

1.

**Accession number: 20170503300176** 

Title: Growth of single-phase wurtzite BAIN with 7.2%-B contents

**Authors:** Li, Xiaohang<sup>1, 2</sup> Wang, Shuo<sup>3</sup>; Liu, Hanxiao<sup>3</sup>; Ponce, Fernando<sup>3</sup>;

Detchprohm, Theeradetch $^1$ ; Dupuis, Russell $^1$ 

Author affiliation: 1 School of Electrical and Computer Engineering, Georgia Institute of Technology,

Atlanta; GA; 30332, United States

<sup>2</sup> Electrical Engineering, King Abdullah University of Science and Technology,

Thuwal; 23955, Saudi Arabia

<sup>3</sup> Department of Physics, Arizona State University, Tempe; AZ; 85287, United

States

**Corresponding** Li, Xiaohang (xiaohang.li@kaust.edu.sa)

author:

**Source title:** 2016 Conference on Lasers and Electro-Optics, CLEO 2016

Abbreviated source Conf. Lasers Electro-Optics, CLEO

title

**Issue title:** 2016 Conference on Lasers and Electro-Optics, CLEO 2016

**Issue date:** December 16, 2016

**Publication year: 2016** 

**Article number:** 7789116

Language: English

**ISBN-13:** 9781943580118

**Document type:** Conference article (CA)

Conference name: 2016 Conference on Lasers and Electro-Optics, CLEO 2016

**Conference date:** June 5, 2016 - June 10, 2016

**Conference location:** San Jose, CA, United states

Conference code: 125475

**Publisher:** Institute of Electrical and Electronics Engineers Inc.

**Abstract:** We report on growth of 100-nm single-phase wurtzite BAIN layers with B contents

up to 7.2% by MOCVD, which can be potentially applied to deep UV DBRs for

VCSELs. © 2016 OSA.

Number of 8 references:

**Database:** Compendex

Compilation and indexing terms, © 2017 Elsevier Inc.



