
A Pareto Framework for Data Analytics on Heterogeneous Systems: Implications for

Green Energy Usage and Performance

Aniket Chakrabarti, Srinivasan Parthasarathy, and Christopher Stewart

The Ohio State University

chakrabarti.14@osu.edu,{srini,cstewart}@cse.ohio-state.edu

Abstract—Distributed algorithms for data analytics partition
their input data across many machines for parallel execution. At
scale, it is likely that some machines will perform worse than
others because they are slower, power constrained or dependent
on undesirable, dirty energy sources. It is challenging to balance
analytics workloads across heterogeneous machines, because the
algorithms are sensitive to statistical skew in data partitions. A
skewed partition can slow down the whole workload or degrade
the quality of results. Sizing partitions in proportion to each
machine’s performance may introduce or further exacerbate
skew. In this paper, we propose a scheme that controls the
statistical distribution of each partition and sizes partitions
according to the heterogeneity of the computing environment.
We model heterogeneity as a multi-objective optimization, with
the objectives being functions for execution time and dirty energy
consumption. We use stratification to control skew. Experiments
show that our computational heterogeneity aware (Het-Aware)
partitioning strategy speeds up running time by up to 51%
over the stratified partitioning scheme baseline. We also have a
heterogeneity and energy aware (Het-Energy-Aware) partitioning
scheme which is slower than the Het-Aware solution, but can
lower the dirty energy footprint by up to 26%. For some analytic
tasks there is also a significant qualitative benefit when using such
partitioning strategies.

I. INTRODUCTION

Distributed algorithms for data analytics partition their input

data across many machines. The de-facto approach typically

involves a simple scheme such as random or round-robin. A

partitioning scheme assigns data to machines. For example,

random partitioning schemes choose host machines by sam-

pling a uniformly random probability distribution. A data parti-

tion is the set of data assigned to a machine. The size and con-

tent of each partition can significantly affect the performance

and quality of analytics. Size matters because some machines

within a rack or data center perform worse than others. Slow

machines should process small partitions. Typical solution in

this space is a work stealing [1] approach (whichever node fin-

ishes its share of partitions, randomly selects a partition from

another slower node). However, traditional workstealing based

solutions will not scale for distributed analytics workloads as

these workloads are typically sensitive to the payload (content)

along with the size of data. Content matters because statistical

skew across partitions can slow down an analytics algorithm

and degrade the quality of its results.

Consider frequent pattern mining [2]. For large datasets, the

distributed algorithm simply divides the data into partitions

and runs frequent pattern mining locally on individual parti-

tions. Consequently some of the locally frequent patterns are

not globally (considering entire data) frequent and hence an

additional scan of the generated candidate patterns is required

to prune those. Essentially the total number of candidate

patterns represents the search space – the more the number

of candidate patterns, the slower the run time. These false

positive candidate patterns arise due to the statistical skew

across data partitions.

An approach [3] for data partitioning in the homogeneous

context based on data stratification (grouping similar or related

datum into strata) and then leveraging this information for

data partitioning was proposed recently. However, a limitation

of this approach is that it does not account for the inherent

heterogeneity present in modern data centers. Most real-world

data centers are increasingly heterogeneous in terms of both

their computational capabilities as well as the available clean

energy they use. There are many reasons for such heterogeneity

such as equipment upgrades and power-performance tradeoffs

within modern processor families. We describe the types of

heterogeneity in section II.

In this work we present a partitioning scheme for data

analytics on heterogeneous clusters. Our approach scans the

data before initiating the analytics workload and identifies

similar content. It then builds partitions that reflect the global

distribution of data and relative processing capacity of each

node. Our approach overcomes several challenges. First, we

significantly reduce resources needed to find similar content.

We use a lightweight data sketching approach that works

in one pass using only in-memory computation. Second, we

profile each machine’s processing capacity by using small,

samples to benchmark the target analytics workload. These

samples should be representative of the partitions on which

the actual algorithm will run. And then we learn the execution

time objective function using progressive sampling, where the

samples are representative of the partitions. We take samples

of increasing size and run the actual algorithm on them to

measure time. We then fit a function to predict execution

time given the input data size. The dirty energy consumed by

each partition depends on the execution time on each partition

and the amount of renewable energy available to the physical

server hosting that partition. To model the renewable energy

availability we use the PVWATTS simulator [4] from NREL.

Combining this with the aforementioned execution time func-

tion, we get our objective function for predicting the total dirty

energy consumed by a job. Our goal is to minimize the total

dirty energy consumption as well as minimize the maximum

running time across all partitions. Hence we frame a multi-

objective optimization problem, where the objective function

is essentially a weighted average of the objective function

with respect to execution time and the objective function with

respect to dirty energy consumption. The weighing parameter

controls the tradeoff between speed and energy consumption.

The solution to the optimization problem gives the partition

size distribution. This results in well load balanced execution

of the job.

Specifically the contributions of this paper are as follows:

• We characterize the innate heterogeneity in today’s cloud

computing environments. We explain why special care is

needed while accounting heterogeneity in case of distributed

analytics algorithms. We show that to provide time and energy

aware solution, we need to model the hardware specifications

as well as the underlying data distribution.

• We provide a simple yet principled approach to model the

heterogeneity problem in the computing environment. We

describe a method to learn the objective function with respect

to the execution time by using progressive sampling technique.

This method is aware of both the machine capacities and

the content of data. We frame a multi-objective optimization

problem for time and energy, which can be solved efficiently

using linear programming technique.

• We build our partitioning framework as a middleware on top

of the popular NoSQL store Redis. We conduct a thorough

testing of our framework on three popular data mining work-

loads on five real life data sets and found out that we get up to

51% reduction in time while optimizing for time only and we

get up to 31% reduction in time and 14% reduction in dirty

energy consumption when we optimize them simultaneously.

II. MOTIVATION

Data centers are often heterogeneous in terms of the per-

formance of their constituent systems. This is inevitable since

nodes fail periodically and are often replaced with upgraded

hardware. Even when nodes have similar processing capacity,

the processing rate of individual virtual machines can still vary.

For example, cloud instances hosted on Amazon EC2 with the

same hardware specifications exhibit 2X variation in through-

put [5]. Another type of heterogeneity increasingly common

to data centers is the varying dirty energy footprint of different

physical servers. Some leading contemporary designs include:

1. [6] proposes to put the grid ties and renewable supplies

at rack level or individual server level rather than at the data

center level. This allows data centers to concentrate the green

energy as much as possible to the users requesting it.

2. iSwitch [7] envisions that in future data centers, different

racks will have different power sources, some might be fully

powered with green or dirty energy, while some racks might

be powered by both and jobs will be placed to minimize the

usage from purely grid tied racks (guarantees availability).

3. Another design gaining prominence [8] is the geo-

distributed data centers, where jobs are scheduled to use

servers from different geographical regions to maximize the

use of green energy.

Additionally, a key challenge, for a large class of analytic

workloads running on such data centers, are their irregular

access patterns and their payload (input parameters, data skew)

dependency. Simply partitioning the data while accounting for

heterogeneity alone will lead to to sub-optimal solutions. The

reason is, the time taken to process a partition of data is depen-

dent on the statistical distribution of data as well as the capabil-

ities of the node (processing speed, green energy harvesting).

Here we propose a novel framework that partitions data

in a payload-aware way such that the total execution time

is reduced while simultaneously accounting for the dirty

energy footprint of individual servers. Importantly we note

that optimizing for energy (at least the way we have described

it) is somewhat at odds to optimizing for performance – in

other words there is a Pareto-optimal tradeoff to be explored

here [9]. To reiterate, we note that for the problem we tackle

in this paper, optimizing for energy is not equivalent to

optimizing the “race to halt” (or performance) [10].

III. METHODOLOGY

The key elements of our methodology are: i) the specific

tasks (which in the context of big data applications are

irregular and data dependent in nature); ii) the heteroge-

neous processing capacity within the data-center-of-interest;

iii) the heterogeneous energy footprint within the data-center-

of-interest; and iv) the inherent data distribution of the pay-

load. Specifically we seek to estimate task complexity, hetero-

geneous processing capability, clean energy availability within

the data center, and payload characterization, respectively. We

propose to estimate these quantities as follows. First, in an

effort to simplify the model we couple the first two elements

and seek to estimate the task complexity on a specific system

(set of individual machines) by operating on a small sample

problem. We note that this estimate will vary across different

data analytic tasks and across different datasets (a desirable

property), but is a one-time cost (small) and will be amortized

over multiple runs on the full dataset. Second, for clean energy

availability we estimate green energy availability by relying

on a forecasting strategy. Finally, we leverage the idea of data

stratification for characterizing the payload distribution and to

facilitate a partitioning strategy that accounts for both energy

as well as processing heterogeneity.

Using the estimates derived (as above) our proposed so-

lution casts the partitioning problem as a multi-objective

optimization. The solution to this problem is then used to

automatically devise an appropriate partitioning strategy in the

presence of environment heterogeneity. The key components

of our partitioning framework (Figure 1) are: i) a task-specific

computational heterogeneity estimator; ii) available green en-

ergy estimator; iii) data stratifier (for payload characterization);

iv) a Pareto-optimal modeler and v) a data partitioner.

A. Task-specific Heterogeneity Estimator (I)

As described earlier, in a heterogeneous environment, the

time taken by a machine for a specific task depends on

the available resources of that machine (speed, time-share,

Fig. 1. The entire framework

and memory capacities), the underpinning complexity of the

task as well as the dataset characteristics (size, statistical

distribution of payload). In order to model the task specific

heterogeneity, we derive a utility function f for execution

time that accounts for task complexity and available machine

resources. Given a sample input payload, an algorithm and a

machine, this function can estimate the execution time of that

specific task on that payload in the given machine.

We learn the utility function for time f by adapting progres-

sive sampling [11] as follows. We take multiple samples of the

input data while increasing sample size from 0.05% up to 2%

of the data, and run the actual algorithm on these samples

and note the execution time for each run on each node in the

system. From these (sample size, execution time) pairs, we fit a

linear regression model for predicting runtime of the algorithm

on any input size. We discuss this choice in more detail in

section III-D. We learn a regression model specific to each

node in the cluster. This accounts for the difference in terms

of machine speed heterogeneity as we now have execution

time models for each machine. This is better than using the

stipulated machine CPU speed in three aspects:

1. The CPU speed does not always reflect the true processing

rate of an algorithm as there are other factors impacting the

speed of an algorithm such as amount of IO required, cache

miss pattern, memory access pattern and so on.

2. In virtualized environments, multiple virtual servers are co-

located on the same physical host. Two virtual servers with

exactly the same configurations could still exhibit different

processing rates. One possible reason could be that one of

the virtual servers is located on a physical machine which has

extremely high load at that instance of time. So the utility func-

tion f cannot be static, and it has to be learned dynamically.

3. The processing time also depends on the distribution of

the data for most data mining algorithms, and the CPU speed

cannot capture that aspect.

Our regression model evidently solves problems 1 and 2, as

we are running the actual algorithm on the samples, the model

learned takes into account the factors such as CPU to IO ratio,

cache and memory access patterns and so on. This model

can also solve the problem described in the 3rd point, i.e.

data distribution is also a factor in determining runtime, if we

can guarantee that the samples generated during progressive

sampling phase are representative of the final data partitions

on which the algorithm will run on. We can do this by the

stratification process which is described in section III-C.

The total execution time for a particular algorithm on node

i will be f(xi) = mixi + ci, where mi, ci are the learned

regression coefficients for node i and xi is the number of data

elements on node i.

B. Available Green Energy Estimator (II)

In order to account for the dirty energy footprint across indi-

vidual machines, we need to predict the amount of renewable

energy available to each machine. Hence we need a utility

function GE, which can predict the amount of renewable

energy available to a machine over a time interval. In future

we expect such information will be provided by the data center

service provider in terms of carbon ratio guarantee or carbon

budget. In the current context, we can model the renewable

energy availability in a manner similar to Goiri et al. [12].

According to this model, available renewable energy at hour

t is,

GE(t) = p(w(t))B(t)

where B(t) is renewable energy available under ideal sunny

conditions, w(t) is the cloud cover and p(x) is attenuation

factor. p(x) and B(t) are learned from historical data and w(t)
is available from any weather forecast service. To compute

availability over a interval, one can sum the GE function over

that interval.

Concretely, for the purposes of this work, we leverage

the PVWATTS simulator [4] to obtain energy traces for

different geographic locations at different points in time. The

simulator takes as input the specifications of the solar panel

and the location of the solar panel, and based on NREL’s

weather database and weather models, it outputs the renewable

energy production. Though the simulator provides per hour

average, one can rescale it to per second average for greater

precision. Again we will learn separate models for nodes

based on which geographical region the node is from. So

for dirty energy footprint of a node for hour t, we can use

g(xi) = Eif(xi) −
∑f(xi)

t=1 GEi(t), where Ei is the total

energy consumption rate of node i, xi is the number of data

elements in node i and GEi(t) is the predicted green energy

for the hour t for node i.

C. Data stratifier (III)

Stratification is the process of dividing the data objects

into multiple mutually exclusive groups, where each group

is called a stratum, and such a stratum exhibit homogeneity.

The job of the stratifier hence is to cluster the input data

(payload) into a set of strata where each stratum consists

of similar data elements . Such a stratification can then be

leveraged by our modeler, in conjunction with estimates on

computational heterogeneity and green energy availability, to

produce a Pareto-optimal partitioning strategy.

The challenge in the stratification step is to do so efficiently

in the presence of complex data elements of varying lengths

or dimensions (e.g. documents, transactions) while modeling

a range of data types from structured (trees, graphs) to

unstructured (text). For this purpose, we first sketch the input

data to low dimensional sets using a domain specific hash

function and then we use a clustering algorithm similar to the

Kmodes algorithm to create the strata as outlined previously

by Wang et al. [3].

1. Represent the high dimensional data as a set of items.

Currently we support tree, graph and text data. For trees

we first represent them using Prufer sequences [13]. We

then extract pivots from the Prufer sequences using the least

common ancestor relationship in the tree. For example a pivot

(a, p, q) would mean node a is the least common ancestor of

nodes p and q. Each tree in the input data set is represented as

a set of pivots. For graph data sets, we use adjacency list as

the pivot set (set of neighbors). For text datasets, we represent

each document as a set of words in it. The important thing to

note is, at the end of this step, we have converted our input

data type to set data, so now operations can be done in a

domain independent way.

2. The aforementioned sets can still be very high dimensional

if the input data is high dimensional. The next step is hence

to project the high dimensional sets to a low dimensional

space (called sketches) and compute similarity in the low

dimensional space that can approximate the similarity of the

original sets. We use Jaccard coefficient as a measure of

similarity between sets. If x and y are the two sets, the Jaccard

similarity is given by:

sim(x, y) =
|x ∩ y|

|x ∪ y|

We use a locality sensitive hash function call min-wise in-

dependent permutations [14] by Broder et. al. to generate

the sketches and compute approximate Jaccard similarity very

efficiently without much loss in accuracy. Let π be a random

permutation of the universal set in question, then the min-wise

independent permutation hash function on a data point x is as

follows:

hπ(x) = min(π(x))

Since the cardinality of the universal set can be extremely

large, the above hash function can be very expensive to

compute, so we use an approximate algorithm called the min-

wise independent linear permutations [15] for computing the

hash functions. At the end of this step, we are left with a

sketch of the original input data, and the sketch is of orders

of magnitude smaller in size that the original input data. As a

result, subsequent operations such as stratification can be done

in a very efficient manner.

3. Once compact representation in a low dimensional space is

done for all the data points, the final step is to cluster on the

sketches to create the strata. We use the compositeKModes

clustering algorithm proposed by Wang et al. [3] to create the

clusters. The standard Kmodes algorithm has the following

problem. The cardinality of the universal set is very high

and since the small sketches contain very few items, chances

of every sketch getting matched to a cluster center is very

low. Consequently, a large number of data points cannot be

assigned to any of the clusters because the data points’ sketch

set has zero-match with the cluster center’s sketch set. To

overcome this, we use the compositeKModes algorithm, where

instead of a cluster center sketch being the mode of each

attribute in the feature space, the center sketch maintains L

highest frequency elements for each attribute (L > 1). In this

case, the probability of zero-match decreases significantly as

an attribute element in the data point has to match only one

of the L values for the same attribute in a center’s attribute

list. And this variant of Kmodes can also be shown to hold

the convergence guarantees of the original Kmodes algorithm.

Using sketch clustering, the input data can be successfully

stratified into clusters.

D. A Pareto-optimal Model (IV)

Now our goal is to simultaneously minimize the execution

time across all partitions, and minimize the sum of the dirty

energy consumed by all partitions. Formally, the problem we

wish to optimize can be succinctly described as:

minimize(v,

p∑

i=1

g(xi))

s.t. ∀i, v ≥ f(xi), ∀i, xi ≥ 0, and

p∑

i=1

xi = N

In the aforementioned formulation v represents the maximum

running time across all partitions and
∑p

i=1 g(xi) is the total

dirty energy consumed by all partitions. Hence the above is a

multi-objective optimization problem, with the two objective

functions being v and
∑p

i=1 g(xi). We wish to find the Pareto

frontier [9] of solutions. A solution is a Pareto efficient or

optimal one [9] if none of the objectives can be improved

upon without degrading at least one. A Pareto frontier is a

set of all Pareto efficient solutions. More formally, in terms

of our formulation, let vxp and
∑p

i=1 g(xpi) be the values

of the objective functions at a solution vector ~xp. For this

solution to be a Pareto optimal one, it must satisfy following

condition: for any other solution vector xq, either vxq ≥ vxp
or

∑p

i=1 g(xqi) ≥
∑p

i=1 g(xpi).

We solve the multi-objective optimization problem using

a technique called scalarization [16]. Here a single objective

function is formed by taking the weighted mean of the multiple

objectives. Then any single objective optimization technique

can be applied. It can be proved that the solution vector we

get by the scalarization technique is a Pareto optimal one [16].

By applying scalarization our problem formulation becomes,

minimize(αv + (1− α)

p∑

i=1

g(xi))

s.t. 0 ≤ α ≤ 1, ∀i, v ≥ f(xi), ∀i, xi ≥ 0, and

p∑

i=1

xi = N

α is the weight factor which controls the tradeoff between the

objectives execution time and dirty energy consumption. If

we approximate the value of function GEi to be the mean

renewable energy availability rate over a certain period of

time that includes the job execution time, then the above

formulation becomes a linear programming problem. If the

mean renewable energy availability rate is ḠE, then for

each node i, the factor Eif(xi) −
∑f(xi)

t=1 GEi(t) becomes,

Eif(xi) − ¯GEif(xi) = kif(xi), where ki is a node specific

constant. Then our formulation can be further simplified to:

αv + (1− α)

p∑

i=1

g(xi) = αv + (1− α)

p∑

i=1

kifi(xi)

= αv + (1− α)

p∑

i=1

ki(mixi + ci)

The described formulation is a linear programming problem

and hence can be efficiently solved. The solution to this

linear programming problem always results in a Pareto-optimal

solution, i.e. a change in the solution vector will degrade at

least one of the objective functions. Specifically, optimality is

guaranteed when the execution time is approximately linearly

related to the data size and the fluctuations in the renewable en-

ergy availability are minimal so that the availability is close to

the mean energy supply. Empirically, even when these condi-

tions are not satisfied, , this model will perform better than par-

titioning naively with equal sized partitions as we shall shortly

demonstrate. Though in that case, a better solution will exist.

Another option we considered and empirically evaluated, is

to fit a more general functional form to the utility functions,

such as higher order polynomials for the regression model.

Theoretically this makes sense as any arbitrary function can be

approximated by polynomials using the Taylor approximation.

But practically it is not a feasible option as such models

will take a very high number of samples to fit the curve

properly. Too few points will invariably over fit the points

to the model. And we cannot afford too many samples in

our progressive sampling step as collecting a sample implies

running the actual algorithm on a small sample of the data.

Under these circumstances the linear regression model was

found to be quite effective on all configurations we evaluated

and is moreover easily trained with very few samples and the

resulting formulation leads to a linear programming problem,

that can be efficiently solved.

Usually for a multi-objective optimization, there is a set

of Pareto optimal solutions. This set is known as the Pareto

frontier. Our formulation, which is a weighted mean of the

individual objectives, generates only one point in the Pareto

frontier. The user-defined parameter α controls which point

we get in the Pareto frontier. Hence, setting α to a high value

will imply a partitioning scheme where time will be improved

more than energy and setting α to a lower value will optimize

the energy function better. In fact, our Het-Aware scheme is a

special case where α is set to 1.0. The system then will only

optimize for time. Note that selecting α can be challenging as

the scale of the two objective functions (time and energy) are

different. The energy function has a much higher scale than

the time function. This implies, to focus more on optimizing

time than energy, we have to set a very high value of α (α

is the coefficient of the time function). We believe in future

this problem can be avoided by normalizing both the objective

functions to 0-1 scale, and then both functions will be equally

sensitive to changes in α.

E. Data Partitioner (V)

The final component of our framework is the data par-

titioner. This component is responsible for putting the final

data partitions into the machines based on the output of the

modeling step. Currently we support the final partitions to

be data partitions stored on disk, or data partitions stored on

Redis NoSQL store. After the optimization step is done, the

framework already knows how many data items to put in each

partition. Our data partitioner supports two types of partitions.

Both of the schemes are driven by the stratification process.

• Making each partition representative of payload: The goal

here is to make each partition a representative of the entire

data. Such a representative partitioning can be achieved by

making each partition a stratified sample without replacement

of the data. Cochran [17] showed that a stratified sample

approximates the underlying true data distribution much better

than a simple random sample. As a result our partitions will be

good representatives of the global data, especially if the data

has a large number of strata and each partition is relatively

small with respect to the total input data. Since our stratifica-

tion step already creates the strata, we can proportionally allo-

cate elements to each stratum to create the required partitions.

• Placing similar elements together: The goal here is to group

similar types of data items together. Again we can achieve

such a partitioning scheme by using the strata created by our

stratification process. Ideally we would like to make individual

stratum a partition by itself. This would ensure minimum

entropy for all partitions. But we have to take to into account

the constraint set by the optimizer, it has already decided

what the partition sizes are, to optimally load balance. And

usually the number of strata are much higher than the number

of partitions. In order to do the partitioning in this case, we

first order the elements one according to the strata id, i.e. all

elements of strata 1 followed by elements of strata 2 and so on.

Once this ordering is created, we create the partitions by taking

chunks of respective partition sizes from this ordered data.

Note that, samples of both kinds of partitions can be

generated by the stratifier as only the data clusters are required.

Those are the samples which the stratifier feeds to the het-

erogeneity estimator so that in the progressive sampling step,

the samples are representative of the final partition payload.

This makes the heterogeneity estimator aware of the payload

characteristics.

IV. IMPLEMENTATION

Our data partitioning framework is implemented in C and

C++. We use the C library API of Redis NoQSL store as our

underlying storage medium. Note that we do not use the cluster

mode of Redis as in that mode we do not have control over

which key goes to which partition and our whole idea relies

on the fact that we will be able to place data items according

to our stratification and optimization rules. Hence, we run

one instance of Redis server in each of our cluster nodes,

and manually manage communication from the framework

middleware level. We need a global barrier module for our

framework as the pivot extraction, sketch generation, sketch

clustering and final data partitioning have to be separated by

barriers. We used the atomic fetch-and-increment command

provided by Redis to create a global barrier routine. Since there

could be millions of data items, each of which can be a high

dimensional set, storing them could imply millions of get/put

requests in Redis and many of those requests could be to

remote machines. This can evidently cause a huge performance

hit. We use a storage data structure which can avoid this

excessive get/put requests on Redis. Instead of storing the

individual attribute values of a data item, we store the item

as a sequence of raw bytes and we maintain a list of such

sequences for a list of data items. The first four bytes in the

sequence contain the length of the data object. Note we use the

redis list structure here. This gives us the freedom to access

the entire data set of a partition in a single get/put operation,

and the access to individual data items from a get/put request

as well. To further improve batching of requests we use the

pipelining feature of Redis, where requests are batched up to

the preset pipeline width and then sent out. In Redis this is

known to substantially improve the response times.

There are three tasks in our framework which are done in a

centralized fashion - the global barrier routine, the clustering

and creation of the representative data sample which every

node will run on to get runtime and energy consumption

estimates. Note that we chose to do the clustering in a

centralized manner as the compositeKmodes algorithm is run

on the sketches rather than the actual data. The size of the

sketches of a dataset is of orders of magnitude smaller than the

raw data size, which is why it is easy to fit in a single machine.

As a result, the clustering can run with zero communication

overhead. We saw that doing the clustering in distributed

fashion over the sketches is prohibitive in terms of runtime.

Even though the two tasks have to be managed by a master

node, they need not be the same node. In other words we

choose two separate nodes in the cluster for the two tasks.

This gives us some level of decentralization and better load

balancing. We also choose type 1 nodes (fastest) as the master

nodes if available. If not, then we select type 2, type 3 or type

4 in that order of priority.

V. EXPERIMENTAL EVALUATION

In this section we seek to examine the efficacy of the

proposed Pareto framework for analytic workloads on het-

erogeneous systems. Our workloads are drawn from those

commonly used in the search, news and social media industry

and include both the analysis of structured (e.g. graph) and

unstructured (e.g. text) data. Specifically we use two types of

distributed workloads: (i) frequent pattern mining - a compute

intensive workload, where even if the input data size is small,

the intermediate data can be huge and (ii) compression - a

data intensive workload that usually runs on huge quantities

of data. We seek to answer the following questions:

• Is there a tangible benefit to heterogeneity-aware partitioning

for such workloads? For both unstructured and structured data

workloads?

• How effective is the Pareto-optimal model? Does using dif-

ferent values of α result in interesting differentials in runtime

and dirty energy usage?

A. Setup

We use a cluster of machines to run our experiments.

The individual nodes consists of 12 cores with Inel Xeon

2.2GHz frequency. Each machine has a RAM of 48GB. Since

the experiments we run are cluster heterogeneity aware, and

the machines in this cluster are homogeneous, we need to

introduce heterogeneity both in terms of speed and renewable

energy availability. We introduce heterogeneity in the follow-

ing way:

1. We use 4 different types of machine speeds in our ex-

periments. The idea is to use machines with relative speeds

x, 2x, 3x and 4x. The way we do it is by introducing busy

loops in the homogeneous cluster. Since there are 12 cores

per machine, type 1 nodes have no busy loops, type 2 nodes

will have 12 busy loops, type 3 nodes will have 24 busy loops

and type 4 nodes will have 36 busy loops running in parallel.

2. We use the NREL simulator [4] to simulate renewable

energy heterogeneity. Again we introduce 4 types of nodes.

We select 4 of Google’s data center locations and create

renewable energy traces for those locations from the weather

database and models of the PVWATTS simulator. We found

out the server power consumption of each machine from HP

SL server specifications (1200 WATTS 12 cores). We used

the individual processor power consumption value from Intel

Xeon (95 Watts), which implies base operating power is

(1200 - 95*12) = 60 Watts. We then generated the 4 types

of machines by running 0, 12, 24, 36 busy while loops in

the 4 machines as described above. And we assumed that

the fastest machine has 4 cores, 2nd fastest 3 cores, then 2

cores and the slowest one with 1 core. Therefore, the power

consumption for the 4 types of machines is 60+4 ∗ 95 = 440

Dataset Type Size

SwissProt Tree # of trees - 59545, Nodes - 2977031

Treebank Tree # of trees - 56479, Nodes - 2437666

UK Graph Nodes - 11081977, Edges - 287005814

Arabic Graph Nodes - 15957985, Edges - 633195804

RCV1 Text # of docs - 804414, vocab size - 47236
TABLE I

DATASETS

Watts, 60 + 3 ∗ 95 = 345 Watts, 60 + 2 ∗ 95 = 250 Watts and

60 + 1 ∗ 95 = 155 Watts respectively.

B. Datasets

We use 5 realworld datasets from 3 different domains

namely - graphs, trees and text datasets. Our datasets vary

from 50,000 trees set to 15 million nodes graph and since

they are collected from different domains, the underlying

data distributions and characteristics will largely vary. Table I

contains the description of the datasets. The datasets are

collected from [18], [19], [20].

C. Applications and Results

1) Frequent Pattern Mining: Frequent pattern mining has

been one of the most common data mining applications. The

goal of the frequent pattern mining problem is to find the

frequent co-occurring items in the entire data set. The co-

occurring items have to be present in at least a certain percent-

age (called support) of the entire dataset. There has been a lot

of research in developing fast algorithms for frequent pattern

mining on text or transactional data [2], [21], trees [22] and

graphs [23]. Since the number of candidate patterns to check

against a support can at worst be exponential, frequent pattern

mining algorithms can be really slow. Consequently distributed

versions of these algorithms are of utmost importance. We

use the partition based distributed frequent pattern mining

algorithm proposed by Savasere et. al. [24]. The algorithm

works by first finding the locally frequent patterns in each

partition and then a global scan is required to prune out the

false positive patterns. If each partition has similar number of

candidate patterns to evaluate, then depending on the system

heterogeneity, faster machines will finish processing faster,

however, the overall execution time will be bottlenecked by the

slow running partitions. Similar is the case with energy hetero-

geneity. The partitioning scheme should try to schedule more

computation to the machines which have higher availability of

renewable energy. Additionally, a naive partitioning scheme

may result in substantial skew in the number of candidate

patterns to process in each partition. The execution time for

the entire job will increase even if a single partition generates

too many patterns. Hence to provide a fully heterogeneity

aware partitioning, the partitions should be homogeneous in

terms of the payload characteristics as well. We achieve this

by our stratified partitioning strategy which tries to make each

partition a representative of the payload.

We evaluate performance in terms of execution time and

total dirty energy consumed across all machines. We report

results under three different partitioning strategies - 1) Strati-

fied partitioning, 2) Het-Aware (α = 1.0) stratified partitioning

(a) Swiss (b) Swiss

(c) Treebank (d) Treebank

Fig. 2. Frequent Tree Mining on Swiss Protein and Treebank Dataset

and 3) Het-Energy-Aware stratified partitioning. A simple

random partitioning strategy performs much worse than our

baseline (stratified strategy) [25], [3]. For the Het-Energy-

Aware scheme, we set the parameter α to 0.999. We will

show that by controlling α, we are able to find a solution

that simultaneously beats the execution time and the dirty

energy footprint of the baseline strategies which create payload

partitions of equal sizes. α needs to be set to high values (close

to 1.0) to find decent tradeoffs between time and energy as the

two objective functions have different scales. In future we plan

to normalize both objectives to 0-1 range. We ran 2 variants

of the frequent pattern mining algorithms:

Frequent Tree Mining: We ran the frequent tree mining

algorithm [22] on our 2 tree datasets. Figure 2 reports the

execution time and dirty energy consumption on the Swiss

protein dataset and the Treebank dataset. Results indicate that

using our Het-Aware strategy can improve the runtime by 43%

for the 8-partition configuration for Treebank (Figure 2(c)),

and this is the best strategy when only execution time is of

concern. However, Figures 2(d) and 2(b) , that have the energy

consumption numbers of these strategies, show that Het-Aware

solution is not the most efficient one in terms of dirty energy

consumption. Here the Het-Energy-Aware scheme performs

the best. In the same 8-partition configuration as described

before, the Het-Energy-Aware strategy reduces the execution

time by 36% while simultaneously reducing the dirty energy

consumption by 9%.

Text Mining: We run the apriori [2] frequent pattern mining

algorithm on the RCV corpus. The execution time numbers are

reported in Figure 3(a). Again the Het-Aware scheme is the

best with improvement up to 37% reduction in execution time

(a) Execution Time (b) Dirty Energy

Fig. 3. Frequent Text Mining on RCV1 corpus

over the stratified partitioning strategy with 8 partitions. The

energy numbers are provided in Figure 3(b). The Het-Energy-

Aware scheme for the 16-partition configuration reduced the

as expected reduced the runtime by 31%, while consuming

14% less energy than the stratified partitioning scheme.

2) Graph compression: We test our partitioning scheme

on distributed graph compression algorithms. The idea is we

split the input data into p partitions. And then we compress

the data in individual partitions independently. We use two

compression algorithms LZ77 [26] and webgraph [27] to

compress the data of individual partitions.

Here we benefit from the partitioning strategy which tries

to group similar elements together in a single partition. If a

partition comprises of elements which are very similar, then

a partition can be represented by a small number of bits. By

creating such low entropy partitions, one can get very high

compression ratio.

We evaluate performance by the execution time. Again

we compare three strategies, stratified partitioning with no

heterogeneity awareness, Het-Aware stratified partitioning and

Het-Energy-Aware stratified partitioning. Here we set the

parameter α to be 0.995 instead of 0.999 as was the case in the

frequent pattern mining experiments. Due to reasons explained

in Section III-D the execution time should deteriorate quite a

bit and should be close to the baselines, while dirty energy

consumption rate should improve significantly.

Figure 4 reports the performance numbers (execution time

and dirty energy consumption) as well the quality (compres-

sion ratio) on both the UK dataset and the Arabic dataset. Our

Het-Aware strategy improves the execution time by 51% on the

Arabic dataset for the 8-partition configuration (Figure 4(c)).

Our Het-Energy-Aware scheme reduces the execution time

by only 9%, but simultaneously it reduces the dirty energy

consumption by 26% on the same configuration as described

above. This also shows the impact of setting a lower α than

the frequent pattern mining experiments. The execution time

improvements have gone down and dirty energy consumption

rate has improved substantially.

We evaluate the quality of our partitioning schemes by com-

paring the compression ratios achieved by each scheme. Our

heterogeneity aware stratified schemes match the compression

ratio of the baseline stratified scheme. Hence we are able to

(a) UK (b) UK

(c) Arabic (d) Arabic

(e) UK (f) Arabic

Fig. 4. Graph compression results on UK and Arabic webgraphs

Strategy Time (seconds) Compression ratio

Stratified 18 18.33

Het-Aware 11 18.2

Het-Energy-Aware 12 18.01
TABLE II

LZ77 COMPRESSION ON UK DATASET WITH 8 PARTITIONS

vary the partition sizes to account for better load balancing

without any degradation of quality. The technique of reorder-

ing the data points according to clusters and creating chunks

of variable sizes is able to generate low entropy partitions.

We also run experiments with the very common LZ77 com-

pression algorithm. Tables II and III report the performance

and quality numbers for the UK and the Arabic datasets

respectively for the 8-partition setting. Lz77 is extremely fast,

so there is no gains from our heterogeneity aware schemes.

The compressibility of our heterogeneity aware techniques are

comparable to that of the stratified strategy.

Strategy Time (seconds) Compression ratio

Stratified 38 18.3

Het-Aware 35 18.26

Het-Energy-Aware 40 18.14
TABLE III

LZ77 COMPRESSION ON ARABIC DATASET WITH 8 PARTITIONS

D. Understanding the Pareto-Frontier:

Here we study the effect parameter α has on time-energy

tradeoff curve (Pareto-frontier) for all three workloads we

consider. For all workloads (Figure 5) we vary the value of α

from 1 to 0 and study the impact on execution time and dirty

energy consumption (for 8 partitions). There are two major

trends one observes.

First, it is clear that by changing the value of α focus can be

effectively shifted from execution time minimization to dirty

energy minimization. The magenta line shows this shift. At

α = 1.0 (extreme left point) execution time is minimum,

while dirty energy consumption is maximum for all workloads.

This point also represents the Heterogeneity- aware scheme

reported earlier. As α is reduced the runtime increases but the

dirty energy consumed is reduced. We note that at an α value

of about 0.9 dirty energy is typically minimized but at this

point the execution time is fairly high. The rationale is that

most of the load is placed on the node that harnesses the most

green energy leading to severe load imbalance. In other words

at this point the optimizer puts almost all of the payload in the

machine with lowest dirty energy footprint. Further lowering

α does not have any additional impact.

Second, we observe that the baseline strategy of stratified

partitioning is significantly above and to the right of magenta

line (yellow points). This implies a simple stratified strategy

results in sub-optimal a solution (not Pareto-efficient).

Third, in Figure 6 we evaluated whether our methodology

is able to generalize over different parametric settings on

the same dataset. We changed the support threshold (the

key parameter for frequent pattern mining) for both tree and

text datasets and plotted the Pareto frontiers by varying α

as described before. For both the datasets we clearly see

that our method is able to find the Pareto frontiers nicely.

Hence our framework can tradeoff of between performance

and dirty energy across different parametric settings of the

same workload. This is particularly important in the context

of frequent pattern mining as support is an intrinsic property

of the dataset – to find interesting patterns in different datasets,

the support has to be adjusted accordingly.

To summarize it is clear that accounting for payload-

distribution can result in significant performance and energy

gains. Coupled with heterogeneity- and green-aware estimates

these gains can be magnified.

VI. RELATED WORKS

Data partitioning and placement is a key component in

distributed analytics. Capturing of representative samples us-

ing the stratified sampling technique on large scale social

networks using mapreduce has been investigated by Levin

et. al. [28]. Meng [29] developed a general framework for

generating stratified samples from extremely large scale data

(need not be social network) using mapreduce. Both of these

techniques are effective for creating a single representative

sample, however our goal in this work is to partition the

data such that each partition is statistically alike. Duong et.

al. [25] develops a sharding (partitioning) technique for social

networks that performs better than random partitioning. This

technique utilizes information specific to social networks to

develop effective partitioning strategies. In contrast our goal

is to develop a general framework for data partitioning in

the context of distributed analytics. Another related work by

Wang et. al. [3] provides a method to mitigate data skew

across partitions in the homogeneous context. In this work

we propose to design a framework for heterogeneous context

where the heterogeneity is in terms of processing capacity and

green energy availability across machines. Performance aware

and energy aware frameworks are studied extensively in the

context of cloud and database workloads [30], [31], [32], [33],

[34]. However, these techniques are not payload aware which

is extremely critical for large scale analytics workloads. Along

with performance and energy skew, data skew also plays a

significant role in the performance of analytics tasks.

VII. CONCLUDING REMARKS

The key insight we present is that both the quality and

performance (execution time and dirty energy footprint) of dis-

tributed analytics algorithms can be affected by the underlying

distribution of the data (payload). Furthermore, optimizing for

either execution time or minimizing dirty energy consumption

leads to a pareto-optimal tradeoff in modern heterogeneous

data centers. We propose a heterogeneity-aware partitioning

framework that is conscious of the data distribution through a

lightweight stratification step. Our partitioning scheme lever-

ages an optimizer to decide what data items to put it which par-

tition so as to preserve the data characteristics of each partition

while accounting for the inherent heterogenity in computation

and dirty energy consumption. Our framework also allows

data center administrators and developers to consider multiple

pareto-optimal solutions by examining only those strategies

that lie on the pareto-frontier. We run our placement algorithm

on three different data mining workloads from domains related

to trees, graphs and text and show that the performance can be

improved up to 31% while simultaneously reducing the dirty

energy footprint by 14% over a highly competitive strawman

that also leverages stratification.

REFERENCES

[1] R. D. Blumofe and C. E. Leiserson, “Scheduling multithreaded compu-
tations by work stealing,” Journal of the ACM (JACM), vol. 46, no. 5,
pp. 720–748, 1999.

[2] R. Agrawal, R. Srikant et al., “Fast algorithms for mining association
rules,” in Proc. 20th int. conf. very large data bases, VLDB, vol. 1215,
1994, pp. 487–499.

[3] Y. Wang, S. Parthasarathy, and P. Sadayappan, “Stratification driven
placement of complex data: A framework for distributed data analytics,”
in Data Engineering (ICDE), 2013 IEEE 29th International Conference

on. IEEE, 2013, pp. 709–720.

[4] “Pvwatts simulator,” http://pvwatts.nrel.gov/.

(a) Swiss dataset (b) RCV dataset (c) UK dataset

Fig. 5. Pareto frontiers on on a) Tree, b)Text, and c) Graph workloads (8 partitions). Magenta arrowheads represent Pareto-frontier (computed by varying α).
Note that both baselines: Stratified (yellow inverted arrowhead); lie above the Pareto frontier (not Pareto-efficient) for all workloads.

(a) Swiss dataset (b) RCV dataset

Fig. 6. Pareto frontiers on a) Tree and b)Text (8 partitions) by changing the
support thresholds.

[5] A. Beloglazov, R. Buyya, Y. C. Lee, A. Zomaya et al., “A taxonomy and
survey of energy-efficient data centers and cloud computing systems,”
Advances in Computers, vol. 82, no. 2, pp. 47–111, 2011.

[6] N. Deng, C. Stewart, and J. Li, “Concentrating renewable energy in
grid-tied datacenters,” in Sustainable Systems and Technology (ISSST),

2011 IEEE International Symposium on. IEEE, 2011, pp. 1–6.

[7] C. Li, A. Qouneh, and T. Li, “iswitch: coordinating and optimizing
renewable energy powered server clusters,” in Computer Architecture

(ISCA), 2012 39th Annual International Symposium on. IEEE, 2012,
pp. 512–523.

[8] Y. Zhang, Y. Wang, and X. Wang, “Greenware: Greening cloud-scale
data centers to maximize the use of renewable energy,” in Middleware

2011. Springer, 2011, pp. 143–164.

[9] D. Fudenberg and J. Tirole, Game Theory. Cambridge, MA: MIT Press,
1991.

[10] J. Choi, D. Bedard, R. J. Fowler, and R. W. Vuduc, “A roofline model
of energy,” in 27th IEEE International Symposium on Parallel and

Distributed Processing, IPDPS 2013, Cambridge, MA, USA, May 20-24,

2013, 2013, pp. 661–672.

[11] S. Parthasarathy, “Efficient progressive sampling for association rules,”
in Proceedings of the 2002 IEEE International Conference on Data

Mining (ICDM 2002), 9-12 December 2002, Maebashi City, Japan,
2002, pp. 354–361.

[12] Í. Goiri, R. Beauchea, K. Le, T. D. Nguyen, M. E. Haque, J. Guitart,
J. Torres, and R. Bianchini, “Greenslot: scheduling energy consumption
in green datacenters,” in Proceedings of 2011 International Conference

for High Performance Computing, Networking, Storage and Analysis.
ACM, 2011, p. 20.

[13] H. Prüfer, “Neuer beweis eines satzes über permutationen,” Arch. Math.

Phys, vol. 27, pp. 742–744, 1918.

[14] A. Z. Broder, M. Charikar, A. M. Frieze, and M. Mitzenmacher, “Min-
wise independent permutations,” in Proceedings of the thirtieth annual

ACM symposium on Theory of computing. ACM, 1998, pp. 327–336.

[15] T. Bohman, C. Cooper, and A. Frieze, “Min-wise independent linear
permutations,” Electronic Journal of Combinatorics, vol. 7, p. R26,
2000.

[16] C.-L. Hwang, A. S. M. Masud, S. R. Paidy, and K. P. Yoon, Multiple

objective decision making, methods and applications: a state-of-the-art

survey. Springer Berlin, 1979, vol. 164.
[17] W. G. Cochran, “Sampling techniques. 1977,” New York: John Wiley

and Sons.
[18] “Uw xml repository,” http://www.cs.washington.edu/research/xmldatasets/.
[19] D. D. Lewis, Y. Yang, T. G. Rose, and F. Li, “Rcv1: A new benchmark

collection for text categorization research,” The Journal of Machine

Learning Research, vol. 5, pp. 361–397, 2004.
[20] “Law lab datasets,” http://law.di.unimi.it/datasets.php/.
[21] M. J. Zaki, S. Parthasarathy, M. Ogihara, W. Li et al., “New algorithms

for fast discovery of association rules.” in KDD, vol. 97, 1997, pp. 283–
286.

[22] S. Tatikonda and S. Parthasarathy, “Hashing tree-structured data: Meth-
ods and applications,” in Data Engineering (ICDE), 2010 IEEE 26th

International Conference on. IEEE, 2010, pp. 429–440.
[23] X. Yan and J. Han, “Closegraph: mining closed frequent graph patterns,”

in Proceedings of the ninth ACM SIGKDD international conference on

Knowledge discovery and data mining. ACM, 2003, pp. 286–295.
[24] A. Savasere, E. R. Omiecinski, and S. B. Navathe, “An efficient

algorithm for mining association rules in large databases,” 1995.
[25] Q. Duong, S. Goel, J. Hofman, and S. Vassilvitskii, “Sharding social

networks,” in Proceedings of the sixth ACM international conference on

Web search and data mining. ACM, 2013, pp. 223–232.
[26] J. Ziv and A. Lempel, “Compression of individual sequences via

variable-rate coding,” Information Theory, IEEE Transactions on,
vol. 24, no. 5, pp. 530–536, 1978.

[27] P. Boldi and S. Vigna, “The webgraph framework i: compression
techniques,” in Proceedings of the 13th international conference on

World Wide Web. ACM, 2004, pp. 595–602.
[28] R. Levin and Y. Kanza, “Stratified-sampling over social networks using

mapreduce,” in Proceedings of the 2014 ACM SIGMOD international

conference on Management of data. ACM, 2014, pp. 863–874.
[29] X. Meng, “Scalable simple random sampling and stratified sampling.”

in ICML (3), 2013, pp. 531–539.
[30] D. Cheng, C. Jiang, and X. Zhou, “Heterogeneity-aware workload place-

ment and migration in distributed sustainable datacenters,” in Parallel

and Distributed Processing Symposium, 2014 IEEE 28th International.
IEEE, 2014, pp. 307–316.

[31] A. Pavlo, C. Curino, and S. Zdonik, “Skew-aware automatic database
partitioning in shared-nothing, parallel oltp systems,” in Proceedings of

the 2012 ACM SIGMOD International Conference on Management of

Data. ACM, 2012, pp. 61–72.
[32] Y. Kwon, M. Balazinska, B. Howe, and J. Rolia, “Skewtune: mitigating

skew in mapreduce applications,” in Proceedings of the 2012 ACM

SIGMOD International Conference on Management of Data. ACM,
2012, pp. 25–36.

[33] L. Wang, G. Von Laszewski, J. Dayal, and F. Wang, “Towards energy
aware scheduling for precedence constrained parallel tasks in a cluster
with dvfs,” in Cluster, Cloud and Grid Computing (CCGrid), 2010 10th

IEEE/ACM International Conference on. IEEE, 2010, pp. 368–377.
[34] E. Rahm and R. Marek, “Analysis of dynamic load balancing strategies

for parallel shared nothing database systems.” in VLDB. Citeseer, 1993,
pp. 182–193.

