
Unsupervised Learning for Nonlinear PieceWise
Smooth Hybrid Systems

Gilwoo Lee*, Zita Marinho**, Aaron M. Johnson**,

Geoffrey J. Gordon**, Siddhartha S. Srinivasa*, and Matthew T. Mason**

* Paul G. Allen School of Computer Science & Engineering
University of Washington

Seattle, WA 98195

**Robotics Institute
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract—This paper introduces a novel system identification
and tracking method for PieceWise Smooth (PWS) nonlinear
stochastic hybrid systems. We are able to correctly identify
and track challenging problems with diverse dynamics and
low dimensional transitions. We exploit the composite structure
system to learn a simpler model on each component/mode. We
use Gaussian Process Regression techniques to learn smooth,
nonlinear manifolds across mode transitions, guard-regions, and
make multi-step ahead predictions on each mode dynamics.
We combine a PWS non-linear model with a particle filter to
effectively track multi-modal transitions. We further use synthetic
oversampling techniques to address the challenge of detecting
mode transition which is sparse compared to mode dynamics.
This work provides an effective form of model learning in
complex hybrid system, which can be useful for future integration
in a reinforcement learning setting. We compare multi-step pre-
diction and tracking performance against traditional dynamical
system tracking methods, such as EKF and Switching Gaussian
Processes, and show that this framework performs significantly
better, being able to correctly track complex dynamics with
sparse transitions.

I. INTRODUCTION

Having a good model of the interaction between a robot
and the environment is critical in reinforcement learning,
as it depends on expected reward based on the probability
of predicted trajectories [1]. Poor models lead to false ap-
proximations of those probabilities, which in turn lead to
poor policies. In receding horizon control we also rely on
good model estimates to compute locally optimal policies
within short timeframes [2]. While reinforcement learning and
optimal control are active fields of research, most existing
work assumes that the underlying dynamics is smooth, and
application to Hybrid Systems has been limited[3, 4]. In the
context of robotics, deterministic hybrid models are often used
for locomotion [5], object manipulation. Although some non-
parametric, data-driven approaches to estimate hybrid systems
have been proposed [6, 7], they assume overly simplified
simplified models such as Gaussian Mixture Model or neglect
the sparsity of mode transitions in the data.

In the field of hybrid systems, many system identification
models has been studied for hybrid systems, but most of them
are focused on Switched Systems [8, 9, 10, 11], in which

mode transition is independent of continuous state. These
approaches for Switched Systems often perform poorly on
PWS-HS, and identification of PWS-HS has been limited to
those with affine dynamics for subsystems or linearly separable
subsystems [12]. Others assume system dynamics can be
provided in a closed form solution [13], which is limited in
its application when we need to learn complex systems with
little prior knowledge about the underlying models.

The main contribution of this paper is to present a unsu-
pervised, nonparametric framework that can learn nonlinear
PWS-HS systems with little prior knowledge of the underlying
subsystems. Doing so is challenging in two ways. First,
the domains of the subsystems are unknown, which makes
mode assignment and function approximation difficult. Sec-
ond, mode transitions happen very rarely compared to the
non-transitioning counterparts, which makes identification of
mode transition condition challenging. In order to address
these challenges, we heavily exploit the structure of PWS-HS,
i.e. piecewise smoothness and the existence of guard regions,
which allow us to use simple non-parametric clustering such
as Spectral Clustering[14] and function regression methods,
such as Gaussian Processes[15]. To address the challenge in
the sparsity of transition points, we use oversampling tech-
niques in the transition region. By iterative mode assignment
and subsystem estimation, our system converges to a close
approximation of the underlying hybrid system.

The rest of this paper is structured as following. First we
define our problem and explain PWS-HS. Then we introduce
how our learning system of PWS-HS, and how it uses a
particle filter to predict future observations and track them.
We evaluate our system in two experiments, in which we
compare it with existing methods such as Single GP, Switching
GPs[16], and Extended Kalman Filter [17].

II. PROBLEM STATEMENT

The goal of our framework is to learn a nonlinear PWS-HS
from data when little prior model knowledge is available.

ar
X

iv
:1

71
0.

00
44

0v
1

 [c
s.R

O
]

2
O

ct
 2

01
7

mt mt+1

xt xt+1

(a) PHA

mt mt+1

xt xt+1

(b) Jump

ẏ

y

(c) Bouncing ball

Figure 1: Probabilistic Hybrid Automata PHA (left). Switched
System (middle). model structure: mt is a discrete mode, xt
is a continuous state undergoing dynamics defined by mt.
Probability of mode transition at time t is defined both by
the current mode mt and continuous state xt.

A. PieceWise Smooth Hybrid Systems

A state in a PWS-HS is defined as a tuple (m,x). Here,
m ∈ M is a mode chosen from a set of discrete modes M .
Each mode is associated with a continuous, connected sub-
space Fm ⊆ Rd, and x ∈ Fm is an element of that subspace.
We assume the subspaces do not overlap, so Fm ∩ Fn = ∅ if
m 6= n.

Each mode m is also associated with a discrete-time con-
tinuous function fm ∈ F : Fm → Rd, which determines the
evolution of x within the mode m.

We also define a guard region, denoted as Gm,m′ ⊆ Fm
in which transition occurs deterministically from mode m to
a different mode m′. When xt in mode m reaches Gm,m′ , it
teleports to xt+1 through a reset function rm,m′ ∈ F .

In short, the continuous state propagates in the following
form:

xt+1 =

{
rmt,mt+1

(xt) + wt if xt ∈ Gmt,m′
t

fmt
(xt) + wt if xt ∈ Fmt

(1)

where wt ∼ N (0, σw) is additive process noise. Although
our model does not explicitly model control input u, it is
straightforward to incorporate.

Consider, for example, a perfectly elastic bouncing ball
(Figure 1c). The ball undergoes a nonsmooth transition of
state when it hits the ground and its velocity changes sign
instantaneously. We can describe this system as having two
modes, with transition between the modes upon collision.1

The bouncing ball clearly illustrates our challenge. Although
the dynamics of each mode can be easily learned, it is
challenging to learn the guard region, since these are typically
low dimensional or sparse. In this case the switching point is
instantaneous and the probability of a discrete time step hitting
exactly the bouncing moment is approximately zero. Due to
this challenging property of mode transitions, many existing
SHS identification tools often fail to learn the mode transitions
or handle it incorrectly. This in turn makes the model fail to

1We can interpret this model as having a single mode with self-reset at the
bouncing point. For simplicity, we disallow self-resets in our model and view
this as two modes with one mode transition.

X = {x1, · · ·xTi
}Ni=1

SpectralCL(X)

Assign mode transition pairs {(xt, xt+1)}

{(xt, xt+1)} =
SMOTE({(xt, xt+1)}) Learn fm on

non-transition pairs
Learn rm,m′

transition pairs

MAPCL(X)

Converged?

Learn c, cm

Success

no

yes

Figure 2: Flowchart for system identification and learning §III.

make any reasonable prediction near mode transitions. In this
work we propose to exploit the structure of PWS systems, and
design a framework that addresses this challenge.

We now formally state our problem:
We observe the continuous state with some additive
noise εt ∼ N (0, σε) in observation. We then collect
a set of n trajectories, with each trajectory defined
as Xi = {xi1, ..., xiTi

}. Our goal is to learn a PWS-
HS, i.e., the number of modes, the smooth system
dynamics within a mode, and the guard regions and
reset function for each transition.

III. LEARNING PWS HYBRID SYSTEMS

Assuming that the number of modes is given, learning a
PWS Hybrid System can be decomposed into:

1) Mode identification: Determine subsets of state space
governed by each mode.

2) Learn a model per mode: Estimate the dynamics of
each mode.

3) Guard estimation: Identify mode transition regions.
4) Learn a reset mapping: Estimate reset dynamics for

mode transitions.
5) Iteratively mode assignment: Compute MAP estimates

of mode for each observed dynamics.
6) Classification: Learn classifiers for each mode predic-

tion and transition.
Our approach is focused on constructing a model that

closely matches the definition of a PWS-HS, including explicit
mode of guard regions and reset dynamics, which many
existing approaches fail to address. By doing so, we are able to

−20 −10 0 10 20

0

2

4

6

8

10

12

Fall (m1)

Hit (reset)

Bounce (m2)

ẏ

y

Figure 3: Initial mode assignment (§III-A) for bouncing ball
trajectories (§V-A). The ball falls (m1), reaches the guard
region, jumps to post-guard region, and bounces up (m2).

leverage the structure of the model and learn more effectively
with less prior information and data. We learn each component
and each transition separately, and hope to achieve a more
accurate PWS hybrid model. We design an iterative process
that predicts maximum a posteriori mode estimate for each
point in the dataset, in a fully unsupervised approach.
We start with n trajectories, with each trajectory defined as
Xi = {xi1, ..., xiTi

}. We first assign modes to each trajectory
of points using a spectral clustering algorithm (§III-A). Then,
for each sequence, we identify mode transition pairs and
oversample them (§III-B). We then learn both mode dynamics
(§III-C) and the reset mapping (§III-D) through Gaussian
Process (GP), and reassign the modes based on the predictions
of each GP (§III-E). Once this process converges, we train
the mode and guard classifiers using Logistic Regression
(§III-F). In the following section, we describe the details of
this procedure.

A. Initial Mode Assignment

Spectral Clustering (SC) is a powerful clustering technique
that can be used for clustering nonlinear, smooth mani-
folds [18]. We assume each mode dynamics is smooth and
non-intersecting. In this case SC serves as an effective initial
mode assignment tool in our model. Refer to [14], [19] for
more detail. Given a set of points X = ∪ni=1Xi, we build an
affinity matrix using a metric of our choice, in our case given
by a Radial Basis Function kernel.2 From this affinity matrix,
we apply K-means algorithm to get the mode assignment.3

The result is a set of ordered pairs of a continuous state and
its respective mode τi = {(mi

1, x
i
1), · · · , (mi

Ti
, xiTi

)} for each
sequence Xi.

2k(xi, xj) = exp(−β0||xi − xj ||2)
3We assume the number of modes is known a priori, but it can be estimated

using an eigengap heuristic [20, 21].

Figure 3 shows the initial clustering result given by SC with
the number of modes set to 2. The algorithm clusters most of
the falling trajectory as one mode and the bouncing trajectory
as another. Note that at the top where the ball changes its
velocity from positive to negative, the mode transition is
smooth, and thus mode assignment in this region is slightly
different every time we cluster. This different initialization
does not affect the rest of our framework, as we only require
the dynamics within each mode to be smooth.

B. Guard Identification

After mode assignments are complete, we identify mode
transitions. We create pairs (xt, xt+1) along all trajectories
Xi and create an augmented matrix

X−+i =
[
X−i X+

i

]
=

 xi1 xi2
...

...
xiTi−1 xiTi

Note that from the previous step of mode assignment, each
of these points has assigned modes (mi

t,m
i
t+1). Hence, for

each mode m, we collect all pairs with the same mode (mi
t =

m,mi
t+1 = m) in F̂−+m , and collect all pairs with different

modes (mi
t = m,mi

t+1 = m′) in Ĝ−+m,m′ . For example, in
figure 3, all green points are in m1 and all orange points are
in m2, and all pairs of points from m1 to m2 are in Ĝ−+m,m′ .
At the end of this step, we have F̂−+m , Ĝ−+m,m′ for all modes
and mode transitions.

C. Learning Mode Dynamics through Gaussian Process Re-
gression

From the paired points in F̂−+m , we can learn the dynamics
fm of subsystem m. Recall that F̂−+m is a set of tuples of
(xt, xt+1), both in mode m. Let F̂−m be the first column of
F̂−+m , and F̂+

m be second column. Now we use Gaussian
Processes (GP) [22] to learn the mapping F̂−m → F̂+

m . A
GP models the conditional probability of F+

m given F−m as a
normal distribution. Once the GP is trained, given a new test
point x̃t in mode m, it produces the probability distribution
of x̃t+1 as a normal distribution N (µm(x̃t),Σm(x̃t)), with
parameters:

µm(x̃t) = K(x̃t, F̂
−
m)>K−1FF F̂

+
m

Σm(x̃t) = Kx̃x̃ −K(x̃t, F̂
−
m)>K−1FFK(x̃t, F̂

−
m)

(2)

where K(a, b) is the Gram matrix defined by the kernel
function of our choice4, Kx̃x̃ = K(x̃t, x̃t), and KFF =
K(F̂−m , F̂

−
m). Throughout the rest of the paper we will denote

discrete mode prediction and continuous dynamics during test
time as m̃t, x̃t, while xt,mt is reserved for training samples.
We choose kernel parameters β = (β0, β1) to maximize the
likelihood of P (F̂+ | X̂−;β). See [23] for a full derivation.

Note that GP is in fact capable of learning non-smooth,
discontinuous functions using complex, non-stationary kernels.

4We use RBF kernel with additional Kronecker delta term for signal
variance: k(xi, xj) = exp(−β0||xi − xj ||2) + β1δij

However, this requires stronger prior knowledge of the un-
derlying model or large amounts of data. On the contrary,
by exploiting the structure of PWS-HS, we can use GP with
simple kernels such as RBF to learn each mode and combine
them to learn a complicated system as a whole. This approach
is similar to the Mixture of Gaussian Processes introduced in
[15].

D. Learning Reset Dynamics with Oversampling

Ideally, we would like to learn reset dynamics across mode
transitions from G−+m,m′ in a similar manner as we used F−+m

for mode dynamics (§III-C). However, this is challenging
because these mode transitions are sparse. For example, in
the case of the bouncing ball (figure 3) only one mode
transition occurs per cycle of ball bounce. To address this
challenge, we use a common Machine Learning technique
called oversampling.

Extending the Synthetic Minority Over-sampling TEchnique
(SMOTE) [24] algorithm originally proposed for classification,
we generate synthetic samples of tuples in G−+m,m′ . First, we
randomly choose two tuples (xt1 , xt1+1), (xt2 , xt2+1) from
Ĝ−+m,m′ . Then, we generate a new synthetic point by convex
combination of the two tuples:[

xt
xt+1

]
= r

[
xt1
xt1+1

]
+ (1− r)

[
xt2
xt2+1

]
(3)

where r is randomly chosen from the unit interval [0, 1].
Once enough synthetic tuples are generated, we can learn

rm,m′ using the same process as §III-C, where instead we
regress the second column of G−+m,m′ on the first column.

E. Iterative Mode Assignment and Model Learning

When mode boundaries overlap due to smooth transitions
or noise, initial mode assignments may be incorrect for some
of the points, especially because we do not take into account
time-continuity of points along a trajectory at the initial clus-
tering stage. Similar to [12], we can fix these mis-assignments
by re-assigning modes based on the trained GPs’ predictions.
After training all GPs, we revisit all points in X and re-assign
modes as:

mi,new
t = arg max

m
p(xit+1|xit;µgm(xt),Σgm(xt))

where gm ∈ {fm}
⊕∪m′rm,m′ is a GP from the set of all

dynamics related to mode m, i.e., the set of all reset dynamics
from m and the mode dynamics fm. We refer to this algorithm
as MAPCL in figure ??.

We iterate the process of guard identification, oversampling,
GP training, and mode assignment until mode assignment does
not change.

F. Mode and Guard Classification

Once the learning process has converged, we finally train
classifiers for modes and guards. These can be learned by
one classifier, but to explicitly encode the dependency of the
current mode and state in the mode prediction for the next
time step, we train two level of classifiers. The first level of

classification being for mode prediction and then the second
level being for guards within each mode. All classifiers return
probabilities across possible choices.

The first level mode classifier is defined as c : Rd →
∆|M |−1, and is trained using all points in X and their assigned
modes. The second level classifier is defined per mode:

cm : x ∈ Fm → ∆|M |−1,

and we use all points in the guard regions of m, i.e.
∪G−m,m′∀m′, as well as the synthetic points generated in
§III-D. We use balanced Logistic Regression [25] for both
levels, but the choice of classifier is independent of our
framework as long as it provides probabilistic mode estimation
and is capable of learning unbalanced data sets.

IV. MULTI-STEP PREDICTION AND TRACKING

Our learned PWS-HS can be used for multi-step prediction
and tracking. We combine our learned hybrid model with a
Sequential Importance Sampling Particle Filter [17]. While
closed form updates of mean and covariance for multi-step
predictions of a single GP are available [26], these are often
insuficient in modeling complex systems. In the case of multi-
modal PWS-Hybrid Systems closed form updates are often
inaccurate, hence we opt for a Monte Carlo approach. Figure 4
shows a flowchart of our tracking algorithm. For each particle,
we first sample the next mode, according to the mode to the
learn classifiers, and then propagate the continuous state using
the corresponding dynamics function (GP). If an observation
is made, it is used to re-weight the particles, and approximate
better the target distribution. Within each mode, we expect the
propagation to be unimodal, so we approximate each mode’s
distribution to be Gaussian, producing a multi-modal Gaussian
Mixture Model prediction at the end of each iteration. At the
end of the process we resample particles according to the
updated mode distribution.

V. EXPERIMENTS

We evaluate our hybrid learning system (Hybrid)5 by com-
paring its prediction and tracking performance with three
baseline methods, Single Gaussian Process (GP), a Switching
Gaussian Process (Switching) [16], and an Extended Kalman
Filter (EKF) [17]. GP assumes that state dynamics is unimodal.
Switching assumes that state dynamics is drawn from multiple
modes, but assumes that mode evolution is independent of the
continuous dynamics. EKF requires knowledge of the model
dynamics equation in closed form, and makes mode transitions
deterministically based on its state estimation.

For prediction, we first qualitatively compare n-step ahead
prediction of our model with all the other baselines. We
show that our hybrid learning system is the only method
that makes correct predictions near mode transition. We then
quantitatively compare the log likelihood of n-step ahead
predictions and the posterior distribution of predictions given
observation for tracking. We show that our model performs

5Our system is implemented in Python 2.7.12. For balanced Logistic
Regression and Spectral Clustering we used Scikit-learn 0.17.14 [27].

Initial state xt,Σε

Initialize {(mi
t, x

i
t)}ni=1 with c

Sample mi
t+1 with cmi

t
(xit)

mi
t == mi

t+1

Propagate with fmi
t+1

Propagate with rmi
t
,mi

t+1

Reweight on observation

Approximate distribution at t + 1

Resample {(m,x)it+1}ni=1

yes no

Figure 4: Flowchart for tracking with sequential importance
sampling (§IV)

as well as the remaining methods, when the state is far from
transitioning, and has the best performance near transition.
Both GP and Switching use a sequential importance sampling
particle filter similarly to our Hybrid model. We use two
synthetic experiments as illustrative examples, but we plan to
extend it to real robot experiments in the near future.

A. Bouncing ball

We simulate a one-dimensional bouncing ball experiment.
We consider state to be

[
y ŷ

]>
, where y is the height of

the ball and ŷ is the velocity, with positive direction pointing
upward. We assume the ground is at y = 0 and that collisions
are perfectly elastic. Except for the collision with ground, the
state is updated by the following equation of motion:[

yt+1

ẏt+1

]
=

[
yt
ẏt

]
+

[
ẏtt+ gt2/2

gt

]
+ wt

We add process noise wt ∼ N (0, diag([0.01, 0.01])) during
the data generation and observation noise of the same magni-
tude to the training set. We additionally generate 5 trajectories
of 100 steps, and use this as test set.

1) Prediction and Tracking: We evaluate tracking perfor-
mance near the transition region, see Figure 5. We compare
four stages of the bouncing ball experiment out of collision
in one mode (ball going down), immediately before collision
(guard region), immediately after collision (post-guard), and
out of collision in the next mode (ball going upwards). Hybrid
correctly predicts that the ball will continue to fall until
collision. At this point, the algorithm predicts that either the
ball will continue to fall or bounce, with stronger belief for
bouncing in the next step. Note that this bi-modal prediction is

an accurate representation of how the bouncing ball behaves
near collision given noisy observations. This multi-modality
is particularly useful in manipulation planning. Once collision
is made, the algorithm predicts that the ball will continue to
move upward. In all four stages our method correctly predicts
the velocity of the ball, giving as well a correct bi-modal
distribution at the collision points (guard and post-guard).
EKF and GP make unimodal predictions, and Switching makes
incorrect multimodal predictions in the post-guard region, not
being able to correctly map to the different dynamics in the
new mode.

We also compare the prediction performance of our method,
by evaluating the log likelihood of 2-steps ahead prediction
and compare with the other baselines, in Figure 6. We show
log-likelihood of observations after updating the probability
distribution given the observation. When there is no mode
transition, all methods make similar predictions, though Hy-
brid and Switching perform better than the other two methods,
since they learn the system’s dynamics of each mode sepa-
rately. EKF performs best best during this no transition region,
which is expected since it is given the correct equations of
motion. However, near transition, EKF performs poorly, since
the initial prediction is often too far from what is observed.
During transition, Switching preforms better in tracking than
in pure prediction, see Figure 6. This is due to an increased
weight for particles in the correct mode after the observation
update. Nonetheless, Hybrid performs better than any other
methods during mode transition, as none of the others correctly
identifies the reset (bouncing).

B. Box pushing

In this second experiment, we consider a simplified robot
pushing a box, depicted in Figure 7. Here, a circular robot of
radius 2cm, and a box of size 4cm × 4cm sitting 6cm apart
from the robot. The robot moves in the positive x direction
for 1s, with velocity 4cm/s, and stays still for the next
1s. 30 trajectories were generated for training with additive
observation noise N (0, 0.1), and 6 of them were used for test-
ing. The state space has 5 dimensions,

[
xo, vx,o, xr, yr, vx,r

]
,

where xo, vx,o, xy, yr, vx,r describe object and robot’s pose
and velocity, respectively. Both the robot and object move
only in the x direction. The robot selects initial height from
normal distribution, i.e., yr ∼ N (6cm, 0.5), which results in
successfully pushing the box half of the time.

For EKF, we use the following equations of motion:[
xo
xr

](t+1)

=

[
xo
xr

](t)
+

[
vx,o
vx,r

](t)
tstep

{
vo

(t+1) = vx,r if xo − xr ≥ 4, yr ≥ 6

vo
(t+1) = 0 otherwise

where tstep is the step size, 0.2s.

v
0

1
Hybrid Switching GP EKF

v
0

1

v

0

1

v

−14 14
0

1

−14 14 −14 14 −14 14

Figure 5: Probability distribution for vt+1 prediction, made by Hybrid, Switching, GP and EKF (from left to right). Dot on
each x-axis represents the observation. Falling ball (top), immediately before collision (middle top), immediately after collision
(middle bottom), ball going up (bottom).

−20

−10

0

lo
g
-l
ik
el
ih
o
o
d

Prediction (NT)

−20

−10

0

Tracking (NT)

1 2 3 4

0

−20

−40

−60

−80

nsteps-ahead prediction

lo
g
-l
ik
el
ih
o
o
d

Prediction (T)

1 2 3 4

0

-20

-40

-60

-80

nsteps-ahead prediction

Tracking (T)

GP Switching EKF Hybrid

Figure 6: Bouncing ball log-likelihood of velocity prediction
vs. n-time steps ahead for prediction (left) and tracking (right).
Hybrid (blue), GP (red), Switching (orange) and EKF (purple).
On each mode subspace–no transition (top), at the transition
region (bottom).

(a) Miss the box. (b) Hit the box.

Figure 7: The box is dragged by the manipulator 50% of the
time, and slows down over until it stops (right). The other half
the box remains at rest (left).

1) Prediction and tracking: Figure 8 compares the log
likelihood of 1 and 2-step ahead predictions made by the
four algorithms. As before, we distinguish predictions near
transition from the rest. When there is no mode transition
Hybrid, GP, and Switching are perform almost equally well.
However near transition, Hybrid outperforms the other meth-
ods. We do not report EKF’s performance since it is much
worse than other methods because it’s equation of motion
is deterministic on what it believes is the true mode, and
so it is more prone to errors. Moreover, as in the previous
experiments, we are able to observe successful multi-modal
predictions near transition for this task, similarly to Figure 5.
These synthetic experiments show the effectiveness of our

−3

−2

−1

0

lo
g
-l
ik
el
ih
o
o
d

Prediction (NT)

−3

−2

−1

0

Tracking (NT)

GP Switching Hybrid

1 2 3 4
−150

−100

−50

0

n-step ahead prediction

lo
g
-l
ik
el
ih
o
o
d

Prediction (T)

1 2
−150

−100

−50

0

n-steps ahead prediction

Tracking (T)

Figure 8: Pushing box log-likelihood of velocity prediction
vs. n-time steps ahead for prediction (left) and tracking (right).
Hybrid (blue), GP (red), Switching (orange) and EKF (purple).
On each mode subspace–no transition (top), at the transition
region (bottom).

method, we are currently working on experiments with more
realistic robotic manipulation experiments. Nevertheless, with
our hybrid system we are able to make multi-modal predictions
near transition, capturing the actual distribution of trajectories
near mode transitions, and outperforming current state of the
art tracking algorithms.

VI. DISCUSSION

We have presented an unsupervised learning framework
for PieceWise Smooth Hybrid Systems, which can be used
to model the underlying dynamics of many robot systems
in which the robot interacts with environment. This work
addresses a complex robotic problem and a challenging learn
task. We provide an algorithm that is able to learn hybrid
dynamics in an unsupervised manner, we exploit the structure
of the system to detect guard regions and learn mode and
reset dynamics separately, in an iterative process. We have
shown through our experiments that this model captures the
multimodality of the dynamics near mode transitions, which
many existing techniques fail to capture. We believe that
having a proper hybrid systems model is crucial in generating
policies for robots interacting with the environment, and we
are excited to extend this work in such direction in the near
future.

REFERENCES

[1] J. Kober and J. Peters, “Reinforcement learning
in robotics: A survey,” in Reinforcement Learning.
Springer, 2012, pp. 579–610.

[2] R. M. Murray, “Optimization-based control.”
[3] M. Posa and R. Tedrake, “Direct trajectory optimization

of rigid body dynamical systems through contact,” in
Algorithmic foundations of robotics X. Springer, 2013,
pp. 527–542.

[4] Y. Tassa, “Stochastic complementarity for local control
of discontinuous dynamics.”

[5] A. M. Johnson, S. A. Burden, and D. E. Koditschek,
“A hybrid systems model for simple manipulation and
self-manipulation systems,” The International Journal of
Robotics Research, p. 0278364916639380, 2016.

[6] O. Kroemer, C. Daniel, G. Neumann, H. Van Hoof, and
J. Peters, “Towards learning hierarchical skills for multi-
phase manipulation tasks,” in 2015 IEEE International
Conference on Robotics and Automation (ICRA). IEEE,
2015, pp. 1503–1510.

[7] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-
end training of deep visuomotor policies,” Journal of
Machine Learning Research, vol. 17, no. 39, pp. 1–40,
2016.

[8] F. Lauer and G. Bloch, “Switched and piecewise nonlin-
ear hybrid system identification,” in International Work-
shop on Hybrid Systems: Computation and Control.
Springer, 2008, pp. 330–343.

[9] F. Lauer, G. Bloch, and R. Vidal, “Nonlinear hybrid
system identification with kernel models,” in 49th IEEE
Conference on Decision and Control (CDC). IEEE,
2010, pp. 696–701.

[10] F. Lauer and G. Bloch, “Piecewise smooth system iden-
tification in reproducing kernel hilbert space,” in 53rd
IEEE Conference on Decision and Control. IEEE, 2014,
pp. 6498–6503.

[11] G. Bloch, F. Lauer et al., “Reduced-size kernel models
for nonlinear hybrid system identification,” IEEE Trans-
actions on Neural Networks, vol. 22, no. 12, pp. 2398–
2405, 2011.

[12] P. Santana, S. Lane, E. Timmons, B. C. Williams, and
C. Forster, “Learning hybrid models with guarded tran-
sitions.” in AAAI, 2015, pp. 1847–1853.

[13] A. Núñez, B. De Schutter, D. Sáez, and I. Škrjanc,
“Hybrid-fuzzy modeling and identification,” Applied Soft
Computing, vol. 17, pp. 67–78, 2014.

[14] U. Von Luxburg, “A tutorial on spectral clustering,”
Statistics and computing, vol. 17, no. 4, pp. 395–416,
2007.

[15] C. E. Rasmussen and Z. Ghahramani, “Infinite mixtures
of gaussian process experts,” 2002.

[16] J. Chen, M. Kim, Y. Wang, and Q. Ji, “Switching
gaussian process dynamic models for simultaneous com-
posite motion tracking and recognition,” in Computer
Vision and Pattern Recognition, 2009. CVPR 2009. IEEE
Conference on. IEEE, 2009, pp. 2655–2662.

[17] S. Thrun, W. Burgard, and D. Fox, Probabilistic robotics,
2005.

[18] A. Y. Ng, M. I. Jordan, and Y. Weiss, “On spectral
clustering: Analysis and an algorithm,” in Advances in

Neural Information Processing Systems 14. MIT Press,
2001, pp. 849–856.

[19] M. I. Jordan, F. R. Bach, and F. R. Bach, “Learning
spectral clustering,” in Advances in Neural Information
Processing Systems 16. MIT Press, 2003.

[20] M. Soltanolkotabi, E. Elhamifar, and E. J. Candes,
“Robust subspace clustering,” The Annals of Statistics,
vol. 42, no. 2, pp. 669–699, 04 2014.

[21] B. Mohar, Some applications of Laplace eigenvalues
of graphs, Graph Symmetry: Algebraic Methods and
Applications. Springer Netherlands, 1997.

[22] C. E. Rasmussen and C. K. I. Williams, Gaussian Pro-
cesses for Machine Learning (Adaptive Computation and
Machine Learning). The MIT Press, 2005.

[23] N. D. Lawrence, “Gaussian process latent variable mod-
els for visualisation of high dimensional data,” 2004.

[24] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P.
Kegelmeyer, “Smote: synthetic minority over-sampling
technique,” Journal of artificial intelligence research,
vol. 16, pp. 321–357, 2002.

[25] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and
C.-J. Lin, “Liblinear: A library for large linear classifica-
tion,” J. Mach. Learn. Res., vol. 9, pp. 1871–1874, Jun.
2008.

[26] A. Girard, C. E. Rasmussen, J. Quinonero-Candela, and
R. Murray-Smith, “Gaussian process priors with uncer-
tain inputs? application to multiple-step ahead time series

forecasting,” 2003.
[27] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,

B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay,
“Scikit-learn: Machine learning in Python,” Journal of
Machine Learning Research, vol. 12, pp. 2825–2830,
2011.

	I Introduction
	II Problem Statement
	II-A PieceWise Smooth Hybrid Systems

	III Learning PWS Hybrid Systems
	III-A Initial Mode Assignment
	III-B Guard Identification
	III-C Learning Mode Dynamics through Gaussian Process Regression
	III-D Learning Reset Dynamics with Oversampling
	III-E Iterative Mode Assignment and Model Learning
	III-F Mode and Guard Classification

	IV Multi-step Prediction and Tracking
	V Experiments
	V-A Bouncing ball
	V-A1 Prediction and Tracking

	V-B Box pushing
	V-B1 Prediction and tracking

	VI Discussion

