2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
Daejeon Convention Center
October 9-14, 2016, Daejeon, Korea

Unifying Consensus and Covariance Intersection for Decentralized
State Estimation

Amirhossein Tamjidi
Department of Aerospace
Engineering
Texas A&M University

Abstract— This paper presents a new recursive infor-
mation consensus filter for decentralized dynamic-state
estimation. Local estimators are assumed to have access
only to local information and no structure is assumed
about the topology of the communication network, which
need not be connected at all times. Iterative Covariance
Intersection (ICI) is used to reach consensus over priors
which might become correlated, while consensus over new
information is handled using weights based on a Metropolis
Hastings Markov Chain (MHMC). We establish bounds
for estimation performance and show that our method
produces unbiased conservative estimates that are better
than CI. The performance of the proposed method is
evaluated and compared with competing algorithms on an
atmospheric dispersion problem.

I. INTRODUCTION

This paper studies decentralized estimation using
multiple robotic agents with applications to the estimation
of a dynamic random field. When the field dynamics
can be described by a linear, lumped-parameter model,
the classical solution is the Kalman filter (KF). However,
bandwidth and energy constraints may preclude the
centralized implementation of such a filter and necessitate
the design of a decentralized estimator. In general, a de-
centralized sensor network cannot achieve the estimation
quality of a centralized estimator but is inherently more
flexible and robust to network failure and consequently
is advantageous in certain applications [1].

In decentralized estimation settings, the system com-
prises a set of nodes connected to each other through a
communication network with some topology. Nodes are
assumed to make noisy observations of a global state
from which the full state of the system cannot necessarily
be recovered. The goal is to design local estimators that
can recursively calculate an estimate of the global state
with access only to the information locally available to
nodes. We desire that estimates be conservative and the
estimator be consistent. No prior knowledge about the
network topology is assumed.

When the topology of the network is known a priori
and it remains connected throughout, some existing
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methods recover the centralized estimator’s performance
[2], [3] for dynamic state estimation. However, such
methods are not applicable for the case where the network
does not remain connected all the time.

For static state/parameter estimation, Xia, et al., in-
troduce a method based on distributed averaging that
can converge to the global state estimator provided that
the infinitely occurring communication graphs are jointly
connected [4]. Their method relies on the distributed av-
eraging property of Metropolis-Hastings Markov Chains
(MHMC). The advantage of it is that the network
topology can be dynamically changing and it need not
be connected at all times. The local estimators exchange
information only with their immediate neighbors and
remain agnostic about the topology of the rest of the
network. The drawback is that their work is limited to
static field/parameter estimation — when the network be-
comes disconnected for dynamic problems, the estimate
priors can drift away while still having some mutual
information. Performing distributed averaging on those
priors is erroneous because the mutual information is
counted multiple times. In order to solve this problem
one would have to resort to decentralized estimators that
account for the correlations between local estimates.

In [5], a Decentralized Delayed-State Extended Infor-
mation Filter (DDSEIF) is described that handles the
correlation between local estimates. This method only
works in directed networks that do not have any loops. It
is claimed that under certain assumptions local estimates
would converge to the centralized estimate. However, the
method requires a large amount of data communication,
storage memory, and book-keeping overhead, and there-
fore, does not lend itself to online resource constrained
recursive distributed state estimation.

Another approach to deal with the correlation of local
estimates is to use Covariance Intersection (CI) methods
[6] that produce conservative estimates in the absence of
correlation knowledge. The work in references [7], [6],
[8], [9], [10], [11] fall into this category. They propose
different optimization criteria to perform CI and/or use



different iterative CI schemes for decentralized state
estimation.

The downside of decentralized CI based methods
is that they produce overly conservative estimates by
performing the covariance intersection unnecessarily on
new information (which is generally uncorrelated) at the
current step. This incurs significant performance loss
compared to MHMC based distributed averaging, which
is a superior way to reach consensus on uncorrelated
information.

In this paper we strive to bring together the best of
MHMC based distributed averaging and CI. The former
is suitable for reaching consensus over uncorrelated
information and the later is useful for combining es-
timates whose correlations are unknown or difficult to
keep track of. We propose a hybrid scheme that has
comparable performance to MHMC consensus while
being robust to network failures. The method is explained
with respect to the dynamic field estimation example,
but it is applicable more generally, to most decentralized
estimation scenarios.

In Section II, the notation used in this paper is
explained as well as assumptions and system model.
Section III discusses some preliminaries on decentralized
estimation which paves the way for introducing our
problem objective and method. Our proposed method is
presented in Section IV along with its theoretical perfor-
mance analysis. We extensively evaluate our method’s
performance in Section V.

II. MODELING

Stochastic Field Model: We consider the case where
we have noise and the system is stochastic, thus model
the evolution of a time-varying, dynamic field using the
following equation which relates the state at time step k
to k+ 1:

x(k+1)

In the above equation u(k) € R™ accounts for m
input variables and the vector w(k) ~ N(0,Q(k))
represents additive white noise used to model unknown
perturbations.

Network Topology: Assume that we have N homoge-
neous agents associated with nodes of a graph. These
agents can communicate with each other under a time-
varying undirected network topology G = (Vi, &)
where Vi and & are the set of graph nodes and edges
respectively. If (i, ) € &, it means agents ¢ and j can
communicate. The node corresponding to the i-th agent
is denoted by v;. Neighbors of node v; are defined as

N = {vv; €V, (i,j) € €}. @)

The set N; = N; U {v;} will also be used in some of
the equations. || is the cardinality of A/;.

= Ax(k) + Bu(k) + w(k). (1)
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Each agent has a processor and a sensory package
on-board. Sensors make observations every At seconds
and the processors and the network are fast enough to
handle calculations based on message passing among
agents every 0t seconds. We assume that 0t < At. We
also assume that the agents exchange their information
over the communication channel which is free of both
delay and error.

We assume that x(k) denotes the state of the field at
time-step k. Each agent retains a local version of x(k)
which is denoted by x; (k). For random variables we use
the following notation: X = E(x) and Py = E[x — %X]?
are the expected value and the covariance of the random
variable x respectively.

Observation Model: We assume that each agent has
a sensor that produces observations which are functions
of the state of the field and are noisy. The observation
model of the 7’th sensor is

zi(k) = Hi(k)x(k) + vi(k), (3)
vi(k) ~ N(0, R;i(k)). (4)
III. DECENTRALIZED FILTERING PRELIMINARIES

Filtering is the process of recursively computing
the posterior probability of a random dynamic pro-
cess x(k) conditioned on a sequence of measurements
ZF = {2(1),2(2),...,2(k)}, where z(k) denotes the
observation vector at the time-step k. Under the Gaussian
assumption, the Kalman Filter (KF) is the optimal
recursive filter for linear state space systems. We denote
the predicted and estimated mean and covariance at time
k by (x7(k), P~ (k)) and (x(k), P()).

Centralized Kalman Filter: The KF steps are generally
formulated based on the mean and covariance matrix
representation of Gaussian random variables involved;
however, an alternative representation, called the infor-
mation form of the KF is more useful and intuitive
in the development of the decentralized filter. In this
representation we define

y(k) = P (k)x(k),

Y(k) = P (h),

X

(5a)
(5b)
where y(k) and Y (k) are the information vector and

information matrix respectively. The prediction step of
the KF can then be written as

M(k) = (A")TY (k- 1)A7Y, (62)

P(k) = M(k) +Q(k)~", (6b)
Y (k) = M(k) — M(k)P ( )"'M(k),  (6¢)
y (k) =Y (k)AY(k - 1)y(k—1).  (6d)

The information content of an observation z;(k) is
i (k) :Hj-T(k)Rj(k)flzj(k) along with the informa-
tion matrix 61;(k) :H]T(k)Rj(k)_lHj(k). Assuming



that information from all agents is available to a central
processor, the update step of KF can be carried out by
adding the information from different observations to the
predicted values.

y(k) =y~ (k) + 0L, 8i(k)
Y (k) =Y (k) + 0L, 61;(k)

This formulation is called the Centralized Information
Filter (CIF).

An assumption underlying the CIF is that there is a
central processor which has access to all the information
available. However, when there is no central processor
and each agent can only communicate with its neighbors,
we want to formulate a decentralized version of the
information filter. When run by all agents they should
converge to the centralized estimate of the field state.

(7a)
(7b)

Decentralized Estimator Designs

1) Consensus Based Estimator: We start with CIF
procedure outlined in previous section. Looking at Egs.
7a—7b, one can see that

(67, 8i)(k) £ N S270,[615,615] (k)

Now if all the agents have the same prior information
and if via a distributed averaging method the agents can
reach a consensus over &i(k) and §1(k), they can use
Egs. 7a—7b to get a decentralized estimate whose results
asymptotically converge to the centralized estimate.

Fortunately, such a method exists. The distributed
averaging method of [4] makes minimal assumptions
about the network topology and only relies on local
information exchange between neighboring nodes of
a graph to reach a consensus over the average initial
value of the nodes. The method uses an iterative linear
consensus filter based on the weights calculated from
an MHMC. Throughout this paper, to avoid confusion,
we use superscript [ to indicate the consensus iterations.
Consider communication graph G'. One can use the mes-

l
sage passing protocol of the form x'* Z‘]Nl 'yfj é
to calculate the average of the values on the graph nodes

5 N[, 57)(k).

in which d! = |N | is the degree of the node v;, and
1+max1{d§,dl.} if (Z’]) € gl’
1 o e
Vi = 1= Ximyegr Vim 1=, ®)
0 otherwise .

Note that for each node 7, ~;;’s only depend on the
degrees of its neighboring nodes. Also, due to the
averaging property of MHMC weights, after reaching
consensus, MHMC estimates converge to the centralized
estimator’s results. Therefore, given the ideal centralized
estimate (X", P{™), we have x}" = x“™ and P} =
PS™ in the limit.
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In practice the priors become different as a result of
network disconnection. In those cases agents have some
shared information (from the time they were connected to
each other) but will accumulate new information whilst
disconnected from one another. Their priors will differ
after reconnection so, consequently, their consensus must
be handled with care.

2) Covariance Intersection Based Estimator: It follows
from the above discussion that if the priors are not the
same among the network nodes, distributed averaging
alone will not produce consistent estimates. One way of
handling such a scenario is using Covariance Intersection
(CI) methods. We may use an iterative CI method to
reach a consensus over the local estimates when the priors
differ, either owing to disconnection or termination of
the consensus process over-early. In iterative CI, the
goal is to fuse different estimates of a random variable
without having any knowledge about the cross covariance
between such estimates. Iterative CI, iteratively solves
the following optimization problem and updates local
estimates accordingly until it reaches consensus.

Iterative CI (ICI): At initial iteration [ = 0, for each
agent, assign the local estimate, [97°, 3], to be

Then for each iteration afterward solve for w™* such that

w* = argminj([zjeNiz w]-D/jl]_l),
W )
CRAD Y 1wj =1, Vj w; >0,

where J(-) is an optimization objective function; we
consider trace(-) or logdet(-). Local estimates are then
updated for the next iteration

0 = e 07 .

As discussed in [6], CI and consequently iterative CI
(ICI) generate conservative estimates which means that
Elx — x| = E[x —X“] = 0 and P > P{™ for the
local estimates and the consensus value. The disadvantage
of CI is that it generates overly conservative estimates by
continually neglecting the cross correlation information.

(10)

Problem Objective

Our goal is to design a network agnostic recursive
decentralized estimator to calculate the local estimate
x;'® along with an associated covariance Py "such that

the following properties hold:
Elx — %] = E[x — %] = E[x — x| = 0,

J (P ) <SJ(B) < TP, (11)

i.e., we are looking for an unbiased estimate whose
covariance is less than that of CI.



Algorithm 1: Hybrid Method

Input :[y;(to), Y;(t0)]
1 Use Egs. 6¢c — 6d to calculate predicted values

[y; (t1), Y} (t1)] given [y;(t0), Y, (to)]
2 Collect local observation z;(t1) and calculate
jacobian and noise covariance [H,(t1), R;(t1)]
3 Calculate the local information update
(%j(tl) == H]T(tl)Rj_l(tl)Z](tl)
01;(t1) = H (t) R} (t1) H;(th)

4 Initialize consensus variables (I = 0)

(40,97 = vy, Yy )t [847,875) = (635,01, ()
s while NOT CONVERGED do
6 BROADCAST|y!, 99-252,672]
7 RECEIVE[y,i,Q”,j,ﬁ;,TI;] vk eﬁi
8 Collect received data
Cj = {thents Nentt My = {0ipent 0lpen}

9 Do one iteration of CI on consensus variables
for local prior information Cé—

I+1 qr417 _ l
[y, 97 ] =c1(C))
10 Do one iteration of MHMC on consensus
variables for new information Cé
—I+1
[0

J

7 S

;] =mHMC (M)

11 l+—1l+1

[

2 Calculate the posteriors according to:
—l
Y;(t) =9 +ncedl,
—l
yi(t) = 4 + ncadi;
return [Y;(t1),y;(t1)]

IV. HYBRID CI CONSENSUS

We propose a hybrid approach that uses ICI to reach
consensus over priors and the MHMC based consensus
filter for distributed averaging of local information
updates. Our method is summarized in Algorithm 1.
We explain the flow of the proposed method using a
simple scenario with two agents. Generalization to more
than two agents is straightforward and follows similar
steps.

Imagine a scenario consisting of two agents, ob-
serving a dynamic field with state vector x, that are
communicating with each other through a time-varying
network topology. At time %, the agents start with priors
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[y1 (t0), Y7 (to)] and [y5 (t0), Y (to)] respectively.

At time ¢; the field evolves to the new state x(t1)
and agents calculate their own local prediction (line 1 in
the algorithm). Then they make observations z;(¢;) and
z9(t1), respectively, and compute the local information
updates [621(t1), 6[1 (tl)] and [(512(t1), 512(t1)] (lines 2
and 3 of the algorithm).

The two agents, if performing ICI, would find a fused
estimate

V' = w' (YT +011) + (1 — w') (Y5 +615),

where w' is obtained from solving the optimization

problem in Eq. 9. Note that doing MHMC alone is not
possible here since Y; and Y, are different. In our
hybrid method we do the following:

YHYB

=w"Y] + (1 —w™)Y, + 011 + 615 .
N—_——
consensus over

the incremental
information

It can be seen that 011 + 613 > w6l + (1 — w)ol,
and J(w™*Y] + (1 —w™)Y5) > J(w"Y] + (1 -
w")Y5 ) due to the fact that the optimization problem
for Y5 and Y, has the optima w""®. If J(-) has the
property that if J()1) > J():) and Z; > Z, then
J(V1+I1) > T (Y2+I2), then our method is guaranteed
to outperform CI.

For an N-agent system with the ¢’th agent having prior
Y,™, the ICI approach is used to find a consensus over the
priors using Eq. 9 recursively. The MHMC approach is
used to form the consensus over the new information, i.e.,
Z;\le 01; (Eq. 8). In line 12 of the algorithm, nc¢ is
the number of agents that form a connected group, and it
can be determined by assigning unique IDs to the agents
and passing these IDs along with the consensus variables.
Each agent keeps track of unique IDs it receives and
passes them to its neighbors. The following propositions
hold. (They are stated here without proof due to paucity
of space. The reader is referred to the technical report
for details.!)

CI to reach
consensus over priors

Proposition 1. The ICI process is guaranteed to reach
a consensus over the priors, i.e., 39, such that Vi
lim; oo f)/il = 9. The same result holds for the
information vector as well.

Remark 1. It is straightforward to show that ICI and
our method both produce unbiased estimates. Regarding
the second part of Eq. 11, our extensive experiments on
the system considered in this paper and various other
systems show that the inequality holds for J = log det(-).
The existence of a theoretical proof is currently being
investigated and will be the subject of future work.

"http://edplab.org/wp-content /uploads/2016/02/
technical_report.pdf



V. EXPERIMENTS

We report two sets of experiments performed on an
atmospheric dispersion problem to show the effectiveness
of our method and evaluate its performance during
disconnection and after reconnection. This is a three
dimensional problem and after proper discretizing of its
Partial Differential Equation (PDE), we get a system in
the form of Eq. 1.

For our experiments after discretization, the dimension
of the state is 80. We assume that there are 10 sources
emitting pollutant Zinc (referred to as Zn from now
on) into atmosphere. There are also 9 receptors making
noisy measurements of the concentrations of Zn around
their location in space. We assume that receptors can
communicate to each other through a time varying
network which does not remain connected at all times.
Receptors receive information only from their immediate
neighbors. They all have access to the sources’ locations
and the source emission is modeled as a white noise
process with known covariance.

1) The effect of disconnection on estimation perfor-
mance: In this experiment we intend to evaluate the
performance of the proposed method during the phase
where some receptors become disconnected from the
rest of the group and are reconnected again after some
interval. The topology of the network takes one of the
forms depicted in Fig. 1. Initially the network is fully
connected but beginning with timestep 3, receptors 7, 8
and 9 become isolated and remain in this situation for
2 steps, until they are connected back to the rest of the
receptors. Similarly, disconnection happens in intervals
[17 — 20] and [23 — 30].

In order to make a comparison we obtain the estimation
result using ICI, our method and also a hypothetical
god’s-eye-view centralized estimator to see how much of
its performance can be recovered. Note that the MHMC
consensus cannot be done here due to disconnection. The
results are summarized visually in Fig. 2.

We use three measures to evaluate the estimates.

1) The Bhattacharyya distance [12] between the
estimation results and the centralized estimator. The
Bhattacharyya distance can be used to evaluate the
similarity of two continuous probability distribution
function. For Gaussian distributions parametrized
as (p1,%1), and (p2,32), 0 < Dp(p1,p2) <1
and is defined:

Dp(p1,p2) = e~ PPrp2)

D(p1,p2) = £ (1 — p2) TS (pa — p2)+
Lin det 3 Y= Y143
2 Vdet X1 det Xy’ 2

Here Dg(p1,p2) = 1 means complete similarity

and Dg(p1,p2) = 0 means complete dissimilarity.

(12)
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1 4 7 @ 4 7
2 5 8 @ 5 8
3 6 9 3 6 9

Fig. 1. Topology of the Network when all receptors are connected
(left) and when receptors 7,8 and 9 get disconnected from the rest of
the group (right).
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Fig. 2. Comparison of the estimation results using centralized Kalman
filter, ICI, and the proposed method. (Note that the lower two figures
are measures normalized so that the centralized solution = 1.0.)
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is the dimensionality of the state vector.
3) rmse estimation error.

]7a which is a non-dimensionalized

As it can be seen, the proposed method outperforms
ICI as expected and is able to get the performance very
close to centralized estimator results after reconnection.
Based on Bhattacharyya distance, closeness between
centralized and decentralized estimates for drops during
disconnection interval as expected since receptors do
not have access to all the information available to the
centralized estimator. While the proposed method is able
to immediately recover after reconnection, ICI continues
to have lower performance even after reconnection due
to the fact that it ignores the correlations.

Fig. 3 takes a closer look at the performance of the
proposed method and compares the estimation results
of receptor 5 and 8 during two different time steps.
The horizontal axes represent consensus steps not time.
Based on Fig. 1, receptor 5 remains in a group of size
6 during disconnection period whereas receptor 8 is
totally isolated for that duration. The higher difference
between centralized and decentralized estimate for this
receptor can be explained based on the fact that it has less
information at its disposal. However, after reconnection
both receptors are able to converge to the same value
which is very close to the centralized estimator.

2) Performance analysis and robustness to link failure:
In this experiment we evaluate the performance of our



o

Bhattacharyya distance

—receptor no. 5
- - -receptor no. 8

1500
step

1000 2000 2500

Fig. 3.  Estimation performance comparison between receptors.
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Fig. 4. Composite diagram for performance comparison for different
probablity of link failure.

method in a systematic way to establish its robustness
and usefulness in networks with high-likelihood of link
failure. We consider the same system as in the first
experiment and simulate it for 50 time steps. At the
beginning of each step a 4 regular graph with 9 nodes is
generated and, given a probability of failure for each link,
some links in the graph will randomly be disconnected.
The graph still remains connected some percentage of
times, but this depends on the degree, and probably of
failure. However, if the regularity degree goes down or
the probability of failure increases, more often than not,
the graph becomes disconnected.

In practice, for p > 0.2, consensus methods are no
longer guaranteed to succeed since the network almost
always suffers disconnection at some point in time.

We ran our method for 50 steps for each probability of
link failure and compared its performance with the ideal
centralized result (which is obtained by assuming full
connectivity at all times). The performance is evaluated
by calculating the average value for Bhattacharyya
distance and determinant ratio measure at all steps
and for all receptors. Based on Fig. 4, for the case
considered in this experiment, our decentralized estimator
performs very similarly to the ideal centralized one for
p € [0.0,0.4] while drastically outperforming ICT all the
time. This means that in the case considered here, our
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method can perform almost as well as the ideal estimator
for an unreliable network. Obviously, the performance
can vary from one system to another and under different
network topologies. However, our method can recover
the performance of the centralized method when the
network is unreliable and substantially outperforms ICI
always as it has already been established theoretically.

VI. CONCLUSION

This paper proposes a decentralized estimator for
dynamic systems in networks with changing topology
and those that do not remain connected all the time.
Separating the process of consensus for the correlated
and uncorrelated information was the key to achieve a
better performance compared to ICI alone. Evaluating
the proposed method on an 80-dimensional estimation
problem showed substantial performance improvement
compared to CI and also the ability to recover after a
disconnection interval occurs.
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