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Abstract—In this work, we apply spectral graph theory meth-
ods to study the monotonicity and structural properties of power
redisiribution in a cascading failure process. We demonsirate
that in conirast to the lack of monotonicity in physical domain,
there is a rich collection of monotonicity one can explore in
the spectral domain, leading to a systematic way to define
topological meirics that are monotonic. It is further shown
that many useful quantities in cascading failure analysis can be
unified into a spectral inner product, which itself is related to
graphical properties of the transmission network. Such graphical
interpretations precisely capture the Kirchhoff’s law expressed
in terms of graph structural properties and gauge the impact of
a line when it is tripped. We illustrate that our characterization
leads to a tree-partition of the network so that failure cascading
can be localized.

I. INTRODUCTION

Power system reliability is a crucial part in the sustainable
development of modern society. Recent blackouts, especially
the 2003 and 2012 blackouts in Northwestern US [1] and
India [2], demonstrated the devastating economic impact a
grid failure can incur. In even worse cases where facilities
like hospitals are involved, such blackouts pose threat directly
to people’s health and lives. Cascading failure of power grid
components, especially the transmission lines, is the direct
cause of blackouts.

Because of the delicate interactions among power system
components, outages may cascade and propagate in a very
complicated manner, and typically exhibit quite different pat-
terns for different networks [3]. Such complexity originates
from the interplay between network topology and Kirchhoff’s
law, and is aggravated by possible hidden failures and human
errors involved. Existing work, roughly speaking, tackles this
difficulty in three ways: i) by resorting to simulation models
[4], which relies on Monte-Carle simulations and accounts
for the steady state power flow redistribution based on DC
[51, [6] or AC [7], [B] model, with refinements including
hidden failure [9], human erroneous response [5] etc.; ii)
by studying pure topological models [10]-[12], which poses
certain assumptions on the cascading dynamics (say failures
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propagate to adjacent lines with high probability) and infers
component failure propagation patterns from graph-theoretic
properties; iii) by investigating simplified cascading failure
dynamics [13], [14]. It is often challenging to make general
inferences across different scenarios due to the lack of under-
standing in structural properties of power redistribution.

Monotonic structures in a cascading failure process are
usually helpful in outage mitigation. For instance, mono-
tonicities are exploited in [15] to improve the computational
efficiency for a load shedding policy. However, as pointed out
by [16], monotonicity is the exception rather than the norm in
power redistribution. For example, power flow over a specific
branch can increase, decrease and even reverse direction as
cascading failure unfolds [17]. The failure of a line can cause
another line that is arbitrarily far away to be tripped [18].
Load shedding instead of mitigating the cascading failure, can
actually increase the congestion on certain lines [19].

In this paper, we take a different approach from existing
work to understand the monotonicity and structural properties
of a cascading failure process. In particular, we demonstrate
that in contrast to the lack of monotonicity in the physical do-
main, there is a rich collection of monotonicity one can explore
in the spectral domain. This allows us to systematically design
topological measures that are monotonic over the cascading
event. Then we define a spectral inner product that unifies
many useful quantities in existing cascading failure analysis.
This inner product is inherently related to graph properties of
the transmission network, revealing a graphical interpretation
of the power redistribution. Such graphical interpretations, in
contrast to the pure topological models in [10]-[12], do not
rely on any assumptions or simplifications on how the failures
propagate, but only reflect the Kirchhoff's law in a precise
way. The graphical interpretations suggest a tree-partition of
the grid network, which has the property that line failures can
be localized into the decomposed regions. This partition can
also be exploited to simplify and speed up the computation of
the line outage redistribution factors [20] that are widely used
in contingency analysis.

The rest of the paper is organized as follows. In Section
II, we present the cascading failure model and review relevant
concepts from spectral graph theory. In Section II1, we collect
and derive the basic properties of the Laplacian matrix under



the power redistribution setting. We then show there is a rich
set of monotonicity in the spectrum of the Laplacian matrix in
Section IV. In Section V, we show how an inner product from
the spectral domain unifies several useful quantities in cascad-
ing failure analysis and relate them to graphical properties. In
Section VI, we demonstrate that our characterization motivates
a tree-partition of the network so that line failures can be
localized and explain how such localization can be exploited to
speed up the computation of line outage redistribution factors.
We also present a counter-intuitive phenomenon on the impact
of lines with high spanning tree centrality. We conclude in
Section VIL

II. MODEL AND PROBLEM SETUP

In this section, we present our cascading failure model and
review relevant concepts from spectral graph theory.

Let I denote the set of real numbers. We reserve uppercase
symbols like 4, B, ' for matrices. The bold symbol 1 denotes
a vector of proper dimension whose entries are all 1. We also
use u; and ug; to represent the vectors of proper dimension,
with the i-th entry of w; and wug; being 1, the j-th entry of
ug; being —1, and all other entries being zero. A variable
without subscript usually denotes a vector with appropriate
components, e.g., p = (ps, i € N'). For any matrix 4, we use
AT A1 AT 1o represent its transpose, inverse and Moore-
Penrose inverse, respectively. For a matrix A4, A4 means the
matrix obtained from A by deleting either its last row or last
column or both, depending on the context. For a vector 2, we
use diag(v) to denote the diagonal matrix with entries from
v as main diagonal. The symbol % is reserved to represent the
time index in the cascading process. A symbol with index ¢
like A(z) represents the corresponding quantity at time .

We use the graph § = (ANT,€) to describe the power
transmission network before any line is tripped, where A" =
{1,...,m — 1} is the set of non-slack buses, n is the slack
bus, N+ =N U{n} and € € AT x A+ denotes the set of
transmission lines. The terms bus/node and line/edge are used
interchangeably in this paper. An edge in & is denoted either
as e or (i,7). We further assign an arbitrary orientation over
& so that if (4,4) € € then (4,4) ¢ £. The line reactance of e
is denoted as z..

Our cascading failure model mainly focuses on the dynam-
ics of line outages. More specifically, we consider a time
horizon T' of operation interest in the cascading process. At
each time ¢ € T, there is a set of lines that are already tripped,
which we denote as B(t). Let £(t) = £\ B{%) be the set of
remaining lines at time ¢, then the graph G(#) := (N1, E())
describes the active physical network at time ¢. In a cascading
failure process, the set of tripped lines expand over time:

B(t) C B(t+1), VteT

We assume that G(#) is connected and simple throughout the
operation period, thus our analysis applies until the network
breaks into islands. Once multiple islands are formed, we can
apply our analysis separately to each component.

We denote the power injection, phase angle at bus 7 as p; ()
and &;(¢) and denote the branch flow on link e as F.(¢). The
reactance matrix at time ¢ is denoted as X {(¢) = diag(z, : e

£(t)). Let n,m(t) be the number of buses and transmission
lines in G(t), respectively. The incidence matrix of G(t) is an
n % m(t) matrix C'(¢) defined as

1 if node ¢ is the source of e
Chre () = < —1
0 otherwise

if node ¢ is the target of e

With above notations, the DC power flow model can be written
as

p(t) = C(HP{)
XHPH =cwiow

where (1a) is the flow conservation constraint and (1b) is the
Kirchhoff's and Ohm’s law. At each time ¢, the power flow
redistributes over the netwark described by G(¢) according to
the DC model (1). After the power flow stabilizes, lines are
tripped based on certain rule, causing an expansion of the set
of tripped lines B(#). Different tripping rules, for example the
steady state deterministic rule [15], [16], the moving averaging
rule [21], [22] and the stochastic rule [21], have been proposed
in literature. We do not specialize to any of such rules as our
structural results apply to all of them. A choice of tripping
rule is only needed when one designs load shedding policy.
At each time ¢ = T, the (reactance weighted) graph
Laplacian matrix of G(¢) is the n x n symmetric matrix
Loy = C@E)X (t)~*C* (1), which is explicitly given by

(1a)
(1b)

ot i # 5, (6,9) or (7,5) € £(t)
L@y, = zkENz(t) Iz‘_.lcl =4
0 otherwise

where N;(#) is the set of neighbours of bus ¢ in G(¢). Tt is well
known that if the graph G (¢) is connected, then Lg,y has rank
n— 1 and any principal submatrix of Lg; is invertible [23].
Let Eg(t) be the matrix obtained from Lgy by deleting its
last row and column, which corresponds to removing the slack
bus. Then we see the matrix Agey = (fg(t)rl is always
well-defined.

As will be shown in Section I, the matrix Ag and the
Moore-Penrose inverse of Lg(t), denoted as L; (6 A€ useful
when solving P(¢) from the DC model (1). It is tempting to
conclude Agy = L;(t), that is Agy is a submatrix of L;(t).
This, however, is not true in general. Nevertheless, we show
in Section III that they are closely related in a precise way.

ITI1. BASIC PROPERTIES

In this section, we review and derive basic properties of
the matrices defined in Section II. For presentation clarity, we
drop the time index ¢ and subscripts G{¢) from our notations.

Let us first look at the Laplacian matrix . For any v € R",
we can compute

v Ly = Z z;jl(vi — 332 B0 ()
(BAee
Thus I is positive semidefinite and hence diagonalizable.

Moreover, equation (2) also implies the kernel of L is
span ({1}), the set of vectors with uniform entries.



The Laplacian matrix I appears in circuit analysis as the
admittance matrix (with a different weight), which explicitly
relates the voltage and current vector in a pure resistive
network [24]. It is shown in [24] that the effective resistance
between two nodes ¢ and 4 can be computed as

Ry=LL+Ll,—LL - L, (3)

Following a similar calculation, we can show that (3) gives the
effective reactance between the buses ¢ and j for the power
network. That is, assuming we connect the buses ¢ and § to an
external probing circuit, when there is no other injection in the
network, the power flow F;; (from the external circuit) into
bus ¢ and out from bus § (into the external circuit) is given as

8; — 8
and therefore the network can be equivalently reduced to a

single line with reactance R;;. When ¢ and j are directly
connected, physical intuition suggests

Pij =

Rz’j < Ty

as connection from the network can only decrease the overall
reactanice. We show in Section V that z;; — Ry; also carries
graphical meaning, proving its nonnegativity rigorously.

Next, we derive explicit formula for the branch flow vector
P in terms of the power injection p, from which we derive
a relation between LT and A. Substituting (1b} to (la) we
obtain p = L&. Therefore if 17y = 0, the solution @ is unigue
after quotient away the kernel span ({1}). Noting this is also
the kernel of C'7, we see that P = X ~1C78 is uniquely
determined. Towards the goal of an explicit formula, we can
proceed in two ways. The first way relies on the fact that LTp
always gives a feasible # and therefore

P=X"tc"Lp 4

The second way is to set the phase angle at the slack bus to
zero, which implies that

?:f_lﬁz Ap

where 8 and 7 are the vector of non-slack bus phase angles and
injections. Denote by (' the matrix obtained from removing
the last row of ', we then have

P=X"'T8=x1C" 4p (5)

Consider a line (2, 1) € £ with neither 7 nor j being the slack
bus. Under the injection p; = —p,; = 1, by equating the branch
flow F;; computed from (4) and (5), we obtain that

Li+ L}j - L;[j - L;[i =Au+ Ay — Ay — A (6)
This tells us although A and LT are generally not the same,
they do satisfy the equation (6). It turns out that L' is more
amenable to monotonic analysis for procedural properties, as
in Section IV, and A is easier to manipulate when we derive
one-step results for power redistribution, as in Section V.
Equation (6) precisely relates results of these two types.

IV. SPECTRAL MONOTONICITY

In this section, we present our results for monotonicity in
cascading failure processes. Our characterization is related to
known monotonicity results and suggests a systematic way to
define monotonic topological metrics over a failure event.

Our approach focuses on the Laplacian spectrum of the
system. In contrast to the lack of monotonicity in the physical
system, when we look at the process from the spectral domain,
there is in fact a rich set of monotonicity one can explore. They
are built upon the following fundamental monotonicity result.

Theorem IV.1. Ler A1(t) < Ao(t) < -+ < An(t) be the
eigenvalues of Lgy. Then \y(t) is a decreasing function in
t for each i. Moreover, for each t, as long as new lines are
tripped at fime t, there exists i such that the decrease is strict

The Laplacian eigenvalues usually encode information on
how well the graph is connected and how fast information can
propagate in the network, see [25] for example. Therefore this
result tells us that, as the cascading failure process unfolds,
there is a decreasing level on the network connectivity and
its “mixing ability”. Theorem IV.1 can be interpreted as a
fundamental property for the network topology during the
cascading process, which is independent of the specific power
flow dynamics and failure propagation patterns. Although this
result only reflects the network topology evolution, we demon-
strate in Corollary IV.6 that by applying such monotonicity
properly, it is possible to devise monotonic properties that are
directly related to the power flow dynamics.

To prove Theorem IV.1, we first derive an eigenvalue
interlacing result for generic weighted Laplacian matrices. Its
special case where the graph is unweighted and only a single
line is removed is known in literature [26].

Proposition IV.2. Let G be a weighted graph with positive
line weights {w. "} and let H be a subgraph of G obtained by
removing exactly s edges from G. Denote Ay < Ao < ... < Ay
and p < po < ... < py, to be the eigenvalues of Lg and
Ly, respectively. Then for any k=1,2,.. . n, we have

te < Ag (7
and for k =s—+ 1,8+ 2,...,n, we have
Ap—s < pg (8)

As an immediate corollary, we can deduce the following
well known result for s = 1.

Corollary IV.3. With previous notarions, when H is obtained
by removing a single edge from G, we have

A e <l A = e <A,

We now specialize the generic weighted Laplacian matrix
in Proposition IV.2 to the reactance weighted Laplacian matrix
as defined in Section II. Note that in a cascading process
described by the graph sequence {G{#)}, .7, G(t 4+ 1) is
obtained from G(#) by removing the tripped lines incurred
during time ¢. Therefore from Proposition IV.2 we know the



functions A;(¢) as defined in Theorem V.1 are monotonically
decreasing.

Proof of Theorem IV.]. Based on the previous discussion, it
suffices to show that for each ¢, we can always find ¢ such
that the decrease is strict. But this is immediate after noting

ZAi(t +1) = tr(Llgen) = Z B

e€E(t+1)

<< Z 33;1 = tr(Lg(t))

ec&(e)
= M)

where the inequality is strict because there are lines tripped at
time ¢. |

Such monotonicity of Laplacian eigenvalues suggests that
all metrics measuring the system from its spectrum should be
monotonic as well. The most general result we can conclude
along this line is the following.

Corollary V4. Let ||-|| be a unitarily-invariant norm on ihe
set of nx n marrices. Then |||Lg(t) ||| is a decreasing function

of t.

Proof. This is an immediate result from the bijective corre-
spondence between unitarily invariant norms on 7 x . matrices
and symmetric gauge functions applied to the matrix singular
values [27], because symmetric gauge functions are monotone
in the vector components. |

Examples of unitarily-invariant norms include the spectral
norm, nuclear norm, Frobenious norm, Schatten p-norms and
Ky-Fan k-norms etc., each of which suggests a different
way to measure the system monotonicity. For example, the
monotonicity in nuclear norm recovers the fact that the sum
of all link reactances decreases in a cascading failure process.

It is well-known from singular value decomposition that the
nonzero eigenvalues of L;(t) are given as 1/A;(¢), with the
same corresponding eigenvectors as Lg;. Therefore Theo-
rem [V.1 implies the eigenvalues of L; 4, are monotonically
increasing. Tt is tempting to conclude from this fact that
UTL; v is monotonically increasing for a fixed v € R,
but the situation becomes tricky after we notice that the
eigenvectors of Lg) also evolve with ¢. Fortunately, we can

still prove such monotonicity with careful algebra.

Proposition IV.5. For any v  R®, the function V(i) =

i O . .
(2] Lg(t)’b‘ L§ tncredsing in t.

Proof. Without loss of generality, let us assume there is only
a single edge (7, 7) tripped at time ¢. The general case follows
by tripping the lines one by one.
Under such assumption, by direct computation we have
Lg(t+1) = Lg(t) — Sb‘z_JluzJuS;
It is shown in [15] that this rank one perturbation translates
in its Moore-Penrose inverse to the equation

1
t t T
L+ = L} wpul L ©)

L i
ij Rij 170

i _
Gt4+1y —

where R;,; is the effective reactance between bus ¢ and
defined in (3). Recall we always have z;; — Ry > 0 for
directly connected ¢ and 7 (as long as after removing (7, ),
the network is still connected), we thus see the second term
in (9) is positive semidefinite. The monotonicity of V (¢) then
follows.

The network tension [16] at time ¢ is defined to be H () =
P#H)TX () P(t), which measures the aggregate load of the
network and is shown to be an increasing function of ¢ in
[16]. We now show this is a special case of our result.

Corollary IV.6. H(¥) is an increasing function in ¢.

Proof. We can calculate that (for notation simplicity, we drop
the subscript )

PIXP=p" LLMX XXM LLp
=" LjLgLip
=p! Lip

By Proposition IV.5 we then know H(¢) is monotonically
increasing. O

The equation (9) not only shows the monotonicity of H (¢),
but also implies the precise increment of H (%) at each ¢ is
inversely proportional to the amount of reactance reduction of
(i,7) from the network at time ¢. Such reduction is in fact
closely related to the spanning tree centrality [28] of (7, 7), as
we explain in Section V.

V. SPECTRAL INNER PRODUCT

In this section we define an inner product in the spectral
domain and explain how it relates power redistribution to
graphical properties. Our result in this section is for power
redistribution in one step, thus we drop the time index ¢ and
subscript G(¢) from all the notations.

For a real function defined on A, we can identify it with a
veclor in B™ 1. The correlation of two functions defined on
the non-slack buses can thus be measured by inner products
between the corresponding vectors in E™ 1. It tumns out that
a particularly informative inner product in our application is
from the spectral domain, defined as follows.

Definition V.1. For any two vectors z,y < R™ !, their
spectral inner product is defined as

LB, = T Ay

It is straightforward to check that {-,-) , defines an inner
product as A is symmetric and positive definite. To see why
it is called the spectral inner product, let pq < po < -+ <
1tn—1 be the eigenvalues of A with corresponding orthonormal

eigenvectors vy, va,...,vy—1. Then we have
n—1
(T Yo = ZMk(ITUk)(yT'Uk)
k=1

Recall A and I share the same eigenvectors as they are inverse
of each other. We thus see that for z and y, (z,v), is the
inner product of their spectral representations scaled by the
cotresponding eigenvalues.



The significance of this spectral inner product is twofold.
First, many useful quantities in cascading failure analysis can
be expressed as the spectral inner product of the corresponding
indicator functions, which we will define shortly. Second, the
spectral inner product carries explicit meaning in the graphical
structures of the underlying network, giving topological inter-
pretations of such spectral correlation. This relates structural
properties in power redistribution to graphical properties of the
physical network and reveals the precise measure to gauge the
immpact of certain buses/lines in a cascading failure process.

To elaborate on the first point, let us see how the spectral
mner product unifies some useful quantities. For a bus ¢ € A/
and line (k,j) € £, we say u; € R*! and u;, € R™!
are their indicator functions respectively. Such association is
natural and turns out to be useful. Indeed, by (6), we see the
effective reactance of an line (7, j) can be rewritten as

Ry = {uig, wig) 4

which is the squared induced norm of its indicator function.
As another example, we can examine the generation shift
sensitivity factor [20], denoted as D;., which measures how
much the change in the injection to bus ¢ affects the branch
flow on line e. Denote ¢ = {j, k) with 7,k € N, then [20]
computed [);, = A;; — A;p,. Using the spectral inner product,
we can simply write

Do = (s, tjn) 4

which is the spectral correlation between the indicator func-
tions of bus ¢ and edge e.

The most relevant quantity in understanding the power
redistribution in a cascading failure process is the line outage
redistribution factor [20], which we denote as K,;. When the
line e is tripped, K,: is the ratio between the branch flow
change over line & and the original branch flow on e before it
is tripped. Writing e = (z,7),é = (w, 2) with ¢, j,w,z € N,
the constant K_; 1s explicitly given as [20]

Kop— Ze Azt — Ao — A

“ (Asi + Aj; — Ayj — Aji)

g Lg —
which can be rewritten using spectral inner product into

R
- — {%ig, Wig) 4

Tg T
This quantity is proportional to the spectral correlation be-
tween the indicator functions of e and &, and is inversely
proportional to the reactance reduction x;; — ;.

To facilitate our discussion on the second point, more
notations are in order. Given a subset F of £, we use 7g to
denote the set of spanning trees of G with edges from F. For
two subsets Ay, A2 of AT, we define T (A, Az) to be the set
of spanning forests of & consisting of exactly two trees that
contain A7 and Ao respectively. See Fig. 1 for an illustration
of T(N1,N2). Given a set E of edges, we write

X(EB) =[] =
ec E

Then the celebrated All Minors Matrix Tree Theorem [29]
applied to the matrix L implies

(10)

Fig. 1. An example element in 7({N1,N2), whete circles correspond to
elements in /Ay and squares correspond to elements in A3, The two spanning
trees containing A7 and Ao are highlighted as solid lines.

Proposition V.2. The determinant of the matrix obtained by

deleting the i-th row and j-th column of L, denoted as &,
is given by

det (T7) = (- 1) x(E)
BeT{i,5}{n})
This leads to the following graphical interpretation of the
spectral inner product.

Proposition V.3. For any 1,5 € N, we have

(i = > BeT ({15} dnh) X(E)
! > pet, X(E)

Therefore the spectral inner product captures the graph
topological information on its spanning tree distribution. The
practical meaning of such interpretation in power redistribution
setting will be clear in Theorem V.6. Before that, we first
present two corollaries revealing graphical interpretations of
the aforementioned quantities.

Corollary V4. For i,j € A, we have
ZEETS\{(W} X(E)
ZEGTE X(E)

In particular, we always have x;; > R;; and the inequality is
strict if the graph after vemoving (i, ) is connected.

@ij — Bij = 245 -

This result tells us that for an edge (%, j), the reduction ratio
of its reactance coming from the network is exactly given as
the (weighted) portion of spanning trees not passing through
(%,7) among all spanning trees. Thus more connection from
the network leads to more reduction in the effective reactance
on (£, ), which agrees with our physical intuition.

We remark that this reactance reduction ratio is closely
related to the spanming tree centrality measure [30]. Indeed,
from the very definition of spanning tree centrality, we have

zEETE\{(w)} X(E)
ZEeTg X(E)

where ¢(; ;; denotes the spanning tree centrality of (4, 7). This
implies that

teag =1

Rij = @35¢6.5)



A

Fig. 2. An example element in 7 ({¢,w},{j,2}). The spanning trees
containing {4, w} and {j, z} are highlighted as solid lines.

or in other words, in a power redistribution setting, the
spanning tree centrality precisely captures the ratio of effective
reactance compared to the line reactance. In fact, this relation
(or more precisely the effective resistance counterpart) is
the theoretical foundation for the state-of-the-art algorithm
in computing spanning tree centrality measures. See [28] for
more details.

Corollary V.5. For i,j,w,z € N, we have

1
<’lLi iy Uw2> - < I
4 A Yper: X(E) EeT({%:}:{j,Z})

- > X(E))
BeT({i2}, (w))

Note that (i, ) and (w, z) are not required to be lines in &£
in this result. When e = (¢, 7) and é = (w, z) are indeed lines
in &, the above quantity reduces to the spectral correlation of
e and é. As we will discuss shortly, the sign of this spectral
correlation in fact fully determines the sign of K... Similar
formula for D;. can be deduced, which we omit here in light
of space limitation.

We are now ready to derive an alternative formula for ;.

xX(E)

Theorem V.6. Let ¢ = (i,7),é = (w,z) be edges with
i, j,w,2 € N. We have

1 ZEGT({i,w},{j,z}) x(E) — ZEGT({i,z},{j,w}) X(E)

Keé -
Te ZEET&\{(m’)} X(E)
(11)

Proof. This follows from dividing the equation in Corollary
V.5 by the equation in Corollary V.4. O

Despite the complexity of (11), all terms in this formula
carry clear meanings, as we now explain.

We first focus on the numerator of (11), in which the
sum is over the spanning forests T ({i,w},{j,2}) and
T{%,2},{j,w}). Bach element in 7 ({i,w},{j,2}), as il-
lustrated in Fig. 2, specifies a way to connect ¢ to w and
j to z through trees and captures a possible path for edge
(i,7) to “spread” impact to (w,z). Similarly, elements in
T{i,2},{j,w}) captures possible paths for edge (7,7) to

€ @ es
[ J [
€1 €4
[ J @
€2 ¢ €3

Fig. 3. A ring network with clockwise orientation.

“spread” impact to (z,w), which counting orientation, con-
tributes negatively to K.s. Therefore the numerator in (11)
says that in power redistribution, the impact of line e is passed
to é through all possible spanning tree paths connecting e and
é, counting orientation. The relative strength of the positive
and negative impacts determines the sign of K.;.

Comparing (11) and Corollary V.5, we see that the signs of
K.: and (e, ¢é) , are the same'. Thus the spectral correlation
between two edges precisely captures the relative strength of
the positive and negative impacts from e to é. When the
two impacts are of equal strength, e and é are spectrally
orthogonal. Such intuition allows us to decide the sign of Kce
in certain cases without any computation. For example, in the
ring network shown in Fig. 3, by inspecting the graph, we
conclude that

Ke1es < Oa o = 273a47576

as e; can only spread negative impacts to other lines.

Now we focus on the denominator of (11), in which the sum
is over all spanning trees that do not pass through (¢, 7). Each
tree of this type specifies an alternative path that power can
flow through if (4, 7) is tripped. When there are more trees
of this type, the network has better ability in absorbing the
impact of (4,7) being tripped. Therefore the denominator of
(11) precisely says that the impact of (i, 7) being tripped to
other lines is inversely proportional to the sum of all alternative
tree paths in the network. The 1/x, constant in (11) captures
the intuition that lines with larger reactance tend to be more
robust against failures of other lines.

The formula (11) does not exhibit computational advantage
comparing to existing numerical methods for computing K.
The significance of this result lies in its implication in struc-
tural properties of power flow redistribution and the fact that it
allows us to make general inferences by simply looking at the
network topology. As an example, we deduce the following
result from (11), which is also shown in [16], but with longer
proof.

Corollary V.7. For adjacent lines e = (i,7) and é = (i, k)
with 1,7,k € N, we have

Keé 2 0
Proof. For such e and é, the negative term in the numerator
of (11) is over the empty set and thus equals to 0. O

'We overload the notation (e, &) 4 to represent (ug;,uwz) 4, Where e =
(4,7) and é = (w, z).
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Fig. 4. An illustration of the reduced graph G. This is NOT a tree-partition
due to the multiple lines between A7 and Ao

VI. APPLICATIONS

In this section, we demonstrate two applications of our
characterization (11).

A. Tree-partition for failure localization

We present a type of graph partition motivated by (11),
which has the property that line failure impacts over a cas-
cading event can be localized. Given a network G = (A/ 1, &),
we say a collection P = {Ny, N3, -+ N} of subsets of
NT forms a partition of G, ift N; NN = 0 for i £ j and
Uk NG = N For any partition, we can define a reduced
multi-graph Gz as follows. First, we reduce each subset V; to
a super node. The set of all super nodes forms the node set for
Gp. Second, we add a line connecting super nodes \; and N
for each pair of n;, n; with the property that n; € A, n; € N;
and »; and »; are connected in &. See Fig. 4 for an illustration.
We say a partition 7 is a free-partition if the reduced graph
Gp is a tree. When this is the case, for n; € N;,n; € N;
such that (n;,n;) € £, the line (n;,n;) is said to be a bridge
connecting A; and A;. When a line has both of its end points
in A, we say the line itself is in Af;.

The significance of a tree-partition lies in the fact that
for such partition, when a line in Aj; is tripped, all lines in
N with 7 = 4 are not affected and therefore the failure is
localized. We remark that such localization only holds until
the network becomes disconnected, because a line failure in
N that disconnects the network can cause branch flow changes
in bridge lines connecting A; and A, which then indirectly
cause branch flow changes for lines in A/j.

To see why the failure can be localized, we first pick two
arbitrary bus subsets from 7. Without loss of generality, we
assume the two subsets are A/] and Ay Let e = (4, ) € N}
and ¢ = (w,z) € N5 with 4,7,w,z € N. We now show
K. = 0. Indeed, since P i3 a tree-partition, any path from
4 to w must go through all bridge lines on the path from A/
to Ny in the reduced graph Gp. The situations for any path
from j to z, from 7 to z and from j to w are similar. This
implies T({i,w},{j,2}) = T({i, 2}, {j,w}) = 0. By (11),
we then know K.; = 0, or in other words, when e is tripped,
the branch flow on ¢ does not change. Next, for each bridge

line, because of the power conservation (la), its branch flow
is uniquely determined by the aggregate injections of all super
nodes. Therefore, as long as the network ¢ is still connected
and thus the aggregate injections at all super nodes remain
the same, the branch flows on all bridge lines are unchanged.
As a result, the failure localization holds until the network G
becomes disconnected.

A direct benefit of finding a tree-partition is that we can
skip the computation of K¢ for e and é in different partition
regions. This benefit can be tremendous even for a coarse
partition. For example, given a network with m edges, if we
can find a tree-partition that divides the edges roughly equally
to two regions so that each reglon contains about /2 edges,
then we can skip 2 x 2t x & = - many computatlons of K.,
about a half of all palrs of Kee (note that K. is generally
not symmetric in ¢ and €). If we can find a tree-partition
that separates the lines roughly equally to k regions, a similar
calculation shows that about 1 —1/k portion of the calculation
of K¢ can be skipped. Moreover, a tree-partition 7 for G(0) is
also a tree-partition for G(¢) for any ¢ € T, thus the calculation
of a good P incurs only a one-time computation effort, but
comes with the reward of skipping a significant computation
time for Ks over the whole operation period.

Although this localization phenomenon is only until the
graph becomes disconnected, it guarantees that in a contin-
gency scenario, the partitioned regions are independent from
each other for at least a short period. This can be crucial
as it creates a window that allows load-shedding control to
take over in time and prevents more severe failures from
happening. A subtle point suggested by this phenomenon is
that in practice, even for the purpose of secure operation of the
grid, it can be beneficial to deactivate certain transmission lines
between major geographical regions so that a tree-partition of
good quality can be formed. This not only localizes the impact
of line failures to its own region, but also clearly implies
the remaining bridge lines are the key components we should
protect, allowing budget to be more purposefully spent.

B. Counter-intuitive Impact of Critical Line Reactance

It is tempting to conclude from (11) that the reactance of a
line with more spanning trees passing through tends to have
impacts on K for more e and € pairs because such reactance
appears in the denominator term more often. Indeed, spanning
tree centrality as a measure on line importance seems to also
support this conjecture. We now, however, argue that (11} in
fact leads to almost the opposite conclusion.

To illustrate this, we consider the limiting case where all
spanning trees pass through a line e. Now pick arbitrary
edges e = (i,j) and é = (w,z) and let us look at the
spanning forests 7 ({i,w} , {7, z}). Note that for each element
n 77w}, {4 2}), by adding the edge e = (7, ), we can
form a spanning tree of the whole network &. Since all
spanning trees pass through &, we see € must be part of every
spanning forest in 7 ({4, w}, {7, z}), which implies that the re-
actance of e appears in ZEeT({i,w} 4] x(E) as a common
factor. Similar argument applies to > p ., ). {;,,w})X(E)
Finally, the denominator of (11) also has the reactance of
€ as a common factor since all spanning trees pass through



e. Therefore, the reactance of & is cancelled out and does
not impact K¢ at all. This limiting case argument can be
generalized and suggest that the reactance of lines with high
spanning free centrality in fact has small impact on how the
cascading failure propagates in other parts of the network.

This, of course, does not imply that such lines are not
important. Indeed, for a line with all spanning frees passing
through, it is always a bridge line as we defined in Section
VI-A, and therefore its removal results in the whole netwark
being disconnected. What this counter-intuitive fact does imply
is that the spanning tree cenfrality measure itself is not
sufficient to identify the key components from a cascading
failure perspective. The spectral correlations among the lines
also play an important role.

VII. CONCLUSION

In this work, we study the monotonicity and structural prop-
erties of power redistribution in a cascading failure process.
We demonstrate that there is a rich collection of monotonicity
one can explore in the spectral domain and many useful quan-
tities can be unified into a spectral inner product, which relates
these quantities to graphical properties of the transmission
network in a precise way. Our characterization can be used to
speed up the computation of line outage redistribution factors
for the sake of secure grid operation.

There are several future directions for this work. First, as we
have shown in Section IV, a general class of quadratic forms
are monotonic in a cascading failure process. It is of interest to
see whether we can capture some important metrics about the
grid by choosing v properly. Second, the spectral inner product
has rich structures from a pure mathematical perspective such
as Cauchy-Schwarz inequality. It can be useful to understand
how such mathematical properties translate into intuition in
a power redistribution setting. Third, to our best knowledge,
the problem of finding a good tree-partition as we defined in
Section VI-A has not been studied in either graph-theoretic or
algorithm design community. It will be useful if this problem
can be more systematically studied and a general purpose
algorithm can be devised. Finally, we are still investigating
how our understanding in such structural properties can help
us design optimal load shedding policies.
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