of code embedded (highlighted with red box on left), which is totally missing in the

activity created manually. If we try to compare just the look and feel of the two activities, then they

1 E<State Alias="t1" ScreenName="TestLogin"> 1 O<State Alias="tl2" ScreenName="TestLogin2">
3 g <Sgé?gij:zZigg’:ﬁ;‘;zz:;tzz‘;;;g:m> 2 <GUIObject><Name>LinearLayout</Name>
4 g </GUIObject> 3 <GUIObject><Name>ViewStub</Name>
5 <GUIObject><Name>FrameLayout</Name> 4 </GUIObject>
6 & e A -
7 B <GUIObject><NamesContentErameLayout</Names ; =
8 = <GUIObject><Name>LinearLayout</Name> 6 <GUIObject><Name>LinearLayout</Name>
9 = <GUIObject><Name>ProgressBar</Name> 7 '<GUIObj ect><Name>ScrollView</Name>
- = € <GU[IJ(I)kO>kj);it§<Name>ScrollView</Name> N <GUIObject><Name>LinearLayout</Name>
12 0O <GUIObject><Name>LinearLayout</Name> 2 <GUIObject><Name>TextInputLayout</Name>
=] <GUIObject><Name>TextInputLayout</Name> 10 <GUIObject><Name>FrameLayout</Name>
= <GUIObject><Name>FrameLayout</Name> G R </GUIObject>
<GUIObject><Name>AppCompatAutoCompleteTextView</Name>| |, | </GUTObject>
</GUIObject> -
</éUIObjict> 13 <GUIObject><Name>EditText</Name>
</GUIObject> 14 </GUIObject>
<GUIObject><Name>TextInputLayout</Name> 15 <GUIObject><Name>TextInputLayout</Name>
<GUIObject><Name>FrameLayout</Name> 1 i
<GUIObject><Name>AppCompatEditText</Name> 7 <GUIObject><Name>FrameLayout</Name>
</GUIObject> . </GUIObject>
<GUIObject><Name>CheckableImageButton</Name> i L </GUIObject>
<jé§‘;gg:j§§> 19 o <GUIObject><Name>EditText</Name>
</GUIObject> 20 </GUIObject>
\ <GUIObject><Name>AppCompatButton</Name>] | = \ <GUIObject><Name>Button< /Name>
AR o </GUIObject>
</GUIObject> = ¥
</GUIObject> 230 </GUIObject>
</GUIObject> 24 + </GUIObject>
<GUI(I)Zk'ﬁ t§<N >ActionBarContainer</Name> -~k s/GUIObject>
jec ame>ActionBarContainer</Name ~ :
<GUTObject><Name>Toolbar</Name> 26 | </GUIObject>
<GUIObject><Name>AppCompatTextView</Name> 27 </GUIObject>
</GUIObject> 28 l</state>
</GUIObject>
<GUIObject><Name>ActionBarContextView</Name>
oY
</GUIObject> . o R :
7 </C/;UIObj;ct> | Login Activity created from a template. Login Activity created by simply adding the elements
I </GUIObject> manually without any template
F </GUIObject>
L</State>

Figure 16: Comparing XML Log for Login Activity

almost look similar. Figure: 17 (next page) shows a comparison of two GUI’s.

64

@ The apps can be developed with any type of template, with some dynamic controls loading in

code behind and thus when we try to compare the XML Logs of two GUISs directly, it often fails. There

may be difference in which the name for each element appears (due to difference in android version),

thus we cannot simply apply Tree Edit Algorithm instead, we require different approach where we can

calculate the difference in the branches of two trees.

65

R @ N FO 24%E217:29 R @ M FTO37%E18:19

TestApplication TestApplication

Email
Email

Password (optional)

Password (optional) ©

SIGN IN OR REGISTER

SIGN IN OR REGISTER

Autogenerated Login Activity Manually Coded Login Activity

Figure 17: Comparing Login Activity - Snapshots

Comparing the two GUI’s as shown in Figure: 17, we find two major differences: first in the layout,
there are differences with respect to the positions of all the elements and second there is some difference
in the elements used in the two GUIs. Although both GUIs make use of TextInputLayout, the GUI on
left (from template) makes use of AutoCompleteTextView instead of a normal EditText. On further
analysis, we obtained the accessibility log for both the apps fetching all the GUI elements. From the
log obtained, as shown in Figure: 18, we can see only one difference. The app created without template
does not have a ImageButton, rest analyzing the log we see the elements are all same. Figure: 18 is a

small snapshot of the accessibility log for the two Login GUIs with just the classNames highlighted.

className: android.widget.Framelayout; className: android.widget.FramelLayout;
className: android.widget.TextView; className: android.widget.TextView;
className: android.widget.ScrollView; © className: android.widget.ScrollView;
className: TextInputLayout; className: TextInputLayout;

className: android.widget.EditText; className: android.widget.EditText;
className: TextInputLayout; className: TextInputLayout;

className: android.widget.EditText; className: android.widget.EditText;

className: android.widget.ImageButton; className: android.widget.Button;
Classname: androra.widget.puttons

Autogenerated Login AS Log Manual Coded Login AS Log

Figure 18: Accessibility Log for Login Activities.

5.2 Results from other apps

In order to analyze the phished GUIs, the hierarchy of GUI elements, their GUI and accessibility

service traced log for 15 apps was tested manually. Following were some of the important results

obtained:

Table II: GRAPHICAL USER INTERFACE, HIERARCHY AND ACCESSIBILITY LOG ANALYSIS FOR

GITHUB DOWNLOADED APPS

App Name

GUI Layout

GUI Hierarchy and Accessibility Service
(AS) Log Analysis

PocketHub

GUI Loads with button miss-

ing

Button which is a part of top header is
missing from the phished GUI. The other
elements are not logged in accessibility
service and hence are missing in phished

GUT’s hierarchy log. The AS log matches

WiFiTalkie

GUI Loads with missing text

and button

Button which is a part of top header
is missing from the phished GUI. All
other elements in phished GUI hierarchy
matches with original GUI hierarchy. The

AS log matches.

Coach Assistant

GUI matches perfectly

The hierarchy log differences in the
names of the elements. The AS log

matches.

Commons

GUI matches with image

missing

The GUI elements hierarchy matches to
some extent with GridView missing. The
AS Log matches with only 2 repeated en-

tries for TextView.

StudIPApp

GUI loads with missing im-

age and text on the bottom

The original GUI hierarchy does not loads
elements as the binding of elements is dy-
namic, thus the two GUI hierarchy logs do

not match. The AS log matches.

67

Table II Continued: GRAPHICAL USER INTERFACE, HIERARCHY AND ACCESSIBILITY LOG ANALY-
SIS FOR GITHUB DOWNLOADED APPS

App Name

GUI Layout

GUI Hierarchy and Accessibility Service
(AS) Log Analysis

Jupiter Broadcast-

ing

GUI loads with missing im-

age

The GUI element hierarchy log matches
to some extent with only TableLayout

missing. The AS log matches.

Andlytics

GUI loads with missing but-

ton

Button which is a part of top header is
missing from the phished GUI. The GUI
elements log differs in various aspects like
missing progress bar as this does not ap-
pears in AS log. The AS log matches ex-

cept the phished log has a missing button.

BeeExample

GUI loads with missing bot-

tom texts

The elements GUI hierarchy log differs as
many elements are not logged by AS and
the tabs view is replaced by radio buttons,
as we get radio buttons in AS log. The
AS log has tabhost element missing and

the rest log matches.

Wikivoyage
Offline

GUI loads and matches

The elements GUI hierarch log matches
with some portion of elements and
phished log has a missing progress bar.

The AS log matches.

Meta Filter

GUI loads and matches to

some extent

The elements GUI hierarchy log mis-
matches since the loading of text on the
screen is dynamic. Similarly, the AS log

also mismatches.

68

B NG T O 73%i 12:28 [CNE N3 FO 100% M 22:08

Bl Andiytics + Andlytics
Please select the accounts that you wish to use with Please select the accounts that you wish to use with
Andlytics. Andlytics.
Accounts must be registered developer accounts ~ Accounts must be registered developer accounts
with apps published on Google Play (‘Google Apps for | with apps published on Google Play (‘Google Apps for
Business' and accounts linked to multiple developer Business' and accounts linked to multiple developer
consoles are not supported yet). consoles are not supported yet).
cs441.ksharma@gmail.com
cs441.ksharma@gmail.com [] @g D

|

Figure 19: Original vs Phished GUI for Andlytics App

5.3 Snapshots comparing Original vs Phished GUIs

Figure: 19 to Figure: 21 are the phished GUI’s obtained from SEAPHISH’s framework. The left side
of the images shows the original app and the right side shows the phished app. Each phished GUI
contains almost all elements as seen in the original app. We have limitations in binding the header part
of the app. Thus as seen in Figure: 19, the top right symbol - + is missing in our phished GUI.

Apart from just re-constructing elements of the GUI, we also maintain all the properties of the
elements. For example, in Figute: 20 we can see that the Log In button is disabled in original GUI app
and the same is maintained in phished GUI app.

We also tried to re-construct the GUI by putting a stub image if we have any image elements in the
original app. But the placing of the image to correct position and its width and height as calculated
from the boundsInScreen property does not gives proper results in all apps. We were able to place
the stub images accurately for one of the downloaded apps: SmartGadget. In Figure: 21, we have
shown the two variations of phished GUI. The middle GUI shows the phished GUI which was created
by removing the Action Bar and replacing it with Tool Bar. In the 3rd (the left most) GUI, we used a
normal Action Bar and bound the interface with stub images. But these stub images did not work in
other apps, the image size and location as calculated in our code does not provides accurate information

and hence placing these stub images distorts the appearance.

69

2 O 83%H 12:52 [@ »N T O 100% W 22:02

Commons Commons

Username

Password

SIGN UP

Properties of button - like Log In button is disabled in original
app and the same property is maintained in phished app

Figure 20: Original vs Phished GUI for Commons App

N3 T O 33%E 10:49 B N3 T O 100% M 23:26 | B N3 T O 100% M0 23:51

B Phished GUI without ActionBar.
(1 Temperature = ® TEMPERATURE TEMPERATURE
“ Humidity -— % HUMIDITY HUMIDITY
:'& Dew point e © DEW POINT DEW POINT
A .
* Heat index e © HEAT INDEX HEAT INDEX
If we try to put some images as a stub, i.e. bind some source to
elements of type Image.
BEREER ComfortZone Sl Dashboard Comfort Zone History Settings Dashboard Comfort Zone History Settings

Figure 21: Original vs Phished GUI for SmartGadget App

70

6. Conclusion

The malwares/viruses or malicious apps exploiting android’s accessibility service do not just at-
tempt to steal sensitive information, but can also perform unauthorized operations. Accessibility ser-
vices plays an important role in all operating systems, but they also pose a serious security and privacy
problem since these services can effectively simulate the human-user interaction and such channels can
be exploited by malwares/viruses. There are several static and dynamic analysis methods [106], [51]
etc. which helps in detecting malwares and malicious apps but these methods mainly analyze the per-
missions requested by an app, the API calls or tracks the flow of data. With SEAPHISH framework, we
aim to dynamically detect the malicious apps or malwares that may/may not use accessibility service
and attempt to steal sensitive information without providing access for that application and without
requiring users to provide fine-grained permission control to applications, without asking users to
identify or track sensitive information and without installing any virtual sandboxes or honeypot virtual
environments.

Our goal is to automatically generate phishing apps that simulate the real smartphone apps from
which the malicious apps may attempt to steal sensitive information or perform any unauthorized
operation. In order to detect such malicious apps, we generate fake data which lies in the range of the
real data as used by users. We try to defend the smartphone against malicious app(s) which may try
to steal sensitive data from our generated phished app or even attempt to steal data from the servers
which is connected to our phishing app. Thus, we use phishing, a deception to deceive the malicious
app and prevent leaking of sensitive information and deny any unauthorized operations performed by

malicious app.

10.

1.

12.

13.

14.

15.

16.

References

. About blackduck openhub. http://blog.openhub.net/about.

. Accessibility. http://developer.android.com/guide/topics/ui/
accessibility/index.html.
. Ada standards for accessible design. https://www.ada.gov/2010ADAstandards_

index.htm.

. The americans with disabilities act of 1990 and revised ada regulations implementing title i1 and

title iii. https://www.ada.gov/2010_regs.htm.

. Android accessibility: Accessibilitynodeinfo. https://developer.android.com/

reference/android/view/accessibility/AccessibilityNodeInfo.html.

. Android accessibility events overview. https://developer.android.com/
reference/android/viewaccessibility/AccessibilityEvent.html.
. Android accessibility service overview. https://developer.android.com/

reference/android/accessibilityservice/AccessibilityService.
html.

. Android activity xml template. https://developer.android.com/guide/topics/

manifest/activity—-element.html.

. Android application fundamentals. https://developer.android.com/guide/

components/fundamentals.html.

Android application package. https://en.wikipedia.org/wiki/Android_
application_package.

Android debug bridge. https://developer.android.com/studio/
command-line/adb.html.

Android ui overview. https://developer.android.com/guide/topics/ui/
overview.html.

Android version market share distribution among smartphone owners as of
september 2016. https://www.statista.com/statistics/271774/
share-of-android-platforms-on-mobile-devices-with-android-os/.

Apktool introduction. https://ibotpeaches.github.io/Apktool/
documentation/.
Application development. http://motivesense.com/

application—-development/.

Developing an accessibility service. https://developer.android.com/training/
accessibility/service.html.

71

http://blog.openhub.net/about
http://developer.android.com/guide/topics/ui/accessibility/index.html
http://developer.android.com/guide/topics/ui/accessibility/index.html
https://www.ada.gov/2010ADAstandards_index.htm
https://www.ada.gov/2010ADAstandards_index.htm
https://www.ada.gov/2010_regs.htm
https://developer.android.com/reference/android/view/accessibility/AccessibilityNodeInfo.html
https://developer.android.com/reference/android/view/accessibility/AccessibilityNodeInfo.html
https://developer.android.com/reference/android/view accessibility/AccessibilityEvent.html
https://developer.android.com/reference/android/view accessibility/AccessibilityEvent.html
https://developer.android.com/reference/android/accessibilityservice/AccessibilityService.html
https://developer.android.com/reference/android/accessibilityservice/AccessibilityService.html
https://developer.android.com/reference/android/accessibilityservice/AccessibilityService.html
https://developer.android.com/guide/topics/manifest/activity-element.html
https://developer.android.com/guide/topics/manifest/activity-element.html
https://developer.android.com/guide/components/fundamentals.html
https://developer.android.com/guide/components/fundamentals.html
https://en.wikipedia.org/wiki/Android_application_package
https://en.wikipedia.org/wiki/Android_application_package
https://developer.android.com/studio/command-line/adb.html
https://developer.android.com/studio/command-line/adb.html
https://developer.android.com/guide/topics/ui/overview.html
https://developer.android.com/guide/topics/ui/overview.html
https://www.statista.com/statistics/271774/share-of-android-platforms-on-mobile-devices-with-android-os/
https://www.statista.com/statistics/271774/share-of-android-platforms-on-mobile-devices-with-android-os/
https://ibotpeaches.github.io/Apktool/documentation/
https://ibotpeaches.github.io/Apktool/documentation/
http://motivesense.com/application-development/
http://motivesense.com/application-development/
https://developer.android.com/training/accessibility/service.html
https://developer.android.com/training/accessibility/service.html

17.

18.

19.
20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

72

Mobile application. https://www.techopedia.com/definition/2953/
mobile—application-mobile—-app.

Number of available applications in the google play store from december 2009
to december 2016. https://www.statista.com/statistics/266210/
number-of-available-applications—-in-the-google-play-store/.

Sikulix by raiman. http://sikulix.com/.

Sikulix by raiman. https://developer.android.com/studio/profile/
am-basics.html.

Smartphone os market share, 2016 ¢3. http://www.idc.com/promo/
smartphone-market-share/os.

A tool for reverse engineering android apk files. https://ibotpeaches.github.io/
Apktool/.

S. Adappa, V. Agarwal, S. Goyal, P. Kumaraguru, and S. Mittal. User controllable security and
privacy for mobile mashups. In Proceedings of the 12th Workshop on Mobile Computing Systems
and Applications, HotMobile " 11, pages 35-40, New York, NY, USA, 2011. ACM.

C.C. Aggarwal and P. S. Yu. Privacy-Preserving Data Mining: Models and Algorithms. Springer,
2008.

T. Ahmed, R. Hoyle, K. Connelly, D. Crandall, and A. Kapadia. Privacy concerns and behaviors
of people with visual impairments. In Proceedings of the 33rd Annual ACM Conference on
Human Factors in Computing Systems, CHI 15, pages 3523-3532, New York, NY, USA, 2015.
ACM.

F. Akhter, M. C. Buzzi, M. Buzzi, and B. Leporini. Conceptual framework: How to engineer
online trust for disabled users. In Proceedings of the 2009 IEEE/WIC/ACM International Joint
Conference on Web Intelligence and Intelligent Agent Technology - Volume 03, WI-1AT °09, pages
614-617, Washington, DC, USA, 2009. IEEE Computer Society.

M. H. Almeshekah and E. H. Spafford. Planning and integrating deception into computer security
defenses. In Proceedings of the 2014 New Security Paradigms Workshop, NSPW ’14, pages 127—
138, New York, NY, USA, 2014. ACM.

H. M. Almohri, D. D. Yao, and D. Kafura. Droidbarrier: Know what is executing on your
android. In Proceedings of the 4th ACM Conference on Data and Application Security and
Privacy, CODASPY ’14, pages 257-264, New York, NY, USA, 2014. ACM.

Y. Amit. Accessibility clickjacking — the next evolution in android malware that impacts more
than 500 million devices [update — 1.34 billion devices!]. Skycure, https://www. skycure.
com/blog/accessibility—clickjacking/, Mar. 2016.

Y. Amit. Inside the android accessibility clickjack-
ing malware. Techbeacon, http://techbeacon.com/
inside—android—-accessibility—clickjacking—-malware, Mar. 2016.

D. Arp, M. Spreitzenbarth, H. Gascon, and K. Rieck. Drebin: Effective and explainable detection
of android malware in your pocket, 2014.

https://www.techopedia.com/definition/2953/mobile-application-mobile-app
https://www.techopedia.com/definition/2953/mobile-application-mobile-app
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
http://sikulix.com/
https://developer.android.com/studio/profile/am-basics.html
https://developer.android.com/studio/profile/am-basics.html
http://www.idc.com/promo/smartphone-market-share/os
http://www.idc.com/promo/smartphone-market-share/os
https://ibotpeaches.github.io/Apktool/
https://ibotpeaches.github.io/Apktool/
https://www.skycure.com/blog/accessibility-clickjacking/
https://www.skycure.com/blog/accessibility-clickjacking/
http://techbeacon.com/inside-android-accessibility-clickjacking-malware
http://techbeacon.com/inside-android-accessibility-clickjacking-malware

32

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

73

. K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie. Pscout: Analyzing the android permission
specification. In Proceedings of the 2012 ACM Conference on Computer and Communications
Security, CCS *12, pages 217-228, New York, NY, USA, 2012. ACM.

M. Backes, S. Bugiel, and S. Gerling. Scippa: System-centric ipc provenance on android. In
Proceedings of the 30th Annual Computer Security Applications Conference, ACSAC ’14, pages
36-45, New York, NY, USA, 2014. ACM.

V. L. Baker and J. Wong. Traditional development practices will fail for mobile apps. Gartner,
http://www.gartner.com/newsroom/1d/2823619, G00261561, Aug. 2014.

D. Barrera, J. Clark, D. McCarney, and P. C. van Oorschot. Understanding and improving app
installation security mechanisms through empirical analysis of android. In Proceedings of the
Second ACM Workshop on Security and Privacy in Smartphones and Mobile Devices, SPSM
"12, pages 81-92, New York, NY, USA, 2012. ACM.

A. R. Beresford, A. Rice, N. Skehin, and R. Sohan. Mockdroid: Trading privacy for applica-
tion functionality on smartphones. In Proceedings of the 12th Workshop on Mobile Computing
Systems and Applications, HotMobile ’11, pages 49-54, New York, NY, USA, 2011. ACM.

C. Bertolini and A. Mota. A framework for gui testing based on use case design. In Proceedings
of the 2010 Third International Conference on Software Testing, Verification, and Validation
Workshops, ICSTW 10, pages 252-259, Washington, DC, USA, 2010. IEEE Computer Society.

A. Bianchi, J. Corbetta, L. Invernizzi, Y. Fratantonio, C. Kruegel, and G. Vigna. What the app is
that? deception and countermeasures in the android user interface. In Proceedings of the 2015
IEEE Symposium on Security and Privacy, SP 15, pages 931-948, Washington, DC, USA, 2015.
IEEE Computer Society.

M. E. Cabrera-Umpiérrez, A. R. Castro, J. Azpiroz, J. B. M. Colomer, M. T. Arredondo, and
J. Cano-Moreno. Developing accessible mobile phone applications: The case of a contact man-
ager and real time text applications. In Proceedings of the 6th International Conference on Uni-
versal Access in Human-computer Interaction: Context Diversity - Volume Part 111, UAHCI' 11,
pages 12-18, Berlin, Heidelberg, 2011. Springer-Verlag.

E. Carter, A. Chiu, J. Esler, G. Serrao, and B. Stultz. When does software start becoming mal-
ware? http://blogs.cisco.com/security/talos/infinity-toolkit?f 1=
sd, September 2015.

E. Chalkia and E. Bekiaris. A harmonised methodology for the components of software appli-
cations accessibility and its evaluation. In Proceedings of the 6th International Conference on
Universal Access in Human-computer Interaction: Design for All and elnclusion - Volume Part
I, UAHCI’ 11, pages 197-205, Berlin, Heidelberg, 2011. Springer-Verlag.

L. Chang. New malware, accessibility clickjacking, affects 65% of android
devices. Digital trends, http://www.digitaltrends.com/mobile/
android—-accessibility-clickjacking/#:X858zf5ipHCOFA, Mar. 2016.

Q. A. Chen, Z. Qian, and Z. M. Mao. Peeking into your app without actually seeing it: Ui state
inference and novel android attacks. In Proceedings of the 23rd USENIX Conference on Security
Symposium, SEC’ 14, pages 1037-1052, Berkeley, CA, USA, 2014. USENIX Association.

http://www.gartner.com/newsroom/id/2823619
http://blogs.cisco.com/security/talos/infinity-toolkit?f_l=sd
http://blogs.cisco.com/security/talos/infinity-toolkit?f_l=sd
http://www.digitaltrends.com/mobile/android-accessibility-clickjacking/#:X858zf5ipHCOFA
http://www.digitaltrends.com/mobile/android-accessibility-clickjacking/#:X858zf5ipHCOFA

44

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

74

. D. Chu, A. Kansal, J. Liu, and F. Zhao. Mobile apps: It’s time to move up to condos. In
Proceedings of the 13th USENIX Conference on Hot Topics in Operating Systems, HotOS 13,
pages 16—16, Berkeley, CA, USA, 2011. USENIX Association.

K. M. Conroy, M. Grechanik, M. Hellige, E. S. Liongosari, and Q. Xie. Automatic test genera-
tion from gui applications for testing web services. In 2007 IEEE International Conference on
Software Maintenance, pages 345-354, Oct 2007.

csinfotech. Android adware abuses accessibility service to install apps.
CyberSecurity, http://www.csinfotech.org/cyber—-news?417/
—Android-Adware-Abuses—-Accessibility-Service-to-Install-Apps,
Nov. 2015.

K. Cunningham. Accessibility Handbook: Making 508 Compliant Websites. O’Reilly Media,
2012.

Darker. Darker’s enabler. http://progress-tools.x10.mx/denabler.html,
September 2015.

L. Deshotels. Inaudible sound as a covert channel in mobile devices. In Proceedings of the 8th
USENIX Conference on Offensive Technologies, WOOT’ 14, pages 16-16, Berkeley, CA, USA,
2014. USENIX Association.

M. Dorigo, B. Harriehausen-Miihlbauer, I. Stengel, and P. S. Dowland. Survey: Improving doc-
ument accessibility from the blind and visually impaired user’s point of view. In Proceedings
of the 6th International Conference on Universal Access in Human-computer Interaction: Ap-
plications and Services - Volume Part IV, UAHCI’ 11, pages 129-135, Berlin, Heidelberg, 2011.
Springer-Verlag.

W. Enck. Defending users against smartphone apps: Techniques and future directions. In Pro-
ceedings of the 7th International Conference on Information Systems Security, ICISS’ 11, pages
49-70, Berlin, Heidelberg, 2011. Springer-Verlag.

A. Evans and J. O. Wobbrock. Input observer: Measuring text entry and pointing performance
from naturalistic everyday computer use. In CHI ’11 Extended Abstracts on Human Factors in
Computing Systems, CHI EA "11, pages 1879-1884, New York, NY, USA, 2011. ACM.

A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner. Android permissions demystified. In
Proceedings of the 18th ACM Conference on Computer and Communications Security, CCS *11,
pages 627-638, New York, NY, USA, 2011. ACM.

A. P. Felt, M. Finifter, E. Chin, S. Hanna, and D. Wagner. A survey of mobile malware in the
wild. In Proceedings of the 1st ACM Workshop on Security and Privacy in Smartphones and
Mobile Devices, SPSM 11, pages 3—-14, New York, NY, USA, 2011. ACM.

A. P. Felt, K. Greenwood, and D. Wagner. The effectiveness of application permissions. In
Proceedings of the 2Nd USENIX Conference on Web Application Development, WebApps’'11,
pages 7-7, Berkeley, CA, USA, 2011. USENIX Association.

A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and D. Wagner. Android permissions: User
attention, comprehension, and behavior. In Proceedings of the Eighth Symposium on Usable
Privacy and Security, SOUPS ’12, pages 3:1-3:14, New York, NY, USA, 2012. ACM.

http://www.csinfotech.org/cyber-news?417/-Android-Adware-Abuses-Accessibility-Service-to-Install-Apps
http://www.csinfotech.org/cyber-news?417/-Android-Adware-Abuses-Accessibility-Service-to-Install-Apps
http://progress-tools.x10.mx/denabler.html

57

38.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

75

. A. P. Felt, H. J. Wang, A. Moshchuk, S. Hanna, and E. Chin. Permission re-delegation: Attacks
and defenses. In Proceedings of the 20th USENIX Conference on Security, SEC’11, pages 22-22,
Berkeley, CA, USA, 2011. USENIX Association.

E. Fernandes, Q. A. Chen, J. Paupore, G. Essl, J. A. Halderman, Z. M. Mao, and A. Prakash.
Android UI Deception Revisited: Attacks and Defenses. In Proceedings of the 20th International
Conference on Financial Cryptography and Data Security (FC’16), Barbados, February 2016.

D. Fisher. Clickjacking bug affects 95 percent of android de-
vices. Pindrop Security, https://www.onthewire.io/

accessibility—-services—-bug-affects—-95-percent—-of—-android-devices/,

May 2016.

J. Foliot. User statistics — people with disabilities. http://john.foliot.ca/
user—-statistics—-people-with—-disabilities/, 2015.

D. Ganguly. Accessibility clickjacking attack threatens half a billion android de-
vices. Android Joint, http://www.androidjoint.com/2016/03/05/

accessibility-clickjacking-attack-threatens—half-billion—-android-devi

Mar. 2016.

A. Gorla, I. Tavecchia, F. Gross, and A. Zeller. Checking app behavior against app descriptions.
In Proceedings of the 36th International Conference on Software Engineering, ICSE 2014, pages
1025-1035, New York, NY, USA, 2014. ACM.

U. S. Government. Section 508 of the Rehabilitation Act. http://www.access-board.gov/508.htm,
1998.

M. C. Grace, Y. Zhou, Z. Wang, and X. Jiang. Systematic detection of capability leaks in stock
android smartphones. In 19th Annual Network and Distributed System Security Symposium,
NDSS 2012, San Diego, California, USA, February 5-8, 2012, 2012.

M. Grechanik, C. W. M. B.M. Mainul Hossain, A. Baisal, and D. S. Rosenblum. Differencing
graphical user interfaces, 2012.

M. Grechanik and K. M. Conroy. Composing integrated systems using gui-based applications
and web services. In IEEE International Conference on Services Computing (SCC 2007), pages
68-75, July 2007.

M. Grechanik, K. M. Conroy, and K. S. Swaminathan. Creating web services from gui-based
applications. In IEEE International Conference on Service-Oriented Computing and Applications
(SOCA °07), pages 72-79, June 2007.

M. Grechanik, Q. Xie, and C. Fu. Creating gui testing tools using accessibility technologies. In
Proceedings of the IEEE International Conference on Software Testing, Verification, and Vali-
dation Workshops, ICSTW °09, pages 243-250, Washington, DC, USA, 2009. IEEE Computer
Society.

M. Grechanik, Q. Xie, and C. Fu. Maintaining and evolving gui-directed test scripts. In 2009
IEEE 31st International Conference on Software Engineering, pages 408—418, May 2009.

K. Harris. Challenges and solutions for screen reader/i.t. interoperability. SIGACCESS Access.
Comput., (85):10-20, June 2006.

https://www.onthewire.io/accessibility-services-bug-affects-95-percent-of-android-devices/
https://www.onthewire.io/accessibility-services-bug-affects-95-percent-of-android-devices/
http://john.foliot.ca/user-statistics-people-with-disabilities/
http://john.foliot.ca/user-statistics-people-with-disabilities/
http://www.androidjoint.com/2016/03/05/accessibility-clickjacking-attack-threatens-half-billion-android-devices/
http://www.androidjoint.com/2016/03/05/accessibility-clickjacking-attack-threatens-half-billion-android-devices/

71

72.

73.

74.

75.

76.

7.

78.

79.

80.

81.

82.
83.

76

J. Hildenbrand. @ What is google talkback? http://www.androidcentral.com/
what-google-talk-back, Sept. 2016.

D. Hoffman and L. Battle. Emerging issues, solutions & challenges from the top 20 issues
affecting web application accessibility. In Proceedings of the 7th International ACM SIGACCESS
Conference on Computers and Accessibility, Assets *05, pages 208-209, New York, NY, USA,
2005. ACM.

P. Hornyack, S. Han, J. Jung, S. Schechter, and D. Wetherall. These aren’t the droids you’re
looking for: Retrofitting android to protect data from imperious applications. In Proceedings of
the 18th ACM Conference on Computer and Communications Security, CCS *11, pages 639—652,
New York, NY, USA, 2011. ACM.

W. Hu, D. Octeau, P. D. McDaniel, and P. Liu. Duet: Library integrity verification for android
applications. In Proceedings of the 2014 ACM Conference on Security and Privacy in Wireless
& Mobile Networks, WiSec ’ 14, pages 141-152, New York, NY, USA, 2014. ACM.

J. Huang, X. Zhang, L. Tan, P. Wang, and B. Liang. Asdroid: Detecting stealthy behaviors in
android applications by user interface and program behavior contradiction. In Proceedings of
the 36th International Conference on Software Engineering, ICSE 2014, pages 1036-1046, New
York, NY, USA, 2014. ACM.

L.-S. Huang, A. Moshchuk, H. J. Wang, S. Schecter, and C. Jackson. Clickjacking: Attacks and
defenses, 2012.

S.-M. Hwang and H.-C. Chae. Design & implementation of mobile gui testing tool. In Proceed-
ings of the 2008 International Conference on Convergence and Hybrid Information Technology,
ICHIT 08, pages 704-707, Washington, DC, USA, 2008. IEEE Computer Society.

Q. Ismail, T. Ahmed, A. Kapadia, and M. K. Reiter. Crowdsourced exploration of security
configurations. In Proceedings of The ACM SIGCHI Conference on Human Factors in Computing
Systems (CHI ’15), pages 467-476, Apr. 2015.

A. Jain, H. Gonzalez, and N. Stakhanova. Enriching reverse engineering through visual explo-

ration of android binaries. In Proceedings of the 5th Program Protection and Reverse Engineering
Workshop, PPREW-5, pages 9:1-9:9, New York, NY, USA, 2015. ACM.

Y. Jang, C. Song, S. P. Chung, T. Wang, and W. Lee. Ally attacks: Exploiting accessibility
in operating systems. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security, CCS 14, pages 103—115, New York, NY, USA, 2014. ACM.

J. Jeon, K. K. Micinski, J. A. Vaughan, A. Fogel, N. Reddy, J. S. Foster, and T. Millstein. Dr.
android and mr. hide: Fine-grained permissions in android applications. In Proceedings of the
Second ACM Workshop on Security and Privacy in Smartphones and Mobile Devices, SPSM 12,
pages 3—14, New York, NY, USA, 2012. ACM.

X. Jiang and Y. Zhou. Android Malware. Springer Briefs in Computer Science. Springer, 2013.

J. Jung, S. Han, and D. Wetherall. Short paper: Enhancing mobile application permissions with
runtime feedback and constraints. In Proceedings of the Second ACM Workshop on Security and
Privacy in Smartphones and Mobile Devices, SPSM 12, pages 45-50, New York, NY, USA,
2012. ACM.

http://www.androidcentral.com/what-google-talk-back
http://www.androidcentral.com/what-google-talk-back

84

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

7

. D. Jurafsky and J. H. Martin. Speech and Language Processing: An Introduction to Natural
Language Processing, Computational Linguistics, and Speech Recognition. Prentice Hall PTR,
Upper Saddle River, NJ, USA, Ist edition, 2000.

S. K. Kane, C. Jayant, J. O. Wobbrock, and R. E. Ladner. Freedom to roam: A study of mobile
device adoption and accessibility for people with visual and motor disabilities. In Proceedings
of the 11th International ACM SIGACCESS Conference on Computers and Accessibility, Assets
’09, pages 115-122, New York, NY, USA, 2009. ACM.

P. G. Kelley, S. Consolvo, L. F. Cranor, J. Jung, N. Sadeh, and D. Wetherall. A conundrum
of permissions: Installing applications on an android smartphone. In Proceedings of the 16th
International Conference on Financial Cryptography and Data Security, FC’12, pages 68-79,
Berlin, Heidelberg, 2012. Springer-Verlag.

E. Kovacs. Most android devices prone to accessibility clickjack-
ing attacks. Security Week, http://www.securityweek.com/
most—-android-devices—-prone—-accessibility-clickjacking-attacks,
May 2016.

J. Kraunelis, Y. Chen, Z. Ling, X. Fu, and W. Zhao. On Malware Leveraging the Android Acces-
sibility Framework, pages 512—-523. Springer International Publishing, Cham, 2014.

O. Laadan, A. Shu, and J. Nieh. Capture: A desktop display-centric text recorder. In Proceed-
ings of the 14th International ACM SIGACCESS Conference on Computers and Accessibility,
ASSETS ’12, pages 9-16, New York, NY, USA, 2012. ACM.

V. Lanaria. 500 million android devices at risk of accessibil-
ity clickjacking malware: What you should know. Tech Times,
http://www.techtimes.com/articles/138842/20160306/

500-million—android-devices—at-risk-of—-accessibility-clickjacking—ma.

htm, Mar. 2016.

J. Lazar, D. Goldstein, and A. Taylor. Ensuring Digital Accessibility through Process and Policy.
Morgan Kaufmann, 2015.

J. Lazar and H. Hochheiser. Legal aspects of interface accessibility in the u.s. Commun. ACM,
56(12):74-80, Dec. 2013.

C.-C. Lin, H. Li, X. yong Zhou, and X. Wang. Screenmilker: How to milk your android screen
for secrets. In NDSS, 2014.

B. Liu, J. Lin, and N. Sadeh. Reconciling mobile app privacy and usability on smartphones:
Could user privacy profiles help? In Proceedings of the 23rd International Conference on World
Wide Web, WWW ’ 14, pages 201-212, New York, NY, USA, 2014. ACM.

R. Lopes, K. Van Isacker, and L. Carrico. Redefining assumptions: Accessibility and its stake-
holders. In Proceedings of the 12th International Conference on Computers Helping People with
Special Needs: Part I, ICCHP’ 10, pages 561-568, Berlin, Heidelberg, 2010. Springer-Verlag.

J. Mankoff, G. R. Hayes, and D. Kasnitz. Disability studies as a source of critical inquiry for
the field of assistive technology. In Proceedings of the 12th International ACM SIGACCESS
Conference on Computers and Accessibility, ASSETS 10, pages 3—-10, New York, NY, USA,
2010. ACM.

http://www.securityweek.com/most-android-devices-prone-accessibility-clickjacking-attacks
http://www.securityweek.com/most-android-devices-prone-accessibility-clickjacking-attacks
http://www.techtimes.com/articles/138842/20160306/500-million-android-devices-at-risk-of-accessibility-clickjacking-malware-what-you-should-know.htm
http://www.techtimes.com/articles/138842/20160306/500-million-android-devices-at-risk-of-accessibility-clickjacking-malware-what-you-should-know.htm
http://www.techtimes.com/articles/138842/20160306/500-million-android-devices-at-risk-of-accessibility-clickjacking-malware-what-you-should-know.htm

97

98

99

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

78

. L. McLawhorn. Recent development: Leveling the accessibility playing field: Section 508 of
the rehabilitation act. NORTH CAROLINA JOURNAL OF LAW & TECHNOLOGY, 3(1):63-100,
2001.

. W. Meng, W. H. Lee, S. Murali, and S. Krishnan. Charging me and i know your secrets!: To-
wards juice filming attacks on smartphones. In Proceedings of the 1st ACM Workshop on Cyber-
Physical System Security, CPSS 15, pages 89-98, New York, NY, USA, 2015. ACM.

. A. Michail. Browsing and searching source code of applications written using a gui framework.
In Proceedings of the 24th International Conference on Software Engineering, ICSE *02, pages
327-337, New York, NY, USA, 2002. ACM.

Microsoft and Forrester. Wthe wide range of abilities and its impact on computer technology:
A research study commissioned by microsoft corporation and conducted by forrester research,
inc.,. Forrester Research, 2003.

L. Moreno and P. Martinez. A review of accessibility requirements in elderly users’ interactions

with web applications. In Proceedings of the 13th International Conference on InteracciON
Persona-Ordenador, INTERACCION ’12, pages 47:1-47:2, New York, NY, USA, 2012. ACM.

L. Moreno, P. Martinez, B. Ruiz, and A. Iglesias. Toward an equal opportunity web: Applications,
standards, and tools that increase accessibility. Computer, 44(5):18-26, May 2011.

J. Mueller. Accessibility for Everybody: Understanding the Section 508 Accessibility Require-
ments. APress L. P., 2003.

PoPs. Pops ringtons & notifications. https://play.google.com/store/apps/
details?id=com.pops.app, September 2015.

R. Potharaju, A. Newell, C. Nita-Rotaru, and X. Zhang. Plagiarizing smartphone applications:
Attack strategies and defense techniques. In Proceedings of the 4th International Conference on
Engineering Secure Software and Systems, ESS0S’12, pages 106120, Berlin, Heidelberg, 2012.
Springer-Verlag.

M. Rangwala, P. Zhang, X. Zou, and F. Li. A taxonomy of privilege escalation attacks in android
applications. Int. J. Secur. Netw., 9(1):40-55, Feb. 2014.

V. Rastogi, Y. C. Rui Shao, S. Z. Xiang Pan, and R. Riley. Are these ads safe: Detecting hidden
attacks through the mobile app-web interfaces. NDSS ’16, 2016.

A. Raza. Accessibility malware puts 65% percent of old version an-
droid devices at risk. Hackread, https://www.hackread.com/
accessibility—-malware—-puts—-old—-android-devices—-risk/, Mar. 2016.

M. Rotenberg. What you don’t know about android application security.... White-
source, http://www.whitesourcesoftware.com/whitesource-blog/
android-application—-security/, Mar. 2016.

A. Sahami Shirazi, N. Henze, A. Schmidt, R. Goldberg, B. Schmidt, and H. Schmauder. Insights
into layout patterns of mobile user interfaces by an automatic analysis of android apps. In Pro-

ceedings of the 5th ACM SIGCHI Symposium on Engineering Interactive Computing Systems,
EICS 13, pages 275-284, New York, NY, USA, 2013. ACM.

https://play.google.com/store/apps/details?id=com.pops.app
https://play.google.com/store/apps/details?id=com.pops.app
https://www.hackread.com/accessibility-malware-puts-old-android-devices-risk/
https://www.hackread.com/accessibility-malware-puts-old-android-devices-risk/
http://www.whitesourcesoftware.com/whitesource-blog/android-application-security/
http://www.whitesourcesoftware.com/whitesource-blog/android-application-security/

111

112.

113.

114.

115.

116.

117.

118.

119.

120.

121.
122.

123.

124.

125.

79

N. Santos, H. Raj, S. Saroiu, and A. Wolman. Trusted language runtime (tlr): Enabling trusted
applications on smartphones. In Proceedings of the 12th Workshop on Mobile Computing Systems
and Applications, HotMobile " 11, pages 21-26, New York, NY, USA, 2011. ACM.

R. Schlegel, K. Zhang, X. Zhou, M. Intwala, A. Kapadia, and X. Wang. Soundcomber: A Stealthy
and Context-Aware Sound Trojan for Smartphones. In Proceedings of the 18th Annual Network
and Distributed System Security Symposium (NDSS), pages 17-33, Feb. 2011.

Sufatrio, D. J. J. Tan, T.-W. Chua, and V. L. L. Thing. Securing android: A survey, taxonomy,
and challenges. ACM Comput. Surv., 47(4):58:1-58:45, May 2015.

M. Sun, M. Zheng, J. C. S. Lui, and X. Jiang. Design and implementation of an android host-
based intrusion prevention system. In Proceedings of the 30th Annual Computer Security Appli-
cations Conference, ACSAC 14, pages 226-235, New York, NY, USA, 2014. ACM.

J. Tan, K. Nguyen, M. Theodorides, H. Negron-Arroyo, C. Thompson, S. Egelman, and D. Wag-
ner. The effect of developer-specified explanations for permission requests on smartphone user
behavior. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,
CHI ’14, pages 91-100, New York, NY, USA, 2014. ACM.

G. L. D. Team. Go launcher ex notification. https://play.google.com/store/apps/
details?id=com.gau.golauncherex.notification, September 2015.

R. Templeman, Z. Rahman, D. J. Crandall, and A. Kapadia. Placeraider: Virtual theft in physical
spaces with smartphones. CoRR, abs/1209.5982, 2012.

V. S. Verykios, E. Bertino, I. N. Fovino, L. P. Provenza, Y. Saygin, and Y. Theodoridis. State-of-
the-art in privacy preserving data mining. SIGMOD Rec., 33(1):50-57, Mar. 2004.

T. Vidas, D. Votipka, and N. Christin. All your droid are belong to us: A survey of current android
attacks. In Proceedings of the 5Sth USENIX Conference on Offensive Technologies, WOOT’ 11,
pages 10-10, Berkeley, CA, USA, 2011. USENIX Association.

Wikipedia. Window manager. http://en.wikipedia.org/wiki/Window_manager#
cite_note-1, June 2015.

F. Wikipedia. Mobile app. https://en.wikipedia.org/wiki/Mobile_app.

D.-J. Wu, C.-H. Mao, T.-E. Wei, H.-M. Lee, and K.-P. Wu. Droidmat: Android malware de-
tection through manifest and api calls tracing. In Proceedings of the 2012 Seventh Asia Joint
Conference on Information Security, ASIAJCIS 12, pages 62—-69, Washington, DC, USA, 2012.
IEEE Computer Society.

Q. Xie, M. Grechanik, C. Fu, and C. Cumby. Guide: A gui differentiator. In 2009 IEEE Interna-
tional Conference on Software Maintenance, pages 395-396, Sept 2009.

W. Yang, X. Xiao, R. Pandita, W. Enck, and T. Xie. Improving mobile application security via
bridging user expectations and application behaviors. In Proceedings of the 2014 Symposium and
Bootcamp on the Science of Security, HotSoS 14, pages 32:1-32:2, New York, NY, USA, 2014.
ACM.

W. Zhou, Y. Zhou, M. Grace, X. Jiang, and S. Zou. Fast, scalable detection of “piggybacked”

mobile applications. In Proceedings of the Third ACM Conference on Data and Application
Security and Privacy, CODASPY ’13, pages 185-196, New York, NY, USA, 2013. ACM.

https://play.google.com/store/apps/details?id=com.gau.golauncherex.notification
https://play.google.com/store/apps/details?id=com.gau.golauncherex.notification
http://en.wikipedia.org/wiki/Window_manager#cite_note-1
http://en.wikipedia.org/wiki/Window_manager#cite_note-1
https://en.wikipedia.org/wiki/Mobile_app

80

126. Z. Zorz. Almost all android wusers vulnerable to accessibility clickjacking at-
tacks. HelpNetSecurity, https://www.helpnetsecurity.com/2016/05/17/
android-accessibility-clickjacking/, May 2016.

127. Z. Zorz. Android banking malware may start using adware tricks. Help-
NetSecurity, https://www.helpnetsecurity.com/2016/05/05/
android-banking-malware-adware/, May 2016.

128. Z. Zorz. Screen overlay android malware is on the rise. HelpNetSecurity, https://www.
helpnetsecurity.com/2016/04/29/screen-overlay-malware-rise/, Apr.

2016.
129. Z. Zorz. Source code of game changer android banking malware leaked on-
line. HelpNetSecurity, https://www.helpnetsecurity.com/2016/02/23/

source—-code—of—-game—changer—android-banking—-malware—leaked—-online/,
Feb. 2016.

https://www.helpnetsecurity.com/2016/05/17/android-accessibility-clickjacking/
https://www.helpnetsecurity.com/2016/05/17/android-accessibility-clickjacking/
https://www.helpnetsecurity.com/2016/05/05/android-banking-malware-adware/
https://www.helpnetsecurity.com/2016/05/05/android-banking-malware-adware/
https://www.helpnetsecurity.com/2016/04/29/screen-overlay-malware-rise/
https://www.helpnetsecurity.com/2016/04/29/screen-overlay-malware-rise/
https://www.helpnetsecurity.com/2016/02/23/source-code-of-game-changer-android-banking-malware-leaked-online/
https://www.helpnetsecurity.com/2016/02/23/source-code-of-game-changer-android-banking-malware-leaked-online/

APPENDIX

Dr. Mark Grechanik and I have been working together on this research. Dr. Grechanik has
authorized me (Ms. Kruti Sharma) to use his proposal plan which will be submitted to ACM and IEEE
in future.

The subsections: 1.2 Overview of GUI and 1.3 Background on the GUI Structure have been
referenced from Dr. Mark Grechanik’s previously published work [45,66—69, 123] and Dr. Grechanik
has authorized me to use the content in my master’s thesis. The section: 2. Background and Related
Work and 3. Motivation, Challenges and Proposed Framework contains the text from the various
papers that have been used as a reference in this research.

The text in all subsections (1.2,1.3) and section (2,3) are included as per the below copyright
policies:

e ACM Copyright Policy :
https://www.acm.org/publications/policies/copyright-policy

¢ IEEE Copyright Policy :
http://www.ieee.org/documents/author_version_faqg.pdf

e Springer Copyright Policy :
http://www.springer.com/us/open-access/authors-rights

81

https://www.acm.org/publications/policies/copyright-policy
http://www.ieee.org/documents/author_version_faq.pdf
http://www.springer.com/us/open-access/authors-rights

NAME:

EDUCATION:

EXPERIENCE:

VITA

Kruti Sharma

B.E., Computer Science, Rajiv Gandhi Proudyogiki Vishwavidyalaya, India,
2010

M.S., Computer Science, University of Illinois at Chicago, Chicago, IL, 2017

University of Illinois at Chicago, Chicago, IL, Graduate Research Assistant,
Aug 2016- May 2017

University of Illinois at Chicago, Chicago, IL, Graduate Assistant, Aug 2015-
Aug 2016

Fulcrum WorldWide Software Ltd, India, Senior Software Engineer, Aug
2013 - July 2015

Infosys Limited, India, Senior Software Engineer, Oct 2010 - July 2013

82

	Introduction
	Mobile app Overview
	Overview of GUI
	Background on the GUI Structure
	Android User Interface Overview
	Architecture of Accessibility Framework in Android
	Accessibility Service
	Accessibility Events
	Android Permissions Model
	The Attacker Model
	Our Contribution

	Background and Related Work
	Motivation, Challenges, and Proposed Framework
	Solution
	Assumptions
	GUI Extraction
	Implementation details of Accessibility Service
	Phishing: GUI Creation
	GUI Analysis

	Experimental Results
	Tree Edit Distance Algorithm Overview
	Results from other apps
	Snapshots comparing Original vs Phished GUIs

	Conclusion
	 References
	 Appendix
	 VITA

