Resource Allocation using Adaptive Characterization of
Online, Data-Intensive Workloads

Dissertation

Presented in Partial Fulfillment of the Requirements for the Degree Doctor
of Philosophy in the Graduate School of The Ohio State University

By

Jaimie Kelley, B.S., M.S.

Graduate Program in Computer Science and Engineering

The Ohio State University

2017

Dissertation Committee:

Dr. Christopher Stewart, Advisor
Dr. Srinivasan Parthasarathy

Dr. P. Sadayappan

© Copyright by
Jaimie Kelley

2017

Abstract

Cloud resource providers balance maximizing utilization under a power cap with meet-
ing workload Service Level Agreements (SLA). As the amount of data used by workloads
increases, so do the pressures on compute capacity in the cloud. Even if the resources
assigned meet an interactive workload’s need for low latency, the data that interactive
workload processes with allocated resources may not be sufficient to achieve a standard
of answer quality. Increasing the resources allocated to a specific workload to meet its an-
swer quality standard reduces the overall profit a cloud provider can make on interactive
workloads. However, if a workload’s answer quality standard is not met, the interactive
workload may seek another placement. Cloud instances can be purchased by the minute,
and multiple opportunities for placement exist. Because of this, cloud providers need to

put their clients’ interests first or lose revenue.

To best serve their own and their clients interest, cloud providers need data which reflects
resource usage, answer quality, and service level. If a cloud provider knows the amount
of power used by each workload scheduled, it can better fulfill its power cap requirements
without penalty. If a cloud provider knows the current latency and answer quality of sched-
uled workloads, it can decide when to reallocate resources. However, this is difficult be-

cause any collection of data online imposes overheads. While cloud providers generally

il

reserve some percentage (5%) of utilization for operating system functions, data collection

and analysis must be done carefully to avoid undue impact on scheduled workloads.

I use adaptive solutions to trade accuracy for overhead in workload characterization. Adap-
tive workload characterizations inform resource management without the high overhead of

complete calculation, but are not completely accurate.

In my work, I adaptively reduce the time spent profiling peak power to the degree of accu-
racy that a cloud provider is willing to accept. I developed a model for adaptively profiling
peak power usage to determine core scaling. Adaptive profiling saved up to 93% collection

time while reducing accuracy by 3% on average.

To obtain answer quality for online resource management, I overlap execution of online
requests with the execution of requests that use all relevant data by using memoization of
complete responses from specific components. I built Ubora to obtain and allow manage-
ment of answer quality for interactive, data-intensive workloads. Cloud providers set the

rate at which queries are sampled, which exchanges overhead for accuracy.

Finally, I designed Quikolo, a service that speculatively deploys and characterizes a target
workload in-situ in a colocation placement. Clients use this characterization to decide
whether to migrate their workload to this available placement. Quikolo also enables study
of overhead and accuracy influenced by the number of features and collection time used for

workload characterization.

il

Adaptively trading accuracy reduces the impact of workload characterization on overhead.
My adaptive characterization solutions enable cloud providers to provision for lower over-
head and still achieve information that aids balancing client needs with available cloud

resources.

v

Vita

2001-2005 .. Lutheran High School West - Rocky
River, OH

2005-2009 ... Bachelor of Science, Computer Science
and English (Writing),
Heidelberg University

2010-2015 ..o Masters of Science, Computer Science

and Engineering,
The Ohio State University

2010-PreSent PhD student in Computer Science and
Engineering,
The Ohio State University

Publications

Jaimie Kelley, Christopher Stewart, Nathaniel Morris, Devesh Tiwari, Yuxiong He, and
Sameh Elnikety, “Obtaining and Managing Answer Quality for Online Data-Intensive
Services”. Journal ACM Transactions on Modeling and Performance Evaluation of Com-
puting Systems, 2017.

Jaimie Kelley, Christopher Stewart, Devesh Tiwari, and Saurabh Gupta, ”Adaptive Power
Profiling for Many-Core HPC Architectures”. International Conference on Autonomic
Computing, 2016.

Jaimie Kelley, Christopher Stewart, Devesh Tiwari, Sameh Elnikety, and Yuxiong He,
”Measuring and Managing Answer Quality for Online Data-Intensive Services”. Interna-
tional Conference on Autonomic Computing, 2015.

Sundeep Kambhampati, Jaimie Kelley, William C. L. Stewart, Christopher Stewart, and
Rajiv Ramnath, ”"Managing Tiny Tasks for Data-Parallel, Subsampling Workloads”. IEEE
International Conference on Cloud Engineering, 2014.

Jaimie Kelley, Christopher Stewart, Sameh Elnikety, and Yuxiong He, ”Cache Provision-
ing for Interactive NLP Services”. Large and Distributed Systems and Middleware, 2013.

Jaimie Kelley and Christopher Stewart, ”Balanced and Predictable Networked Storage”.
International Workshop on Data Center Performance, 2013.

Nan Deng, Christopher Stewart, Jaimie Kelley, Daniel Gmach and Martin Arlitt, ”Adap-
tive Green Hosting”. International Conference on Autonomic Computing, 2012.

Fields of Study

Major Field: Computer Science and Engineering

Vi

Table of Contents

Page

Abstract e e i1
Vita . . e v
Listof Tables X
Listof Figures e xi
1 Introduction 1
2. Managing Tiny Tasks for Data-Parallel, Subsampling Workloads 9
2.1 Subsampling Workloads L. 12

2.1.1 TheCaseforTiny Tasks 14

2.2 Managing Tiny Tasks 17

2.2.1 Job-vsTask-level Recovery 18

2.2.2 Platform Selection oL 19

223 TaskSizing 22

2.3 Experimental Setup. 25

24 Experimental Results o 29

25 RelatedWork Lo 36

3. Adaptive Power Profiling for Many-Core HPC Architectures 39
3.1 Experimental Methodology 42

3.1.1 Power measurement 42

3.1.2 Architectures Lo 44

313 Platforms 44

3.1.4 Workloads 45

3.2 Observations on Power Consumption 46

vii

3.3 Predicting Peak Power using Reference Workloads
3.4 Analyzing the Power Consumption Profile of Scientific Applications . . .
3.5 Adaptive Power Profiling,

3.5.1 Our Profiling Method
3,52 Evaluationo
353 CornerCases v ottt
36 RelatedWork
Balanced and Predictable Networked Storage
4.1 Trends e
4.1.1 Outliers in Networked Storage
4.1.2 Workloads that Reduce BigData
4.2 Problem Statement Lo
4.3 Modelling Outliers o
4.4 Replication for Predictability
45 RelatedWorko
Cache Provisioning for Interactive NLP Services
51 NLPWorkloads
5.1.1 Defining Quality Loss
5.2 Experimental Results
5.2.1 Comparing NLP Datasets
5.2.2 Cache Replacement Policies
5.2.3 Whole Distribution Analysis
5.2.4 Cache Provisioning on Quality Loss
5.2.5 Additionalissues
53 RelatedWorko

Obtaining and Managing Answer Quality

for Online Data-Intensive Services
6.1 Background on OLDI Services
6.2 Motivation e e e e e e e
6.3 Design
6.3.1 DesignGoals
6.3.2 Timeliness e
6.3.3 Transparencyol
634 LowOverhead
635 LowCost. e
6.3.6 Limitations

6.4 Implementation 122
6.4.1 Interfaceand Users 122

6.4.2 Transparent Context Tracking 123

6.4.3 Prototype 128

6.4.4 Optimizations for Low Overhead 131

6.4.5 Determining Front-End Components 132

6.5 Experimental Evaluation 133
6.5.1 Metricsof Merit oL 134

6.5.2 Competing Designs and Implementations 135

6.53 OLDIServices 136

6.54 Results L 138

6.6 Online Management 146
6.7 RelatedWork 149
6.7.1 Approximation for Performance 150

6.72 QueryTagging 152
6.7.3 Timeout Toggling: Adaptive Configuration 153

6.7.4 Adaptive Resource Allocation 155

7. Rapid In-situ Characterization for Co-Located Workloads 156
7.1 Design e e e e e 159
7.1.1 DesignGoals 159

7.1.2 Design Parameters 160

7.1.3 Design Limitations 162

7.2 Quikolo Implementation 162
7.2.1 Feature Collection 164

7.22 Organization 166

7.3 Experimental Evaluation 167
7.3.1 Architecture L 167

732 Workloads 167

733 Overhead 169

74 Duration Study e 170
7.4.1 Statistical Convergence 171

7.5 FeaturesStudy 176
7.5.1 Which Features Matter 177

7.6 RelatedWork L 178
8. Conclusion 181
Bibliography 188

X

Table

2.1

2.2

3.1

4.1

6.1

6.2

List of Tables

Page
Platforms benchmarked for thispaper 19
Hardware used inour studies. 28
Secondary factors in our experimental design. Thermal design power (TDP)
1S maximum power CoOnSumption. u . 43
Model Inputs. L 75
The OLDI workloads used to evaluate Ubora supported diverse data sizes
and processing demands. oL 134
Adaptive management degrades under low sampling rates. A quality vio-
lation is a window where answer quality falls below 90%. Error is relative
tothe 10% rate. L 150

Figure

1.1

1.2

1.3

2.1
22
2.3
24

2.5

2.6

2.7

2.8

2.9

List of Figures

Page
4 cores in the cloud cost less if workloads colocate. 2
Clients connect to services in the cloud. I use workload characterization to solve
resource allocation problems, including power capping, answer quality, and colo-
cation assesSMeNt. e e e e e e e e e e e 3
Example online, data-intensive service processes unstructured data from memory
cache and disk to find answers to natural language questions. 5
Data flow for a data-parallel subsampling workload. 13
L2 misses per instruction and cycles per instruction across task sizes in EAGLET. 15
Relative time to start 1 task on each core by platform 21
Runtime overhead of each platform relative to native Linux 21

Java code for offline kneepoint detection and task sizing implemented within BashRe-
duce. . .. e 23

Impact of our kneepoint algorithm on runtime 24

BTS speeds up both EAGLET and Netflix workloads relative to BLT and BTT.
Tests ran on hardware type 1. The rightmost table provides acronyms for all of the

platforms referenced in this section. 29
Kneepoints in the Netflix subsampling workloads on BashReduce. 30
Comparisonof BTSto VHandJLH. 31

2.10 Comparison of BTS to VH and LH in terms of running time. Note log-log scale. . 32

X1

2.11

2.12

2.13

3.1

3.2

33

34

3.5

3.6

3.7

3.8

39

3.10

3.11

EAGLET on BTS as number of cores changed.

The throughput and running time of EAGLET on BTS clusters scaled to efficiently
meet service level objectives. Lo Lo

Running time on BTS (a) Netflix workload as cores scale on Type 3. (b) Netflix
workload as job size increases. (c) Network resource demand increases.

Peak power of workloads that repeatedly access L1, L2 and L3 caches and mem-
ory. Y-axis is relative to power consumed on 1 core by the workload with mini-
mum (floor) peak power. Lo
Power and prediction error ranges vary across architectures.
Average error in predicting peak power varies across architectures.
Peak power can be predicted using other workloads, with varying results. (A) CDF
of error seen from all pairwise combinations of benchmarks. (B) Pairs with error
under 15% on Intel i7 show that correlations do not continue across architectures.

CDF of power consumption for different applications and architectures.

Power profile of CoMD application for MPI and OpenMP implementations on
different architectures.o e

Power profile of miniFE application for MPI and OpenMP implementations on
different architectures. L. L. L. Lo

Power profile of snap application for MPI and OpenMP implementations on dif-
ferent architectures. L. Lo e

Peak power estimation rror CUrVeS « v v v v v v v v e e e e

Duration spent profiling with our method as the requested time to profile increased.
(a) Intel Xeon Phi (b) Intel Sandy Bridge (¢) Intel i7.

Median inaccuracy across all benchmarks for our method and k% profiling as the

requested time to profile increased. (a) Intel Xeon Phi (b) Intel Sandy Bridge (c)
Intel i7. e e e e e e e e e e

Xii

52

3.12

3.13

3.14

4.1

4.2

4.3

4.4

4.5

4.6

4.7

5.1

5.2

75th and 25th percentiles of profiling duration across all benchmarks for our max-
core first method as the approximation of peak power requested from the maxi-
mum core profile increases. (a) Intel Xeon Phi (b) Intel Sandy Bridge (c) Intel
17, o e e

75th and 25th percentiles of inaccuracy across all benchmarks for our max-core
first method as the approximation of peak power requested from the maximum
core profile increases. (a) Intel Xeon Phi (b) Intel Sandy Bridge (c) Intel i7.

By architecture, inaccuracy averaged across core counts.

Data processing backed by networked storage under the map reduce model. Pro-
cessing rate (bandwidth) at each stage is shownontheleft.

A cumulative distribution function regarding the times to access a Redis store
under high and low utilization, shown with a Pareto distribution and an exponential
distribution based on the low utilization numbers. The 99.99th percentile of the
exponential distribution’s heavy tail ismarked.

Slowdown caused by an outlier access to networked storage. Dotted lines are
messages over the network. Solid lines reflect processing. For simplicity, we
show all accesses for a single map stemming from a single network message. . . .
Slowdown caused by outliers as average map time varies.

Slowdown caused by outliers as storage capacity per map node varies.

Yield caused by replication for predictability increases as average map time de-
CIEASES. .« & v v v v v e e e e e e e e e e e e e e

Yield caused by replication for predictability increases as storage capacity per map
NOdE INCIEASES.« v v v v v vttt e e e e e

Our system setup for experimentation, including service logic for Lucene search
engine and OpenEphyra question answering system.

Cache under provisioning on quality loss. (a) Quality loss of NYT vs Wiki (b)

Content elision caching (c) Distribution of quality loss by replacement policy (d)
Quality loss per question. oL e e e e e

Xiii

92

93

5.3

54

5.5

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

Cost savings of cache provisioning approaches. (a) Term-based LRU cache policy
(b) Effect of quality loss threshold on term-based LRU (c) Content elision (d)
Effect of quality loss threshold on content elision. 96

The effects of varying k on quality loss for a single experiment. 99

The effects of changing threshold on varied DRAM configurations over the same
amount of New York Times data on Lucene using term-based caching. 99

Steps to measure answer quality online. Mature and online executions may over-

lap. . . . e e 105

Execution of a single query in Apache Lucene. Adjacent paths reflect parallel
execution across data partitions. 107

Experimental results with an Apache Lucene cluster. (a) OLDI components ex-
hibit diverse processing times. (b) Query mix increases variability. (c) Timeout
policies mask variation in favor of fast response times. 109

Memoization in Ubora. Arrows reflect messages in execution order (left to right).
Dotted lines in Online Execution indicate communications that are transformed
from their original purpose. Dotted lines in Mature Execution indicate communi-
cations that happen on occasion, as needed for correctness. 114

Annual operating costs for Apache Lucene on EC2 with Wikipedia growth rates. . 121
Ubora’s YAML Configuration 125
Microbenchmark study on the effects of component selection on accuracy and
Ubora mechanisms on overhead under changing data skew. Data skew represents

the difference in running times between two auxiliary components. 139
Experimental results: Ubora achieves greater throughput than competing systems-
level approaches. It performs nearly as well as invasive application-level ap-
proaches (within 16%). e 139
Impact on response time: (a) Throughput under varying sampling rate for Ub-

ora and Ubora-NoOpt. (b) Ubora delayed unsampled queries by 7% on average.
Sampled queries were slowed by 10% on average. 142

X1V

6.10 Experimental results for maximized throughput with ER.fst: (a) We profiled
sampling options. (b) We profiled memoization options. (c) Timeout settings have
complex, application-specific affects on answer quality.

6.11 Some hardware counters predict answer quality.

6.12 Ubora enables online admission control. Arrival rate refers only to low priority
requests. High priority requests arrive at a fixedrate.

7.1 Quikolorequest e e e e e

7.2 Workflows in Quikolo. Arrows reflect messages in execution order (top to bottom).
Dotted lines represent messages seen by the speculative workload but not by the
original workload orclients.

7.3 We show overhead with and without SLO redirection, for Quikolo using all fea-
tures. (a) Each workload executes in isolation. (b) Global slowdown for varying
colocation MIXES. . . . v v v v v v v e e e e e e e e e e e e e e e e e e

7.4 Feature change decreases as Lucene characterization progresses. (a) Statistics at
time ¢ for L2 cache 0 (f(16)). (b) Overhead on the colocation environment during
a 10-minute window as collection time increases. (c) Stepwise function RQ shows
across all features, the percentage of statistics changing more than 10% compared
to the previous feature readings. Accuracy convergence indicates the percentage of
statistics greater than 10% change from the final statistics calculated over the entire
trace. Highest accuracy shows a comparison of the highest percent difference at
each feature reading from the final statistics calculated over the entire trace. . . .

7.5 Which Statistics Converge: (a) Percentiles were less susceptible to outlier read-
ings than standard deviation. (b) Standard deviation (bars in chart) describes fea-

tures in a way percentiles donot capture. L.

7.6 Feature study: (a) An increased number of collected features improves the ac-
curacy of SLO violation identification.

8.1 Workload characterization increases accuracy and overhead in online cloud re-
source allocation. L. L. Ll L

XV

. 171

Chapter 1: Introduction

Allocating cloud resources wisely is important because overprovisioning wastes potential
revenue but underprovisioning loses customers. Cloud resource allocation is challenging
because many customers must be satisfied with limited resources. Data centers operate
under a global power cap, incurring a penalty if their power is over the limit by even a tenth
of a second. This limits the number of cores that can be powered at any given point in time.
Increasing utilization on a server is an alternative to increasing the number of powered
cores, but carries penalties if workloads do not meet the expected latency guaranteed in

their Service Level Agreements (SLA).

The problem of resource allocation in the cloud is exacerbated by the increasing amount
of data used by workloads. In 2011, 1.8 zettabytes of data were created [42]. Data pro-
duction increases by 40% each year [158]. This growth introduces problems in processing
efficiency. 66% of data created in 2013 was generated by individuals, but corporations will
be responsible for 85% of this data during some portion of its lifetime [158]. The growth
of big data in all its facets will only continue in the coming years, with a projected size of

44 zettabytes worldwide by 2020 [158].

120
100
80
60
40
20

Cost (S/month)

Google Cloud Amazon EC2 Microsoft
Azure

Colocated ™ Dedicated

Figure 1.1: 4 cores in the cloud cost less if workloads colocate.

If not enough data is processed before a response is required, even workloads that are meet-
ing their SLA might not be achieving satisfactory answers to requests. These workloads
with low answer quality require more resources, without which their owners decide to seek
new placement within a different cloud. This increase for a single workload reduces the
amount of resources available to service new customers. Keeping current customers happy

avoids losing this revenue.

Unhappy customers have multiple opportunities for alternative cloud placement. Google
Cloud Platform, Microsoft Azure, and Amazon EC2 all sell competitive colocation and
dedicated instances, as shown in Figure 1.1. Migrating to another cloud placement will
lower a workload’s operating cost when its SLA violations increase from resource pres-
sure [111]. Therefore, it is in the cloud resource allocator’s best interest to ensure each

workload gets just enough resources.

Online Resource Allocation

Characterization

Answer Quality v

Figure 1.2: Clients connect to services in the cloud. I use workload characterization to solve
resource allocation problems, including power capping, answer quality, and colocation assessment.

Power Cap

In order to ensure each workload gets just enough resources, cloud providers need data
regarding that workload’s latency, answer quality, and interactions with the cloud environ-
ment. For instance, the ratio of performance to power used by a workload can inform how
many cores it should be allocated. Finding this knowledge improves a cloud provider’s
ability to meet its overall power cap requirements. Tracking request latency per workload
warns the cloud provider when an SLA violation is imminent. Potential actions include
allocating more resources, sprinting [104] or migrating the workload. The problem space

is shown in Figure 1.2.

Characterizing and profiling are used synonymously within this work, but this is not gen-
erally the case in practice. To characterize a workload is to know the resources it uses, the
arrival rate and service rate, or the number of users and query mix, depending on the type of
characterization [101, 100]. To profile a workload is to extrapolate information regarding
that workload, such as the peak power usage expected over the course of its execution [74].
To eliminate confusion, I used the term characterization when referring to all my work, but
it is not always clear when one term should be used over the other. For instance, in Chapter
7, I continuously use the term characterization, but the end goal of this characterization is
to use the gathered information to predict future tail latencies of the speculative workload
execution, which is an extrapolation of information. Rather than switching between terms
fluidly, I use profiling to refer to offline collection and analysis and characterizing to refer

to online collection and analysis.

Unfortunately, any collection of data online incurs overhead. For applications like tracking
online sports data, or error feeds at Facebook, data is stored and processed online as it
arises [1]. Cloud providers typically reserve some percentage of utilization per machine
for operating system functions and overhead [71]. More overhead than this carries the risk

of increased SLA violations for workloads located on that machine.

In my research, I work with online, data-intensive workloads. Online, data-intensive ser-
vices run on cloud resources, and have clients who expect fast response times (latency < 20
seconds). These services must process large quantities of data in parallel (e.g., 4 TB split
across 32 threads). An example of such a service is found in Figure 1.3. Cloud infrastruc-
tures also host workloads which are expected to report results with more than 20 second

latencies (e.g., map-reduce jobs). I target online, data-intensive workloads in my research,

Service

OpenEphyra €= = OpenEphyra

¢ ¢

[RedisO | [Redisn |

Lucene
Index on
Disk

Lucene
Index on
Disk

Figure 1.3: Example online, data-intensive service processes unstructured data from memory cache
and disk to find answers to natural language questions.

covering both services with short expected latencies and longer-running workloads. Re-
gardless of expected service level objective (SLO), these workloads process large amounts
of data in the cloud. The online, data-intensive services I have used in my work are avail-
able from [73]. The workloads I have used in my work which expect longer service times

come from the NAS Parallel Benchmarks [53].

Overhead from online collection of workload characterization data has to be balanced with
its value. Value is a broadly defined term referring to the business benefit of data. Of all

data that was generated in 2013, perhaps 22% may have been usefully analyzed, had it been

tagged [158]. However, less than 5% of all data generated in 2013 was considered target-
rich [158]. More concretely, data has value in business when it directly increases revenue
or decreases costs. Data about system operations can have reduce costs by improving
performance and lowering power expenses. Engineers at Facebook use Scuba to collect,
store, and analyze trace data regarding the quality of service reported by users [1]. Problems
in Facebook software and infrastructure are identified using Scuba before more users are

impacted, decreasing the cost per infraction.

Thesis Statement:

Systems support, in the form of OS tools and middleware, allows a wide range of
workloads to respond to resource needs by adaptively tuning their quality of results and
workload characterizations while preserving high throughput.

I trade reduced accuracy for lower overhead from workload characterization. Trading 2%
accuracy can reduce the overhead of workload characterization by 20%. Reducing the ex-
pected accuracy allows characterization of workloads that would otherwise be too costly to
profile to completion. My work is split into three sections. The first uses offline profiling to
determine task sizes for data-intensive, subsampling workloads and reduce profiling time
for finding peak power at different numbers of active cores. The second introduces lim-
ited caching to improve latency and allow answer quality to be obtained online. The last
piece of this work introduces a design for studying workload characterization in colocation

environments.

In the first section of my work, I use offline profiling to analyze the overhead attached
to job creation and task sizing within the Map Reduce framework. The key observation,
presented in Chapter 2, is that when a randomly accessed task falls out of cache, this has

a larger impact on total job latency than the overhead involved in creating more, smaller

tasks. In Chapter 3, I present a quantitative study of power, most importantly that power
phases remain similar regardless of the number of cores used. Based on this observation,
I explain my algorithm for adaptive peak power profiling, which suggests profiling on the
maximum number of cores to determine how long to profile on other numbers of active
cores. With just a slight relaxation of accuracy, the amount of time needed to profile is

greatly reduced.

In the second section of my work, I explore caching as a way to reduce overhead. In
chapter 4, I explore what can be done for a single service using the extra provisioning
capacity (5%) reserved for the operating system. The use of replication for predictability
on just the portion of cached data accessed last can reduce latencies by up to 12%. I take
this further in chapters 5 and 6. Chapter 5 introduces the answer quality metric for use
with interactive natural language processing workloads in an offline setting. Chapter 6
introduces Ubora, which allows resource managers to obtain and manage answer quality
online for interactive, data-intensive workloads. Rather than characterizing every request
for answer quality, resource managers set the rate at which queries are sampled, trading

accuracy for reduced overhead.

Finally, chapter 7 in the third section of my work examines workload characterization in a
colocation environment. My design suggests speculatively deploying a running workload
to a colocation environment, and then combines the techniques used for answer quality
and power study in order to characterize a workload online. I implemented my design as
Quikolo, a platform that speculatively deploy workloads in Docker images to a Kubernetes
environment, to study the overhead impact of number of features and duration on charac-

terization accuracy. My Quikolo platform outputs a recommendation to the user regarding

whether that workload will increase latency or get fewer SLA violations if it migrates to

the speculative location.

Chapter 2: Managing Tiny Tasks for Data-Parallel, Subsampling
Workloads

Internet services and mobile devices have generated large amounts of data. Indeed, 90% of
all data has been produced in the last two years [136]. Data will continue to grow as other
types of data collection become popular. For example, genome sequencing has become
10,000X cheaper over the last 8 years [109]. The genetic sequencing of all American
adults could produce an additional exabyte of data. Big data is becoming too large to
process exhaustively, especially for interactive workloads that must produce results quickly.
Subsampling is a statistical approach that computes means, modes, and percentiles using
only randomly selected portions of each data sample. As an example, consider a family
that participates in an study on Bi-Polar Disorder. The family’s genetic data is a sample
that comprises many AT/CG base pairs. A subsampling workload may examine randomly
selected base pairs to determine whether the family line shares a certain gene. Subsampling
trades accuracy for speed, enabling interactive, big-data workloads while allowing for some

statistical error.

Subsampling workloads can run on data-parallel platforms, e.g., Hadoop, in map-reduce
jobs. These platforms scale out by partitioning sampled data across multiple nodes. Each

node subsamples within map tasks, producing intermediate results from randomly selected

9

data. Reduce tasks combine these intermediate results. However, subsampling workloads
differ from traditional Hadoop workloads because the map tasks access randomly selected
portions of data. These random accesses can cause L2 cache misses, forcing processors
to fetch data from main memory. For tasks that would otherwise achieve low cache miss
rates, random access patterns causing poor locality can significantly degrade processing

efficiency.

Our key insight is that subsampling workloads benefit from tiny rasks, i.e., map tasks that
randomly sample from only a small portion of the sampled data stored on a node. Although
data-parallel platforms must process more tiny tasks for the same result, random accesses
within tiny tasks are less likely to cause cache misses. Tiny tasks complete efficiently, wast-
ing few CPU cycles on retrieving data from main memory (or disk). However, tiny tasks
present scheduling challenges for data-parallel platforms. First, platforms must start tiny
tasks efficiently or increased startup costs will negate efficiency gains. Second, platforms

must improve runtime efficiency to avoid slowing down quickly completing tiny tasks.

For this chapter, we set up a data-parallel platform that supports tiny tasks and speeds up
subsampling. We used a two-step approach. First, we profiled existing platforms for tiny-
task scheduling overhead. We compared three Hadoop configurations and BashReduce
(a lightweight implementation of the map-reduce paradigm [39]). Vanilla Hadoop took
approximately 4X longer to start tasks compared to BashReduce. A second version of
Hadoop, in which we disabled task level recovery and speculative execution, had reduced
overheads, and a third version, in which no HDFS data transfer occurred, achieved very

low overheads. Second, we implemented a new task sizing approach for the BashReduce

10

scheduler. Our approach sizes tasks to the first kneepoint on an empirical task size to miss

rate curve. By doing so, we lower the scheduling overhead for tiny tasks.

We set up two subsampling workloads. EAGLET finds disease genes from subsamples of
dense SNP linkage data within the DNA of sampled families [145]. Our Netflix workloads
describe customer rating patterns by subsampling user ratings of sampled movies. With
low overhead and tiny-task sizing, our BashReduce platform sped up EAGLET and Net-
flix workloads by 3X and 2.5X compared to vanilla Hadoop. We achieved 25% speedup
compared to a lightweight Hadoop setup that had low overhead but no task sizing. Our
platform achieved 12X speedup on small input sizes where whole jobs complete within
minutes, making our platform attractive for workloads governed by service level objec-

tives [175, 144, 115].

On the EAGLET workload, our platform achieved 117 Mb/s per 12-core node, comparing
favorably against competing map-reduce platforms for secondary genetic analysis [120,
129]. Throughput scaled linearly as we allocated additional resources. Our platform also
scaled linearly within virtualized environments. In a heterogeneous environment, our plat-
form was limited by the last task to finish its work. For small jobs, throughput degraded
proportionately to the slowest task to complete. For larger jobs, however, tiny tasks facili-

tated workload stealing, erasing slowdowns [168, 2, 174].

Our Contributions: This chapter focuses on interactive, data-parallel workloads [71, 144,
114,115, 120, 96]. Map and reduce tasks within these workloads complete quickly, relying

on efficient processing and on low scheduling overhead [115]. Our contributions include:

11

1. We make the case for tiny tasks in subsampling workloads, by quantifying cache

miss rates as task size increases.

2. We measure scheduling overheads on tiny tasks, i.e., startup and runtime costs, in

existing data-parallel platforms.

3. We implemented a task sizing algorithm within the BashReduce scheduler to reduce

runtime overheads.

4. We experimentally validate our improved BashReduce platform, comparing it to
vanilla and lightweight Hadoop setups across multiple workloads and diverse clus-

ters.

In the remainder of this chapter, Section 2.1 describes subsampling workloads and their
locality issues. Section 2.2 explains our benchmarking study on scheduling overheads and
presents our modified BashReduce scheduler that supports task sizing. Section 2.3 presents

experiments. Section 2.5 discusses related work.

2.1 Subsampling Workloads

Figure 2.1 depicts and labels stages for data-parallel subsampling. For these workloads,
input data is grouped by some feature (e.g., by family id). Each unit of grouped data is
called a sample. Normally, the space of potential samples is much larger than the number

of observed samples. Sample and subsample sizes vary as depicted in Figure 2.1.

Data-parallel platforms place data samples across many nodes; these nodes then process

the data in parallel. When nodes access data stored remotely, parallel processing slows

12

Family 1: A{?\"EIP:CA Family 3: Sampled Data
ACAAACA P cioea ACACCAC (e.g., DNA sequences from

randomly selected families)

‘o eee ‘ Xy ‘\, Data Placement

Families L0 Task Sizing
143 . (i.e., assign samples—tasks)
Family 2 L]
1&3
T
lask 0 Subsampling Map Task
Subsamples:
CCA&AAC| [Task 1 Task 2 For each task t on node n
' ' ' For each component p
Incur overhead
i Start (p)
asl ~ .
Subsamples: For each sample s in t
[ask t Task t+1 | | ACA & ACA Incur cache misses

s' = Subsample(s)
Process(s'")
Stop (p)

Shuffle & Reduce Phases

Figure 2.1: Data flow for a data-parallel subsampling workload.

down. Data placement affects performance greatly. In the best case, a copy of each sample
is stored on each node, eliminating remote accesses. However, such full replication is only
feasible for small datasets. In practice, each sample is stored on only a few nodes and some
nodes store more samples than others. Such data skew will cause remote data accesses
when nodes with few samples try to steal work from heavily loaded nodes [2]. Load bal-
ancing and handling data skew were the focus of [2, 168]. Our research is orthogonal to

this research.

A task comprises the software components used to process samples (p in Figure 2.1). A
task’s size is the number of samples processed by each component invocation. A task size
of §, starts each component only once, using that invocation to process all samples and

piping all results between components. Here, S, is the number of samples on node n. If the

13

task size is set close to S ,,, we call the resulting task a large task. Large tasks avoid schedul-
ing delays caused by cloning processes, managing temporary files, and context switching.
However, subsampling workloads present a challenge: Access patterns within subsampling
software are random. Large tasks that process many subsamples can exhibit poor locality

on their input dataset.

On the other extreme, a task size of 1 starts and stops each software component for each
sample. We define tiny tasks as tasks with size close to 1. Tiny tasks suffer from scheduling
delays but their region for random data access is much smaller. After compulsory cache

misses, tiny tasks often exhibit good cache locality.

This chapter focuses on task sizing for data-parallel workloads that must complete within
seconds or minutes. Platforms that support these workloads increasingly store data within
main memory, ensuring data access delays are low. Examples of such platforms include
Pig [175], RDD [172], Data Cube [108], Sparrow [115], and [71]. These workloads may
support interactive analysis of scientific data, personalized advertising, sentiment analysis,
or real-time trace studies [175]. Whether tasks are large or small, each task produces in-
termediate results that are forwarded to the shuffle and reduce stage. Interactive workloads
often have relatively short reduce phases. If the reduce stage consumes a large fraction of

a workload’s execution time, task sizing for an efficient map stage has low impact [174].

2.1.1 The Case for Tiny Tasks

In traditional data-parallel workloads, programmers know which data locations will be ac-

cessed during a map task. Their software components preload this data in fast processor

14

1.0000 @ — 12 — 1000

B =
|7 L2 w/o subsampling * 27
= VN ati y =
5 11000 4 Relative CPI / :
g -100 8
£ 8
a7 o
» =10 3
-
= L,
2 3
@] 0.04 0.4 4 40
Task Size (MB)

Figure 2.2: L2 misses per instruction and cycles per instruction across task sizes in EAGLET.

caches, speeding up data access by orders of magnitude. However, in non-traditional data
parallel workloads, which use subsampling to access only a fraction of available data per
task, programmers do not know exactly which data samples will be accessed. By def-
inition, subsampling tasks must randomly choose which data subsamples to use during
runtime. As task size grows, these random accesses are likely to cause misses in processor
caches. A large task processes more samples than a tiny task, incurring more observed

cache misses.

Figure 2.2 makes the case for tiny tasks on the EAGLET subsampling workload. EAGLET
(Efficient Analysis of Genetic Linkage: Testing and Estimation) finds genomic sequences
correlated with diseases [145]. Samples in EAGLET reflect DNA from families (i.e., grand-
parents, parents, and children) that volunteered to be sequenced. EAGLET accepts a list of
family IDs as input. It outputs intermediate, weighted statistical data. Intermediate data can
be combined to produce statistics across the entire dataset. We started with 230 MB of real
data consisting of 400 samples from a linkage study on bi-polar disorder and scaled it as
needed. In practice, scientists use EAGLET as the first step to detect disease genes. Before

requesting costly lab work to confirm their hypothesis, scientists may use EAGLET to test

15

up to 10 genomic sequences for statistical correlations. EAGLET jobs should complete

each test as quickly as possible to allow scientists to interactively refine their hypotheses.

In Figure 2.2, the task size presented in MB reflects the number of families included in
EAGLET’s input list. At runtime, EAGLET randomly selects subsets of each family’s
genome, looks for the genomic marker, and computes intermediate results. Intermediate
results from different tasks are combined during the reduce phase. These functions are di-
vided across multiple widely used, open-source software components, including MERLIN,

Perl, GenLib, and others.

We used OProfile [88] to sample cache misses while EAGLET ran. We set up Oprofile to
distinguish EAGLET’s subsampling program from other programs. We ran these exper-
iments on an Intel Sandy Bridge processor with 6 dual cores with 1.5MB L2 cache and
I15MB L3 cache. We observed that large tasks incurred higher miss rates. A 25MB-sized
task saw 35X more L2 cache misses per instruction than a 2.5MB-sized task. The EAGLET
subsampling component is the source of the increase missed rate. The miss rate was flat

among other components.

Random accesses increase the cache miss rate in two ways. First, the data being accessed
is unlikely to be in cache, causing compulsory misses. Second, they represent unique data
accesses that evict other, potential useful data from LRU caches [28]. Stack distance is
the number of unique data references between accesses to the same data. Stack distances
smaller than the cache size means data accesses will hit in cache. Random accesses (due to
subsampling) injected between normal accesses make cache hits less likely. This explains
a key property of Figure 2.2: The miss rate changes at certain key task-size thresholds.
After those points, increasing the task size results in random accesses evicting frequently

16

accessed data that normally, i.e., without subsampling, would have hit in cache. We call
points where the miss rate increased sharply kneepoints. Kneepoints were at 2.5MB and
11MB. Separately, we also captured cache misses in the L3 caches and observed a kneep-

oint at 1 1MB.

Cache misses force tasks to retrieve data from memory. On the Intel Sandy Bridge, data ac-
cess from memory is 63X slower than L2 cache hits. Average memory access time (AMAT)
per instruction, the time for a lookup in the fastest cache plus the product of the miss rate
and the miss penalty, is a well-known model to study the effect of cache misses [118]. The
secondary axis on Figure 2.2 plots the normalized AMAT where the fastest cache looks up
results in 1 cycle. We observed over a 1,000X increase in AMAT between the tiniest task

and the largest task.

2.2 Managing Tiny Tasks

Tiny tasks have fewer cache misses per instruction than large tasks. However, data-parallel
platforms configured to use tiny tasks will start and stop software components more often
than platforms configured to use large tasks. The time taken to schedule software compo-

nents, called scheduling overhead, may exceed the time saved by improved cache locality.

Hadoop monitors each task’s execution for potential node or disk failures. On failure, tasks
are restarted with different resources. The monitoring and data replication required for such
task-level recovery are major sources of scheduling overhead. Job-level recovery, in which

a node or disk failure would restart the whole job, can lower scheduling overhead [120]. In

17

this section, we first make a case for job-level recovery in interactive data-parallel work-
loads. Then, we quantify scheduling overhead in data parallel platforms, comparing a
vanilla Hadoop setup, lightweight Hadoop setups, and a clean-slate platform. We reduce

scheduling overhead by moving toward job-level recovery.

2.2.1 Job- vs Task-level Recovery

Hadoop was designed to process multiple petabytes spread over 10* — 10° nodes [164],
taking hours or days to complete a map-reduce job. During the course of a job execution,
multiple disks and nodes were likely to fail. If each failure restarted the entire workload,
the job would never complete on Hadoop, making the decision for task-level recovery on

Hadoop simple.

We revisit task-level recovery here in the context of interactive, subsampling workloads
that run for minutes. The shorter time frame makes it 10° — 10* times less likely that a
failure will occur in the midst of a job execution. Further, these workloads use fewer nodes
because 1) data stored in main memory is costly [172, 115, 71] and 2) their goal is often to

compute results from iterative or incremental changes [96, 99].

Mechanisms for task-level recovery, e.g., monitoring and data replication, increase a work-
load’s running time. Let cost,; be the slowdown factor. On failures, only tasks are restarted,
rather than entire jobs. On each failure, task-level recovery saves the difference between
the expected job and task running times. Our key insight is that task-level fault tolerance

only makes sense if 1) hardware failures occur faster than jobs complete, meaning every

18

Codename Core | Task-level | Full Dist. | Java
Failures | File Sys.

Vanilla Hadoop | Hadoop Yes Yes Yes
Job-level Hadoop No Yes Yes
Hadoop

Lite Hadoop Hadoop No No Yes
BashReduce [39]| Unix No No No

Utilities

Table 2.1: Platforms benchmarked for this paper

job is likely to see a failure or 2) rerunning entire jobs would slow down running time by

more than cost,. For short, interactive workloads, the latter concern is most important.

Let mit f represent the mean time to a node or disk failure. Also, let P(w) reflect of service
level objective (SLO) for the workload [175]—i.e., the worst case running time. We
expect at most (f,, = N - i(t—tw; - @) failures during an execution. Here, « captures correlated,
heavy-tail failures that occur within the SLO window. We now compute f,, for typical
subsampling workloads. We set P(w) = 10 minutes and @ = 1.5. Taking guidance from
recent work [115, 71, 174], we set N = 100. We set mttf = 4.3 months from [120, 36].
Under these settings, f,, = 0.0078, meaning that monitoring overhead would have to fall

below 1% to justify task-level recovery. Next, we quantify actual overheads observed in

Hadoop.

2.2.2 Platform Selection

We measured scheduling overhead for the platforms shown in Table 2.1. Here, we describe

the salient features of each platform. More details are can be found in Section 2.3.

19

Hadoop was an obvious choice to benchmark, as it is widely used in practice for map
reduce workloads. Vanilla Hadoop used default monitoring and HDFS policies. Each task
reports its progress to a central service that exposes an HTTP front end. Also, tasks use
HDFEFS instead of the local Linux file system. In the job-level Hadoop setup, we disabled the
central monitoring service. In the lite Hadoop setup, we modified EAGLET so that map
tasks created no intermediate HDFS files, avoiding replication costs. This new version
of EAGLET performed calculations based on a static, globally distributed file rather a
dynamic file. We also disabled the central monitoring service in lite Hadoop. Note, lite

Hadoop is shown for benchmarking only—its results are incorrect.

The BashReduce platform takes a clean-slate approach [39]. It is a very lightweight imple-
mentation of the map reduce paradigm based on running tasks within the Bash shell. These
tasks are connected through simple TCP pipes using the nc6 tool. Task-level fault tolerance
has never been supported in BashReduce. BashReduce also elides a global distributed file

system (HDFS). Managers partition data and tasks access only the local file system.

We quantified two types of scheduling overhead. Startup time captures delays that hap-
pen only once for each workload. These delays include TCP handshakes for longstanding
connections and data staging. Runtime overhead captures delays incurred as a task runs.
Specifically, runtime overhead is the difference in running time between running software
components directly on Linux and running them on one of the platforms in Table 2.1. We
ran these experiments on a 72-core cluster consisting of 6 dual-core Intel Sandy Bridge

processors. Each core served as a map slot. Task size was fixed at 1 sample.

We measured startup time by running a hello-world job where tasks equaled map slots.

Each task was identical and completed within milliseconds (less than 0.01% of the job’s

20

O Vanilla Hadoop £ Job-Level Hadoop
M Lite Hadoop B BashReduce

Relative Task
Startup Time

S = N W K~ W

Data-Parallel Platform

Figure 2.3: Relative time to start 1 task on each core by platform

O Vanilla Hadoop & Job-Level Hadoop
M Lite Hadoop B BashReduce

Relative Per-Task
Runtime Overhead
S = N W A W

| 7 =

Data-Parallel Platform

Figure 2.4: Runtime overhead of each platform relative to native Linux

running time on Hadoop). Figure 2.3 shows the time taken to complete this job. Times are
normalized to the overhead of BashReduce. Task monitoring overhead increased Hadoop’s
startup costs by 21%, about 52 seconds. Task-level failures would have to recover hundreds
of sub-second subsampling tasks to justify this large overhead. Using formulas from the
previous section, clusters smaller than 30K nodes do not justify 21% overhead. BashRe-

duce could start jobs almost 4X faster than vanilla Hadoop.

Figure 2.4 compares the relative per-task runtime overhead of each platform. For this test,
we ran an EAGLET subsampling workload comprised of 4K tasks and measured the total

running time. Then we subtracted the startup time and divided by 4K. The result is shown

21

relative to the running time on Linux without a platform. Failure monitoring caused a 20%
degradation per task. However, the largest runtime gain came from bypassing HDFS on
short-lived temporary files. Indeed, the experiment on Linux without a platform achieved
runtime overhead almost equal to BashReduce’s overhead. BashReduce still incurred 12%
overhead due to scheduling the subsampling map tasks on the cluster. In practice, this
overhead would accumulate for tiny tasks. In the next section, we address this overhead by

looking for relatively large tiny tasks.

2.2.3 Task Sizing

Per-task scheduling overhead penalizes many tiny tasks more than few large tasks. Large
tasks amortize per-task delays, e.g., creating Linux processes, across many samples. How-
ever, very large tasks face large cache miss rates. In this subsection, we present a task-sizing
approach. We size tasks at the smallest kneepoint on the task size to miss rate curve (i.e.,
Figure 2.2). The smallest kneepoint is the largest task size before the first increase in the
cache-miss growth rate. Our approach achieves low cache miss rates while amortizing per-
task overhead across samples. We implemented task sizing within the BashReduce sched-
uler. In an offline step, we created the task size to miss rate curve and found kneepoints. In

an online step, we packed subsamples into tasks.

Specifically, Figure 2.5 outlines our approach. First, during an offline phase, we collect
data on the relationship between task size and cache misses. On a benchmarking node, we
run Oprofile. We run map tasks in isolation, varying the number of samples in the task’s
working set. As seen in Figure 2.2, we plot the aggregate input data size against cache

misses per instruction. We modified our BashReduce platform to group samples into tasks

22

Offline: Determine Kneepoint

public static int kneepoint(int maxSampleNum) {
float[2] taskSizes = new float[];
float[2] missRates = new float[];

//Pick random samples for study

float[] samples = RandomArray(1, maxSampleNum);
List workingSet = new List();
workingSet.add(samples|[0]);

// Run the tiniest task and collect misses
results = ExecTask(workingSet);
misses|[0] = results.cacheMisses();
taskSizes[0] = results.inputSize();

int growthRate = 0, i = 0;
float MAX_RATE = -1;
// Run tests at each size, compare miss rates
while ((growthRate <= MAX_RATE) ||
(MAX_RATE == -1)) {
workingSet.add(samples]i]);
results = ExecTask(workingSet);
missRates[1] = results.cacheMisses();
taskSizes[1] = results.inputSize();
growthRate = ((missRates[1] — missRates|[0]))
/((taskSizes[1] — taskSizes[0]));
//bookeeping
if (MAX_RATE == -1) MAX_RATE = growthRate;
missRates[0] = missRates[1];
taskSizes[0] = taskSizes[1];
i++;

return (taskSize(i-1));

}

Runtime Scheduler: Task Sizing

public void sizing(int kneepoint,
InputStream dataset) {
// determine size in terms of # samples
float AVG_SAMPLE_SIZE = K;

int size = kneepoint / AVG_SAMPLE_SIZE;

//Split dataset into tasks

InputStream[] tasks;

tasks = splitlnputStream(dataset, size);

for(InputStream task: tasks){
addToMapJobList(task);

}
// start Bash Reduce
StartBashReduce();

Figure 2.5: Java code for offline kneepoint detection and task sizing implemented within BashRe-
duce.

of equal (kneepoint) size before starting map tasks. We place the same number of samples

in each task, assuming samples are roughly the same size; in practice, data parallel jobs

23

kneepoint

\.I:IO Outliers B With Outliers

1
) %
0 T T

02MB' 2MB ' 5MB ' 11MB ' 24MB
Task Size

Relative
Throughput (MB/s)

Figure 2.6: Impact of our kneepoint algorithm on runtime

have large outliers [7, 71]. Our genetic analysis dataset also has outliers, with one sample
15X larger than the mean and a second sample 7X larger than the mean. The time taken by
the offline phase is about 3% of the time taken by the online phase. However, the offline
phase is a one time overhead paid for each new data set. A further avenue to follow in
the future would be to develop a dynamic task sizing approach that can adapt to outliers

rigorously and reduce the overhead of offline computation.

We compared the impact of task sizing on BashReduce’s performance. We ran EAGLET
on the 72-core Sandy Bridge cluster. EAGLET subsampled data and computed genetic
statistics 30 times for each family. Each of these subsamples (i.e., 30 x 400 families) could
run in its own map slot. Figure 2.6 shows throughput relative to 24MB large tasks, i.e.,
the amount of data partitioned to each map slot in the cluster (S). Our results include the

delay for determining the kneepoint offline.

24

First, we removed outlier samples from our dataset (shown as no outliers in Figure 2.6).
Outlier samples run 50X longer compared to the mean run time, or longer. We observed
that our kneepoint approach achieved 15% speedup compared to the baseline created by
the 24MB large task approach. Further, the tiniest task approach caused 8% slowdown.
When we included the outlier samples, we observed that our approach increased throughput
by 23%. This is because the outlier tasks increased the cache miss rate within their task
groups by pushing valuable data out of the cache. Tiny tasks were more helpful under
the heterogeneous workload. The absolute running time with hetergeneous tasks under the
tiniest task approach was 791 seconds with outliers, and 322 seconds without the outliers.
Outliers themselves caused a 2.4X slow down [7, 144]. Our task sizing approach had a

larger impact with outliers but did not overcome the slow down caused by outliers.

Discussion: The kneepoints identified by our offline analysis are contingent on hardware
and workload. The task size to miss rate curve should be recomputed if processor cache
sizes or data access patterns change. Our ongoing work attempts to identify a cross-
platform heuristic to identify kneepoints, especially for cloud platforms where processor
cache sizes are not known. Our experiments in the next section show that kneepoint selec-

tion is insensitive to small errors.

2.3 Experimental Setup

We set up two subsampling workloads. EAGLET [145], described earlier, is open-source
software that finds disease-causing genes from a collection of sequenced families. Our
dataset originally comprised DNA sequences of 400 families (over 4,000 individuals) who

volunteered for a Bi-Polar study, but we grew this data as needed. The data of a single

25

family is represented in a data sample from this workload. The workload recomputed
analysis that unveiled well-known linkages [9]. In total, the original data exceeded 230
MB. As is common practice in genetic analysis, we ran the workload 30 times for each
sample, making the job size 6.9 GB (i.e., 230 MB x 30). For larger tests, we created
synthetic data based on patterns in the original data. Our largest test was a 1 TB job
spanning 684K families. The distribution of family sizes (and hence sample sizes) was

heavy tailed. Outliers were preserved in our synthetic data.

We also set up a subsampling workload based on Netflix movie ratings [110, 174]. Here,
each sample represents a movie that Netflix streamed to its users. The data within each
sample are tuples composed of the date, user id, and the user’s rating of the movie. Our
workload subsampled ratings for each movie to estimate typical user ratings by month.
Data size was 2 GB with 118 KB per movie. By subsampling, we found the user ratings
faster than exhaustive calculation would have [174] but we also allowed errors to occur.
We classified two types of Netflix workloads: High confidence and low confidence. The
high confidence workload estimates average user ratings with a 98% confidence interval,
choosing less speedup and more accuracy. The low confidence workload estimates use two

orders of magnitude fewer ratings, accepting more error for speedup.

Task Sizing: Our EAGLET and Netflix workloads differed in terms of software com-
plexity. EAGLET used multiple (> 5) open-source software packages that spanned three
programming languages. Our Netflix workloads used only Bash scripts. We hypothesized

that EAGLET was more likely to suffer from tiny-task scheduling overhead.

Both workloads used a pointer to a file containing the actual input data. If the file was

large and contained many samples, the task operating on the file was large. If the file was

26

small and contained few samples, the resulting task was tiny. Precisely, we define large
tasks as jobs that consist of all of the samples partitioned to a node (i.e., S, samples in 1

file). The tiniest tasks have S, files that are piped one-by-one into the respective programs.

Platforms: We compared the following platforms.

1. BashReduce w/ Task Sizing (BTS): We set up BashReduce [39] with netcat for inter-
node communication via pipes. BashReduce centralizes scheduling and shuflling stages on
a single master node. In our setup, the master node also decides on task sizes by creating
input files locally and distributing them to all other worker nodes. The master node includes
the offline script described in Figure 2.5. Unless otherwise mentioned, BTS sets task size
to 2.5 MB for EAGLET and 1 MB for Netflix. If any master or worker node fails, the

entire BashReduce job is restarted.

2. BashReduce w/ Large Tasks (BLT): In this setup, the master node referred to all samples

on a node within a single file.

3. BashReduce w/ Tiniest Tasks (BTT): In this setup, the master node referred to only 1

sample in each of S, input files.

4. Vanilla Hadoop (VH): We compared other platforms against Hadoop, a widely used
platform for data analysis. Our default configurations uses an HDFS replication factor of
%’ to reduce data migration traffic. A large replication factor is a sensible optimization for
interactive workloads that use relatively small datasets. Each node is configured to have as

many map slots as cores.

27

Type 1 | Type2 | Type 3
Processor Xeon | Xeon | Opteron
Cores per Node 12 12 32
Processing 2.0G 2.3G 2.3G
Speed
L2 Cache I5SMB | I15MB | 32MB
Memory 32GB | 32GB | 64GB
Virtualized No No Yes

Table 2.2: Hardware used in our studies.

5. Job-Level Hadoop (JLH) disables TaskTracker, the feature responsible for task level
recovery. Also, speculative execution is disabled. These optimizations make Hadoop more

suitable for our interactive workloads by reducing task startup and runtime overheads.

6. Lite Hadoop (LH): This benchmark produces incorrect results but achieves very low
overhead on the Hadoop platform. We use it to benchmark overhead from Java Runtime and
to understand the potential for revised subsampling-aware Hadoop. We changed EAGLET
so that it fixes intermediate files used to pass data between software components. The
subsampling portion of EAGLET was unaffected. We set the replication factor to N on the

intermediate files, ensuring no HDFS data transfer would slow down the platform.

Hardware: We used a private cloud with three types of servers, shown in Table 2.2. Pro-
cessors include AMD and Intel brands that vary by cache size, memory capacity, and pro-
cessing speed. Our experimental setup restricted the amount of hardware available to focus

on performance improvement using limited hardware.

28

OBTS @ BIT H BLT

\S]
J

Platform Legend

—_
W
|

BTS — BashReduce w/ Task Sizing

BLT — BashReduce w/ Large Tasks

o
()]
!

BTT — BashReduce w/ Tiny Tasks

Relative Throughput
(compared to BLT)

11

With

=

High
Outliers Outliers Conf.

EAGLET Netflix

Figure 2.7: BTS speeds up both EAGLET and Netflix workloads relative to BLT and BTT. Tests
ran on hardware type 1. The rightmost table provides acronyms for all of the platforms referenced
in this section.

2.4 Experimental Results

Figure 2.7 compares the BashReduce setups. For this test, we used 6 nodes of hardware
type 1 (See Table 2.2). In total, the tests ran on 72 cores. These tests used only the original
data from the Bi-Polar study and movie ratings. We observed that BTS achieved throughput
10-90% higher than BLT and 26-32% higher than BTS. Because the Netflix sampling
workload uses fewer software components than EAGLET, it was able to better exploit cache
locality, resulting in favorable BTT results. In contrast, EAGLET suffered additional
per-task runtime overhead from starting many software components on tiny tasks. BTS

balances these issues, typically outperforming its closest competitor by 17%.

Figure 2.8 shows that kneepoints occurred for the Netflix workloads as well. Results shown

were run on top of BashReduce. However, the kneepoints occurred at different places for

29

—— High Confidence === Low Confidence

e
9
G o=

F 025 “Kneepoints
4 40 400
Task Size (MB)

Relative Running Time
(normalized to largest task)
o
W

(=}

Figure 2.8: Kneepoints in the Netflix subsampling workloads on BashReduce.

the high and low confidence workloads despite subsampling the same data. We expected
this result because cache locality patterns varied depending on the confidence level desired.
Our offline approach can find a different kneepoint depending on the workload, provided
the data is available. For results presented in this section, we used only 1 kneepoint (1 MB)
for both Netflix workloads. Results with high confidence workload in Figure 2.7 show that
exact kneepoints are not needed to improve throughput relative to BLT and BTT. To quan-
tify how robust our approach is, we created five Netflix workloads that varied according to
their output confidence level. Among the five workloads, the 1 MB task size ranked in the
top 2 task sizes (in terms of throughput) three times. In the cases where it was not the best
performing task size, it was within 10% of the best. Further, the 1 MB task size setting

outperformed large and tiniest task settings in all 5 workloads.

BTS versus Hadoop: Hadoop is a widely used platform for data processing. However,
it is not designed for short, interactive jobs [164]. We compared the throughput of BTS

to three Hadoop setups across different job sizes. For these tests, we ran the EAGLET

30

BTS .. BTS
WVH Fiw

b

(95}

—

Relative Throughput
=) N
S, LWL ELu

12MB 120MB 1.2GB 12GB 120GB
Job Size

Figure 2.9: Comparison of BTS to VH and JLH.

subsampling workload on type 2 hardware, varying job size. We changed the job size by

adding synthetic families to the Bi-Polar data.

Figure 2.9 shows that BTS sped up VH by almost 5X on jobs with a 12 MB task size. For
reference, we found that a 12 MB job can test a genetic hypothesis on 40 families with 15
subsamples per family. As the job size increased, BTS offered less speedup because VH
was able to amortize its startup costs. We recall here that JLH had lower startup costs and
runtime overhead compared to VH. JLH performs better on short jobs, but BTS still offered

3.7X speedup.

Along with tracking task-level failures, the Hadoop platform monitors CPU utilization, I/O
efficiency and other system metrics. The metrics are queried frequently to produce user-
friendly web displays about the state of the system. We added system level monitoring into

BTS. We used Oprofile [88] to capture L2 and L3 cache misses, instruction counts, accesses

31

100000

Y

E —~ 10000

= o

op £ 1000~

E o

= O 100

SN

2 10
1 T T T T T |
10MB 1GB 100GB 10TB

Job Size

Figure 2.10: Comparison of BTS to VH and LH in terms of running time. Note log-log scale.

to memory, and CPU utilization data. We collected this data every second, sending it to
a central node for display. We do not claim that our approach rivals the sophistication of
Hadoop (i.e., production code). Instead, our goal was to understand the impact of adding
monitoring on BTS. We observed that BTS with monitoring suffered a 21% slowdown on
MB-sized jobs, due to the increased startup overhead. On GB-sized jobs or larger, the
runtime overhead caused an additional 15% slowdown. Despite these delays, BTS with

monitoring still speeds up JLH by 2.5X on small jobs and 1.5X on larger jobs.

EAGLET allows scientists to test genetic hypotheses before sending them away for costly
lab work. This process could proceed much faster if it were interactive. Before this work,
we observed that vanilla EAGLET (i.e., without Hadoop or BashReduce) took an hour to
complete a 230 MB job on a type 2 node; it was not designed for parallel execution. Run-
ning EAGLET within Hadoop and BashReduce platforms improved performance by using

all available cores. Figure 2.10 shows BTS’s speedup over VH. These tests used 72 cores

32

60 4 — 72 Cores

—~ 50 T 60 Cores
é g " |--=———- 36Cores T ...
20— Cores T
o34 =T -
5 = 3
= /M 20
=2 104

0 T 1

I I
150 MB 1.5 GB 15 GB 150GB 1.5TB
Job Size on BTS

Figure 2.11: EAGLET on BTS as number of cores changed.

of type 2 hardware. With BTS, we completed a 91 MB job in 40 seconds. The same job
took 150 seconds to run on VH. A 230 MB job ran on BTS in 68 seconds, a 59X speedup
over vanilla EAGLET on 12 cores. For comparison to the state of the art, recent studies
with CloudBlast, a competing tool for secondary genetic analysis, achieved 60 Mb/s [120]
and 24 Mb/s [129]. BTS sustains 117 Mb/s. Note, these results are anecdotal. We can not

compare them directly because the workloads differ.

We also compared against LH. LH suffered from high startup costs when job sizes were
small, essentially matching VH up to 1.1 GB sized jobs. It never achieved response times
within 100 seconds. As job size increased, LH approached BTS performance. However,

BTS (due to task scheduling) maintained 25% throughput gain even under a 1 TB job size.

Elasticity: Figure 2.11 shows throughput as we changed the number of cores in BTS. The

platform scaled linearly up to 1 TB job. These tests were conducted on a 1 Gb/S network.

33

1 =
0.8 7
0.6

N FLTL

20 Sec. 1 Min. 2 Min. 5 Min.
Service Level Objective Bound

U % of Peak Throughput
B % of Running Time

Relative Performance

Figure 2.12: The throughput and running time of EAGLET on BTS clusters scaled to efficiently
meet service level objectives.

The 72-core test (i.e., 6 type 2 nodes) produced results at 45% of network capacity. In Fig-
ure 2.11, regions where 72-core throughput equalled 36-core performance reflected startup
costs. Large job sizes amortize these costs. For interactive workloads that run small jobs,
however, the 72-core tests wasted resources. Managers should scale out until additional

cores provide diminishing returns and no further.

Service-level objectives guarantee that a job will finish within a fixed running time [174,
175, 16, 144]. For data processing workloads, a job’s running time depends on its size
and the platform’s achieved throughput at that size. If the job size is too small, startup
costs dominate, limiting the data that can be processed within the fixed running time. Fig-
ure 2.12 shows BTS performance under various service level objectives. Each result re-
flects the platform configuration with highest achieved throughput within the fixed running
time. Note, the 72-core case was only the best for 2-minute and 5-minute bounds. It has

high startup costs, which allows the 36-core and 12-core case to perform better under tight

34

16 e High Confidence

Homogeneous EAGLET w/ Outliers

- 124 Heterogeneous o 1. T EAGLET w/o Outliers
eterogeneous - - — — — - NetflixHigh

8 === Low Confidence Pid
-

Netflix Low

Relative Running Time

Relative Running Time
Relative Running Time
=)

n

T T 1 . .
100 1000 10000 100000 1 10 100
Number Of Cores (a) Job Size (MB) (b) Reduce Slots (C)

Figure 2.13: Running time on BTS (a) Netflix workload as cores scale on Type 3. (b) Netflix
workload as job size increases. (c) Network resource demand increases.

bounds. Figure 2.12 shows performance relative to BTS’s peak throughput without any
service level objective. For reference, we also show the fixed running time relative to the
running time when peak throughput was achieved. We observed that under a 2 minute SLO
BTS achieved 50% of its peak throughput. For reference, a 2 minute SLO represents 4%
of the 50 minute run time needed to achieve peak throughput on 72 cores. A 5 minute SLO

achieved 83% of peak throughput.

Virtualization and Heterogeneity: We tested our workloads on user-mode Linux virtual
machines. For these tests, we used the original datasets for each workload. Each virtual
machine was allocated 1 AMD Opteron core (i.e., type 3 in Table 2.2). We re-ran our task
sizing algorithm on this hardware; EAGLET had a kneepoint at a task size of 1.2 MB and
Netflix had a kneepoint at a task size of 1 MB. Compared to type 2 hardware, i.e., without
virtualization, we observed slowdown of 16% across both workloads. BTS still scaled out

well, Figure 2.13(A) shows linear improvement for the Netflix workload.

35

We tested BTS under a heterogeneous environments where 12 of 60 cores were 15% slower
than the others (i.e., 1 slow node). The slow node was of type 1 hardware and the others
were of type 3 hardware. The slow nodes caused proportional slowdown on MB-sized jobs.
However, as job size grew, BTS’s round robin scheduler skipped over busy, slower cores,
assigning more tasks to the faster cores. As a result, the performance loss is divided across

48 cores.

Finally, we studied the impact of reduce tasks. The BashReduce platform does not support
multiple reduce slots gracefully. It requires mapping data back to all nodes and running the
reduce stage as a map stage in an interactive computation. We used simulation to under-
stand the impact of multiple reduce stages, and corresponding communication delay. We
used formulas from [174] to understand the expected performance as reduce tasks increase.
We calibrated these models with average map time, reduce time, and shuffle time from our
experiments with 1-node map reduce. Figure 2.13(C) highlights the results. With EA-
GLET, secondary genetic analysis is compute intensive [120]. As a result, adding reduce
tasks quickly exhibits diminishing returns. The Netflix workload, however, can speed up at

the reduce stage.

2.5 Related Work

It is challenging to coordinate processors, routers, memory controllers, and disks in par-
allel, especially for interactive workloads. In this section, we describe recent papers on
scheduling algorithms, data storage architectures, modeling approaches, and workload-
specific designs. These papers advanced the state of the art for interactive, data-parallel

platforms. In comparison, this chapter targets subsampling, data-parallel workloads. We

36

show that task size affects data access times and design a platform and scheduler to support

tiny tasks.

Large clusters provide resources shared by many data platforms. These platforms have
their own schedulers that may independently and accidentally overload nodes, causing tran-
sient queuing delays. As we observed, even seemingly small delays have large effects on
tiny tasks. The Sparrow scheduler [115, 114] presents a data-parallel version of power-
of-two load balancing [102] that allows independent schedulers to avoid transient delays.
Each node’s operating system and background jobs also cause transient delays. Replica-
tion for predictability [71, 144, 7, 23] sends requests to multiple nodes and takes the first
response, masking transient delays. Within local networks, individual paths can become
overloaded. These issues are hard to resolve because application and network interactions
are opaque [21]. Mizan [77] focuses on Pregel workloads, providing a high throughput

scheduler that balances network I/O between vertex queues.

Moore’s law proves that exploiting parallelism offers diminishing returns for execution
time. Platforms should use enough parallel resources to achieve service level objectives
but no more. Zhang et al. [175] model execution time for Pig, a platform for iterative
map-reduce, as a function of parallel resources used. Such performance models can be
used to make online management decisions [141]. GreenHadoop and GreenSlot [47, 48]
also create accurate performance models. However, their focus was exploiting intermittent
renewable energy [142]. AMAT (average memory access time) is a simple model that
makes a strong point: faster storage can significantly decrease execution times. RDD [172],
Data Cube [108], Pig [175], and [71] lower execution times by using main memory for

storage, rather than disk. However, main memory is volatile and costly. Often, it is paired

37

with disk or SSD in hybrid storage. Tsai et al. [157] provide a framework to compare

caching and partitioned hybrid architectures. hStorageDB is one such hybrid system [92].

Graph workloads often run tasks starting from the same vertex multiple times. Each run dif-
fers because weights or edges from the vertex have changed slightly. These workloads can
reduce their execution time by reusing results from prior tasks. Data mining and machine
learning workloads have similar properties. McSherry et al. [96] propose language sup-
port for differential dataflow, a paradigm that allows programmers to specify incremental
structure in their programs. RDD [172] users can call functions on cache misses, allowing
for certain types of incremental workloads. Waterland et al. [163] cache results for parallel
applications transparently within the operating system. Non-determinism presents a chal-
lenge for the above approaches. For example, results for our subsampling workloads are
not easily cached by input data alone. One solution would cache random-seed keys along
with data, but this may disturb the statistical power of subsampling. Other recent work has

studied the efficiency of cloud caches, especially for data-parallel workloads [15, 20, 70].

38

Chapter 3: Adaptive Power Profiling for Many-Core HPC

Architectures

Many-core architectures are now pervasive in HPC. In 2009, 51.2% of HPC workloads
deployed on Jaguar at Oak Ridge National Laboratory used more than 7832 4-core nodes,
and Jaguar has since expanded into Titan, with 18688 16-core compute nodes and associ-
ated GPUs [154, 155]. Soon, 72-core nodes will be available for HPC environments [137].
Unfortunately, few workloads use every core effectively. For example, PARSEC bench-
marks achieve 90% of the speedup provided by 442 cores using just 35 cores [30]. Our
tests with NAS workloads on Intel Xeon Phi confirm these results, using 32 cores provides

85% geometric-mean speedup relative to 61 cores.

Workloads that execute threads on every core have large and inflexible power needs. Fur-
ther, their peak power needs can be significantly larger than average power needs. To be
clear, peak power is the largest aggregate power draw sustained for at least a tenth of a
second [40]. Large peak-power needs present a challenge for modern HPC centers that
operate under a myriad of increasingly tight power caps. Circuit breakers enforce hard
power caps that safeguard electrical equipment [40]. Emerging demand-response systems

enforce soft power caps that shape power usage over time. For example, workloads that

39

cap their peak power consumption during mid-afternoon hours provide significant cost sav-
ings [165]. Running Average Power Limit (RAPL) enforces soft power caps on low priority

workloads [128, 57, 173].

HPC workloads can lower their peak power needs by restricting software threads to a subset
of available cores. This approach is called core scaling. Core scaling reduces the dynamic
power used to access memory, manage on-chip caches, and operate processors. With core
scaling, cores that do not execute software threads have lower dynamic power needs and
transition into low power operating modes. However, core scaling can increase peak power
for the cores used to execute threads, because each active core executes more instructions.
Resource contention can cause data movement between threads that increases power usage.
Higher power usage can lead to increased temperature and potentially higher system failure

rate [149, 112, 52, 13, 155].

HPC schedulers use workload profiles to allocate resources to jobs at runtime, and can
change provisioning as the workload progresses [111, 24]. Workloads decide which active
cores will execute threads at runtime. However, resource contention between threads is
dynamic. Consequently, a wide range of runtime factors affect a workload’s power usage.
Offline models of power usage miss these factors [44, 14]. These models can capture the

potential effects of core scaling but may not accurately reflect the actual effects.

For this chapter, we studied the effects of core scaling on peak power. Our experimental
design measures power usage during workload execution. As such, our measurements
capture power usage caused by dynamic data movement. Specifically, we applied core

scaling to HPC workloads running on modern architectures and widely used parallelization

40

platforms. We used RAPL to trace instantaneous power usage during execution. Key

findings from our study are listed below:

1. Power savings from core scaling varied across workloads and architectures.

2. Workloads that exhibited similar peak-power savings on one architecture were often

unalike on another architecture.

3. Workload phases trigger power spikes at similar execution points across core scaling
settings. Often, these power spikes occur early in execution. After 40% of a workload’s
execution, peak power up to that point predicted final peak power within 5% for 13.8%

of the configurations studied.

We focus our study on peak power profiling, which partially executes a workload on a target
architecture. Peak power during partial execution is used to model final peak power. Accu-
rate peak-power models are critical for schedulers and capacity planning [128]. Our study
showed that peak power changes significantly under core scaling. Further, the changes are
not easily modeled analytically. Thus, we explored the challenge of peak-power profiling

across core scaling settings.

State of the art profiling approaches partially execute workloads for a fixed sampling dura-
tion (e.g., 5 min) [24]. We developed adaptive peak-power profiling. Our approach accepts
two inputs: sampling duration and desired accuracy. First, it partially executes the work-
load for the sampling duration and collects a power trace. To estimate peak power under
other settings, it executes the workload until either 1) the workload causes a power spike
or 2) the sampling duration is reached. Our approach reduced profiling time by more than

40% for most applications while allowing for scaled estimation accuracy.

41

The remainder of this chapter is as follows. Section 3.1 describes the methodology for
our study. Section 3.2 characterizes peak power as workloads and architectures changes.
Section 3.4 characterizes peak power relative to instantaneous power early in a workload.
Section 3.5 presents our adaptive profiling approach driven by our results. Section 3.6

presents related work.

3.1 Experimental Methodology

Core scaling can increase or decrease peak power. As core scaling idles more cores, more
cores have reduced their power consumption compared to the active cores. On the other
hand, reducing the number of active cores causes the active cores to sustain larger work
load which can increased power needs. Our experimental design characterizes the relative
importance of these diametric forces. In this section, we first provide details on our power
measurements. Then, we discuss independent secondary factors that affect core scaling.

These are listed in Table 3.1.

3.1.1 Power measurement

In our experiments, we used RAPL to measure power usage during workload execution.

RAPL stores power measurements per CPU socket in Linux Machine State Registers (MSR).
The open-source libRAPL library provides an API to access MSR [78]. Specifically, we

measured on-core, and uncore (memory), and total energy per CPU socket, since initial-

ization. We converted total energy into power by associating each libRAPL call with its

corresponding wall-clock time. We issued libRAPL calls every 100 milliseconds. For Xeon

Phi, we read power from micsmc [79] instead of RAPL.

42

Factor: Architecture

Values Features

17 4 cores, 256 KB L2, 8 MB
L3, 3.4 GHz, 95 W TDP,
32 nm

Sandy Bridge | 8 cores, 256 KB L2, 20
MB L3, 2.6 GHz, 115 W

TDP, 32 nm

Xeon Phi 61 cores, 512 KB L2,
N/A, 1.05 GHz, 225 W
TDP, 22 nm

Factor: Parallelization Platform

Values Features

MPI Message passing inter-
face, limited support for
shared memory

OMP Open Multi-Processing
platform provides ex-
tensive shared memory
support

Factor: Workload

Values Features

CoMD N-body molecular dynam-
ics. Frequent inter-thread
communication

Snap PARTISN workload used

at LANL. Iterative inter-
thread communication
MiniFE Finite-element work-
load composed from 4
parallelizable kernels
NAS bench- | Widely used benchmark
marks suite (CG, EP, FT, IS, LU,
MG)

Table 3.1: Secondary factors in our experimental design. Thermal design power (TDP) is
maximum power consumption.

43

We verified our approaches with Like I Knew What I Was Doing (likwid) [156], an open-
source tool for reading hardware counters. Likwid measured total energy for a whole work-
load execution. However, likwid verified the energy measurements from our approach

within 1% on average.

3.1.2 Architectures

We experimented with 3 architectures: an 17-2600K, Sandy Bridge (Xeon €5-2670) and
Xeon Phi (5110P). The specifications for each architecture are shown in Table 3.1. Each
architecture used low-power operating modes when cores idled. For the i7 processor, we
set up the On-Demand CPU Governor, a kernel driver that adjusts operating frequency. The
maximum frequency was 3.4 GHz. The minimum frequency was 1.6 GHz. For the Sandy
Bridge processor, we enabled processor controlled P-states. The maximum and minimum
operating frequencies were 1.2 GHz and 2.6 GHz, respectively. The Xeon Phi used the
micsmc controller with P-states and C3 package [79]. The C3 package can reduce power
usage 45 W when the whole processor is under used. P-states reduce power based on each

core’s usage.

3.1.3 Platforms

Message Passing Interface (MPI) and OpenMP (OMP) platforms provided mechanisms for
core scaling. Specifically, we specified the number of active cores when we launched work-
loads. Both platforms exhibited similar peak power when we ran the micro-benchmarks.

The average difference was less than 2%. However, the platforms achieve parallelism using

44

qualitatively different approaches. MPI uses message passing with limited transparent sup-
port for shared memory. OMP uses shared memory. We hypothesized that these platforms

could cause different peak power under core scaling.

We used likwid to read hardware counters related to data movement. Specifically, in this
chapter, data movement refers to data path transfers between: L1 and registers, L1 and L2,
L2 between cores, L2 and L3, LLC and memory. Data path transfers include loading data
into the cache, writing data back to memory, and coherence related transfers. We use data

movement throughout the chapter to explain the root causes for the effects of core scaling.

3.1.4 Workloads

For our research, we used the set of NAS Parallel Benchmarks available from the NASA
website [53]. To ensure fairness, we only used benchmarks which could run on a num-
ber of cores equal to a power of 2. These six benchmarks are Conjugate Gradient (CG),
Embarrassingly Parallel (EP), discrete 3D fast Fourier-Transform (FT), Integer Sort (IS),
Lower-Upper Gauss-Seidel solver (LU), and Multi-Grid on a sequence of meshes (MQG).
These benchmarks, commonly used in the HPC community, run on a number of cores that
is a power of 2. We used application size B unless otherwise specified. Application size
B is the appropriate size to run on a single node. Integer Sort was written in C, while the

other 5 NAS benchmarks were written in Fortran.

The Conjugate Gradient algorithm (CG) is known for its irregular memory access pat-
terns [53]. A member of the unstructured grid type of computations, it approximates the

smallest eigenvalue of a positive definite symmetric matrix. The matrix in this data set is

45

large and sparsely populated. The Embarrassingly Parallel algorithm (EP) tests the limits
of floating point performance, and has no significant communication between cores. The
Fourier-Transform algorithm (FT) solves a 3D partial differential equation, and is repre-
sentative of spectral computations. Its primary feature is all-to-all communication. The
Integer Sort algorithm (IS) is known for random memory access. This sorting algorithm
tests the speed of integer computation. The Lower-Upper Gauss-Seidel solver (LU) uses
a system of nonlinear partial differential equations to simulate computational fluid dynam-
ics. LU contains a limited degree of parallelism compared to these other benchmarks.
The Multi-Grid algorithm (MG) is memory intensive and features long and short distance

communication [11].

In addition to the NAS Parallel Benchmarks, we also use three kernels used to simulate
real high performance computing workloads running on Titan, named CoMD, miniFE, and
snap. CoMD is a classical molecular dynamics application. MiniFE is a finite-element
mini-application which assembles a sparse linear system using a conduction equation, then
solves this sparse linear system using a conjugate-gradient algorithm. The final result is
then compared to the analytic solution [84]. Snap is a proxy application for modeling mod-
ern discrete ordinates neural particle transport application performance. Snap mimics the
communication patterns, memory requirements, and computational workload of PARTISN,

which solves the linear Boltzmann transport equation.

3.2 Observations on Power Consumption

In this section, we present observations from our study of the effect of increasing the num-

ber of cores on the power consumption on different architectures and workloads.

46

Observation 1. Different architectures observe significantly different relative increase

in power as the number of active cores increases. Reasons for this include the power
consumption of other on-chip resources and built-in support for dynamically managing the

power consumption of those resources based on the activity.

We investigated how only increasing the core counts affects the power consumption by run-
ning a synthetic benchmark. This synthetic benchmark stresses the processor registers only
and does not access any level of cache. The floor measurements in Figure 3.1 show the rel-
ative increase in power found with this simple synthetic benchmark. The relative increase
in power is highly dependent even for such a simple synthetic benchmark. For example,
Intel 17 and Sandy Bridge platforms observe a 1.9x and 2.15x increase respectively in the
power at their maximum number of core compared to a single core count case, while such
an increase in Intel Xeon Phi is only 1.37x. This indicates that as the number of cores scale
for a processor core intensive workload, other resources (e.g., caches, interconnect) may
also observe increased power usage in certain architectures. One of the reasons for this
is that bandwidth to DRAM and L3 cache are dependent on frequency in the Intel Sandy

Bridge architecture [131].

L1, L2, and L3 caches also affect power usage. We created micro-benchmarks that targeted
each layer. Specifically, each micro-benchmark repeatedly accesses data stored in the tar-
geted cache layer but not in the layers above it. Our micro-benchmarks capture the power
caused by fetching data from the targeted layer. For example, a fetch from L3 causes data
movement in the L1 and L2 layers. A fourth micro-benchmark repeatedly accessed data

from memory.

47

——=e@— 17 (floor)

------- ®--- 17 (ceil)

—— Sandy Bridge (floor)
------- --- Sandy Bridge (ceil)
———¥— Xeon Phi (floor)
------- ¥--- Xeon Phi (ceil)

w

Peak Power
(relative to 1 core)
N

of Active Cores

Figure 3.1: Peak power of workloads that repeatedly access L1, L2 and L3 caches and memory.
Y-axis is relative to power consumed on 1 core by the workload with minimum (floor) peak power.

0O CoMD+MPI @ MiniFE+MPI O Snap+MPI

N
o
N

o o

0O CoMD+MPI @ MiniFE+MPI O Snap+MPI

-
[$,]
-

Peak Power
(relative to 1 core)
N

Average Power
(relative to 1 core)

274 27478 214787167327 61 274 2'4'8 4'8'16' 3261
i7 Sandy Bridge Xeon Phi i7 Sandy Bridge Xeon Phi
of Active Cores (a) # of Active Cores (b)

100% 100%

L 50% W cno
Peak Pow er 3 . Peak Pow er 5 50% Peak Pow er
0% - Avg. Pow er e+ enresnsanneanes Avg. Pow er Avg Pow er
o 4 T T 1 0% -1 T T T 1 0% -1 T T T 1
0% 50% 100% 150% 200% 0% 50% 100% 150% 200% 0% 50% 100% 150% 200%
Prediction Error on i7 (C) Prediction Error on Sandy Bridge (d) Prediction Error on Xeon Phi (e)

Figure 3.2: Power and prediction error ranges vary across architectures.

The ceiling measurements in Figure 3.1 shows the effect of core scaling on the power con-
sumption of our cache and memory micro-benchmarks. One may expect that the memory
micro-benchmark will have provided a ceiling for each of our experiments, but this is not

always the case. The micro-benchmark that targeted memory provided a ceiling only at

48

lower core counts. On the Sandy Bridge when all cores were active, the microbenchmark
that accessed L3 cache consumed 16% more power than the one that targeted memory. This
reflects bandwidth saturation in the microbenchmark that accessed memory; Sandy Bridge
automatically lowered operating frequencies when cores idled waiting for memory. The i7
architecture also showed evidence of bandwidth saturation as the number of active cores in-
creased. On the i7 architecture, the memory-targeting microbenchmark only consumed the
most energy at a single core. The L3-targeting microbenchmark consumed 1% more power
at 2 cores than the memory-targeting microbenchmark. The L2-targeting microbenchmark
consumed 14% more power at 4 cores than the memory-targeting microbenchmark and
7.6% more power than the L3-targeting microbenchmark. Even on the Xeon Phi archi-
tecture, the 8 core experiment showed that the LL.C-targeting microbenchmark used 2.7%
more power than the microbenchmark that targeted memory. At larger core counts, the
LLC and memory microbenchmarks peaked at the same power consumption on the Xeon

Phi.

Core scaling has the greatest effect on peak power on 17 and Sandy Bridge, since the ceiling
power at maximum active cores was as high as 2.7X and 2.9X the floor power on one core.
In contrast, on the Xeon Phi, using 61 cores cost at most 1.45X the floor power of a single
core. The Xeon Phi uses a ring-based inter-connect that is fully powered if just 1 core is

active. This reduced the power savings provided by core scaling.

Core scaling caused larger increases in peak power as the number of active cores increased.
This was especially true for the ceiling micro-benchmarks that caused large amounts of
data movement on each access. Note, the micro-benchmarks do not reflect upper or lower

bounds on peak power. Workloads can stress multiple components at the same time.

49

Observation 2. There exists significant variation in relative increase in power consump-

tion across workloads on different architectures. In fact, the same workload may exhibit
significant variation in peak power consumption between platforms with increasing core

counts.

We found this observation while studying how power consumption varies for different num-
bers of active cores across different real MPI workloads. Figure 3.2(A-E) present the peak
and average power consumed by different MPI workloads at different core counts on dif-
ferent architectures. These results show a couple of interesting trends. We observe that
there exists a significant amount of variation in power consumption across workloads on
all architectures. As the core count increases, the relative difference in the power consump-
tion across workloads varies significantly as well. For example, on eight cores of the Intel
Sandybridge platform, there is more than 20% variation in peak power consumption across
all tested workloads, while such a variation is very limited at single core count (less than
5%). This variation is even more pronounced for average power consumption. These re-
sults indicate that workloads may benefit significantly by reducing the numbers of cores
used, both in terms of peak power and average power consumption. However, such a vari-
ation is highly architecture dependent. For example, we observed less than 10% variation
in peak power consumption across workloads on Intel Xeon Phi platform even at very high
core count. This occurs in part because there is only one clock source in the coprocessor, so
Intel Xeon Phi runs all active cores at the same frequency. Regardless of how much band-
width the application requires, the Intel Xeon Phi always enables full bandwidth if even
a single core is active [62]. Therefore, the only separation that occurs in the peak power

between different benchmarks is in the processor frequency requirements.

50

Finally, we also observed that relative increase in power consumption for the same work-
load changes significantly across architectures. As an example, MiniFE has the highest
relative increase of peak power on the Intel Sandy Bridge architecture of the workloads
shown, but has a much lower relative increase in peak power on the Intel Xeon Phi com-

pared to Snap.

3.3 Predicting Peak Power using Reference Workloads

In Section 3.2, we observe that there may be some variance in peak power across workloads
and architectures (Figure 3.2). Given the limited variance in some cases, it is intuitive to
investigate if one workload can be used as a reference for predicting the peak power of other
workloads. Clearly, this approach has its practical limitations. For example, it may not be
possible to examine all the possible reference workloads and identify the most suitable
reference workload in a production environment. Identifying suitable reference workloads
will require knowing the intrinsic characteristics and properties of workloads that affect
the power consumption. Unfortunately, knowing such intrinsic properties and quantifying
them may require high overhead profiling. In some cases, this may not be possible at all

because production workloads may be mission critical (or proprietary).

Nevertheless, we explore this approach to understand the limits of peak power prediction
when using other workloads as a reference.

Observation 3. We observed that using one reference workload to predict peak power of

other workloads can result in highly variable inaccuracy, especially across architectures.

The best reference workload may even change across architectures.

51

5 040% [7 M Sandy Bridge ! Xeon Phi
= 2 30%
w]
Q0 20%
-3 0%
3 & 10% |"._]
s
0% T T T T T

CoMD+ MiniFE Snap+ CoMD+ MiniFE Snap+
MPI +MPI MPI OMP +OMP OMP

Target Workload

Figure 3.3: Average error in predicting peak power varies across architectures.

To discover this, we first investigated the effect of using a single workload as a reference for
predicting peak power of multiple applications. While it is possible that each application
may have its own best suited reference workload, we first tested the limits of this approach
using a randomly selected workload as the reference. Figure 3.3 shows the error in predict-
ing peak power using a randomly selected NAS benchmark as the reference to predict peak
power of three applications on different architectures. We observe that the peak power error
rates can be as high as 30% in some cases and can vary significantly across architectures.
This indicates that the same reference workload can cause different amounts of error in

peak power prediction on different architectures for the same target application.

However, as pointed out earlier, the best reference workload may be different for each
application. Therefore, to further test the limits the peak power prediction from using
reference workload, we found a pair of applications that have almost zero prediction error
on one architecture (i.e., almost same peak power) and measured the difference in the peak

power on a different platform. Figure 3.4 shows that while the NAS IS benchmark and

52

CoMD application have very similar peak power on Intel 17, their peak power on the Intel
Xeon Phi differ especially at higher core counts. Second, Figure 3.4 also shows that CoMD
MPI and OpenMP versions have very similar peak power on Intel Xeon Phi even at very
high core counts, but significantly different peak power on Intel Sandy Bridge. These
results illustrate that using the same reference workload may result in poor peak power

prediction.

NAS-IS on i7 ® CoMD on i7 CoMD+MPI on Phi B CoMD+OMP on Phi
NAS-IS on Phi B CoMD on Phi CoMD+MPI on Sandy ~ CoMD+OMP on Sandy
5 150 5 150
g 120 g 120
a 90 a 90
X 60 % 60
o 30 o 30
& o &
1 2 4 8 16 32 61 1 2 4 8 16 32 61
of Active Cores (a) # of Active Cores (b)

Figure 3.4: Peak power can be predicted using other workloads, with varying results. (A) CDF of
error seen from all pairwise combinations of benchmarks. (B) Pairs with error under 15% on Intel
17 show that correlations do not continue across architectures.

3.4 Analyzing the Power Consumption Profile of Scientific Applica-
tions

In this section, we analyze the power consumption profiles of scientific applications on
different architectures to derive insights about dynamic behavior of power consumption
(Figures 3.6 - 3.8). We make several interesting observations about the dynamic power-

profiles of these applications.

53

100

100
T 80 n 7 80
2 60 3 £ 60
3 < 3
m 40 5 = 40
S 2 S S 2
Xeon Phi
0 0
0 50 100 0 50 100 0 50 100
Percentage Runtime Percentage Runtime Percentage Runtime
= MPIcg MPIep MPIft = = MPIis = == MPIlu

= = MPImg sseeee MPICOMD c¢¢<°> MPIminiFE ¢¢°°°* MPIsnap

Figure 3.5: CDF of power consumption for different applications and architectures.

First, we investigate what fraction of the total execution time is spent at different power
consumption levels. Figure 3.5 shows the cumulative distribution function of power con-
sumption over the whole execution of applications on different architectures. We observe
that different applications spend different amounts of time in or near their peak power con-
sumption level. This characteristic is also highly dependent on the architecture even for
the same application. For example, on the Intel Sandy Bridge architecture, MPI versions
of CoMD, snap, and miniFE spend more than 50% of their execution time at a power con-
sumption level higher than the 80% of the peak power of the given application. In contrast,
these same applications spend only 20% of their execution time at a power consumption
level higher than 80% of peak on the Intel Xeon Phi. Autonomic programs and schedulers
often need to know how much of the time will be spent at k% or higher of the peak power
load for efficiently provisioning the power distribution and estimating the cost of power

and cooling. This analysis suggests that estimating how much time will be spent in or near

54

peak power requirements is not only application-dependent, but

dependent.

i7 MPI CoMD

S

|

Instantaneous

Power (W)
[SS I "N W)
S

o

S

Instantaneous

—4 —2 —1

0

S

0.5 1
Normalized Runtime
——8 Sandy Bridge
===4 OMP CoMD

100

—1

Power (W)
w
S

Instantaneous

0
0 0.5 1

Normalized Runtime

Instantaneous

Power (W)

D BN X
(==

(=)

i7 OMP CoMD

J

-
4

(=}

Power (W)

0

200

—_ =

—4 —2 —i

0.5 1
Normalized Runtime

Xeon Phi
MPI CoMD

Normalized Runtime

Instantaneous

also highly architecture

—8 Sandy Bridge

~100 | ===g4
% 5 MPI CoMD
S 50 ' g _______
=]
-9
0
0 0.5 1

Normalized Runtime
- Xeon Phi
g 200 OMP CoMD
22 150
Ex= A I Yy 2 x
5 % 100 f= 64 === 32 === 16
Z& 50 —=8 —4 —2
= 0 —_—

0 0.5 1

Normalized Runtime

Figure 3.6: Power profile of CoMD application for MPI and OpenMP implementations on different

architectures.

Observation 4. We observed that the power consumption behavior changes significantly

across application and can change significantly across architectures even for the same ap-

plication. We also observed that there may be noticeable change in the power consumption

characteristics across different implementations (MPI versus shared memory) of the same

application. Both the underlying architecture and the application characteristics signifi-

cantly affect how much time is spent in or near the peak power.

As expected, scientific applications may exhibit distinct power consumption phases. How-

ever, we also observe that the power phases for a given application may change significantly

as we change the underlying architecture. For example, MPI implementation of CoMD has

55

i7 MPI miniFE i7 OMP miniFE Sandy Bridge

—_
(=3
(=]

w v
g% go%0 g ~ MPI miniFE
=< 60 = T 60 = é
§EN by—— E£4 5250 8
Z <20 2 £ 20 28
= 0 T4 T2 =1 = 0oL —4 —2 —1 = = m
0
0 0.5 1 0 0.5 1 0 05
Normalized Runtime Normalized Runtime Normalized Runtime
Sandy Bridge Xeon Phi - Xeon Phi
g0 OMP miniFE £ =27 MPIminiFE £ =27 OMP miniF
iz SO0 nepminia s5 aern g
£5 £ S 100 B2 £ 2100 =
S =z SIS |] | PO 8 2 e 64 ===32 === 16 & T = | teeeer 64 —==32 === 16
Z& 3 ZE 50 —=—8 —4 —2 ZBL 50 —-—8 —4 —2
0 —2 —1 0 0
0 0.5 1 0 0.5 1 0 0.5 1
Normalized Runtime Normalized Runtime Normalized Runtime

Figure 3.7: Power profile of miniFE application for MPI and OpenMP implementations on differ-
ent architectures.

distinctly different power profiles on Intel 17 and Sandy Bridge platforms (Figure 3.6). Sim-
ilar observations are true for MPI implementations of miniFE and snap applications. We
note that this observation is not limited to the MPI implementation or multi-core platforms
only. For example, OpenMP implementation of miniFE exhibits significant differences in

the power profile on Intel 17, Sandybridge and Xeon Phi architectures (Figure 3.7).

Second, we observed that while MPI and OpenMP implementations of CoMD and miniFE
applications exhibit similar power profiles on a given architecture, the third application,
snap, shows significantly different power profiles between MPI and OpenMP implementa-
tions (Figure 3.8). This observation is pronounced on Intel 17 and Sandy Bridge platforms,
albeit not so much on the Intel Xeon Phi platform. We observe that even the peak power dif-

fers significantly between MPI and OpenMP implementations. This indicates peak-power

56

i7 MPI snap i7 OMP snap —8 Sandy Bridge

§ ~80 § ~80 § ~100 H---4 MPI snap
= %60 iz 60 £z 2
gy, I — &3 g5
BEY FEW L
2 20 2 /& 20 @ &
= 0 [—4 —2 —1 = 0 —4 —2 —I1 = 0
0 0.5 1 0 0.5 1 0 0.5 1
Normalized Runtime Normalized Runtime Normalized Runtime
8 Sandy Bridge Xeon Phi Xeon Phi
w w
g 100 1 -==4 oMP g 200 g 200
2 snap ~ 2 OMP snap
3 — €2 150 MPIsnap 35z 5
< —_— .t < s
£% 50 T £5 100 £ 5100 e
53 S LETY S350 L. 4 e —em 16 S z 64 3 16
2~ g VT D - 2/& 50 = =8 ——4 —2
(=1 — — —]
0 0 +——1 0
0 0.5 1 0 0.5 1 0 0.5 1
Normalized Runtime Normalized Runtime Normalized Runtime

Figure 3.8: Power profile of snap application for MPI and OpenMP implementations on different
architectures.

requirements are not only dependent on the architecture and underlying algorithm, but also
on the platform (programming model) on which they are implemented (message passing
versus OpenMP). For the applications we tested, we observed that MPI implementations
usually resulted in higher peak power consumption (Figures 3.6 - 3.8).

Observation 5. Interestingly, for a given application the power profiles are similar across

different numbers of active cores on a fixed architecture given normalized execution time.

This is an important observation that we exploit to estimate peak power across core counts
for a given application and architecture pair in (Section 3.5). When we fix architecture,
application, and platform, the power profiles with changing number of active cores display
similar phases occurring at similar points in their normalized execution. A clear example of

this is the OpenMP implementation of snap in Figure 3.8(D - F). Regardless of architecture,

57

clear phases can be seen, more distinctly at higher numbers of active cores yet still present
at lower core counts. These phases are most distinct at higher core counts on the Intel
Sandy Bridge and Intel 17 architectures because the variance in power with added cores
is greater with these Turbo Boost capable architectures. However, these phases are still

visible on the Intel Xeon Phi.

Power spikes from execution phases often occur early in execution, as can be explicitly
seen in the power traces from Intel Sandy Bridge. We tested our workloads to see how
far in their execution peak power occurs. In order to do this, we computed the maximum
power so far seen in the workload at each timestep, and computed relative difference using
this number and the peak power seen over the entire trace. This gave us a trace of peak

power estimation error over the entire run of the workload.

We found that in many cases, profiling a workload on any core count for 40% of its ex-
ecution resulted in peak power error below 5%. We show in Figure 3.5 the peak power
error seen as the time spent profiling a workload increases for the MPI NAS benchmarks
on Intel Sandy Bridge. Certain workloads can be profiled for a shorter time to achieve the
same peak power error, and other workloads take longer on certain core counts. Overall,

we found that peak power generally occurred later at higher core counts.

3.5 Adaptive Power Profiling

In this section, we present an algorithm to profile peak power across many core scaling

settings. Consider the most widely used approach to profile a workload’s power [24, 25]:

1. Choose how much of the workload to execute (i.e., k% of the running time).

58

100 1Sandy Bridge MPI CG 100 7 Sandy Bridge MPI EP

5 5
5 £ 80 5 £ 30 —8
242 60 292 60 -——y
T2 40 S 40 —t
< .2 < .2
£ § 20 nﬂ: § 20 | —‘1
& 0 & 0
0 50 100 0 50 100
Normalized Runtime Normalized Runtime
+. 100 1 Sandy Bridge MPI FT +. 100 | Sandy Bridge MPI LU
= £ 80 = £ 80
5] — R 5 E —
£92 60 ——y 22 60
.2 40 =2 40
f“;% 20 2 g% 20
~F —! ~3
a 0 £ 0
0 50 100 0 50 100
Normalized Runtime Normalized Runtime

Figure 3.9: Peak power estimation error curves

2. Run the workload on the target architecture for k% of the running time.

3. During each run, collect power usage.

We call this approach k% sampling. To profile peak power under 5 core scaling settings,
k% sampling must run 5k% of the workload. For k = 5, the delay to profile is 25% of total
running time [24]. The previous sections showed that power phases occur at approximately
the same point in a workload’s normalized execution regardless of the number of cores

used. Our approach uses power phases to reduce profiling time.

Figure 3.5 plots the absolute difference between peak power observed during execution
and peak across the whole workload. The x-axis shows peak power observed at several

execution points, ranging from 0.5% to 100% of the execution. Each line will eventually

59

converge to zero when the peak power is observed. The curves converge quickly if peak
power occurs early in the execution, e.g., MPI FT. They also converge quickly if other high
but not peak phases occur early in execution, e.g., MPI EP. Power phases ensure that the

curves look similar across core counts.

Our approach profiles for k% at a single core count (by default the maximum core count).
We then construct a single curve from Figure 3.5. We find the execution point on the x-
axis where the error drops below a user provided threshold. This point is (k%) and k <k.
We then adapt our profiling to run workload for only k% on the remaining core scaling

settings. The inputs to our approach are:

1. Sampling duration (k%)
2. Accuracy (i.e., maximum expected error)

3. Active cores for initial profiling run (by default, we assume the initial run will use all

cores).

3.5.1 Our Profiling Method

Our method collects a power trace from a k% run of the workload at a single core count.
This trace is represented by PP(i) where PP(i) is the power observed at timestep i. At each
point in this trace, the peak power so far seen PPmax(i) is calculated. We are guaranteed
that the most accurate peak power over k% of the normalized execution of the workload
will be found at PPmax(k), where PP(k) is the last reading in the trace. From this, we

calculate a trace showing the expected error in estimating peak power PPEC(i). For the

60

requested accuracy of a%, our model uses PPEC(7) to find the first point in the normalized

runtime at this core count where an error less than 1 — a occurred.

PPmax(i) = max(PP(1), ..., PP(i)) 3.1

 _ PPmax(k) — PPmax(i)
PPEC(»i) = PPmax(0) 3.2)

Data: PPEC[], k, a
Result: find sampling duration k% to run at other cores
fori — Otokdo
if PPEC[i] <a then
\ return i;
end
end

Algorithm 1: This algorithm is used to find the duration to sample at other core counts.

We then collect a power trace from all other core counts for k% normalized execution
(Algorithm 1). Since we use the maximum number of cores by default, we conservatively
assume that the profiled workloads are perfectly parallelizable. Running time doubles when

core scaling halves the number of active cores. On every core scaling setting except the

initialCoreCount

initial, our profiling runs for k% X =222 m

This time is likely longer than it would be

if we knew the execution time on other core counts.

61

100 == 75th Percentile 100 = 75th Percentile 100 === 75th Percentile

g 80 === 25th Percentile ;\? === 25th Percentile i\e, 30 = == 25th Percentile
E S 80 z
2 2 s
5 60 g . g 60
a " e /, =
c 40 Xeon Phi 5 £ I
S Fa) S w0 .
£ 20 ’ £ . £
8 | A nemmmmce == < g 20 Sandy Bridge £ 20
- Fl
0 s, s,
0 50 100 0 50 100 0 20 40 60 80 100
Time Requested (%) (a) Time Requested (%) (b) Time Requested (%) (C)

Figure 3.10: Duration spent profiling with our method as the requested time to profile increased.
(a) Intel Xeon Phi (b) Intel Sandy Bridge (c) Intel i7.

20 __ 100 _30

g Xeon Phi S = Our Method S == Our Method

15 z 80 === K% Method 5 === K% Method

£ g £20

3 2 60 s

g 10 ———Our Method 2 g5

= === K% Method = 40 = 10

E 5 ° .ﬁ Sandy Bridge g

E g gs

= 0 = —~—— = 0 = 0

0 50 100 0 50 100 0 50 100
Time Requested (%) (a) Time Requested (%) (b) Time Requested (%) (C)

Figure 3.11: Median inaccuracy across all benchmarks for our method and k% profiling as the
requested time to profile increased. (a) Intel Xeon Phi (b) Intel Sandy Bridge (c) Intel i7.

3.5.2 Evaluation

In our evaluation, we compare our method to k% profiling and prediction from similar
workloads. These experiments used a fixed maximum core count, and assumed that a
speedup profile was available so the correlation between k% and an actual running time

was not a concern.

First, we compared the profiling duration at k% profiling to the profiling duration used with

our max-core first method. For this experiment, we determined the percentage of workload

62

———75th Percentile 100 ——— 75th Percentile 100

e 9 . = == 175th Percentile
< 50 === 25th Percentile < 50 === 25th Percentile < g0 === 25th Percentile
51 S]
] = 2
g £ 60 g 60
&~ & \ £
5 40 Xeon Phi £ 40N S 4
2 B} Sandy Bridge 2
£ 20 N E 20 SvecomoooOTYITEC g
a Seo a g 7
[LT 0 i
0 2 4 6 8 10 0 5 10 0 0 5 10
Target Inaccuracy (%) (a) Target Inaccuracy (%) (b) Target Inaccuracy (%) (C)

Figure 3.12: 75th and 25th percentiles of profiling duration across all benchmarks for our max-
core first method as the approximation of peak power requested from the maximum core profile
increases. (a) Intel Xeon Phi (b) Intel Sandy Bridge (c) Intel i7.

]li Xeon Phi S Sandy Bridge 3 === 75th Percentile
-~ - —~ = == 25th Percentile
§ 11 § 11 §
g’ 3 ——— 75th Percentile g 3 = 75th Pcrccm?lc ?
§ 5 === 25th Percentile § 5 === 25th Percentile §
£33 23 2

| — e = R

1o 5 10 1o 5 10

Target Inaccuracy (%) (a) Target Inaccuracy (%) (b)

Figure 3.13: 75th and 25th percentiles of inaccuracy across all benchmarks for our max-core first

method as the approximation of peak power requested from the maximum core profile increases.
(a) Intel Xeon Phi (b) Intel Sandy Bridge (c) Intel i7.

to run by first profiling for k% on the maximum number of active cores, then finding the
percent time at which the peak power was found. This percent time was then used as the
profiling duration for the other core counts profiled. Our results in Figure 3.10 show the
25th and 75th percentile of total time used to profile all cores of a given workload. We
found that we could reduce the amount of time profiling a workload across all core counts

by up to 93% on the Intel Xeon Phi, 60% on the Intel Sandy Bridge, and 73% on the Intel

63

17. The average time saved by using our max-core first method was 25% on the Xeon Phi,

12% on the Sandy Bridge, and 11% on the 17 architecture.

We also examined the effects of this selective reduction in profiling time on the profile’s
average inaccuracy (accuracy - 1). We found that on average, our max-core first method
produced a profile within 0.3% of the profile produced with k% profiling for the Intel Xeon
Phi. This same analysis found average difference of 1.5% on the Intel i7 and 3% on the

Intel Sandy Bridge architecture.

We tested the behaviour of our max-core first model while changing the percentage of
peak power we located in the profile of the highest core count. When we relaxed this
requirement from 0% error in peak power estimation, we found that the resulting profiling
time for other core counts still produced inaccuracy less than 3% for 75% of workloads,
as shown in Figure 3.13. However, when this approximation percentage rose above 7%
on the Intel 17, we saw the 75th percentile of workloads reach 5% or higher inaccuracy.
This approximation dial allows us to trade accuracy for shorter profiling time. Figure 3.12
show that for our experiment with 100% profiling time requested, our max-core first model
acquired these approximate profiles for most workloads using less than 60% of the profiling
time requested on the Intel 17 and Sandy Bridge. The Intel Xeon Phi had a wider variation
in estimated profiling time. The maximum normalized runtime used to get peak power
stayed near 100% across architectures, but median normalized runtime dropped even with

a 2% reduction in expected accuracy.

64

35 8 i7
B Sandy Bridge
2 Xeon Phi

Median Inaccuracy (%)

Profiled Core Count

Figure 3.14: By architecture, inaccuracy averaged across core counts.

3.5.3 Corner Cases

We primarily tested our model using the maximum core count as the profiled core count,
but it is possible to use a different core count for this. We experimented with profiling the
minimum core count, the median core count, and the maximum core count to completion.
We then profiled additional core counts using the percent time at which peak power was
found on the fully profiled core count. The resulting peak power inaccuracy was averaged
across all core counts for each workload. We show in Figure 3.5.3 the median inaccuracy
across all workloads for each architecture. We found that the core count which offers the
lowest median inaccuracy was the maximum core count, 4 for the Intel 17 and 8 for the Intel
Sandy Bridge. The Intel Xeon Phi had a lower average inaccuracy on the minimum core
count by 0.06%, but more than twice the number of workloads achieved 0% inaccuracy on
the maximum core count compared to the minimum core count. Using the maximum core
count, the greatest inaccuracy was 0.56%. Despite the intuition that using the maximum
core count to determine how long to profile on other core counts, no core count was clearly

preferable to the others in terms of running time.

65

3.6 Related Work

Researchers have studied the impact of core scaling on performance, and power consump-
tion as the number of available cores on the multicore processors increases [147, 103, 44,
161]. For example, [147] proposed a feedback-driven approach to maximize performance
by varying the number of threads at runtime based on data synchronization and off-chip
bandwidth. Similarly, [103] propose approaches that can choose the optimal number of
threads based on offline and online method. Core scaling is combined with and scaling of
resources in [44] with a focus on power-constrained processors. [161] proposed a method
to utilize concurrency levels and DVFES to achieve optimal energy efficiency configuration
for a workload. The goal is to achieve maximum performance within a given power bud-
get. In contrast to these works, our study is a unique empirical study of the effects of core

scaling on peak power.

Peak power has also been explored by several studies, and it can be divided in two broad fo-
cuses, (1) Power capping (2) Peak power prediction/estimation. Works such as [80, 33, 31,
128, 57] propose models and dynamic techniques to keep power consumption under a bud-
get. On the other hand, peak power is relatively less explored by the research community.
Performance profiling and performance prediction for better scheduling decisions in data-
centers has been explored by [24, 169, 72, 124]. A key challenge is profiling performance,
power, and/or answer quality quickly in data centers that support heterogeneous hardware
and software. Our study complements these works by proposing a peak power profiling
and prediction framework. By combining the observations from peak-power profiling and
core scaling, our proposed framework exploits the consistent nature of power usage across

workload phases to provide accurate peak power prediction at a low overhead.

66

Chapter 4: Balanced and Predictable Networked Storage

Big data is often too complex for mere mortals. Graph processing [49, 82, 119], NLP [130],
and data mining tools try to reduce big data to smaller but still useful nuggets. These
workloads pull in large amounts of data, process it, and then return a smaller result. Pulling
in the data is often the slowest part [120]. Loading 1GB from today’s disks takes almost
as long as it did 4 years ago. 10Gb Ethernet exceeds disk bandwidth by more than 10X,
making it faster to access data stored in a remote node’s main memory than to access it

from local disk. As a result, network storage is used more often for big data workloads.

Big data workloads strive for balance, i.e., all nodes should be busy at all times. Well-
balanced workloads achieve high throughput without wasting resources. For workloads
that use networked storage, balance means there should always be a few backlogged ac-
cesses, but the backlog should not idle nodes in the data processing layer. One approach
to achieving balance is to 1) measure typical storage access times, 2) measure the average
access rate of each node that does data processing, and 3) size the data processing cluster
according to the quotient of these numbers. In practice, this approach falls short, because
access times in networked storage often have heavy tails. A few outlier accesses take much
longer (100X) than typical accesses. These outliers cause delays in the data processing

layer, delays that can not be recovered easily.

67

For this chapter, we studied slowdown caused by slow storage accesses in balanced map
reduce systems. First, we compared access times from a real key-value store against expo-
nential and Pareto Distributions. The Pareto was a better fit because of its heavy tail. Then,
we modeled an access’s slack, i.e., the smallest response time that would cause a delay
in data processing. Finally, we used the Pareto to compute the expected delay caused by

accesses that exceed their slack time.

Our model showed that outliers can slow down balanced map reduce by 70% when map
tasks complete quickly (i.e., within 40ms). Slowdown decreases for workloads with longer
map times and lighter tails. Storage capacity per map node also affects slowdown. Maps
that need random access to big data spread across many nodes are vulnerable to slowdown.
We concluded that these properties, short map times and random access to big data, often

describe workloads that reduce big data, e.g., graph processing and stream sampling.

We extended our model to study replication for predictability, an old but seldom used ap-
proach to reduce the effects of outliers. We found that replication for predictability was
most effective for short map jobs with large working sets, the conditions where outliers
caused large slowdown. When maps complete quickly, replication for predictability pre-

vented 12.5% of lost throughput while using only 5% of storage resources.

The remainder of this chapter is as follows: Section 4.1 discusses the trends and motiva-
tions in data processing that underlie this work. Section 4.2 presents our problem state-
ment. Section 4.3 walks through our model that captures slowdown caused by outliers.
Section 4.4 extends our model to consider replication for predictability and studies its cost

effectiveness. Section 4.5 discusses related work.

68

4.1 Trends

Hadoop [151], Ceil [107], and Dryad [65] share a common trait: data pipelining. These
data processing platforms try to keep disks, CPUs, and network links busy at all times.
For example, Hadoop works best when data from a node’s local disks is pulled in asyn-
chronously while map and reduce tasks run concurrently. However, a node’s local disks
no longer offer the best performance [121, 120]. Today’s disks support 800Mb/s whereas
today’s local area networks can support 10Gb/s. Networks will become even faster in the

future as 40Gb/s Ethernet and hybrid electrical/optical switches are adopted.

When raw processing speed is the metric of merit, a 1 TB disk should be replaced with 16
64GB in-memory networked stores. On 10Gb Ethernet, the latter can achieve more than
300X speedup. Even on 1Gb Ethernet, a well-managed in-memory networked store can
offer 20X speedup. The downsides for in-memory approaches are cost and power usage.
Both increase quickly as data sets scale. When cost is also a concern, each node should
support multiple disks with data striped across them. 16 disks accessed in parallel fall just
below the throughput of 10Gb Ethernet [121]. However, 16 disks may not be enough in
a few years. Further, the benefit of fast, random data access will make networked storage

attractive.

Figure 4.1 depicts data flow and bandwidth when map reduce uses networked storage in-
stead of node-local disks. In this chapter, we will assume networked storage is in the form
of in-memory key-value stores, e.g., MemCached [29], but our ideas extend broadly to
other types of stores. For a balanced system, the networked store should fully use band-

width offered by its network card, either 1 or I0GbE. Maps may use data spread across

69

Bandwidth

1-10Gbs |K/V Store| |K/V Storek
1-10Gbs
(per link)

. Map Map | ;
Ym=1Dul G| iode [***® | node
1-10Gbs
(per link)

1/r *|D,| Gb Reduce|

Figure 4.1: Data processing backed by networked storage under the map reduce model. Processing
rate (bandwidth) at each stage is shown on the left.

multiple stores for three reasons. First, other unrelated jobs may lower the bandwidth
available on a networked store [133]. Second, maps that access many small keys can en-
counter bottlenecks in TCP, operating system, and network congestion. Finally, networked
stores that access disk have about 1/16th the bandwidth as 10GbE networks. Partitioning

allows map jobs to regain lost bandwidth.

As shown in Figure 4.1, the map phase is often the slowest. Because of this, the map reduce
model parallelizes this phase as much as possible. Let m be the average map time and |D |
be the average working set per map. If |D,,| falls below 0.1Gb on a 1Gb/E network, then m
must fall below 0.1 seconds to avoid slowing down the system. On the other hand, a map
task that completes in constant time would require parallel data access as the data sizes
grow. Reduce times are usually smaller than map times. They do not bound map reduce

overall system times, and thus are not the focus of this chapter.

70

4.1.1 Outliers in Networked Storage

Networked storage is a more complicated storage fabric than local disks. Networked stores
may include processors, DRAM, SSDs, and rotating disks. Operating systems and middle-
ware connect these hardware. A mishap by any of these components can slow down access
times by a significant amount. Networked stores are known to have outlier access times

that are much slower than normal access times.

The root causes of outliers vary. For a concrete example, consider write buffering in a
key-value store. To keep fast response times, most stores keep a relatively large in-memory
write buffer. The buffer is flushed to disk periodically (every few seconds) to ensure a
degree of fault tolerance to power loss. Writes that hit in the buffer can proceed at the
speed of main memory, completing within a few hundred microseconds. However, writes
that are stuck behind a buffer flush may be delayed by several hundred milliseconds. Other
well-known root causes for buffer flushes include: OS scheduling background jobs, DNS

timeouts, and garbage collection.

Figure 4.2 shows the access times for a Redis [122] store deployed on a 2GHz core with
2GB main memory. The workload shown represents 100% reads, and is tested under mean
CPU utilization of 65.45% (high) and utilization of 10.75%(low). Under low utilization,
we observe a heavy tail beginning with the 99th percentile, but when the Redis store is
heavily utilized, we observe a heavy tail earlier, beginning with the 95th percentile. Most
importantly, we note the respective lengths of these heavy tails. The exponential and Pareto
distributions plotted here use the low utilization access times as a basis. The point marked

on Figure 4.2 with a gray diamond marks the spot where the 99.99th percentile of the

71

o
©

;
;
h
K
s
2y / High Utilization
.
g
Y Low Utilization

Pareto Distribu- ¢
tion

o
o]
—_—

% Completed

— — - Exponential
/ Distribution

0.7 iy |
0 0.01 0.1
Response Time

Figure 4.2: A cumulative distribution function regarding the times to access a Redis store under
high and low utilization, shown with a Pareto distribution and an exponential distribution based on
the low utilization numbers. The 99.99th percentile of the exponential distribution’s heavy tail is
marked.

exponential distribution occurs. The low utilization, high utilization, and Pareto heavy tails
are much longer. The results are similar in production systems. Google BigTable reports
default access times where the 99.9th percentile is 31X the mean [22]. Other works have

noted similar results with MemCached [69].

4.1.2 Workloads that Reduce Big Data

Workloads that reduce big data to smaller chunks can use fast networked storage well.
These workloads access a lot of data per map and they complete map tasks quickly. Graph
analysis and data mining are well-known examples of such data reduction. Consider the
problem of finding 2-hop friends in a social network. One approach pulls in data from a
large subgraph of the network and then looks up all unique 2 hops within the subgraph

from the origin friend. The subgraph itself can easily exceed 10M B, yet looking up 16K

72

hops during each map task can complete within milliseconds. Many data mining problems

have similar properties due to statistical sampling.

Widely used tools for data processing, like Hadoop, target data transforms—not data re-
duction. Map tasks for transforming data take longer since every bit is touched. The
Hadoop manual [151] calls for map jobs that take hours (meaning |D,,| would need to
exceed 36TB/s to balance network speeds). Workloads like Terasort provide such se-
mantics. Emerging platforms for graph processing are more inline with big-data reduc-

tion [82, 49, 119].

4.2 Problem Statement

Figure 4.3 depicts a delay caused by an outlier access to networked storage in a data pro-
cessing workload. Data accesses to Redis are pipelined, keeping all nodes busy in the ideal
case. In the common case, the map node receives data just before it is needed. However,
the last access on partition O is orders of magnitude slower than usual, preventing the next
map from beginning. Such delays reflect lost throughput. Even if subsequent data accesses

complete more quickly than usual, the pipelined nature of map tasks would not speed up.

This chapter explores two questions:

1. How much do outliers slow down data processing?

2. Can we effectively mitigate outliers with redundancy?

73

Timeline

Redis | e IGet—I

Partition 0 ADM i ADM,pg dp,., 4

rede | et Jorl foel Jeel

Partition 1, 4 DM,” ‘DMM p

S T L
Node Map 01 IMap 1 Map 2

Figure 4.3: Slowdown caused by an outlier access to networked storage. Dotted lines are messages
over the network. Solid lines reflect processing. For simplicity, we show all accesses for a single
map stemming from a single network message.

4.3 Modelling Outliers

We used Operational Laws to model resource needs for networked stores and map nodes
in a balanced system. We converted resource needs into expected delay. Finally, we used
stochastic analysis to capture delays caused by outliers. This section describes our efforts.
Table 4.1 describes the model parameters used in this section. We set controlled parameters
directly. We restricted storage capacity per map node (C) to positive integers, meaning each
map node pulled data from 1 or more dedicated storage partitions. A map node would pull
from more than 1 storage partition in parallel if it needed access to a large working set.
We varied map times (m) from 20ms (small) to 5s (large). We set the Pareto coefficient to
control the heaviness of access time tails from the networked store: lightly heavy tail (1.76),
normal heavy tail (1.44), and heavy heavy tail (1.13). In a nod to real system managers, we
allow for some reserved, unused capacity (#). We set this parameter to 5% universally for

networked stores.

74

Controlled Model Inputs
C Storage capacity per map node
Average map time
a Pareto coefficient of the networked
store
f Reserved (unused) capacity on the
networked store
Derived Model Parameters
¢ Mean service time for the networked
store
X Median service time for the net-
worked store
a Average accesses per map
s, Slack time produced by n accesses
¢(t) Probability of an access longer than t

3

Table 4.1: Model Inputs.

We also made the following assumptions about our target systems:

e The networked store supports gets and puts on keys and values.
e The size of keys and values are fixed. In our tests, we use 1KB blocks.

e Maps know which data to request in advance before they execute.

We believe these assumptions can be relaxed in the future without changing our conclu-

sions.

We used the control parameters and our assumptions to derive other parameters. First, we
computed the average and median access times in a Pareto distribution given the Pareto

coefficient (@).

75

SED S 4.1

@ * Xmin

p=—un 4.2)

a-—1

Here, X,,;, is the smallest observed access time. We set this to 600us based on data from

Figure 4.2.

We used the Utilization Law to get the average accesses to storage per map. In a balanced
system, the quotient of map time divided by average access time should equal average map
time divided by reserve capacity. Accesses per storage partition per map simply divides

this number by the storage capacity.
a="s1-p) (4.3)
u

a; =

a
C 4.4)
Next, we computed slack time, the minimum delay for 1 outlier that could delay a map
task. Slack time depends on the number of storage accesses that follow an outlier. An
outlier followed by many accesses can be masked if subsequent accesses complete quickly.
An outlier followed by only a few accesses is more likely to cause a delay. In our approach,
slack time is comprised of two components. First, we turned the unused, reserved capac-

ity (f) into idle time by multiplying this by the average map time. Then, we added the

76

difference of the mean and the median, multiplied by n. This means that an outlier that
occurs when there are n outstanding accesses to the networked store can be masked if the
remaining accesses complete according the median. For simplicity, our model makes the

quantity of final storage accesses proportional to the over-provisioning range.

n=axf 4.5)
sn:m*f+%*,u—%*)~c (4.6)

Given n, we can compute the probability and expected delay of an outlier that exceeds
slack time. If networked stores had exponentially distributed access times, the expected
delay would be fixed. However, heavy tail Pareto’s are more complex. The first equation
below computes the cumulative distribution function given «, X,,;,, and s,. The equation
after that computes the probability that 1 of n accesses is greater than s, i.e., the probability

of a delayed map.

Xmina
é(s,) =1 - 4.7)
Pr(x>s,) =1—-¢(s,)" (4.8)
E(x|x > s, = mel 4.9)
[1—¢(sn)le

77

The final equation shows the typical (median) access time for such an outlier. The median
delay of an outlier is the middle percentile starting from ¢(s,). A quick check reveals that

when ¢(s,) = 0, the result is the equation for the global median in a Pareto distribution.

Model Results: For Figure 4.4, we fixed storage capacity per node (C = 4), the Pareto
coeflicient, and unused capacity (f = 5%). We controlled average map time and studied its

effect on the slowdown caused by outliers. We show the equation for slowdown below:

P nE n
slowdown = m + Prix> s)E(ix > 5,) 4.10)
m

We found that large map times (>5s) have first-order effects on slowdown. Large map times
hide outliers in two ways. First, m is the only parameter in the denominator in our slowdown
formula above. An outlier that causes the same absolute delay leads to less slowdown under
large map times. Also, large map times can afford more slack time. Hadoop workloads
often have large map times. In fact, the Hadoop manual calls for workloads with large
(many minutes) map times [151]. Such workloads might disregard the impact of outliers

when they move to networked storage.

On the other hand, data reduction workloads, e.g., graph processing, often have small map
times. For example, a map may de-reference a few links in a large graph. Workloads with
small map times suffer under heavy tail outliers. Our model expects that maps that take less
than 100ms will be delayed (on average) by 5-15%. The heaviness of the tail also matters.
Our heavy heavy tail setting caused up to 12X and 30X more slowdown than the normal

heavy tail and light heavy tail.

78

0.01 0.1 1 10 100
Average Map Time

Figure 4.4: Slowdown caused by outliers as average map time varies.

Our model showed that slowdown is proportional to storage capacity per map node. Heavy
tails cause outliers at a higher rate, but the effect remains linear. Even though the effects are
only linear, reasonable ranges for I/O capacity lead to the largest slowdown. When each
map node must contact 8 partitions in parallel, our model expects minimum slowdown
around 40%. Even with just 4 nodes per partition, the worst case slowdown can exceed

63%.

4.4 Replication for Predictability

The model used in the previous section quantified the delay caused by outliers across map
times and storage capacity. Outliers cause large delays for balanced systems with fast map
times. Also, outliers cause large delays when the working set for maps is large. This section

studies the potential for using replication for predictability as a solution.

79

Heavy

................ Medium

Slowdown

1.4

Figure 4.5: Slowdown caused by outliers as storage capacity per map node varies.

Replication for predictability is an old but seldom used technique to mask outliers that
manifest independently. The basic idea is simple. Instead of sending storage accesses to
only one node, send them to multiple nodes and use the result from the first node to respond.

Intuitively, it is unlikely that all duplicates will return a slow result.

Replication for predictability has been rarely used in practice. Even though it reduces
the effect of outliers, it does not improve throughput. Replication for predictability also
does not reduce the effects of correlated outliers. For example, accesses to rarely viewed
content will be slowed by cache misses in both redundant nodes. Thus, the key question

for replication for predictability is, can it be cost effective?

To assess whether an idea is cost effective, we must model the cost and the return. We call
the ratio of these terms the yield. In this chapter, we study a simple way to use replication
for predictability sparingly. We use idle (unused) capacity on the networked store, i.e.,
u in Table 4.1. To be concrete, the cost is 5% of networked storage resources. For that

investment, we hope to make the system more predictable and to recover throughput lost

80

to outlier effects. We measured yield as the return in slowdown divided by the investment.

The full equation for yield is shown below.

slowdowngepaur — slowdown,.,,

f

vield = 4.11)

Our model of replication for predictability assumed that storage accesses would be sent to
only two duplicates. In ongoing work, we have extended the model to scale [170]. To cap-
ture the effects of replication for predictability, we have changed two aspects of the model
presented in Section 4.3. First, accesses per storage node (a) ran at full capacity. Note,
operating at full capacity increases the waiting time for accesses to networked storage. For
interactive services, slow response times are costly. For the high throughput data process-
ing workloads that we target, slow response times are only costly if they lead to delayed
map jobs. In other words, our concern is the effect of queuing on slack time (s,), where

full capacity removes the buffer idle time. Updated equations are shown below.

a=" (4.12)
u
sn:g*,u—%*ic (4.13)

On the positive side, replication for predictability reduces the chance of an outlier. If we
assume that outliers arise independently, then the benefit of replication for predictability is

shown below.

81

Pr(x > s,) =1 — ¢(s,)™" (4.14)

Model Results For Figure 4.6, we again computed our model with all control parameters
fixed except for the average map time. This plot shows the effect of map time on yield. We
observed an effect that is comparable to the slowdown curve, but less dramatic. Map times
below 100ms only reach yields ranging from 0.9—1.3. This result indicates that small map
time alone do not warrant replication for predictability as this chapter proposes. For small
map times, outliers beyond the last n may cause delays. Our sparing use of replication for

predictability does not mask such outliers.

Looking deeper into Figure 4.6, the effect of outliers outside of the last n are most evident
in the heavy heavy tail setting. At first, we expected this setting to provide the highest
yield. However, looking further into the results showed that most of the delay under a very

heavy tailed access time distribution was caused by accesses outside of the last n.

Figure 4.7 shows that high storage capacity per map node is sufficient reason to warrant
replication for predictability. After capacity per node exceeds 5, we observed only high

yields (>1).

Discussion: We have focused on the cost of replication for predictability in terms of stor-
age access rate. The approach also uses network bandwidth. Since our model studied a
limited use of replication for predictability, we did not consider this cost. If replication

for predictability is expanded to use more resources, a topology aware approach may be

needed [86].

82

12 ‘\ ———— Heavy

................ Medium

0.01 0.1 1 10 100
Average Map Time

Figure 4.6: Yield caused by replication for predictability increases as average map time decreases.

Our model predicts yield but does not judge its value. Our intuition suggests that yield
above 1 is a good investment, but ultimately, any novel scale out technique must be com-
pared to other alternatives. If 5% spare capacity can be used in another way that provides

higher yield, then replication for predictability should not be used.

Finally, we assume that the data processing platform comprises mostly reads. If writes were
more frequent, we would need to consider consistency challenges posed by replication for

predictability.

4.5 Related Work

Networked storage is a (re)emerging trend in high-throughput systems. However, net-
worked storage is inherently more complicated than other storage mediums, e.g., disk.

This chapter studies one product of such complexity: Heavy tailed access times. We make

83

s Heavy

3.4 5
Capacity

Figure 4.7: Yield caused by replication for predictability increases as storage capacity per map
node increases.

the case for a research agenda that studies this phenomena. Prior research has 1) sped up

networked stores or 2) improved overall throughput for data processing.

Speeding Up Networked Stores: MemCached and Redis are widely used open source
networked stores [29, 122]. They both achieve high throughput (80K—100K requests per
core). Other stores proposed by researchers have achieved high throughput also [69, 133,
90]. A common approach across these stores is to avoid touching disk, keeping operations
within main memory. While key-value stores are most widely used, in-memory database
systems have also gained traction. These databases relax their support for distributed trans-
actions and also stay within main memory. When data sizes approach the capacity of main
memory, it is better to compress data than to go to a single local disk [90]. Along with
high throughput, stores can lower their latency by streamlining their execution path. [69]
used soft direct memory access to remove the operating system for the data path for Mem-
Cached. These approaches make networked storage faster in the common case, however

outliers (due to garbage collection, snapshots, etc.) still persist.

84

Balanced Data Processing: Disk is the primary component that has fallen behind. Recent
work improves disk bandwidth by using multiple disks at each machine and modifying the
data processing platform to access disk as little as possible [121, 120]. While these works
have targeted data processing with node-local storage, they apply to networked storage with
high bi-sectional bandwidth as well. Further, making the system more complex by adding

multiple disks behind the networked store exacerbates outliers.

85

Chapter 5: Cache Provisioning for Interactive NLP Services

Unstructured, natural language (NL) corpora are large and growing fast. As of this writing,
Twitter receives more than 300M tweets per day, a 2X increase over 2010 [126]. Tri-
pAdvisor holds over 100M user reviews, a 2X increase since 2011 [43]. Search engines,
question-answer systems, and other big-data services process user queries against such
data. To meet tight response time limits, these services cache data in the main memory of
large clusters. For example, TripAdvisor uses a MemCache cluster on Amazon EC2, and
this cluster comprises 52% of its online storage costs [43, 59]. As data grows, these costly

caches require additional resources.

Given the costs of long response times, many services that process natural language data
are designed to compute partial results quickly rather than full results slowly [55]. These
services impose processing timeouts; a query that times out accesses only a fraction of
its data. The difference between results returned with timeouts enabled (i.e., constrained
resources) and results with infinite resources is guality loss. Users are often satisfied as
long as quality loss is small. Large, in-memory caches prevent quality loss by allowing
queries to access a lot of data within processing timeouts. However, NL corpora present a
challenge: Documents contain redundant information. Services can over provision caches

when the corpora grows faster than its informative content. Over provisioned caches inflate

86

operating costs by forcing managers to expand capacity sooner than needed. With memory
prices dropping by an average of 30% per year [64], it is cost effective to wait as long as

possible before buying resources.

This chapter argues that caches for NL workloads should be provisioned for quality loss,
not data growth. These workloads permit some quality loss because NL concepts, e.g., syn-
onyms and noisy results, introduce redundancy into query results. We present an approach
to measure quality loss that captures these concepts. First, a query’s baseline results were
defined as those computed under a fully provisioned cache with no timeouts. We computed
quality loss by comparing the baseline results with results observed under smaller caches.
Queries had access to the same available data within a quality-loss test, but between tests

we replayed data growth.

We set up two systems: Apache Lucene [153], an open source search engine, and OpenE-
phyra, an open source question answering system like IBM’s Watson [34] that uses unstruc-
tured data. We used two NL datasets: Wikipedia and The New York Times. We organized
each corpus into monthly snapshots, allowing us to measure quality loss over time as data
grew. The portion of the Wikipedia corpus used grew by at most 30GB per month. The
New York Times corpus added at most 88MB per month. From 2006-2008, our Wikipedia
dataset exploded by more than 3X in raw size. We used a Redis [122] cluster as a main
memory cache in our setup, and Google Trends to create a sequence of queries that were
popular during periods studied. We replayed queries one-by-one under processing time-

outs.

Quality loss varied based on 1) the corpus and 2) cache management policy. Cache under

provisioning almost always caused quality loss, but often the effects were small. However,

87

if our search engine permitted some quality loss among the top K query results, it could
provision 50% fewer cache resources on both Wikipedia and New York Times. We fur-
ther observed that the New York Times corpus permitted a greater degree of cache under

provisioning.

We also studied the impact of well known cache management policies. In term-based LRU,
we stored only Lucene’s inverted index in our main memory cache. When the cache was
under provisioned, least recently used terms were swapped out of memory. This policy
is widely used in search engines that provide pointers to content, rather than the actual
content. In contrast, question-answer systems and online review engines often provide
actual content. These workloads may prefer content elision, in which certain documents are
elided from the indexes. Content elision is commonly used when new data replaces old data
and the active size of the corpora is fixed. Terms in the resulting inverted index references
fewer documents compared to inverted-index terms derived from the full corpora. In the
worst case scenario of content elision, which we analyzed, new data is indexed only after
a quality loss threshold is exceeded. Term-based LRU incurred less than 30% quality loss
on both corpora. This result held even when the cache was severely under provisioned.
Content elision incurred less than 30% quality loss on only the New York Times corpus.

We hypothesize that content elision required more data redundancy to be effective.

We also used our framework to study the following policy: When quality loss exceeds
a threshold, add more servers to expand the cache. We compared this approach to other
approaches, including naively provisioning enough resources to fully provision the cache
for the full corpus. Our approach reduced costs in two ways. First, it provisioned resources

on demand, reducing operating costs. Second, it would enable managers to buy hardware

88

later rather than sooner, taking advantage of falling DRAM prices. Compared to buying
enough memory servers upfront to handle 3 years of data growth, our approach reduced
costs by 92%. Compared to an on-demand approach driven by monthly data growth, our

quality-aware approach reduced costs by up to 48.8%.

The remainder of this chapter is organized follows: Section 5.1 defines quality loss in
the context of NL workloads. Section 5.2 describes our experimental results. Section 5.3

discusses related work.

5.1 NLP Workloads

We interact with NL throughout our lives. We have learned to tolerate imprecise typograph-
ical errors, grammar, accents, and idioms. Services that process NL corpora also benefit
from precision tolerance. We classify two key types of precision tolerance based on our

experience with search engines.

Synonyms: Words and word sequences often have the same meaning within the context of
a query. The precise output of a search engine with fully provisioned cache may output
links to many of these synonyms. However, users are satisfied when a subset appears on
their screen. For example, a Bing search for “Flowers in Washington State” returns results
on florists, gardening, and the Coast Rhododendron (state flower). With a smaller cache,
some of these results would be elided, but as long as the categories are represented (on the

top answer page), many users will be satisfied.

Noise Tolerance: Continuing the example above, adjacent search results on the answer page

represent different categories. Users are often willing to parse unrelated categories to find

89

the desired content. In other words, a certain degree of noisy results are okay as long as

users can find good answers.

5.1.1 Defining Quality Loss

Quality loss (QL) is a metric to determine answer dissimilarity between an underprovi-
sioned system and a fully provisioned baseline. To compute quality loss, we use the equa-
tion:

OL(x,%,D,0)=1-S(x,%D,0), (5.1)

where x is our current underprovisioned hardware, software, data, and settings configura-
tion, and X is the same configuration with enough cache resources to avoid timeouts. The
function S is a measure of answer set similarity. We issue a set of queries Q and, for each

query g;, we compare its answers under x to its answers under X.

Our similarity function is based on recall of the top-k results. We perform k-pairwise string
comparisons, matchings top results under x (i.e., R;(X, D)) to results under x. When we find
a match, we count it and move on to the next result string from the x* answer set. At most
one match for a single answer from a single question will be counted. The total number of
matches is divided by K and averaged across all questions in Q. Equation 5.2 captures this
base model and extends it to handle synonyms and noisy data.

20 2k (2, IRgk(X, D) N Ry g, (x, D))
10| - K

S(x,%,D,0) = (5.2)

90

Capturing Synonyms: We specify a parameter K to use in a top-k analysis of quality, and
thereby only look for matches of the first K result from the answer set. For example, in web
search, K can be set as the number of results on the first page; these K = 10 results are the
most critical to deciding result quality. As K decreases, the number of potential matches
decreases and the denominator decreases; but as K increases, the difference between the
current quality loss and the quality loss at K — 1 decreases until quality loss stays within

5% of the quality loss at the previous K.

Support for Noisy Results: Users are willing to look through some number of results to
find what they were searching for. We add a parameter k, to capture this and revise the
top-k analysis to top-2k analysis. Similar as top-k analysis, the top-2k analysis uses the K
number of the top baseline results as denominator; but differently, it uses the number of
matches between the top-K baseline results (from x) and the top-k, test results (from x) as
nominator, where k, > K. The relative difference of k, and K reflects users’ tolerance level
to noise. When users cannot tolerate any noise, we require k, = K; with higher tolerance

of noise, k, can be more significantly larger than K.

Note, quality loss depends on the full specification of the above parameters and varies
across services and users. A key contribution in our study is empirical analysis across a

wide range of quality-loss settings.

5.2 Experimental Results

Figure 5.1 shows our system setup. For a given a query, Lucene’s front-end nodes first look

up query terms in a distributed Redis cache. Each Redis node stores up to 9 GB of data in

91

D\ QUE[!
(’Sé‘) . |Lucene Front-End Nodel
Results \Get t
Gett - .
Redis Node °(| Redis Node Redis Node
Termt
Termt, N °
[Document C] | |[Document D|
Disk Node
Term Index Content
Termt, Ter_.mtl |Document A“Document B|

Document A
Document C|Te&mt

Data Ingest Node

||Document Cl |Document D|
L

Figure 5.1: Our system setup for experimentation, including service logic for Lucene search engine
and OpenEphyra question answering system.

its main memory. When more DRAM cache is needed, the cache scales out via additional
Redis nodes. Terms not found in the Redis cache are looked up on two dedicated disk
nodes that store 3 TB each. For each query, Lucene waits until all term data is found or
a timeout occurs. Results are then analyzed, aggregated, and returned to the user. If the
service logic in the application layer analyzes content, this content is also cached in Redis.
For each experiment, we set query timeout, active Redis and disk nodes, and disk access

times by broadcasting a configuration file to all nodes.

Our experiments run on a 112-node local cluster with EC2-like cloud provisioning. Each
node has a 2.66GHz processor, 1 Gb Ethernet, and 100 GB local disk storage. Two dedi-
cated disk nodes with the same specifications also have access to their own 3 TB external
hard disk. The nodes described in Figure 5.1 communicate through software-defined image

names.

92

100% - — - — Luc-NYT
£ 75% - - N Wik
& 75%- — — — Lluc-
) — WK < 100%
& 50%- S
— @ 75%
£ 25%- S 50%
s _ = = = S 0r
S o% ‘ ‘ = 2% .
1 2 3 4 8 0% I T T 1
Cache Under Provisioning 1 2 3. 4
(Data / DRAM) Cache Under Provisioning
(a) (Data / DRAM) (b)
100% 100% L
75% - 75% |
&5 50%- , T/ I
(@] . O
25% - S Content elision 259% | L onentbmsed
S Term-based LRU | e Term-based
0% 0, ‘0 ‘0 ‘O 0% : ! : ‘
0% 10% 20% 30% 0% 25% 50% 75% 100%
Quality Loss (%) lity L %
(C) Quality Loss (%) (d)

Figure 5.2: Cache under provisioning on quality loss. (a) Quality loss of NYT vs Wiki (b) Content
elision caching (c) Distribution of quality loss by replacement policy (d) Quality loss per question.

We use Google Trends to capture 2,000 popular web searches representative of queries from
2004-2008. For each experiment, we replay these queries one by one. Typical response
times are 500ms. We use Equation 5.1 to define quality loss. Our default configuration sets

K =10, k, = 30, and query timeout equal to 10 seconds.

5.2.1 Comparing NLP Datasets

Our data from The New York Times (NYT) spans articles published from 2004 to 2006.
Over our trace, the corpus doubles in size to about 3GB indexed. However, new articles of-
ten repeat informative content from prior articles, reflecting follow-up stories and opinions

pieces based on recent news articles.

93

Our data from Wikipedia (Wiki) spans articles published from 2001 to 2013, including
revision data. We use two 3TB disk nodes to store the entire data set. Unlike New York
Times, Wikipedia has less repeated content. Revisions often extend articles rather rephras-
ing existing content. However, links between entries can be repetitive, carrying over terms

and copying definitions.

Figure 5.2(a) shows the observed quality loss across each data set as we increasingly under
provision the cache, i.e., as data grew, we updated and increased the size of the term index
on disk, but did not provision additional cache resources. Over time, the under provisioned
cache pushed less popular terms to disk, increasing the probability that these terms would
not be retrieved within the timeout. Both data sets handled under provisioned caches well;

neither exceeded a 30% quality loss threshold.

5.2.2 Cache Replacement Policies

Figure 5.2(a) showed results where we updated the term index at each data snapshot. Under
provisioned caches used LRU policies (a part of Redis) to manage growing data. For this
section, we studied an alternative approach called content elision, in which the index size
is kept static. In the worst case of content elision, the term index is not updated. Referring
to Figure 5.1, we configured the ingest node to hold incoming data, instead of forwarding
to the disk node. For services that store both term indexes and content in main memory
caches, each new piece of data can use a lot of space. These services may prefer content
elision because it prevents data growth. However, content elision can lead to high quality

loss when incoming data is not highly redundant with existing data.

94

Figure 5.2(b) shows that quality loss under content elision varies depending on dataset and
application. With Lucene on the NYT data, data growth can double the original cache size
before hitting 10% quality loss. However, the less-redundant Wiki data suffers with quality
loss starting at 35%. To analyze content elision, we set up an additional service, which
accesses content and term indices stored within the Redis cache. OpenEphyra is question-
answer system in the mold of IBM Watson [34]. It uses Lucene to identify documents
related to a NL question and scans the top documents’ contents for an answer. OpenEphyra
uses the NYT workload. Our results show that for OpenEphyra up to 1.5 of the original data
size can be added before hitting a 12% quality loss threshold. We suspect that the difference
between OpenEphyra and Lucene on the NYT dataset is the effect of cache pressure from

actual content access.

5.2.3 Whole Distribution Analysis

For Figure 5.2(c), we ran tests at a fixed under provisioning ratio (i.e., jr‘ZZl = 2). Each test
used different data snapshots. We observe significant variance across the snapshots; quality
loss increased by more than 3X for both caching policies. However, content elision has
a significantly heavier tail relative to term-based LRU because when key documents are
elided, the quality loss from content elision can affect many queries with terms described
within the document. For Figure 5.2(d), we plot quality loss for one test on each question in
our trace. Under content elision and NYT, we observe that most questions incur no quality
loss at all, but the outliers that experience 100% loss (i.e., none of their results are the same)

pull average quality loss up to 10%. Under term-based LRU with Wiki, we selected one

of the worst data points (average quality loss was 45%) to highlight the on-off behavior of

95

—— Overprovisioning 20+
- — - Provision on Data Growth) NYT
— — Provision on Quality Loss B 15 WIKI
100% _ g
o 2 10
8 75% [I
O =
v 50% - 2 54
= - c
s} 0, - o
BB%TT_ - = 0 ‘ ‘ ‘ ‘
< 0%+ 0% 10% 20% 30% 40%

T T T 1
0123456738 Quality Loss Threshold (%)

#Months (a) (b)
— Overprovisioning —— Price Drop
- — Provision on Data Growth o Every 3 Months
— — Provision on Quality Loss (5100/" ---------------- Price Drop
. 100% _— - %; 75% Every Month ..
w -
S 75% 2 /
2 50% %
T 25% R
g o s § 0% T T 1
0% - ‘ ‘ ‘ 0% 20% 40% 60%
0 5 10 15
#Months (C) Quality Loss Threshold (%) (d)

Figure 5.3: Cost savings of cache provisioning approaches. (a) Term-based LRU cache policy (b)
Effect of quality loss threshold on term-based LRU (c) Content elision (d) Effect of quality loss
threshold on content elision.

the replacement policy. If a query’s terms are totally on disk, quality loss is high despite

potential redundancy in the data.

5.2.4 Cache Provisioning on Quality Loss

In this section, we propose a new cache provisioning policy: Expand the cache when when
quality loss exceeds a threshold. When quality loss does exceed a threshold, we add enough
DRAM Redis nodes to fully provision the cache. Then we wait for quality loss to exceed
the threshold again. By default, we set the threshold to 20%, but we explore the impact of

all threshold settings. We call our approach provision on quality loss.

96

We compare our approach to two alternative provisioning policies. Over provisioning
avoids any quality loss by provisioning enough resources to cache the entire NYT cor-
pus up front. This policy has increased operating costs; since the average cost of DRAM
is steadily decreasing, this policy also pays more per bit for cache resources. Provision on
data growth provisions resources at each data snapshot, avoiding the increased price per bit
from overprovisioning. As in our approach, this approach avoids the initial cash outlay. We
assume all unspent cache budget is invested at 0.5% APR. Cost savings occur as interest
gained from this investment plus the difference between the original price and the reduced

price for DRAM.

We assume that DRAM prices drop on average by 2% per month, and simulate cost savings
using our NYT and Wiki data for price drops every month and for price drops every three
months. Figure 5.3(a) shows the cost of our approach relative to over provisioning and
provisioning on data growth under the NYT dataset on Lucene, using term-based cache
elision. Over 8 months, when our approach first provisions cache resources, our costs are
30% of the over provisioning case and half of the provisioning on data growth approach.
Figure 5.3(b) shows the number of months that we can go before provisioning as a function
of the quality loss. Here, we show results for both NYT and Wiki. For the New York
Times data set under a DRAM price drop every three months, we save 19.45% compared
to upgrading every time we add data. For the Wikipedia data set under a 3-month DRAM
price drop, we save 14.37% compared to upgrading at every data add. For the New York
Times data set, we save 51.19% compared to upgrading every month when we simulate a
price drop every month; for the Wikipedia data set, we save 24.31% compared to upgrading

at every data add when we simulate a price drop every month.

97

Figure 5.3(c) uses the same methodologies as the above but for content elision instead of
term-based LRU elision. Our provisioning on quality loss approach saves more relative
to the over provisioning approach, costing only 20%, but the provision on data growth
approach is more competitive. This is because content elision requires updates to DRAM
more frequently than term-based LRU. Figure 5.3(c) shows that when the DRAM cost
drops every month, we save 22.51% of the cost of provisioning based on data growth and

80.44% of the cost of over provisioning.

As Figure 5.3(d) shows, the cost savings from increasing the quality loss threshold at an
interest rate of 0.5% increases modestly when we we compare provisioning based on qual-
ity loss to provisioning based on data growth. With a quality loss threshold of 20%, we
save 14.64% using the New York Times data set and 11.15% using the Wikipedia corpus
for an every three month cost decrease. When the DRAM cost drops every month, we save
6.14% using Wikipedia and 22.51% using the New York Times dataset. This savings will
grow as the threshold is relaxed; cost savings also increase as data is added. The numbers
presented in this graph are subject to small fluctuations dependent upon the point at which

we add data.

5.2.5 Additional issues

One of the parameters that affects quality loss regardless of caching policy used is the
choice of presentation. All of the Lucene quality loss numbers presented in this chapter
use the top-2k method of comparison, with a k of 10 and a k, of 30. As Figure 5.4 shows,

the choice of k matters for the results coming from Lucene. A k less than 10 will result in

98

50% -

25% -

Quality Loss (%)

% T T T T T 1

Top K

Figure 5.4: The effects of varying k on quality loss for a single experiment.

----------- ls — — — 5s
10s - — - — 30s
;5 100% — B
~ ’f' — —_—
(%] I —
[%] —
S 50% - -
—

z —
s 0% x x \
5}

1 2 3 .
Cache Under Provisioning
(Data / DRAM)

Figure 5.5: The effects of changing threshold on varied DRAM configurations over the same
amount of New York Times data on Lucene using term-based caching.

showing higher quality loss than is average for the run, and a k greater than or equal to 10

will be result with quality loss within 5% of the average quality loss over all values of k.

Instead of changing the apportioned DRAM, we could modify the parameter that specified

the timeout allowed by the system to analyze the effect of this timeout on quality loss.

99

Figure 5.5 shows the results of changing the timeout threshold over multiple different val-
ues of Data / DRAM. The lowest timeout threshold shown, at 1 second, resulted in a very
high number of timeouts and very few results returned as compared to the other timeout
thresholds shown. A timeout threshold of 5 seconds resulted in fewer timeouts and a cor-
respondingly lower quality loss. A ten second 10 second threshold is slightly worse than

the threshold with the lowest quality loss, which was 30 seconds.

5.3 Related Work

Our work intersects information retrieval, natural language processing, and storage sys-
tems. We exploit imprecision inherent in NL workloads to reduce caching costs. Our
experiments with real NL workloads suggests that caches can be significantly under provi-

sioned without incurring much quality loss.

Approximate computing also focuses on workloads that tolerate imprecision. For example,
anytime algorithms [177] define a class of problems that can be solved incrementally. If
the algorithm is interrupted during its execution, an imprecise result is returned. In con-
trast, compilers that support loop perforation [58] accept total running time as input. This
approach elides loop iterations to complete within preset running times. Similarly, web
content adaptation [38, 19] degrades image quality and webpage features to meet response
time goals. Our own prior work [54] studies approximate computing within search en-
gines, where a request may return partial results to complete within processing timeouts.
These works, for the most part, trade off response time and imprecision. In contrast, our

goal in this chapter is to trade imprecision for reduced cache costs. Baek and Chilimbi [10]

100

present a general framework to support approximated computation of different applications

to tradeoft between quality and energy consumption.

Cache replacement and compression share our goal of provisioning fewer resources with-
out incurring quality loss or high response times. SILT [90] is a key-value store that spans
main memory, SSD, and disk. It combines diverse data structures across these materi-
als, trading access time overhead with compression. Chockler et al. have begun studying
caching as cloud service to achieve improved cache replacement under diverse, consoli-

dated workloads [20].

Several recent works characterize application access patterns to reduce cache contention
between competing applications [94, 143, 26]. Processing timeouts are akin to service level
objectives. Recent work has shown that meeting strict objectives requires novel designs [61,

144, 23].

Capacity planners traditionally provision resources based on models of data growth, in
part because non-NL workloads are less permissive to imprecision. Recent work from
Google [146] models the growth of data. Their approach characterizes specific services and
achieves predictably low error. Mackie [93] provides an earlier, macro-analysis forecasting

approach.

101

Chapter 6: Obtaining and Managing Answer Quality

for Online Data-Intensive Services

Online data-intensive (OLDI) services, such as product recommendation, sentiment anal-
ysis, question answering, and search engines power many popular websites and enterprise
products. Like traditional Internet services, OLDI services must answer queries quickly.
For example, Microsoft Bing’s revenue would decrease by $316M if it answered search
queries 500ms slower [37]. Similarly, IBM’s DeepQA (deep question answering) imple-
mentation, Watson, would have lost to elite Jeopardy contestants if it waited too long
to answer [87, 34]. However, OLDI and traditional services differ during query execu-
tion. Traditional services use structured databases to retrieve provably correct answers,
but OLDI services use loosely structured or unstructured data. Extracting answers from
loosely structured data can be complicated. Consider the OpenEphyra question answering
system [130]. Each query execution reduces text documents to potentially relevant phrases

by finding noun-verb answer templates within sentences.

OLDI services use large quantities of data to improve the quality of their answers. For ex-
ample, IBM Watson parsed 4TB of data for its Jeopardy competition [34]. The amount of
data used by these services is growing; Wikipedia alone grew 116X from 2004-2011 [148].

However, large data also increases processing demands. To keep response time low, OLDI

102

query executions are parallelized across distributed software components. These software
components run in virtual machines distributed across cloud infrastructure. At Microsoft
Bing, query execution invokes over 100—-1000 components in parallel [66]. Each com-
ponent contributes intermediate data that could improve answers. However, some query
executions suffer from slow running components that take too long to complete. Since
fast response time is essential, OLDI query executions cannot wait for slow components.
Instead, they use anytime algorithms to compute answers with whatever data is available

within response time constraints [177].

OLDI services use incremental computation over whatever data is available, returning the
best available answers within response time constraints [54, 66, 98]. Parallel components
can have different processing requirements based on skew in partitioned data, but a hard-
ware failure or software anomaly could also cause severe performance degradation [8].
Returning these best available answers prevents slow parallel components from slowing
down interactive queries. However, omitting data from slow components could degrade
answer quality [123, 32]. In this chapter, answer quality is the similarity between answers
produced online and without omitting data from slow components [72]. Queries achieve
high answer quality when their execution does not suffer from slow components or when
data omitted from slow components do not affect answers. Low answer quality means that
omitted data from slow components have important contributions that would affect final an-
swers significantly. Prior work has shown the virtue of adaptive resource management with
regard to response time and quality of service [139, 41, 83]. Adaptive management could
also help OLDI services manage answer quality. For example, admission control tradition-
ally performs a check before accepting a query to determining if the system has resources
available; in this context, admission control could check recent high priority queries for

103

low quality before admitting low priority queries to the queue. In this way, admission con-
trol could stabilize answer quality for high priority queries even under time-varying arrival

rates by increasing shed of low priority queries when answer quality drops.

Answer quality is hard to measure online because it requires 2 query executions. Figure 6.1
depicts the process of computing answer quality. First, an online execution provides an-
swers within response time constraints by omitting data from slow components. Second,
we define a mature execution to use all available data relevant to a query by waiting for
all components to complete before producing mature answers. Finally, a service-specific
similarity function computes answer quality. This chapter uses true positive rate as the sim-
ilarity function, but other functions are permissible, e.g., normalized discounted cumulative

gain [95].

Prior research ran mature executions on dedicated offline testbeds [55, 70], but storage
costs for offline testbeds grow as OLDI services ingest data. Further, a service’s expected
anwer quality per query depends on its query mix. Changing query mixes and data can

affect answer quality online, which is difficult to measure in offline testbeds [70].

We present Ubora', a design approach to speed up mature executions. Our key insight
is that mature and online executions invoke many components with the same parameters.
Memoization can speed up mature executions, i.e., a mature execution can complete faster

by reusing data from its corresponding online execution instead of re-invoking components.

When a query arrives, Ubora conducts a normal online query execution except it records
intermediate data provided by each software component, including data not reflected in the

'Ubora means quality in Swahili.

104

System

Incoming Query . .
Online execution resources

Online (could time out) N\
Answer#" Results S ‘ ~
quality ™| Mature '3 Mature execution

results | «=— (notimeouts) _,

Answer quality used to manage online resources

Figure 6.1: Steps to measure answer quality online. Mature and online executions may overlap.

online answers because they were omitted from slow components. After the slow com-
ponents finish, Ubora computes mature answers using data recorded during and after the
online execution. Implementing memoization for multi-component OLDI services presents
systems challenges. First, OLDI services span multiple software components. It is chal-
lenging to coordinate mature and online executions across software components without
changing application-level source code. Ubora manages mature and online operating con-
text. During mature executions, it uses network redirection to replay intermediate data
from in-memory storage. Second, memoization speeds up computationally intensive com-
ponents but its increased bandwidth usage can also cause slowdown for some components.
Ubora provides flexible settings for memoization, allowing each component to turn off
memoization. We use offline profiling to determine which components benefit from mem-

oization.

We have evaluated Ubora on 4 different open-source OLDI services with varying degrees
of complexity and data size. To be clear, Ubora’s systems-level implementation is able
to support these applications without modification to their source code. We compared
Ubora to query tagging, which changes application source code to resume mature execution

at the point when an online execution returned a response. We also compared timeout

105

toggling, an approach which transparently applies the same context across all currently
executing queries. Ubora completes mature executions nearly as quickly as query tagging
with slowdown ranging from 8—16%. Ubora finishes mature executions 7X faster than
timeout toggling. Finally, Ubora slows down normal, online query executions by less than
7%. We used Ubora to guide adaptive admission control. Ubora responded quickly to

changing arrival rates, keeping answer quality above 90% during most of the trace.

This chapter is organized as follows. We describe the structure of OLDI services in Sec-
tion 6.1. Section 6.2 explains the motivation for our work. We present Ubora in Section 6.3.
Section 6.4 presents our implementation of query context tracking and tagging for mem-
oization. In Section 6.5, we measure Ubora’s performance using a wide range of OLDI
benchmarks. In Section 6.6, we show that Ubora computes answer quality quickly enough
to guide online admission control. In Section 6.7 we put our contributions in the context of

related work.

6.1 Background on OLDI Services

Query executions differ fundamentally between online data-intensive (OLDI) and tradi-
tional Internet services. Traditional Internet services have query executions that process all
data retrieved from well structured databases, often via SQL (i.e., LAMP services) [85].
Correct query executions produce answers with well defined structure, i.e., answers are
provably right or wrong. In contrast, OLDI queries execute algorithms that increase in
accuracy as time allows, including anytime algorithms [177]. They produce answers by
discovering correlations within large quantities of data. OLDI services produce good an-

swers if they process data relevant to query parameters.

106

Distributed
Search Tier

e
e
e

! ! ! !
[FE'} [%} [%} [%} Apache Lucene

Index Servers

Redis Cluster

Lucene Lucene Lucene Lucene
Partition-1 Partition-2 Partition-3 Partition-4

Figure 6.2: Execution of a single query in Apache Lucene. Adjacent paths reflect parallel execution
across data partitions.

OLDI answers improve in quality with larger datasets. For example, IBM Watson competed
at Jeopardy using 4TB of mostly public-domain data in distributed memory [34]. One
of Watson’s data sources, Wikipedia, grew 116X from 2004-2011 [148]. However, it is
challenging to analyze an entire large dataset within strict response time limits. This section

provides background on the software structure of OLDI services that enables the following:

1. Parallelized query executions for high throughput,

2. Returning best-effort, online answers based on partial data to prevent slow software

components from delaying response time.

107

Parallelized Query Execution: Figure 6.2 depicts the query execution path in a service
based on Apache Lucene, a widely used open-source information retrieval library [91].
This query execution path invokes 25 software components. Components in adjacent
columns can execute in parallel. A front-end software component manages network con-
nections with clients, sorts results from components running Distributed Search logic, and
produces a running list of answers from results so far received. This list is returned to the
user. Distributed Search software components parse the query, request a wide range of rel-
evant data from partitioned storage components, and collect data returned within a given
timeout. Data is retrieved from either 1) an in-memory Redis cluster that caches a subset of
index entries and documents for a Lucene index server or 2) the Lucene index server itself,

which stores the entire index and data on relatively slow disks.

The Lucene service in Figure 6.2 indexes 23.4 million Wikipedia and NY Times documents
(pages + revisions) produced between 2001 and 2013. Queries access in parallel Lucene
indexes partitioned across multiple virtual machines. A partition is a subset of data. Each
parallel sub-execution (i.e., a vertical column) computes intermediate data based on its
underlying partition. When intermediate data from parallel executions over each partition
are combined, they compose a query response. This intermediate data is combined at a
software component layer that may execute many queries in parallel, but processing for

each query is done in sequential order (i. e., the front end node).

OLDI services also parallelize query executions via partial redundancy. In this approach,
sub-executions compute intermediate data from overlapping partitions. The query execu-
tion weights answers based on the degree of overlap and aggregate data processing per

partition. Consider a product recommendation service. Its query execution may spawn

108

Mix of Queries Layered Timeout Policies

—Partition-1 Partition-2
............. Redis wm mm == s Front End 100% 1 Query Repeated Default Hyb“d
100% 5 W Extended 2X
o g 3
o E € 200%
0, hed =
8 s SR E
O 50% © &5 g 100%
0% o2
[CRIR o
0% 0% 50% 100% ro 0%
0.001 0.1 10 Quartile Coefficient of Dispersion =
Processing Time (sec. in log scale) of Component Service Times # of Concurrent Queries
(a) (b) (©)

Figure 6.3: Experimental results with an Apache Lucene cluster. (a) OLDI components exhibit
diverse processing times. (b) Query mix increases variability. (c) Timeout policies mask variation
in favor of fast response times.

two parallel sub-executions. The first finds relevant products from orders completed in the
last hour. The second considers the last 3 days. The service prefers the product recom-
mended by the larger (3-day) sub-execution. However, if the preferred recommendation is

unavailable or otherwise degraded, the results from the smaller parallel sub-execution help.

Online Answers Are Best Effort: In traditional Internet services, query execution invokes
software components sequentially. The query response time depends on aggregate pro-
cessing times of all components. In contrast, online data-intensive query executions invoke
components in parallel. The processing time of the slowest component determines response
time. Figure 6.3(a) quantifies component processing times in our Apache Lucene service.
The query workload from Google Trends and hardware details are provided in Section 6.5.
Processing times vary significantly from query to query. Note, the X-axis is shown in log
scale. Lucene Index servers can take several seconds on some queries even though their
typical processing times are much faster. Further, processing time is not uniform across
partitions. For example, a query for “William Shakespeare” transferred 138KB from the

partition 4 execution path but only 1KB from the partition 1 execution path. This is an

109

instance of data skew increasing the time to process partitions disproportionately. Partition

4 hosted more content related to this query even though the data was partitioned randomly.

6.2 Motivation

Extending Some Timeouts is not Enough to Achieve Mature Executions:

Many OLDI services prevent slow components from delaying response time by returning
answers before slow components finish. Specifically, query executions trigger timeouts on
slow components and produce answers that exclude some intermediate data. Timeouts ef-
fectively control response time. In our Apache system, we set a 2 second and a 4 second
timeout in our front-end component. Average response time fell. Also, third quartile re-
sponse times were consistently close to median times, showing that timeouts also reduced
variance. Unfortunately, query executions that trigger timeouts use less data to compute
answers. This degrades answer quality. For data-parallel queries answer quality degrades

if the omitted data is relevant to query parameters.

Our Apache Lucene service answers mature queries too slowly to support interactive re-
sponse times. First, since query mix changes often, the resource demands of parallel exe-
cution paths in OLDI services will vary significantly. Without excessive over provisioning,
some queries will inevitably have paths that require more processing time than interactive
services permit. To effect interactive response times, these paths will execute only for a
preset time before halting, which causes answer quality to vary significantly. A second

consequence arises because data growth affects data skew [3].

110

Impact of Timeout Policies To examine the impact of timeout policies on the maturity
of online executions, we set a 3-second end-to-end timeout in our workload generator. The
front-end software component timed out connections to the Distributed Search software
components in 2 seconds. The Distributed Search software components timed out connec-
tions to Redis and Lucene index servers in 0.8 seconds. Such layered timeouts allow for
some, bounded response-time variation from components but prevent large variation and
failures from degrading end-to-end response time. We studied the impact of layered time-
outs on the maturity of online executions. Figure 6.3(c) plots concurrency versus response
time under this timeout policy. We compared the policy with default timeouts, doubled
timeouts and a hybrid approach. This hybrid approach used a layered timeout, where two
Lucene software components and a Redis software component had 10X timeouts but all
others followed the default policy. Timeouts controlled response times well, triggering
best effort results, which sped up some queries by 88X. Third quartile response times were

consistently close to median times, showing that timeouts also reduced variance.

The hybrid approach is promising because it targets specific components and keeps re-
sponse times low, but it fails to affect the results maturity. Even though some components
had long timeouts, their executions were truncated by timeouts at higher layers. In contrast,
extending all timeouts produced mature results but response time increased proportionally

to the timeout extension.

111

Taken all together, our results show timeouts control response time for online executions
effectively. Timeouts prematurely halt components affected by data skew, especially com-
ponents replicated across data partitions. However, the exact components that trigger time-
outs vary at runtime. Naively extending all timeouts may produce mature results, but this

also increases average response time linearly. These lessons influenced our system design.

Variation of Mature Executions Given a query’s parameters and data partitioning scheme,
some components will be used more heavily than others. Data skew persists despite random

hashing.

Processing times on partition 4 were 2.6X slower than partition 1. For example, queries
related to the people that participated in the 2008 United States Presidential Election pulled
much more heavily from Lucene partition 2 than Lucene partition 1, reflecting our parti-

tioning strategy based on creation date.

We measure variation using the same query issued repeatedly and capturing the Quartile
Coeflicient of Dispersion (QCOD = %) for the response times of each component in
our system. The Quartile Coefficient of Dispersion is a non-parametric metric like the
coeflicient of variation, but it is more robust to skew caused by outliers. Smaller numbers
indicate that data is less spread out. Figure 6.3(b) shows that the quartile coefficient of
variation increased signifcantly under a mix of queries compared to reissuing the same

query. This illustrates that per-component processing times vary from query to query and

across execution paths.

112

The variation of mature executions has practical consequences. First, since query mix
changes often, the resource demands of parallel execution paths in OLDI services will vary
significantly. Without excessive over provisioning, some queries will inevitably have paths
that require more processing time than interactive services permit. Those paths will halt
prematurely causing answer quality to vary significantly. A second consequence arises
because data growth affects data skew [3]. Answer quality may differ significantly after
an OLDI service ingests new data, even if query mix is stable. Both query mixes and
data growth change online, so answer quality also changes online. Query mixes are non-
stationary within 5-minute and 1-hour windows [140]. Data growth is ubiquitous. Face-
book’s Scuba ingests 1M events per minute [12]. TripAdvisor ingests 86K user reviews
per hour [43]. These observations support our observation that answer quality changes

dynamically.

We showed that response time variations across components and queries are present in
modern OLDI services. These variations may be caused because of query-mixes and data
skew. These results indicate that it is challenging to achieve mature results online by simply

controlling a few components or workflow paths.

Ubora reduces resource needs by measuring answer quality for only randomly sampled
queries, reusing computation from online executions and scheduling mature executions

during low concurrency periods.

113

Online Execution

| Front Component |

T,
Query:
“word”

Timeout

v
Ubora
v | oot

Targeted Component

Query, 1,

Fast Distributed Cache

Mature Execution

Key Value (r0 | r, Messages

(Query) from targeted component) Front Component

example Documents 1|3, 8 Query: LIl T ‘§

often Documents 2 | 5, 8 “word” 'é
‘r' used Documents 1 |4, 7 : Ubora‘

word Documents 3 |4, 6 ' .

Targeted Component |

Online Execution

Front Component

Key Value (B)

word 30 Bytes

Targeted Component

Mature Execution

Front Component

Value (B)

30 Bytes

Targeted Component

Figure 6.4: Memoization in Ubora. Arrows reflect messages in execution order (left to right).
Dotted lines in Online Execution indicate communications that are transformed from their original
purpose. Dotted lines in Mature Execution indicate communications that happen on occasion, as

needed for correctness.

6.3 Design

By design, Ubora measures the answer quality of online query executions by comparing

answers produced with and without timeouts. It reduces cost compared to other approaches

by using existing online resources and employs memoization to speed up mature query

executions. Memoization also reduces the overhead of executing mature queries online by

114

allowing reuse of previous intermediate results from targeted software components. Ubora

further uses sampling to reduce overhead.

6.3.1 Design Goals

We designed Ubora around the following goals:

e Timeliness: The primary goal of Ubora is to measure answer quality quickly enough to
enable resource management based on the results. For our purposes, the challenge was
to acquire mature executions quickly, from an online environment. Because query mix

changes over time, it is necessary to replay queries issued to the online service.

e Transparency: Require no code changes to software components. The secondary goal of
Ubora is to support a broad range of online, data-intensive services composed of multiple
different software components. For this to succeed, by design we require no changes to
the code of software components used by the service. Instead of changing the services to
require additional contextual information (i.e., online or mature), we use a middleware

framework that tracks query context.

e Low Overhead: Online queries need to execute quickly, so we do not want slowdown.
To this end, we introduce 2 optimizations which reduce slowdown in online queries.
Sampling only a percentage of incoming online queries greatly reduces the overhead, as

does delaying replay when needed to avoid queuing delay with online queries.

e Low Cost: While it is possible to compute mature results offline using an online query
trace, this requires an increase in resources allotted to the service. In this section, we
present an analysis of the cost of these additional resources to motivate why our design

instead only uses resources currently available to the service.

115

6.3.2 Timeliness

Our design is mostly motivated by timeliness and transparency. We aim to overlap the
mature execution as much as possible with the online execution. Once the online execution
has completed, we keep targeted components executing in the background until they have
fully processed the online query, and cache the results in distributed in-memory storage.
When we then replay the online query, we use these cached results instead of accessing the

targeted component.

Figure 6.4 depicts memoization in Ubora. During online query execution, Ubora records
inter-component communication. It allows only front-end components to time out. Compo-
nents invoked by parallel sub-executions complete in the background. As shown on the left
side of Figure 6.4, without Ubora, this example front-end component invokes a component
with a TCP payload containing a query, receives message ry and then times out. The front-
end component then uses a FIN packet to trigger a timeout for the invoked component,
stopping its execution before completion. A dotted line in Figure 6.4 shows Ubora block-
ing the trigger from the front-end component, allowing the invoked component to complete
a mature execution. It records output messages before and after the front-end times out, in
this case ry + r;. These messages are cached in fast, in-memory storage distributed across

the least utilized machines.

With Ubora, front-end components still answer online queries within strict response time
limits. As shown in Figure 6.4, the front-end component uses r to produce an online an-
swer. After all sub-executions for a query complete, Ubora re-executes the front-end, as if

a new query arrived. However, during this mature execution, Ubora intercepts messages to

116

other components and serves response messages ry and r; from cache (i.e., memoization).
The cache delivers messages with minimal processing or disk delays. During this mature
execution, the front-end uses both ry + r; to produce a mature answer. For correctness
in mature executions, Ubora may connect to the targeted component if data is not in fast

cache. This connection is shown as dotted lines in Figure 6.4.

Mature and online results are stored in cache. After replay completes, answer quality
is computed by callback functions or scheduled jobs. Each service may define answer
quality differently by providing its own function. Example functions include weighted top
K, normalized discounted cumulative gain or true positive rate. In our experience, these

functions complete quickly relative to query execution time.

6.3.3 Transparency

Queries execute under different contexts tracked by Ubora, depending on whether they are
online executions being recorded, normal online executions, or mature executions being
replayed. Such execution context requires coordination across distributed nodes and con-
current queries. Memoization should be implemented differently depending on available
systems support for execution context tracking. Further, replayed executions may steal
resources from high priority online executions. The challenge is to minimize queuing in-

terference.

117

6.3.4 Low Overhead

Queries issued by users or other external sources must complete quickly. For sampled
queries, a query’s online execution completes during record mode. Record mode adds light
overhead by sending messages to the cache, but importantly, most components execute un-
der normal timeout settings. This approach is similar to the hybrid approach in Section 6.2.
The query completes quickly due to layered timeouts while mature component-level execu-
tions happen asynchronously. In contrast, naively extending all timeouts increases response

times. We introduce 2 optimizations to keep overhead low.

Replay Mode Can Be Postponed to Reduce Interference Replays can be temporarily
postponed to avoid queuing delays with online executions, but they must finish in a timely
fashion to impact online management. Fortunately, components operate under normal time-

out settings during replay mode. Replay mode completes quickly and predictably.

Sampling Frequency versus Slowdown and Representativeness Ubora uses sampling
to reduce the aggregate overhead of mature executions. Recall, mature executions use a lot
more resources than online executions. Services do not have enough idle resources to com-
plete a mature execution for every online execution. However, sampling too infrequently
can inhibit online management because answer quality is produced too late or is not repre-
sentative. The sampling rate allows managers to trade throughput on mature executions for

processing overhead.

118

Our design allows each service to set a sampling rate that matches its hardware and query
mixes. Online executions selected for record and replay suffer longer service times but

unsampled queries execute normally.

6.3.5 Low Cost

While it would be possible to compute mature executions on an offline testbed using the
online queries, this is a costly proposition, requiring 100% additional infrastructure cost
in the worst case. To keep the cost of measuring answer quality low, we opt to share the

resources already allocated to the service.

Memoization and replay modes redirect network traffic from nodes used to process online
queries. The approach does not require an offline testbed. Offline testbeds require costly
data replication for accurate mature executions. As datasets grow, testbed costs grow too.
Next we show that offline testbeds are expensive by analyzing the growth of Wikipedia

data.

Figure 6.5 shows the expected cost of our Apache Lucene setup hosting the Wikipedia
data. We studied the dataset from 2004 to 2009. In those years, the dataset size (d;) grew
by 130%, 150%, 110%, 70%, 40% and 23% respectively, ending at 4TB [148]. Hard drive
capacity (h;) grew at 20% annually, starting at 250MB. We used Amazon EC2 pricing for
reserved nodes ($2,400/year) and EBS storage pricing ($1.20 GB/year). We set annual
inflation to 2%. The number of partitions is captured by Equation 6.1. The cost for online
resources, i.e., Lucene partitions (p;), 4 cache instances per partition and 1 distributed

search components per partition, are captured by Equation 6.2. The least expensive cost of

119

an offline testbed that fully replicates data is modelled in Equation 6.3. It adds additional
instances and doubles EBS costs but does not include offline resources for processing. A

full offline testbed with 1 distributed search component and 1 cache cluster per partition is

modelled by Equation 6.4.
d;
L= = 6.1
p I (6.1)
Contine = (6p X $2400) x 1.02 + (d; x $1.2) x 1.02' (6.2)
Cpaa = (Tp x $2400) x 1.02° + (2 x d; x $1.2) x 1.02 (6.3)
Corfiine = (9p X $2400) x 1.02" + (2 x d; x $1.2) x 1.02! (6.4)

Figure 6.5 depicts the cost of data growth and offline testbeds. Data growth alone would
increase costs for our Apache Lucene setup by 3X between 2005 to 2009. We note that
Wikipedia’s reported hosting costs grew by 4.3X during the same period. A full offline
testbed would increase costs by 50%. An offline dataset alone would increase costs by
18%. Further with inflation, the relative cost of an offline dataset compared to the cost
of online nodes would grow from 18% in 2004 to 22% in 2009. Record, cache and replay

reduces operating costs by 35% compared to approaches that maintain a full offline testbed.

Prior work proposed subsampling data to reduce costs [70]. A sampled dataset can only
approximate the answer quality of online results. Still, an offline testbed that samples 20%

of data would increase costs by $46,000 during the period studied.

120

® $200,000 &rrrerrernreee Online + Offline Dataset

S Full Offline Testbed
T &> $150,000
2 c 4 sussannnns
£ $100,000

3 J

50,000
& $
$0 T T T T |

Figure 6.5: Annual operating costs for Apache Lucene on EC2 with Wikipedia growth rates.

6.3.6 Limitations

Timeliness of results and low overhead required that our solution occur in an online en-
vironment. Transparency is the requirement that motivates our approach as a networking
solution. While a new kernel module would also have sufficed for the other requirements,
we wanted for our solution to be usable out of the box for many services and systems. We
aim that every service that communicates between components using a networking connec-

tion can find use in our design.

Our design approach is not fully automatic. System managers choose components to tar-
get. Identifying which components to target automatically would be a potential problem
to solve in the future. Also, record mode assumes the targeted component responds to the
component which invoked it [138]. In graph and event processing systems, the targeted
component forwards data to the next node in the dataflow [106, 159]. Third, we assume
that request execution is read-only or otherwise idempotent, because workloads that allow
writes may have incorrect output on replay. Finally, cached output can be used to replay

only one component in the parallel execution path of each query. Specifically, our approach

121

produces inaccurate results when two or more components that execute in the same sequen-
tial execution path time out, because replay can speed up only one. Section 6.2 suggests
that picking components that interact with data partitions and are most affected by data

skew suffices in many cases.

6.4 Implementation

This section discusses the implementation of Ubora. First, we describe axiomatic choices,
e.g., the user interface, target users and prerequisite infrastructure. Second, we discuss how
operating system support for transparent context tracking impacted the implementation of
memoization. Third, we provide details about our implementation and optimizations made
to keep overhead low. Finally, we discuss our approach to determine which components

constitute a front-end.

6.4.1 Interface and Users

Ubora is designed for use by system managers. It runs on a cluster of compute nodes. Each
node runs a networked operating system with many virtual machines. Each virtual machine
runs 1 software component on its associated resources. To be clear, a software component
is a running binary that accepts invocations over the network. Each software component
has a unique network addresses, e.g., IP address and TCP port, assigned through its virtual
machine. A cluster of nodes may run one or more services. Each service comprises a set
of software components logically arranged in query execution flow paths, yet physically

distributed across 1 or more nodes.

122

System managers understand the query execution paths in their service (e.g., as depicted
in Figure 6.2). They classify each component as front- or back-end. Front components
receive queries, record inter-component messages and produce online and mature answers.
They are re-executed to get mature answers. Back-end components propagate query con-
text, record messages, and do not time out for sampled queries. Figure 6.2 labels the
front-end component. The search tier, Redis and/or Lucene could be front-end or back-end

components.

Ubora is started from the command line. Two shell scripts, startOnBack and startOnFront,
are run from a front component. Managers can configure a number of parameters before
starting Ubora, shown in Listing 6.6. The query sampling rate is given in terms of the
number of mature executions to initiate per unit time. When new queries arrive at front
end TCP ports, a query sampler randomly decides how to execute the query. Sampled
queries are executed under the record mode context shown on the left side of Figure 6.4.
Queries not sampled are executed normally without intervention from Ubora. Record time-
out duration sets the upper bound on processing time for a back-end component’s mature
execution. Propagate timeout is used to set the upper bound on time to scan for newly
contacted components to propagate the execution context. To get mature answers the query
execution context is called replay mode. Finally, the callback function used to compute

answer quality is service specific. The default is True Positive Rate.

6.4.2 Transparent Context Tracking

A key implementation goal was to make Ubora as transparent as possible. Here, transpar-

ent means that 1) it should work with existing middleware and operating systems without

123

changing them and 2) it should have small effects on response times for online queries.
Transparency is hard to achieve, because Ubora must manage record and replay modes
without changing the interaction between software components. In other words, the exe-
cution context of a query must pass between components unobtrusively. Some operating
systems already support execution contexts. Therefore, we present two designs. The first
design targets these operating systems. The second design targets commodity operating
systems. Our designs exploit the following features of memoization:
1. Queries produce valid output under record, replay, and normal modes. This property
is achieved by maintaining a shadow connection to the invoked component during re-
play. Cache misses trigger direct communication with invoked components. As a result,

replay, normal, and record modes have access to full data.

2. Back-end components use more resources during record mode than they use during

normal online execution because timeouts are disabled.

3. Replay mode produces mature results within normal online timeout settings, since the
output of invoked components are replayed from fast cache. Our design schedules replay

executions to avoid queuing delay.

Transparency using OS Managed Contexts: Some operating systems track execution
context by annotating network messages and thread-local memory with context and ID.
Dapper [134] instruments Google’s threading libraries, Power Containers [132] tracks con-
text switches between Linux processes and annotates TCP messages and Xtrace [35] in-

struments networked middleware.

124

IPAddresses
- front: 10.243.2.*:80

- back: 10.244.2.%;
10.245.2.%:1064

Samples: 8 per minute
recordTimeout: 15 seconds
propagateTimeout: 0.1 seconds
answerQualityFunction: default

Figure 6.6: Ubora’s YAML Configuration

OS-managed execution context simplifies our design. Ubora intercepts messages between
components, acting as a middle box. Before delivering messages that initiate remote pro-
cedures, Ubora checks query ID and context and configures memoization-related context
(i.e., record or replay mode). The same checks are performed on context switches. During
record mode, when a component initiates a remote invocation, we use the message and
query 1id as a key in the cache. Subsequent component interactions comprise the value as-
sociated with the key—provided the query context and ID are matched. We split the value
and form a new key when the invoking component sends another message. Subsequent

messages from the target would provide values for the new key.

In replay mode, when an invocation message is intercepted, the message is used to look
up values in the cache. On hits, the cache returns all values that are associated with the
message. The cache results are turned into properly formatted messages (e.g., TCP packets)
to transparently provide the illusion of RPC. On misses, the message is delivered to the

destination component as described above.

125

Transparency without OS Support: Most vanilla operating systems do not track ex-
ecution context. Without such support, it is challenging to distinguish remote procedure
calls between concurrent queries. A universal feature of online, data-intensive services is
the use of distributed communication between software components. While other context
tracking solutions are available, this network traffic is sufficient to allow transparency with
regard to both workload and underlying operating system. Ubora’s memoization permits
imperfect context management because record, replay and normal modes yield valid out-
put. This feature allows us to execute concurrent queries under the same context, but we
still must ensure correctness. First, we describe a simple but broken idea that is highly
transparent, and then we present an empirical insight that allows us to improve this design

without sacrificing transparency.

In this simple idea, each component manages its current, global execution context that is
applied to all concurrent queries. Also, it manages a context id that distinguishes concurrent
record contexts. Ubora intercepts messages between components. When a component
initiates a remote invocation in record mode, the message and context id are used to create
a key. For the duration of record mode, inter-component messages are recorded as values
for the key. If the context indicates replay mode, the message and context id are used to

retrieve values from cache.

This simple idea is broken because all messages from the invoked component are recorded
and cached, including concurrent messages from different queries. In replay mode, those
messages can cause wrong output. Our key insight is that record mode should use replies
from the invoked component only if they are from the same TCP connection as the initiating

TCP connection. The approach works well as long as TCP connections are not shared

126

by concurrent queries. Widely used paradigms like TCP connection pooling and thread
pooling are ideal for use with Ubora. We studied the source code of 15 widely used open
source components including: JBoss, LDAP, Terracotta, Thrift and Apache Solr. Only 2
(13%) of these platforms multiplexed concurrent queries across the same connection. This
suggests that our transparent design can be applied across a wide range of services. We

confirm this in Section 6.5.4.

Next we describe how to propagate request context, which is necessary when the operating
system does not support execution contexts. On a front component, the Ubora controller
waits for queries to arrive on a designated TCP port. If a query is selected for mature ex-
ecution, the Ubora controller changes the front component context from normal to record
and create a context id. Before sending any TCP message, we extract the destination com-
ponent. If the destination has not been contacted since record mode was set, the Ubora
controller sends a UDP message to tell the Ubora daemon running on that component to
enter record mode and forwards the proper context id. Then we send the original message.
Note, UDP messages can fail or arrive out of order. This causes the mature execution to
fail. However, we accept lower throughput (i.e., mature executions per query) when this
happens to avoid increased latency from TCP roundtrips. Middle components propagate
state in the same way. Each component maintains its own local timers. After a propagation
timeout is reached, the context id is not forwarded anymore. After the record timeout is
reached, each component reverts back to normal mode independently. We require front
components to wait slightly longer than record timeout to ensure the system has returned

to normal.

127

6.4.3 Prototype

We implemented transparent context tracking as described above for the Linux 3.1 op-
erating system. The implementation is installed as user-level package written in C and
requires the Linux Netfilter library to intercept and reroute TCP messages. It uses IPQueue
to trigger context management processes. It assumes components communicate through
remote procedure calls (RPC) implemented on TCP and that an IP address and TCP port
uniquely identify each component. It also assumes timeouts are triggered by the RPC caller

externally—not internally by the called component.

Ubora also implements a user-level controller that changes a node’s operating mode to
record, replay or normal. A single-writer but globally readable file holds the current oper-
ating mode on each node. In normal mode, rules regarding targeted components and query

detection are disabled.

Recording Network Payloads: Our approach records messages sent from targeted com-
ponents during live execution. First, headers are matched against rules about 1) identifying
targeted components, 2) new queries and 3) Ubora control. Packets that do not match
these rules are accepted (more precisely, they are not redirected). Second, we keep TCP
connections to targeted components open after timeouts to obtain messages excluded from
premature results. Ubora extends timeouts transparently by blocking FIN packets sent to
the targeted component and spoofing ACKs from the caller. Messages from the targeted
component that arrive after a blocked FIN are cached but not delivered to the caller. This
continues until record times out or the targeted component sends a message to end the con-

nection. Then, the entire recorded payload from the targeted component is stored as a value

128

in Ubora’s cache, with the query payload from the caller that invoked this output as its key.
While we delineate between key-value pairs by default using either FIN packets or the
next inbound message to a component, service managers can specify alternate, application-
specific data payloads to use for this purpose. This is especially important for workloads
that use connection pooling with collated requests separated by special characters. We then
separate messages using these application-specific termination payloads. Service managers

can specify this in the configuration file. Packets are parsed in two stages.

Distributed Cache: Naively limiting our storage usage to a single node increases av-
erage response time by increasing that storage node’s network bandwidth and decreasing
the amount of data used by the host application that can be stored. Instead, we allow sys-
tem administrators to volunteer a list of nodes on which to store recorded message pairs.
Recorded message pairs can be matched to nodes by a random hash, decreasing network

bandwidth for bandwidth intensive applications.

We use a distributed Redis cache for in-memory key value storage. Redis allows us to
set a maximum memory footprint per node. The aggregate memory across all nodes must
exceed the footprint of a query. By using only a small percentage of cache on each of
allowed nodes, we minimize the overall cache miss rate overhead. Our default setting is an
aggregate 1 GB. Also, Redis can run as a user-level process even if another Redis instance

runs concurrently, providing high transparency.

We want to minimize the overhead in terms of response time and cache miss rate. Each key
value pair expires after a set amount of time. Assuming a set request rate, cache capacity

will stabilize over time. A small amount of state is kept in local in-memory storage on the

129

Ubora control unit node (a front node). Such state includes sampled queries, online and

mature results and answer quality computations.

Replay: When we rerun the cached query, we spoof the targeted components using
recorded messages. Replayed queries bypass processing and I/O delays on targeted compo-
nents, returning results at network speed. If a packet is headed for the targeted component,
the packet is intercepted, and Ubora accesses its cache for the requested key value pair as-
sociated with the data payload. The value is sent back to the source address, if the key was
found in cache. If nothing was found, the data payload is sent to the targeted component for
correctness. For correctness, when a key is not found in Ubora cache or the Ubora cache
develops a fault, we also open a real connection to the targeted component and send the

data payload.

Ubora’s memoization approach meets the criteria outlined earlier. Other designs that we
studied do not. For example, a system could measure answer quality by replaying queries
on an offline testbed. This would violate our goal of using only online resources [70].
A system could measure answer quality online by rewriting system components to sup-
port query-specific timeouts as in Bing [66, 54]. However, this would require re-coding
software platforms. Finally, a system could simply change timeouts for each component
dynamically. However, layered timeouts would force such changes to cover whole work-

flows, i.e., no incremental deployment. This would hurt response times for all live queries.

130

6.4.4 Optimizations for Low Overhead

Context Tracking: Ubora reduces bandwidth required for context propagation. First, Ub-
ora propagates context only to components used during online execution. Section 6.5.4
demonstrates that the increase in packets touched is more than compensated for in the de-

crease of Ubora network traffic during mode changes.

Second, Ubora does not use bandwidth to return components to normal mode, only sending
UDP messages when necessary to enable record or replay mode. The naive context propa-
gation sends messages for all context switches, including return to normal mode. Timeouts
local to each component ensure that the system fully returns to normal mode, regardless of
any lost UDP messages. Timeouts therefore increase robustness to network partitions and
congestion. Front components time out after other components so that the entire system

will have returned to normal mode before another mode change is issued.

Reducing Replay Overhead: To keep response times low, online services underutilize
systems resources [97, 98]. Replay executions increase utilization on middle components.
After record completes, Ubora queues the context id on the front component for replay. The
expected time to complete queued replays is the product of queue size and average online
execution time. Naively, Ubora replays queries for mature execution as soon as possible

after the record mode completes.

However, we have reduced replay overhead by using three further factors to decide when
to replay queries. First, replay queries must execute within a short window after online

queries finish to be useful to online management. This expiration window is set by system

131

managers. If the time to clear the queue exceeds the remaining expiration window, Ub-
ora initiates replays. Otherwise, replays are initiated if 1) there are no outstanding online
queries and 2) the average inter-arrival time for online queries exceeds the time to replay.

If these conditions are met, we replay the first query in the queue.

Second, by caching results without expiration, Ubora can run replay executions over a
window of time after initial live executions. The value of delaying replay is that replay
can be done when queuing delay is low, reducing the impact of replay on response times
of other live executions. If services have frequent idle periods between queries, Ubora can
schedule replays during such time. [97] found that such services idle about 70% but for
less than 5 milliseconds at a time. Ubora can be set to read queue lengths at front end nodes

and schedule replays when queue length is below the 25th percentile.

Sampling: Mature results do not directly contribute to end user satisfaction. Naively col-
lecting mature results for each query would reduce an OLDI service’s throughput by more
than 50%. Ubora allows managers to specify stochastic sampling rates to determine when

to compute a mature result.

Second, we use a node sampling optimization for applications with intensive data reuse.
When this is used, recorded message pairs are stored on the node with the lowest Ubora

storage footprint.

6.4.5 Determining Front-End Components

Thus far, we have described the front-end as the software component at which queries

initiate. Its internal timeout ensures fast response time, even as components that it invokes

132

continue to execute in the background. To produce an online answer, the front-end must
complete its execution. Ubora re-executes the front-end to get mature answers. Ubora can

not apply memoization to the front-end component.

At first glance, re-execution seems slower than memoization. However, as shown in Fig-
ure 6.3, many components execute quickly. In some cases, execution is faster than transfer-
ring intermediate data to the key-value store. Our implementation allows for a third class
of component: middle components. Like front-end components, middle components are
allowed to time out. They are re-executed in replay mode without memoization. Unlike
front-end components, middle components do not initiate queries, but they can invoke tar-
geted components and they can be the target of memoization. In Figure 6.2, Distributed

Search or Redis components could be labeled middle components.

Given a trace of representative queries, Ubora determines which components to memoize
by systematically measuring throughput with different combinations of front-, middle- and

back-end components. We do the same to determine the best sampling rate.

6.5 Experimental Evaluation

In this section, we compare Ubora to alternative designs and implementations across a wide
range of OLDI workloads. First, we discuss the chosen metrics of merit. Then, we describe
the competing designs and implementations. Then, we present the software and hardware

architecture for the OLDI services used. Finally, we present experimental results.

133

Code- Platform Parallel | Data | Nodes | Maturity | Utilization | QCoD
name Paths (GB)

YN.bdb | Apache Yarn 2 1 8 96% 46% 8%
LC.news | Lucene 1 4 4 82% 73% 13%
LC.wik | Lucene 4| 128 31 20% 23% 53%
LC.big Lucene 4 | 4096 31 10% 40% 55%
ER.fst EasyRec 2 2 7 75% 15% 89%
OE.jep OpenEphyra 4 4 8 5% 20% 56%

Table 6.1: The OLDI workloads used to evaluate Ubora supported diverse data sizes and
processing demands.

6.5.1 Metrics of Merit

Ubora speeds up mature query executions needed to compute answer quality. The research
challenge is to complete mature query executions while processing other queries online at
the same time. The primary metric used to evaluate Ubora’s performance (throughput) is

mature executions completed per 100 online executions.

Mature executions use resources otherwise reserved for online query executions, slowing
down response times. Online queries that Ubora does not select for mature execution (i.e.,
unsampled queries) are slowed down by queuing delays. We report slowdown as the relative
increase in response time. In addition to queuing delay, online queries sampled for mature

execution are also slowed down by context tracking and memoization.

Finally, we used true positive rate, 1i.e., the percentage of mature results represented in

online results, to compute answer quality.

134

6.5.2 Competing Designs and Implementations

Ubora achieves several axiomatic design goals. Specifically, it (1) speeds up mature exe-
cutions via memoization, (2) uses a systems approach that works for a wide range of OLDI
services, (3) supports adjustable query sampling rate and (4) implements optimizations that
reduce network bandwidth usage. Collectively, these goals make Ubora usable. Our evalu-
ation compares competing designs that sacrifice one or more of these goals. They are listed
below with an associated codename that will be used to reference them in the rest of the
chapter.

e Ubora implements our full design and implementation. The sampling rate is set to max-

imize mature query executions per online query.

e Ubora-LowSamples implements our full design and implementation, but lowers the sam-

pling rate to reduce slowdown.

e Ubora-NoOpt disables Ubora’s optimizations. Specifically, this implementation disables

node-local timeouts that reduce network bandwidth usage.

e Query tagging and caching essentially implements Ubora at the application level. Here,
we implement context tracking by changing the OLDI service’s source code so that each
query accepts a timeout parameter. Further, we set up a query cache to reuse computation

from online execution. This approach is efficient but requires invasive changes.

e Query tagging implements context tracking at the application level but disables memo-

ization.

e Timeout toggling eschews both context tracking and memoization. This implementation

increases each component’s global timeout settings by 4X for mature executions. All

135

concurrent query executions also have increased timeout settings. This is non-invasive
because most OLDI components support configurable timeout policies. However, ex-

tending timeouts for all queries is costly.

6.5.3 OLDI Services

Table 6.1 describes each OLDI service used in our evaluation. In the rest of this chapter,
we will refer to these services using their codename. The setup shown in Figure 6.2 depicts
LC.big, a 31 node cluster that supports 16 GB DRAM cache per TB stored on disk. Each
component runs on a dedicated node comparable to an EC2 medium instance, providing
access to an Intel Xeon E5-2670 VCPU, 4GB DRAM, 30 GB local storage and (up to) 2

TB block storage.

e YN.bdb uses Hadoop/Yarn for sentiment analysis. Specifically, it runs query 18 in Big-
Bench, a data analytics benchmark [45]. Each query spawns two parallel executions.
The first sub-execution extracts sentiments from customer reviews over 2 months. The
second covers 9 months. The 9-month execution returns the correct answer, but the 1-
month answer is used after a 3-minute timeout. Each sub-execution flushes prior cached
data in HDFS, restores a directory structure and compresses its output. As a result, query
execution takes minutes, even though customer reviews are smaller than 1 GB. The aver-
age response time without timeout is 3 minutes. 44% of queries get the 9-month answer
within timeout. We mainly include YN.bdb to show that Ubora can capture answer qual-

ity for longer running services too.

e LC.big, LC.wik and LC.news use Apache Lucene for bag-of-words search. All of these

workloads replay popular query traces taken from Google Trends.

136

LC.news hosts 4GB of news articles and books on a Redis cluster with 4GB DRAM.
LC.news implements one of the four parallel paths shown in Figure 6.2. It returns the
best answer produced within 1 second. Without timeouts, the average response time is

1.22 seconds. Over 83% of LC.news queries complete within the timeout.

LC.wik hosts 128GB of data from Wikipedia, New York Times and TREC NLP [150].
After executing warm-up queries, the data mostly fits in memory. We set timeout at 3
seconds. Without the timeout, response time was 8.9 seconds. 39% of the LC.wik queries

complete within the timeout.

LC.big hosts 4TB. Most queries access disk. Average response time without timeout is

23 seconds. The timeout is 5 seconds.

ER.fst uses the EasyRec platform to recommend Netflix movies. It compiles two rec-
ommendation databases from Netflix movie ratings [110]: A 256MB version and a 2GB
version. Each query provides a set of movie IDs that seed the recommendation engine.
The engine with more ratings normally takes longer to respond but provides better recom-
mendations. Query execution times out after 500 milliseconds. 80% of query executions

produce the 2GB answer.

OE.jep uses OpenEphyra, a question answering framework [130]. OpenEphyra uses bag-
of-words search to extract sentences in the AQUAINT-2 NLP dataset related to queries
from the TREC trace [150]. It then compares each sentence to a large catalog of noun-
verb templates, looking for specific answers. The workload is computationally intensive.
The average response time in our setup was 23 seconds. Motivated by the responses
times for IBM Watson, we set a timeout of 3 seconds [34]. Fewer than 15% of queries

completed within timeout.

137

We set up a workload generator that replayed trace workloads at a set arrival rate for each
workload. The goal was to keep a concurrency level of 1 at the top-level node. Based
on averaging the CPU utilization for all of the nodes used in a workload, our workload

generator kept CPU utilization between 15-35% overall.

Table 6.1 also displays numerical characteristics that illustrate the diversity of our tested

workloads, including utilization, the quartile coefficient of distribution, and maturity. The

ArrivalRate
ProcessingRate *

utilization shown for each workload is defined as The arrival rate and pro-
cessing rate used in this calculation were measured for each workload without turning on
Ubora. As utilization increases, Ubora is challenged to achieve memoization and replay
without creating too much queuing delay. Table 6.1 also shows the quartile coefficient of
distribution for the response times of target components in each workload. Finally, we
define maturity as the ratio between average online query execution time (affected by pre-
mature timeouts) and mature execution time. Greater maturity allows less time for mature
executions to differ from online executions. These values are computed offline and are
used here to characterize the workload. Our services have diverse CPU% and 10% (not

shown). This stems from the wide range of data and cluster sizes covered. Taken together,

our services represent many OLDI workloads.

6.5.4 Results

Microbenchmark Tests: Our first test studied the effect of data skew and component selec-
tion. For this, we used a microbenchmark consisting of three software components, a front
component which accepts queries, and two auxiliary components. Each query randomly

selected 1 auxiliary component to have a running time X% longer than the other. Here, X%

138

Component Selection Ubora Mechanism

------ Single Component =*===***' Record Overhead

------------ Both Components Replay Overhead

100% —geserrennnnnnnsssnssasnsnnnnnnnnnsnssssnnsnnnnnnnns ~ 100%
Seeal c
2 75% RT - 75% =
@ RS =)
= Ssa e
3 50% Teel [50% 2
3] o
< 25% - u 25%U)

O% ...----: ---------- T lll---lll--l ----------- O%
0% 25% 50% 75% 100%
Data Skew

Figure 6.7: Microbenchmark study on the effects of component selection on accuracy and Ubora
mechanisms on overhead under changing data skew. Data skew represents the difference in running
times between two auxiliary components.

m Ubora 30
Ubora- 25
LowSamples 20
Ubora-NoOpt 15
Query Tag and 10
Cache 5
Tagging Only 0 0
M Toggle Timeouts LC.big (A) LC.news (B) ER.fst (C)

Throughput (mature executions per 100 queries)

Figure 6.8: Experimental results: Ubora achieves greater throughput than competing systems-
level approaches. It performs nearly as well as invasive application-level approaches (within 16%).

approximates data skew. The output of each auxiliary component is its running time, and

the microbenchmark’s output is the largest observed running time. The front component

139

times out after the shortest component completes (100 milliseconds). We issued 10,000

queries to this micro-benchmark one after another (e.g., 10 queries/second).

The left axis of Figure 6.7 shows the accuracy of mature results in this test, i.e., the relative
error between the time given by our mature results, and the running time of the slowest
component. We report average error. The top dotted line, labeled Both Components, shows
results when both auxiliary components are targets. The dashed line shows results when
only one auxiliary component is a target. When both components are targets, accuracy
ranges between 96-99%. However, the Single Component line warns about the perils of
selecting targets poorly. Consider the extreme case where the shortest component runs for
100 milliseconds and the longest runs for 200 milliseconds. If the wrong component (in
this case, the shorter-running component) was selected, the best possible accuracy is 50%.
Record and replay overheads cause further degradation. On the right axis of Figure 6.7,
we report slowdown, i.e., increase in response time, caused by record mode and replay
mode respectively in the Both Components experiment. Record mode includes the cost of
redirecting network messages to cache. Its overhead is around 1%. Replay mode includes
the cost of extending timeout for the long running component and the cost of queuing
delays to replay executions. The slowdown grew by 1.8% per 10% increase in data skew.
Effectively, this means that we reduced the amount of time needed to perform a mature
execution by 5.5X. These tests show that our record and replay mechanism are implemented

efficiently.

Comparison to Competing Approaches: Figure 6.8 compares competing approaches in
terms of mature executions completed per 100 online queries. For these experiments, we

set the sampling rate to record approximately 40 queries out of every 100. Ubora-NoOpt

140

reveals that node-local timeouts and just-in-time query propagation collectively reduce the
overhead of sampling, improving the throughput of mature execution completions by 1.6X,
1.3X and 2.1X respectively. ER.fst has relatively fast response times which require mes-
sages to turn off record and replay modes. Node-local timeouts reduce these costs. Internal

component communications in LC.big and LC.wik also benefit from node-local timeouts.

Excluding Ubora, the other competing approach that can be implemented for a wide range
of services is toggling timeouts. Unfortunately, this approach performs poorly, lowering
throughput by 7-8X. To explain this result, we use a concrete example of a search for
“Mandy Moore” in LC.big. First, we confirm that both Ubora and toggling timeouts pro-
duce the same results. They produce the same top-5 results and 90% of the top-20 results
overlap. Under 5-second timeout, the query times out prematurely, outputting only 60% of
top-20 results. Ubora completes mature executions faster because it maintains execution
context. This allows concurrent queries to use different timeout settings. Queries operating
under normal timeouts free resources for the mature execution. Further, per-component
processing times vary within mature executions (recall, Figure 6.3). By maintaining exe-
cution context, Ubora avoids overusing system resources. For the “Mandy Moore” query,
Ubora’s mature execution took 21 seconds in record mode and 4 seconds in replay mode.
Conversely, under the toggle timeouts approach, service times for all concurrent queries

increased by 4X, exceeding system capacity and taking 589 seconds.

We also compared our systems-level implementation of Ubora, which strives to transpar-
ently support a wide range of services, to application-level approaches. For these experi-
ments, we maximize throughput for Ubora on ER.fst. Based on this curve in Figure 6.10(a),

we set sampling rate to 20% for all approaches. Application-level approaches can track

141

50%

= B ER fst
c 0
Ubora 2 g 40% O LC.news
o S 30%] i
=] 'C;’ LC.wik
................ Ubora-NoOpt g 0 20% H LC.big
= 7)))
10% A OE.jep
0 \ \ 0% ® YN.bnb
0% 50% 100% Unsampled All
Sample Rate Queries Queries
(A) (B)

Figure 6.9: Impact on response time: (a) Throughput under varying sampling rate for Ubora
and Ubora-NoOpt. (b) Ubora delayed unsampled queries by 7% on average. Sampled queries were
slowed by 10% on average.

query context efficiently by tagging queries as they traverse the service [35]. Specifically,
we modified LC.big, LC.news and ER.fst to pass query context on each component inter-
action. Further, we implemented a query cache for targeted query interactions [6, 51, 117].
Our cache uses the Ubora’s mechanism for memoization but tailors it to specific inter-
component interactions and context ids. As such, our application-level approach is ex-
pected to outperform Ubora, and it does. However, Ubora is competitive, achieving per-
formance within 16% on all applications. We also compared to a simple application-level
approach that disables query caching. This approach shows that memoization improves
throughput by 1.3X on LC.big, 1.7X on LC.news and 2.5X on ER.fst. The benefit provided
by memoization is correlated with the ratio of mature execution times to online execution

times. In ER.fst, mature executions are mostly repeating online executions.

Impact on Response Time: Ubora allows system managers to control the query sampling

rate. Figure 6.9(a) compares the throughput rate (mature executions per 100 queries) for

142

Ubora with and without optimizations, for different sampling rates. Our optimations im-

prove throughput for LC.big by 2X at the 40% sampling rate.

In contrast, Ubora-LowSamples only replays queries when the interarrival time is high.
This slight reduction in the sampling rate can still achieve high throughput. However, this
approach significantly reduces Ubora’s effect on response time. Figure 6.9(b) shows the
slowdown caused by the Ubora-LowSamples approach across all tested workloads. By
executing mature executions in the background and staying within processing capacity, we
achieve slowdown below 13% on all workloads for unsampled queries and below 10% on
4 of 6 workloads for sampled queries. OpenEphyra and LC.big incur the largest overhead
because just-in-time context interposes on many inter-component interactions due to cluster
size. For such workloads, OS-level context tracking would improve response time for

sampled queries.

Collectively, the 5 workloads shown use 9 platforms including widely used Apache Lucene,
EasyRec Recommendation Engine, OpenEphyra and NanoWeb PHP server. In general, the
variance of mature execution times (i.e., QCoD) correlates positively to the throughput
achieved by each workload. The target components in EasyRec workloads in particular
have the greatest QCoD. EasyRec workloads yield throughput about 50% relative to other
workloads. Higher utilization levels were associated with greater slowdown on unsam-
pled queries, reflecting queuing delay. We also observed less slowdown on ER.fst. This

workload had higher maturity and low utilization which limits the potential for slowdown.

Impact of Profiling: Figure 6.10(a)-(b) study our approach to determine sampling rate and
front-end components (i.e., memoization). We studied the ER.fst workload. Figure 6.10(a)

shows the achieved throughput (mature executions per 100 queries) as the percentage of

143

30+ 30 100%
2>
520 520 £
Q. o =}
5 5 e
3 10 5 10 1 0;)
£ e)
= 3 = §:

0 \ tereeey 0 \ | 0% T \
0% 50% 100% 0% 50% 100% 0% 50% 100%
Sampling Rate Components Profiled Relative Timeout
(A) (B) (©)

Figure 6.10: Experimental results for maximized throughput with ER.fst: (a) We profiled
sampling options. (b) We profiled memoization options. (c¢) Timeout settings have complex,
application-specific affects on answer quality.

mature executions initiated increases. Figure 6.10(b) shows the achieved throughput as the
percentage of components included as front-end of middle components increases. For the
ER.fst workload it is better to apply memoization to many components. The 20% sampling

rate for Ubora-LowSamples on ER.fst maximized throughput.

The peak sampling rate corresponds to 12 queries per minute. Because the requests for
LC.news took longer, the peak sampling rate for Figure 6.9(a) corresponded to 1 query per
minute. First, we observe that under Ubora-LowSamples, the failure rate increases with
the sampling rate. This is due to expired cache entries and the potential for additional time
between memoization and replay. Under 20% sampling rate, 17% of mature execution
fail to yield mature results. This rises to 84% at 80% sampling rate. Figure 6.9(a) agrees
with this rise, with 30% of mature executions failing to yield mature results at 60% of
the sampling rate. Peak throughput is achieved at the cost of efficiency. We also observe
that Ubora’s optimizations collectively lead to significant throughput gains across sampling

rates.

144

m Early Stage ™ Full Request

[

o '
o r N
L

Relative Performance
(Low Qual/High Qual)

Figure 6.11: Some hardware counters predict answer quality.

Studying Answer Quality: Figure 6.10(c) shows answer quality (i.e., the true positive
rate) as we increase timeout settings. For LC.news and ER.fst, we increase timeouts at
front-end components. We also validate our results by increasing timeouts in an unrelated
component in ER.fst (Static). We observe that answer quality is stable in the static setting.
Further, answer quality curves differ between applications. After timeout settings reach
600 milliseconds for LC.news and 300 milliseconds for ER.fst, the curves diverge and
answer quality increases slowly for ER.fst. Finally, answer quality curves have 2 phases in

LC.news and 3 phases in ER.fst. It is challenging to use timeouts to predict answer quality.

Using Hardware Counters to Improve Sampling: Online executions that complete with-
out triggering timeouts make mature executions unnecessary. Ubora may further reduce
its overhead by turning off memoization and replay when it predicts online executions will
complete fully. Prior work has shown that hardware counters are useful predictors of query
outcomes. We studied whether hardware counters collected early in a query execution can
be used to predict answer quality in LC.big. For this test, we used the Google trace and

issued queries one at a time under a tighter timeout (3 seconds). We collected level-1 cache

145

misses (L1), level-2 cache misses (L2), and translation lookaside buffer (TLB) misses ev-
ery second. Figure 6.11 shows hardware counters after the first 1/3rd of query execution
and across the whole query execution. The figure shows the results of low quality queries
relative to the results for high quality queries. We observed the ratio of L2 misses and
TLB misses on cache nodes were markedly higher in cache nodes. These predictors de-
tect high-quality queries quickly enough to prevent mature executions (if the query had
been sampled). In LC.big, this approach has the capacity to reduce mature executions by a

further 60%, doubling Ubora’s throughput.

For our Apache Lucene search engine, this makes sense as TLB misses often mean that

slow Lucene disk will have more lookups and that the query will likely timeout.

6.6 Online Management

OLDI services use anytime algorithms, returning valid results even when provisioned to
provide target response times. In addition to classic metrics like response time, these ser-
vices could use answer quality to manage resources. We show here that Ubora enables
better resource management through answer quality. In this case study, we use Ubora to

improve admission control, a classic system management challenge.

Control Theory with Answer Quality: We studied admission control on the LC.big work-
load. We issued two classes of queries which arrived at different TCP ports, indicating high
and low priority. High priority requests arrived at a fixed rate in terms of requests per sec-
ond. We used diurnal traces from previous studies [140, 144] to issue low priority requests.

At the peak workload, low and high priority arrival rates saturate system resources (i.e.,

146

utilization is 90%). Figure 6.12(a) shows the Arrival Rate of low priority queries over time
as well as the number of low priority search requests admitted. We used Ubora to track
answer quality for high priority queries. Here, answer quality is the true positive rate for
the top 20 results. At the 45 minute and 2 hour mark, the query mix shifts toward multi-
ple word queries that take longer to process fully. This acccounts for the drops in answer
quality for the No Sharing line in Figure 6.12(b). When quality dipped, we decreased
the admission control rate on low priority queries. Specifically, we used a proportional-
integral-derivative (PID) controller. Every 100 requests, we computed answer quality from
20 sampled queries (20% sample rate). The PID controller used 10-minute sliding win-
dows to average out spikes in answer quality and timeout frequency. The PID controller

weighted current reading at 40% (i.e., proportional portion).

The y axis of Figure 6.12(b) shows answer quality of competing admission control ap-
proaches. When no low priority queries are admitted, the No Sharing approach maintains
answer quality above 90% throughout the trace, even during periods with complex queries.
When admission control is disabled, the Full Sharing approach sees answer quality as
low as 20%, corresponding with peak arrival rates. The PID controller powered by Ubora
manages the admission rate well, keeping answer quality above 90% in over 90% of the
trace. There is about a 20% drop in answer quality for the UBORA PID controller ap-
proximately at the point in time where the query mix increases in complexity. The drop
in UBORA TPUT occurs concurrently with this, indicating that the amount of low priority
queries shed to counter this drop increased. It allows almost 60% of low priority queries to

complete (Ubora (TPUT)).

147

The state of the art for online management in OLDI services is to use proxies for the answer
quality metric. Metrics like the frequency of timeouts provide a rough indication of answer
quality and are easier to compute online [66]. For comparison, we implemented a PID con-
troller that used frequency of timeouts instead of answer quality. We tuned the controller to
achieve answer quality similar to the controller based on answer quality. However, timeout
frequency is a conservative indicator of answer quality for Lucene workloads. It assumes
that partial results caused by timeouts are dissimilar to mature results. Figure 6.12(a) also
shows that the controller based on timeout frequency (70 Freq (TPUT)) drops requests too
aggressively. Queries can only be dropped explicitly in our system, so both TO Frequency
and Ubora PID controllers achieve full throughput on high priority requests. For most of
the trace, the Ubora PID controller has a higher throughput on low priority requests than 70
Freq. When arrival rate increases both Ubora and TO Frequency controllers admit fewer
low priority queries. The 7O Freq PID controller is consistently more conservative than
Ubora PID. The TO Frequency PID controller only allowed 25% of low priority queries to
complete. Compared to the TO Frequency PID controller’s peak throughput over the whole

trace, our Ubora PID controller improved peak throughput on low priority queries by 55%.

Sampling Rate and Representativeness: Ubora allows reducing the overhead of mature
executions by sampling online executions. This lowers mature results per query, but how
many mature results are needed for online management? Table 6.2 shows the effect of lower
sampling rates on the accuracy of answer quality measurements and on the outcome of
adaptive admission control. We observed that sampling 5% of online queries significantly
increased outlier errors on answer quality, but our adaptive admission control remained
effective—it still achieved over 90% quality over 90% of the trace. In contrast, a 2%
sampling rate produced many quality violations.

148

Arrival Rate ——— Ubora (TPUT)
----------------- TO Freq (TPUT)

Search Requests
N
o
|

0 S —
30 min 1.5hrs 2.5hrs
(A)
No Sharing ~ ---------------- Full Sharing
Ubora PID
2,1 00% T—<—— \E?_f__/_r‘r—c
T 75%
g
3 50% e
B oosnd LT T
% 25% oo,
0% T T
30 min 1.5hrs 2.5hrs

® /I

Figure 6.12: Ubora enables online admission control. Arrival rate refers only to low priority
requests. High priority requests arrive at a fixed rate.

6.7 Related Work

Ubora focuses on online systems, which trade answer quality for fast response times. Zil-
berstein first characterized similar applications as anytime algorithms [177]. Like the on-
line, data-intensive workloads used with Ubora, anytime algorithms increase in result qual-
ity as they increase in computation time. The metric Zilberstein uses closest to our answer
quality metric is accuracy, but does not indicate how the exact answer is to be reached
for comparison. His work indicates that anytime algorithms should have measurable qual-
ity, monotonically increase in quality as computation time increases, provide diminishing

returns, and produce a correct answer when interrupted. Ubora broadens the category of

149

Sampling | Measurement Error || Rate of
Rate for Answer Quality Quality
Violations
Avg. 95th
%tile
10% 0% 0% 4%
5% 20% 45% 9%
3% 30% 50% 13%
2% 51% 78% 29%

Table 6.2: Adaptive management degrades under low sampling rates. A quality violation
is a window where answer quality falls below 90%. Error is relative to the 10% rate.

applications that can use an answer quality metric beyond anytime algorithms, not requir-
ing that applications can suspend and resume at any time, nor requiring that the optimal

answer be determined in constant time.

6.7.1 Approximation for Performance

Recent work has focused on introducing approximation into existing systems in order to

increase performance [46, 67, 66].

ApproxHadoop [46] integrates sampling of input data, user-defined approximate code ver-
sions, and execution of a subset of tasks into Hadoop. ApproxHadoop allows the user to
set error bounds within a confidence interval, set a specific data sampling ratio, or specify
the percentage of tasks to drop in order to increase performance. Ubora enables users to

similarly manage resources based on the online answer quality trace.

150

Sequential search may terminate early on a server if the processing of the ranked documents
goes below a certain relevance. Since parallel search over the same index will generally
result in more processing per query, [67] reduces this wasted work by keeping the order
in which documents are processed sequential. While this is not necessary under low load,
higher loads are more impacted by wasted work. The authors adaptively change the amount

of parallelism per query based on the current system load.

Kwiken is an optimization framework for lowering tail latency in Bing [66]. Kwiken uses
techniques which include allowing return of incomplete results, reissuing queries that lag
on different servers, and increasing apportioned resources. It calculates incompleteness as
utility loss based on whether the answer returned contains the highest ranked document for
certain stages, and in other stages this is the percentage of parallel components that had not
responded. Our work differs from their solution in that we focus on speeding up the mature
execution with which to produce answer quality. Additionally, our framework provides for

provisioning of other resources based on answer quality.

In between executing queries, DICE uses wait time to speculatively execute the queries
most likely to be asked next, and cache these results [68]. DICE also implements time-
outs on total query execution, so that even if only some of the data is assembled in post
processing, an answer will be available. DICE sampled data proportionately to the most
likely speculative queries found. DICE is very similar in two ways to Ubora, in that we
also use cached data from queries hidden from the user. However, DICE uses this cached
data to improve the latencies of further queries within a user session rather than for mature
executions. DICE also uses sampling to reduce the resources spent running queries not sent

by an end user.

151

6.7.2 Query Tagging

One of the approaches we used to increase the maturity of answers as an alternative to Ub-
ora is specially tagging each query with context clues. Several recent works have illustrated

the use of query tagging for approximated workloads.

A proxy-based approach can dynamically scale quality of web results across different end
platforms [38]. [38] uses lossy compression to distill specifically typed information down
to the portions with semantic value. Their proxy adapts on demand to fit the needs of a
client. [38] accesses a mature execution from a web server and approximates this data to
meet the needs of a range of client platforms. We instead focus on services that provide

online results, and measure the amount of approximation present.

SocialTrove tags queries with data regarding the minimum diversity expected among the
returned samples from data-intensive applications. Instead of measuring answer quality,
SocialTrove uses application-specific similarity metrics to automatically cluster and sum-

marize social media data [5].

[56] uses a budget consisting of total execution time for current queries to determine
whether and how long to schedule a query. Each query is tagged with an amount of pro-
cessing time based on this budget. Their work uses a feedback mechanism to help ensure
the desired response times are being met, and an optimization procedure to schedule based
on request service demands and response quality profiles. Their algorithm takes advan-
tage of prior knowledge regarding the overall concave quality profile of Microsoft Bing to
estimate the individual request quality profile, rather than attempting to measure request

quality with a mature execution.

152

Similarly, Zeta was designed to better schedule requests in online servers for high response
quality and low response quality variance [54]. Zeta focuses on online services that pro-
duce partial results under a deadline, where trading additional computation time produces
diminishing returns in additional response quality. Their response quality, like our answer
quality, uses an application-specific metric to compare a partially executed request to a full

execution. They measure their response quality offline.

[123] tags queries with deadline and arrival time to implement their Fast Old and First
(FOF) algorithm, which schedules incoming, unknown requests on the fastest core avail-
able in a heterogeneous processor, then migrates requests from slower cores to faster cores
as jobs finish. They explain how heterogeneous processors can execute long requests on
faster cores and shorter requests on slow cores to achieve high throughput and high quality.
Their algorithm can improve answer quality and throughput in heterogeneous processors
as compared to homogeneous processors with the same power budget. The authors used
Bing without deadlines in a controlled setting to produce mature executions, and then used

this data in their simulation study.

6.7.3 Timeout Toggling: Adaptive Configuration

A second approach that can be used to achieve mature executions in an online setting is to
dynamically change the configuration at the application level, via argument specification.
Earlier in this chapter, we compare Ubora to timeout toggling, which uses this approach to

extend query processing time.

153

As in our work, [75] focuses on online data-intensive computations occurring across multi-
ple components working together. Their system changes configuration to maximize a utility
function, then displays interpreted system responses to the user and corrects computations

when the user indicates incorrect analysis.

Our work focuses on data-intensive applications, and uses application-specific similarity
metrics to study answer quality. Previous work has used answer quality to reduce costs
in cache provisioning for online, natural language applications [70]. However, their work

adapted cache configuration offline based on answer quality.

ISPEED uses a deadline-agnostic scheduler to explore anytime algorithm workloads with-
out information regarding individual queries [176]. ISPEED focuses on maximizing total
utility over all jobs in the cluster, and ignores concerns regarding individual query dead-
lines. In addition to the utility functions used in [56, 54], ISPEED also facilitated a user

study for the Google search engine to find its average utility function [176].

SkewTune mitigates skew for user-defined MapReduce programs by reconfiguring the
amount of data per task online [81]. SkewTune has similar goals to Ubora with regard
to transparency and minimal overhead for untuned queries, but dynamically redistributes
data from the task expected to take the longest to complete instead of using approxima-
tion. Our work shows that data skew is one of the motivations for approximation in online,

data-intensive services.

154

6.7.4 Adaptive Resource Allocation

Also highly related to Ubora is the area of adaptive resource allocation [139, 41, 83]. [139]
presented a library for estimating resource demands with seven different approaches. Using
their library, it is possible to control how often the resource use is sampled, when and for

how long to perform the estimate.

DC2, an autoscaling cloud service, can learn an application’s system parameters and scale
based on its understanding of resource requirements [41]. Without direct knowledge of the
application’s needs, DC2 relies on user-specified SLA information, virtual cpu statistics,
and knowledge of request URLSs to autoscale. Like Ubora, DC2 is mostly transparent, with

key information provided by the user. However, DC2 focuses directly on autoscaling.

AROMA is an automated resource provisioning system which uses Hadoop parameter con-
figuration and resource allocation in a hetergeneous cloud environment to target quality of
service while minimizing cost [83]. Instead of directly profiling each workload and regulat-
ing resources based on answer quality, AROMA profiles each workload for a short time on
a staging cluster before matching the workload’s signature to a cluster of workloads with a

set of associated resources.

155

Chapter 7: Rapid In-situ Characterization for Co-Located Workloads

Workloads save on operating costs by using colocation services. Google Cloud Services,
Microsoft Azure, and Amazon EC2 offer competitive opportunities for colocation, with
varying resources [4, 50, 113]. While virtualized cores are shared between colocated work-
loads, each receives a set amount of memory according to the type of instance requested.
Because of the colocated nature of these workloads, cloud services offer these opportunities

at lower cost than their fixed performance instances, as shown in Figure 1.1.

The goal of colocation for cloud providers is to increase physical machine utilization while
minimizing impact of resource sharing on workload performance [135]. Service level
agreements expect that during more than 99% of a workload’s lifetime, it will behave
within specific parameters, e.g., a response time bound. Despite best efforts, this cannot be
100% for colocated workloads because these workloads share resources to keep costs low.
With so many opportunities for sharing resources available, characterization is important
to choose the potential placements least likely to lead to Service Level Objective (SLO) vi-
olations. Characterizations trade time collecting traces for accuracy, but the effects of this
are not usually studied. Most schedulers (e.g., Paragon, Agile) collect traces for a given

time period before making a scheduling decision [24, 111].

156

The list of features collected in these traces is also usually static. Agile, for instance,
only collects features easily accessible through the /proc interface [111]. However, modern
virtual machine and container software have access to many additional features such as
hardware counters through the machine state register (also called model-specific register)

interface.

In this chapter, we present Quikolo, our cloud service implementation that enables an al-
ready colocated workload to test new placements for better resource sharing (lower SLO
violations). Quikolo uses the Kubernetes API to launch workloads to new colocation en-
vironments. A system-level component of Quikolo then characterizes the speculative colo-
cation opportunity according to a rich set of process-granularity features combined with
architecture-level hardware counters. Quikolo uses this data to make a recommendation to
the requesting workload regarding the expected latency on the characterized environment.
Kubernetes users can then deploy their container pods to locations expected to grant them

high utilization with manageable resource contention.

We designed Quikolo to allow us to study the effects of dimensionality and collection time
on characterization accuracy in colocation environments. We use ensemble modeling to
explore the effects of feature dimensionality on accuracy. Each dimension of the feature
vector is used as a model input to our ensemble, allowing us to study the effects of including
each feature in our characterization. Quikolo uses high dimensional feature vectors to tune
which models are most expressive of the current workload. By using ensemble modeling,

Quikolo can reduce the number of features collected by 78% for repeat customers.

157

Incoming request workloads set a budget in terms of time regarding feature collection time.
We can reduce collection time using statistical convergence. In other words, we stop col-
lecting characterization data when 80% of feature aspects have reached statistical conver-
gence. Statistical convergence allows us to study the effects of collection time on charac-
terization accuracy by deterministically scaling how close to the standard deviation from
previous readings we want the latest feature vector to fall. By using statistical convergence,

we can reduce collection time by 20%.

This chapter presents the following contributions:

1. We developed Quikolo, a cloud service which enables speculative deployment of re-
quested workloads using the Kubernetes API. Quikolo then characterizes the coloca-
tion environment in terms of expected latency using process-granularity statistics and
hardware counter readings. Kubernetes users can use the expected latency in the new

colocation environment to deploy container pods to desirable locations.

2. We use ensemble modeling to study how increased dimensionality improves character-

ization accuracy within colocated environments, even at reduced collection time.

3. We use statistical convergence to study how accuracy improves with increased collection

time, even with low dimensionality.

The chapter is laid out in the following sections. Section 7.1 details how Quikolo works,
with subsections on collecting features and Service Level Objective data, as well as our test
workloads. Section 7.4 presents our study of collection duration using statistical conver-
gence. Section 7.5 presents our study of feature dimensionality using ensemble modeling.

Section 7.6 explains how this work relates to papers in the systems community.

158

7.1 Design

We designed a solution to characterize in-situ in colocation environments. To do this ef-
fectively, this solution had to have low overhead. To be useful, it had to be low cost to
use. We also instrumented our solution to allow study of characterization duration and
feature selection. Once a workload is deployed, we continuously acquire instantaneous
program counter readings which are analyzed for expected latency. We collect k features
for a minimum of 1 minute and at most 7 minutes, but may stop early if statistical conver-
gence indicates diminishing returns on accuracy increase. We use ensemble modeling to

determine which features contribute most to latency prediction accuracy.

7.1.1 Design Goals

e Low Client Cost: Workloads using our service must set a budget in terms of the maximum
minutes to collect features. A decision on speculative latency must be reached before this

maximum characterization duration.

e Low Colocation Overhead: Colocated workloads increase resource contention. We want
to minimize the impact of characterization on this resource contention. To this end,
while collection is done in-situ, all data is stored and processed on a different machine.

We further lower overhead by reducing duration and features needed to obtain accuracy.

e Reduce Duration: We study the effects of characterization duration on decision accuracy.
In order to do this, we terminate the speculative workload when feature distributions

statistically converge.

159

e Choose Features Wisely: We study the effects of increased features on decision accuracy.
To do this, we introduce a mask variable which controls the features collected. Ensemble
modeling identifies the features most useful in determining speculative latency. After
a workload has been seen and characterized once, we store the information regarding
which features were most useful in this mask variable. In future uses of this service, only

those useful features are collected.

7.1.2 Design Parameters

The design for in-situ characterization of speculative deployments in colocation environ-

ments has three components: the client, the controller, the collector, and the analyzer.

e The Client is used to inform the controller of existing colocation deployments that would
like to be characterized in a different location. The controller accepts a budget b in terms
of minutes, the IP address and port of the currently running workload, and a description

of the workload sufficient for deployment.

e The Controller accepts requests for speculative deployment, tracks speculative deploy-
ments currently in the list of available colocation environments, and randomly assigns
the requesting workload a new colocation location. The information regarding this spec-
ulative deployment is sent to two collectors, the collector on the colocation environment
where the workload is currently running and the collector on the colocation environment

where the workload was speculatively deployed.

e The Collector receives two types of requests, SLO data collection and resource data col-

lection. In order to collect SLO data, the collector needs the IP address and port where the

160

original workload runs, as well as the IP address and port where the speculative deploy-
ment expects requests. When an SLO data collection request is received, the collector
performs the job of duplicating and forwarding copies of all queries received by the orig-
inal workload to the speculative deployment. The collector also logs arrival times and
response times, to measure latency. The second type of request, resource data collection,
does not require information regarding IP addresses and ports, but does require data re-
garding the process IDs assigned to the speculative deployment. The collector can then
use the available tools to characterize the process IDs relating to this request. To test the
effects of increased features on decision accuracy, the collector also receives information
regarding which features to test for this speculative deployment. For each request type,
the collection ends when the budget for that request is entirely used, or a message from

the Analyzer indicating statistical convergence has been received.

The Analyzer receives continuous updates from the SLO data collection and resource
data collection requests. These streams of timestamped data are correlated and checked
for statistical convergence. When the budget has been entirely used or statistical conver-
gence has occurred, the analyzer then uses machine learning to build a suite of models
with different feature sets, and uses the best performing models (tested on a subset of
the collected data) to project latency for extrapolated feature data. This process is well
described in [111] and is not the focus of our study. Instead, we use the machine learning
models to identify and record which features were most relevant to the final assessment
regarding whether the speculative deployment resulted in lower latency than the original

workload location.

161

7.1.3 Design Limitations

Speculative deployment and in-situ characterization of colocation environments works in
colocation environments which do not show preference for newly arriving deployments.
In environments such as Amazon EC2, which allocates newly deployed workloads more
credits (i.e., resources), the speculative deployment will not be an accurate approxima-
tion of the colocation environment over time. In order to work for this environment, the
minimum budget assigned must be sufficient to exhaust the extra credits before accurate

characterization can proceed.

Additionally, the mechanism used for identifying SLO violations works only for workloads
which receive requests over an IP connection, with request latencies lower than 1 minute.
Longer requests require more budget for characterization. Workloads that only receive
data or requests and do not return processed results will not be accurately characterized

with respect to latency, since the return message is timestamped to calculate this.

7.2 Quikolo Implementation

We chose to implement Quikolo to deploy workloads using Kubernetes with Docker con-
tainers, which allows workloads to colocate on the same physical machine with arbitrary
runtime environments. We assume that this machine exists as one of a pool of physical
machines that run cloud services, and that when spot instances are available on another
machine in the pool, a workload already running may choose to bid for this spot instance,
hoping that moving may result in less resource contention. Quikolo could be instrumented

to launch workloads to other colocation environments.

162

file: workload.yaml
service: 10.243.2.%:80
budget: 5 minutes

begin workload.yaml

name:workload
... workload description ...

end workload.yaml

Figure 7.1: Quikolo request

Workloads use a TCP message to issue a request to the Quikolo service. The message
contains a YAML file which Kubernetes can launch, the current IP address and port on
which the workload accepts requests, and a budget in terms of minutes the workload will
pay to be speculatively deployed and characterized. An example request is shown in Fig-
ure 7.1. Quikolo uses the Kubernetes API to launch the pod described in the YAML file.
Quikolo modifies the pod name, discovered through the YAML file, to query Kubernetes
regarding deployment location and process IDs. Quikolo queries MySQL to determine if
the unmodified pod name has been characterized previously, and if so, which features to

collect. Quikolo’s workflow can be found in Figure 7.2.

Quikolo uses nftables to record request arrival times and data packets heading to the current
workload. These cached requests are then issued to the speculative deployment of the
workload. The process IDs are used to collect and aggregate process-specific data regarding

CPU, memory, disk, and network I/O at the system level. Machine-wide statistics are

163

Kubernetes Kubernetes

Workload Requesting Request

A Clients - Workload A

¥

Start CMD,

Speculative
Workload A’

Requests *
Copy
requests A’ Name

rofile

Figure 7.2: Workflows in Quikolo. Arrows reflect messages in execution order (top to bottom).
Dotted lines represent messages seen by the speculative workload but not by the original workload
or clients.

Deployed IP

collected using the /proc interface at the system level and cache information is added using

hardware counters at the architecture level.

7.2.1 Feature Collection

In our setup, a Quikolo daemon runs on each machine running Kubernetes. This daemon
receives a TCP message when a workload requesting characterization is running on their
machine. This TCP message contains the name of the workload, feature mask, budget, and

whether the workload on this daemon’s machine is the original or speculative.

Arrival and Service Rate

When a Quikolo daemon receives word that the original workload is on their machine,
the daemon uses Kubernetes knowledge regarding IP address and port with an nftables
command to record incoming request arrival times and data packets. These data packets

164

and arrival times are cached in MySQL on the Quikolo master node, and issued as requests
to the speculative workload. Service times are recorded at this fake client and cached in a

MySQL container colocated with Quikolo master pod.

System-level Statistics

When a Quikolo daemon receives a message with the identifying pod name of a speculative
workload that is on their machine, the daemon uses Kubernetes knowledge regarding the
process IDs to query the /proc interface regarding allowed CPUs, cycles used, memory and
disk bytes transferred, and network packets sent or received. To get the process IDs relevant
to a specific pod name, we use “docker ps” to acquire a list of containers currently running
on that machine. Container names starting with ’k8s” belong to Kubernetes, and the pod
name also be embedded in the container name. These container names can be mapped
directly to processes running on the machine, which allows process-specific data collection
from the /proc/$PID interface. This process-specific data is aggregated across all relevant
processes when features are recorded. Machine-level statistics are also collected using
the /proc interface so that a ratio of workload usage compared to total machine resource
usage can be represented. All of this feature data is cached in MySQL with a millisecond-

granularity timestamp.

Architecture Statistics

The Quikolo daemon on a machine executing a speculative workload also collects data
through the Inte] PCM library at the Machine State Register level. These hardware counters

inform Quikolo regarding per-L2 cache miss rates and per-L3 cache miss rates. This data

165

is also cached in MySQL, and used in conjunction with the information regarding allowed

CPUs to further refine which features are representative of the speculative workload.

7.2.2 Organization

A thread on the Quikolo master is assigned to each request coming from a client workload.
This thread is responsible for communicating with the Quikolo daemon on nodes where the
original workload and speculative pod are deployed, and also correlates real-time latency
and resource usage data streamed from MySQL using their millisecond-granularity times-
tamps. At each timestep, new data is added to the feature traces, which are then checked
for statistical convergence as described in Section 7.4. If statistical convergence is found,
termination messages are sent to the Quikolo daemons; otherwise, termination messages
are sent to the Quikolo daemons at the end of the budget set by the client. To increase fault-
tolerance, the thread on the Quikolo daemons handling this request also set a time out equal
to the budget. This ensures that the speculative deployment will never be characterized for

more than their budgeted amount.

After the characterization finishes, the timestamp correlated data traces are analyzed by the
same thread in the Quikolo master. We build an ensemble of models to predict expected
request latency using subsets of features collected, as described in Section 7.5. Using
wavelet analysis as described in Agile [111], resource usage data streams are projected into

the future. Our ensemble of models is tested on these projected data streams.

166

7.3 Experimental Evaluation

In this section, we describe the setup for our experiments, including the architecture and
workloads. We study the overhead caused by Quikolo in this section before moving on to

our study of characterization duration and feature selection.

7.3.1 Architecture

Our cluster has 4 CentOS nodes running Kubernetes and Docker. All of our characteriza-
tion experiments that rely on using Intel PCM counters are done on Intel Xeon C5-2660
running at maximum 2.2 GHz. Three machines in the cluster are instead Intel Xeon X3330
running at maximum 2.66 GHz, which are not supported by Intel PCM. These machines
run the Kubernetes master and the originating Kubernetes pod acting as the Quikolo client.
The Quikolo master runs on the same node as the Kubernetes master, and Quikolo daemons

run on each node in the cluster.

7.3.2 Workloads

The objective of Quikolo is to explore the accuracy of characterizing rapidly in situ on
colocation environments. To test the above designs, we set up batch scientific workloads to
run on a 16 core Intel Xeon server, and injected services with varying arrival rates. We use

the following interactive workloads to test the above designs:

e Lucene (LS) is a search engine service which responds to user queries with subsecond
(<3 ms average) response times. We characterize this read only service at low arrival rate

(400 queries / second) and at high arrival rate (800 queries / second).

167

e Redis (RS) is a key value store service which responds to user queries with subsecond
(<4 ms) response times. We characterize this read/write service at low arrival rate (250

queries / second) and at high arrival rate (500 queries / second).

We use the following background workloads, running continuously, to colocate with our

interactive workloads:

e Conjugate Gradient (CG) is a batch scientific workload which computes the smallest
eigenvalue of a positive definite symmetric matrix. It is known for its irregular memory
access patterns, because the matrix in this data set is large and sparsely populated [53].

It exhibits long (>30 second) response times.

e Embarrassingly Parallel (EP) is a batch scientific workload which computes embarrass-
ingly parallel tasks such as map reduce jobs. It tests the limits of floating point per-
formance, and has no significant communication between cores. It exhibits medium

(between 8 and 20 second) response times.

e Fourier-Transform (FT) 1s a batch scientific workload which solves a 3D partial differen-
tial equation. It is representative of spectral computations, with all-to-all communication.

It exhibits medium (between 8 and 20 second) response times.

e Integer Sort (1S) is a batch scientific workload which computes integer search. It is known
for random memory access, and tests the speed of integer computation. It exhibits fast

(<5 second) response times.

e Lower-Upper Gauss-Seidel solver (LU) is a batch scientific workload which simulates
computational fluid dynamics using a system of nonlinear partial differential equations.
It contains a limited degree of parallelism compared to the other workloads we examine.

It exhibits long (>30 second) response times.

168

(@)

Slowdown on Average Service Time

5
s _

mLS (low) §4
mLS (high) é 3
ORS (low) 2 2
. 1

WRS (high) II I

EP FT IS LU MG CG

Figure 7.3: We show overhead with and without SLO redirection, for Quikolo using all features.
(a) Each workload executes in isolation. (b) Global slowdown for varying colocation mixes.

e Multi-Grid (MG) is a batch scientific workload which uses V-cycle multigrid method to

solve 3D scalar Poisson equations [11]. It features long and short distance communica-

tion. It exhibits fast (<5 second) response times.

7.3.3 Overhead

One of the goals of our design was to keep overhead low. Both the Quikolo daemons
cause overhead, first from collecting data on features, and second from additional traffic
on the network due to SLO data collection. Slowdown (response time using Quikolo vs
response time without Quikolo) is measured individually on the original workload being

speculatively deployed and globally for workloads on the machine where the workload is

speculatively deployed.

We studied the slowdown resulting from collecting all available features on the speculative

colocation environment. Lucene at low utilization has a 35% slowdown on average across

169

all colocation environments. At high utilization, Lucene is less likely to have its resources
allocated to other processes during idle cycles, so slowdown was negligible. Slowdown
on Redis was also not statistically relevant on any colocation environment. However, the
background workloads paid a higher overhead due to Quikolo, as shown in Figure 7.3. This
is primarily because the NAS parallel benchmarks are using resources on all available cores,
whereas the Docker containers limit the services to a single core by default. Like Redis, the
EP (Embarrassingly Parallel) workload has high parallelism with data independence; other
workloads tested have more data interdependence, so when a single thread slows down, the

entire workload is affected.

In our studies on characterization duration in Section 7.4 and Section 7.5, we introduce
mechanisms that reduce overhead, but when this is done it also reduces the accuracy ex-

pected from the colocation speculative deployment service.

7.4 Duration Study

Our study of collection time on characterization accuracy required that we allow Quikolo
to dynamically scale the amount of time we allow a speculative workload to process. Tradi-
tionally, features for characterizations are collected for a fixed amount of time (7'). Instead,
we allow a speculative workload to end early when we determine that the features for this

workload have statistically converged.

170

L2 0 Statistics Over Time Convergence vs Inaccuracy 100%

80% S
609
409
209
0%

0 4 16

Time (s)

— Statistical Convergence
--===== Accuracy Convergence

N k
Time (s) (a) Collection time (min) (b) —— Highest Tnaccuracy (C)

Figure 7.4: Feature change decreases as Lucene characterization progresses. (a) Statistics at
time ¢ for L2 cache 0 (f(16)). (b) Overhead on the colocation environment during a 10-minute
window as collection time increases. (c) Stepwise function RQ shows across all features, the per-
centage of statistics changing more than 10% compared to the previous feature readings. Accuracy
convergence indicates the percentage of statistics greater than 10% change from the final statis-
tics calculated over the entire trace. Highest accuracy shows a comparison of the highest percent
difference at each feature reading from the final statistics calculated over the entire trace.

7.4.1 Statistical Convergence

We consider the features for a workload to have statistically converged when the new fea-
ture readings consistently fall within expected distributions. At each time ¢ that new read-
ings occur, we calculate statistics such as median, average, standard deviation, and per-
centiles for each feature. We compare these statistics to prior statistics for this workload
that do not include the most recent readings, using percent difference. Other functional
methods of determining change in expected distributions exist, and may be swapped out
arbitrarily. When any one of these statistics shows a change less than a predefined similar-
ity threshold s%, it has converged. When more than s% of the statistics for a feature have
converged, that feature has converged. We collect statistics for each workload for at least
1 minute, but stop collecting statistics before the budgeted time if s% of the features have
converged. After this point in time, we are no longer attaining feature information that will

substantially change a latency decision.

171

Feature statistics for Lucene (Low load)

L2 f(16) Statistics Converging 100% X X
30% |1, X % % w Xx <
_ 80% % X ><><><>< % ><><§ ? x
—95th S §
< 60% é x X x x§§5§§§§§§§§L§AA%XX
< =~ A AR A, 4 2 1
— 75th & 40% Xt x XX 44 1 §§§
2 20% L A § %1 i% ll i # Average A75th percentile 4
0% ; Aaq % % A 4441473 A 4 25th Percentile X 95th percentile
- A A
=== 25th C— AN T INOEXAO—=ANTNO—=ANFTINOERAOS =T INO — »
0%) 2222RRREEES 2222309908999 9 8 qaaaads g
--- Standard 0 4 3 12 16 uuuoJoouuu&&&&%%J'J'JJ'J’J’J’J’J’J’J’JA’_]’_}_}'—]Ag
Deviation Time (s) (a) S (b)

Figure 7.5: Which Statistics Converge: (a) Percentiles were less susceptible to outlier readings
than standard deviation. (b) Standard deviation (bars in chart) describes features in a way percentiles
do not capture.

Algorithm

The inputs to our algorithm include the workload as a Kubernetes YAML file, the expected
collection time 7', and the similarity threshold s%. The expected collection time should
be the number of minutes that the user would normally spend characterizing the workload.
The similarity threshold should be a percentage representing how accurate the user would

like the output to be, compared to a full run at collection time 7.

Characterizations are completed in a single run collecting traces all the available features,
including CPU cycles, L2 and L3 cache misses, memory, disk, and I/O usage. Equation
1 shows that our goal is to keep the time ¢ that we spend collecting traces much less than
the expected characterization period 7. The algorithm determines when to stop collecting

features for the input workload.

RT(c)=t<T (7.1)

172

Currently, we characterize a single speculative deployment per request. It would be possi-
ble in the future to maximize the number of speculative deployments launched per request,

bounded by the request budget, but that problem is orthogonal to this work.

The output from each speculative deployment c is a set of traces, one trace for each of n
available features, as reflected in Equation 2. According to Section 7.5, subsequent spec-
ulative deployments of the same workload will only collect a set of traces for the most

relevant features.

¢ — fi, fos Ja (7.2)

In our algorithm, we use multiple statistics F(f,,) calculated from the instantaneous readings
of each feature trace. For instance, Figure 7.4(a) shows continuously updated average and
percentiles for the L2 cache belonging to CPU 0 while the Lucene workload described
in Section 7.1 runs. These statistics are used to help calculate change between feature
distributions with and without the most recent feature readings. Equation 3 explains how
features are filtered through these statistics to get change, using percent difference. Other
definitions for /(f, i) are valid and may be used so long as change in feature distribution is

represented.

IF(f) = F(fi= D)
I(f, i) = - 7.3
(0 F(f,i— D) 73

We use percent difference to determine feature distribution change between one set of fea-

ture readings and the next. We then use a threshold function to determine whether a feature

173

statistic has reached the requested similarity s. This step function A(f,i,m) returns 1 if
statistic m has produced values for feature f,, within s% of the values produced without
the most recent feature reading. Figure 7.4(c) shows percent difference converging for the
Lucene workload described in Section 7.1. The spike at 6.5 seconds indicates entry into
a phase with high network use, which resulted in widespread change at most levels of the
memory hierarchy. Shortly after this phase begins, the feature readings show less than 5%
statistical change. To demonstrate the overhead saved by converging early, we simulated
early convergence for Lucene at low load on each of the NAS benchmarks running in the
background. Figure 7.4(b) shows that slowdown for MG is 48%, slowdown for IS is 25%,
and slowdown for EP is 0.7%. This low speedup is because IS and MG are the fastest task
types to complete and EP has low data interdependence. However, longer running tasks
with high data interdependence such as LU and CG are more affected by Quikolo, even

amortized over 10 minutes.

. 1 :F,(f,i)<=s
While we compare change from one set of feature readings to the next in our algorithm,
the appropriate way of testing the accuracy of our characterization is to compare change
between statistics at time 7 and the statistics at time 7. Unfortunately, this would require
us to collect features until time 7', so absolute accuracy metrics are not available online
without sacrificing the cost saving from stopping collection early. We compare similarity

and accuracy at time ¢ and at time 7 in Figure 7.4(c).

174

100% Best Features Change Between Workloads

%o

Lucene (Low Arrival Rate) S . mRedis (Low) ORedis (High) ®Lucene (Low) ®Lucene (High)
m] 08 w16 mQuikolo 80%

60%

100%

;»
§40[
K|
5
| 5 0%
- - <+ OO~ N FTNO—~ANFTVNOS~0ORNDS —A Nt N O — >
. < = 3-1 S sSs = - (o o o\ I o I o I o\ I o\ I o I o I o A nen S
0% (ST [=377~ T 7 [(i [(i Bl Bl B B I o o o R o o i
FT LU MG AR Sk 2l S o = g
2

Figure 7.6: Feature study: (a) An increased number of collected features improves the accuracy
of SLO violation identification.

(b) The features which contribute most to accuracy of SLO violation identification change
between workloads.

Which Statistics Converge

In addition to studying increase in accuracy as collection time increases, we considered
which statistics to use in our algorithm, such as average, standard deviation, and percentiles.
Figure 7.5(a) shows the continuously updated percent difference for several statistics calcu-
lated for the L2 cache belonging to CPU 0. We found that percentiles were less susceptible
to outlier readings, whereas outlier readings changed standard deviation by approximately
15% much after other statistics had converged. The statistics calculated from the full traces
are shown in Figure 7.5(b). For L2 cache, L3 cache, and memory, the standard deviation
was reflected by the 25th and 75th percentiles, but standard deviation added information

regarding CPU utilization.

175

7.5 Features Study

Our implementation of Quikolo allows us to compare the accuracy of the colocation de-
cision based on the number of features selected for use in our machine learning. We use
neural networks to quantify the effect of features collected on the online characterization
accuracy. For each neural network in the offline ensemble, we systematically choose some
k features as inputs, and train on 80% of the workload latency information we acquired.
We average our collective findings to determine which features contribute most. There are

two key observations that allow this optimization to work.

(1) Not all workloads have average latencies less than the feature reading interval. In the
case where the latency of a request exceeds the feature reading interval, this latency must
be amortized over every time ¢ that features were read while it was in-system. There are
two separate designs for determining how a feature may impact the characterization of a
workload. First, it is possible to design a neural network that uses features to directly learn
expected 99th percentile latencies of a workload with latencies less than the feature read-
ing interval. Second, it is possible to leverage knowledge of a workload’s SLO violation
threshold in order to simplify our neural network’s output. Given a correlation between the
latency of a request and the feature readings that were taken while it was present in system,
we identify feature readings where an SLO violation took place. In our work, we took the

latter approach.

(2) When the same number of features, starting weights, and training set are used in each

neural network, the difference that would lead one neural network to be better than another

176

is purely the input features. With this in mind, we identify features that contribute most by

averaging the inaccuracy for each neural network in which that feature was included.

Using these two observations, we compare neural networks with the following features.

e Single feature model explores characterization accuracy for each of our 39 features indi-

vidually.
e 8 feature model randomly chooses 8 features to use in each of 39 perceptrons.
e 16 feature model randomly chooses 16 features to use in each of 39? perceptrons.

e Quikolo implements our full design for machine learning, using up to 39 features and
a continually changing set of features chosen for high accuracy and timely statistical

convergence.

In this experiment, we explore the relationship between dimensionality (i.e., number of
features analyzed) and characterization accuracy. For this experiment, we compared the
inaccuracy of the above approaches to Quikolo. While individual models can be highly
accurate (within 10%), Quikolo is the only approach which is consistently accurate across
multiple colocation environments. Our results for Lucene under low arrival rate are shown

in Figure 7.6(a).

7.5.1 Which Features Matter

Secondly, we study which features matter across multiple workloads. For each feature,
we average the inaccuracy incurred by each neural network which used that feature. We
found that L2 cache miss rate was useful in identifying SLO violations incurred during

low arrival rate by both Lucene and Redis. CPU utilization was useful in identifying SLO

177

violations by Redis under high arrival rate, but L3 and Memory usage were more useful in
identifying SLO violations for Redis under low arrival rate than CPU utilization. However,
Figure 7.6(b) also shows that a change in arrival rate was sufficient to change the features
which contributed most to low inaccuracy. It is important to determine which features
matter because pruning features that do not assist in the decision making process allows us
to collect less data online and provide faster analysis to the client. In the best case, if the
features that matter to a workload all come from the PID-specific /proc source, eliminating

the other features reduces data collection by 78%.

7.6 Related Work

Several fields are intrinsically tied to this work, including resource management, workload
characterization, and workload matriculation. The most predominant recent works in the
field of resource management include Agile [111], Quasar [25], and Bolt [27]. Recent
papers in workload characterization have studied Khan et al. [76], Markovian Arrival Pro-
cesses [116], and Eco [60]. Workload migration is important because the machine that a
service is initially scheduled onto may not be sufficient to fulfill its SLO as time passes.
Elastic scheduling may also solve this problem, but it may be more effective to move a
workload than add an instance of parallelism. Lastly, recent research such as [18] has used

approximation for machine learning.

Resource Management

Agile is an elastic cloud-scheduling algorithm which characterizes a workload according

to the amount of resource contention that the workload can support before SLO violations

178

are incurred. Agile’s method takes 10 minutes to characterize and build a new linear re-
gression model for any new workload, but can choose dynamically at runtime which linear
regression model to use from its stable [111]. Quasar is a dynamic scheduling platform
which uses fixed, short characterization runs on two architectures and in two colocation en-
vironments to extrapolate behavior in other colocation environments [25]. Bolt uses online
data mining techniques to detect type and characteristics of cloud workloads. Bolt uses
10 features and uses 2-5 seconds of characterization periodically to ensure the colocation

environment is still viable [27].

Workload characterization

Khan et al. apply a multiple time series approach to analyze clusters of virtual machines [76].
Eco is a daemon that uses workload characterization with the NAS Parallel Benchmarks to
control performance via DVES [60]. Pacheo-Sanchez et al. explores the Markovian Ar-
rival Processes and queuing model for characterizing workloads in order to predict quality

of service [116].

Workload migration

Enacloud encapsulates workloads into virtual machines and then dynamically places them
via an energy-aware bin packing heuristic [89]. Voorsluys et al. analyze the effects of live
migration on the migrating workloads [160]. CloudNet is a system that allows live migra-
tion not just across machines in the same data center, but across multiple geolocated data
centers [167]. Autoscaling requires precise resource usage estimation. Roy et al. attacks

the problem of workload forecasting using a model-predictive algorithm. [127]. CloudSim

179

is a toolkit for modeling and simulating a cloud computing environment. Their case study
includes dynamic workload placement [17]. Ward et al. augments the Darwin framework
with extensions for automatic migration of business critical workloads to the cloud [162].
Ye et al. analyzes different resource reservation methods for live migration [171]. While
live migration is very relevant to our work, we instead create a live duplicate of a workload

while minimizing our effect on the original deployment.

While previous work in resource management has used workload characterization to de-
termine when to migrate workloads, in this chapter we empirically study the effects of
characterization duration and number of features on the accuracy of decisions regarding

workload migration.

180

Chapter 8: Conclusion

I trade accuracy to reduce overhead when characterizing online, data-intensive workloads
for cloud resource allocation. Figure 8.1 describes my work in terms of offline profiling,
online service analysis, and online colocation characterization. Offline profiling allows us
to make improvements to online performance of workloads, but at the cost of additional
resources which do not contribute to revenue. Online characterization allows resources to
be added to a service only when it needs them, but at the cost of slowdown on the char-
acterized service. Online characterization also impacts any workloads colocated with the
characterized service, but limiting the resources used and identifying needed features helps
reduce this overhead with limited effect on accuracy. The following paragraphs describe

outcomes and conclusions from the thesis, by chapter.

Many workloads now consist of more data than data-parallel platforms can process within
interactive response time constraints. Subsampling reduces processing requirements while
providing statistical confidence on the accuracy of results. In Chapter 2, we studied sub-
sampling workloads, showing that subsampling from a large working set can significantly
degrade cache locality. We made a case for tiny tasks, i.e., splitting subsampling workloads
into many tasks with small working sets. Tiny tasks offer improved cache locality but suffer

from scheduling overheads. We contend that scheduling overheads can be managed. First,

181

Workload Characterization

Offline Online (Service) Online (Colocation)
. Task I Task |
oy —
E Service orkload
S + [Cache]
< Tiny Tasks Answer Quality Quikolo
...reduces batch job runtime ...allows a service to add new ...identifies interactions with
for subsampling workloads. resources only when needed. colocated workloads.
:
. AddITime > || & . Re
= =
8 Workload 1 n
=
§ Feature
@) Adaptive Power Ubora Quikolo

...reduces slowdown on
characterized services.

...explores slowdown on
colocated workloads.

...reduces scheduling delay
due to finding peak power.

Figure 8.1: Workload characterization increases accuracy and overhead in online cloud resource
allocation.

different platforms exhibit very different scheduling overheads depending on their objec-
tives. Platforms designed for task-level recovery have overheads that are too high for tiny
tasks. Platforms designed for job-level recovery perform better. Second, we show that task
sizing can amortize some scheduling overheads with only a small increase in cache miss
rate. Our approach uses kneepoints on the task size to miss rate curve to determine task
size. We implemented our approach on the BashReduce platform, which is lightweight
in comparison to Hadoop. We tested our approach on subsampling workloads such as
genetic analysis and e-commerce datasets, which are characterized by random access pat-

terns within the given task. Under default parameters, our approach performed 23% better

182

than BashReduce with the default scheduler. When outlier data accesses (time > average)
were omitted, our performance increase reduced to 15%. We used these short, interactive
workloads to compare our BashReduce platform to Hadoop. Our improved BashReduce

platform performed 9X better than vanilla Hadoop.

In Chapter 3, we analyzed power traces from profiling core scaling on multiple high per-
formance computing benchmarks over 3 multicore Intel architectures. We found that peak
power exhibited up to 30% variation between workloads on the same architecture. We saw
that a workload which was a good predictor of peak power for a target workload was not
guaranteed to be a good predictor of peak power for that same workload on another archi-
tecture. We show that profiling for k% of a target workload results in variable accuracy
across workloads. However, k% profiling set at 40% resulted in less than 5% inaccuracy
for most workloads. Our key insight was that for the same workload on the same archi-
tecture, the traces of peak power showed similar phases occurring near the same points
in the normalized runtime between different numbers of active cores. We developed an
algorithm that used this key insight to reduce the amount of time k% profiling needed to
attain approximate peak power profiles across multiple core counts for batch HPC work-
loads. Using this method, we could save up to 93% profiling time on the Intel Xeon Phi
architecture with 0.03% increase in median inaccuracy. On the Intel 17 architecture, we
saved an average of 11% profiling time with 1.5% increase in median inaccuracy for the

NAS Parallel benchmarks and our high performance computing kernels.

Bandwidth and latency for datacenter networks has grown much faster than for disks.
Emerging 40Gb/E and hybrid electrical and optical switches suggest that this trend will

continue. Because it is and for the near future will be a faster solution than local disk,

183

networked in-memory storage is likely to underlie many data processing platforms going
forward. However, networked storage suffers from the well-known, widespread problem
of access times with heavy tail distributions. Chapter 4 quantifies the effect of outliers
on processes that rely on the map reduce model. These heavy tail outliers slow down the
data processing pipeline at the mapping stage, and when they happen close enough to the
beginning of a map, they cannot be easily masked. We saw that workloads with short map
times and large data sets were most affected, with delays up to 70%. We created a model
predicting the effect of these outliers in order to assess one possible solution to heavy tails:
replication for predictability. This approach, usable for read-only workloads, masks out-
liers by redundantly sending accesses to multiple nodes containing the same data and taking
the response from the first. Our model used only 5% of storage capacity for replication for

predictability, yet we often reduced slowdown by more than 7% using this approach.

OLDI queries have complex and data-parallel execution paths that must produce results
quickly. Data used by each query is skewed across data partitions, causing some queries to
time out and return premature results. Chapter 5 describes answer quality in the context
of Natural Language Processing services, such as question answering and search engines.
Answer quality is a metric that assesses the impact of timeouts on the quality of results.
It is challenging to compute online because it requires results from mature executions that
are unaffected by timeouts. Chapter 5 uses offline answer quality analysis to explore cache

provisioning policies, including provisioning more cache on loss of answer quality.

Chapter 6 describes Ubora, a design approach to speed up mature executions by reusing
intermediate computations from online queries, i.e., memoization. Ubora adopts a chal-

lenging systems-level approach that allows us to measure answer quality for a wide range

184

of services. Our implementation assumes these OLDI services use TCP connections be-
tween components, and that a single message from a calling component will result in a
stream of data sent from the called component. Our implementation includes novel context
tracking for commodity operating systems and bandwidth optimizations. The evaluation
shows that Ubora produces mature results faster than competing transparent approaches

and nearly as fast as a less flexible, application-specific approach.

We have evaluated Ubora on Apache Lucene with Wikipedia data, OpenEphyra with New
York Times data, EasyRec recommendation engine with Netflix data and Hadoop/Yarn
with BigBench data [153, 166, 130, 150, 125, 110, 152, 63]. Ubora slows down normal
query executions by less than 7% on average. Ubora completes mature executions almost as
quickly as query tagging, which eschews transparency for efficiency, with slowdown rang-
ing from 8-16%. We also compared Ubora to timeout toggling, an alternative approach
that does not require changing application source code if allowed processing time is a con-
figuration setting for the application. However, under this approach all currently executing
queries operate under the same context. Ubora exhibited a 7X speedup in finishing mature

executions over timeout toggling.

Most importantly, Ubora produces answer quality quickly enough to enhance online sys-
tem management. We used Ubora to guide online management, increasing throughput
compared to offline approaches. We adaptively shed low priority queries to our Apache
Lucene and EasyRec systems. The goal was to maintain high answer quality for high pri-
ority queries. Ubora provided answer quality measurements quickly enough to detect shifts

in the arrival rate and query mix. The other transparent approach to measure answer quality,

185

1.e., toggling timeouts, produced mature executions too slowly. This approach allowed an-
swer quality to fall below 90% 12X much more often than Ubora. We also used component
timeouts as a proxy for answer quality [66]. This metric is available after online executions
without conducting additional mature executions. As a result, it has much lower overhead.
However, component timeouts are a conservative approximation of answer quality because
they do not assess the effect of timeouts on answers. While achieving the same answer
quality on high priority queries, Ubora-driven admission control improved peak through-
put on low priority queries by 55% compared to admission control powered by component

timeouts.

We also studied the predictive power of hardware counters to answer quality on Redis, a key
value store we used with the Lucene workload [122, 153]. Predictive hardware counters
enable preemptive actions, e.g., extending timeouts before they are triggered. We counted
level-1 cache (L1) misses, level-2 cache (LL2) misses, and translation lookaside buffer (TLB)
misses during periods with high (>90%) and low answer quality. After executing 10% of
a query, L2 misses for Redis were good predictors of low-quality answers. However, their

predictive power varied across components.

We believe that the transparent design of Ubora can be of use to future frameworks aiming
to share context among a cluster of machines. Custom, hand coded approaches could pos-
sibly achieve similar gains but Ubora can help a wide range of multi-component services
including outreach efforts, as in [105]. For instance, we have used Ubora to dynamically
tune cache size in the OpenEphyra question answering system to support Science, Tech-
nology, Engineering, and Mathematics outreach. We developed a unit to teach big data

and natural language processing using Ubora to facilitate a classroom game where students

186

compete against an online question answering service. By dynamically allocating or re-
ducing cache size to match its competitors’ knowledge base, we hope that the Open Ephyra
question answering system will be able to adequately compete with people of multiple age
ranges across a broad range of knowledge categories. Our conclusion is that Ubora de-
mocratizes answer quality, allowing many services to provide high quality results and fast

response times.

In chapter 7, we presented a design for a speculative deployment engine that enables in-situ
workload characterization in a colocation environment. Our design assumes that the cloud
service does not offer incentives to services launching in new colocation environments, as
Amazon EC2 does. Our implementation of this design, Quikolo, deploys a client workload
as a pod in a Kubernetes and Docker environment, then uses the /proc interface and Intel
PCM hardware counters to track process-level and machine-level features twice a second.
As colocation environments such as Microsoft Azure and Google Cloud Platform charge
by the minute, Quikolo characterizes a workload for at least a minute and at maximum the
user-supplied budget. Quikolo allowed us to study the effects of reducing the amount of
time used to characterize a workload. Any additional time left in the budget is saved by the
user of our service. We found that using statistical convergence as a proxy for characteriza-
tion accuracy led to stopping the characterization within 3 seconds of accuracy convergence
for Lucene under low arrival rate. Additional work could study the use of additional time
left in budget to explore additional colocation environments. Quikolo also allowed us to
study the effect of using an increased number of features on accuracy. We found that while
increasing the number of features did increase the accuracy of SLO violation prediction, it

was also important to track which specific features were most relevant per each workload.

187

Bibliography

[1] L. Abraham, V. Borkar, D. Merl, S. Subramanian, J. Allen, B. Chopra, J. Metzler,
J. L. Wiener, O. Barykin, C. Gerea, D. Reiss, and O. Zed. Scuba: Diving into data
at facebook. In VLDB, 2013.

[2] F. Ahmad, S. T. Chakradhar, A. Raghunathan, and T. N. Vijaykumar. Tarazu: Opti-
mizing mapreduce on heterogeneous clusters. In ASPLOS, 2012.

[3] Mumtaz Ahmad, Ashraf Aboulnaga, Shivnath Babu, and Kamesh Munagala. Mod-
eling and exploiting query interactions in database systems. In Proceedings of the
17th ACM Conference on Information and Knowledge Management, 2008.

[4] Inc. Amazon Web Services. Amazon elastic compute cloud. http://aws.amazon.
com/ec2/pricing/.

[5] M.TA. Amin, S. Li, M. R. Rahman, P. T. Seetharamu, S. Wang, T. Abdelza-
her, I. Gupta, M. Srivatsa, R. Ganti, R. Ahmed, and H. Le. Socialtrove: A self-
summarizing storage service for social sensing. In IEEE ICAC, 2015.

[6] Cristiana Amza, Gokul Soundararajan, and Emmanuel Cecchet. Transparent caching
with strong consistency in dynamic content web sites. In Proceedings of the 19th
annual international conference on Supercomputing, pages 264-273. ACM, 2005.

[7] Ganesh Ananthanarayanan, Srikanth Kandula, Albert Greenberg, Ion Stoica, Yi Lu,
Bikas Saha, and Edward Harris. Reining in the outliers in map-reduce clusters using
mantri. In USENIX OSDI, 2010.

[8] M. Attariyan, M. Chow, and J. Flinn. X-ray: Automating root-cause diagnosis of
performance anomalies in production software. In USENIX OSDI, 2012.

[9] J. A. Badner and E. S. Gershon. Meta-analysis of whole-genome linkage scans of
bipolar disorder and schizophrenia. Molecular psychiatry, 7(4):405-411, 2002.

[10] Woongki Baek and Trishul M. Chilimbi. Green: A framework for supporting energy-
conscious programming using controlled approximation. In PLDI, 2010.

188

[11] D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter, L. Dagum, R. Fatoohi,
S. Fineberg, P. Frederickson, T. Lasinski, R. Schreiber, H. Simon, V. Venkatakrish-
nan, and S. Weeratunga. The nas parallel benchmarks. In RNR, 1994.

[12] Oleksandr Barykin, Bhuwan Chopra, Ciprian Gerea, Josh Metzler, Subbu Subra-
manian, Janet Wiener, David Reiss, and Daniel Merl. Scuba: Diving into Data at
Facebook. International Conference on Very Large Data Bases (VLDB), 2013.

[13] Leonardo Bautista-Gomez, Ana Gainaru, Swann Perarnau, Devesh Tiwari, Saurabh
Gupta, Christian Engelmann, Franck Cappello, and Marc Snir. Reducing waste in
extreme scale systems through introspective analysis. In IEEE IPDPS, 2016.

[14] R. Bertran, M. Gonzelez, X. Martorell, N. Navarro, and E. Ayguade. A systematic
methodology to generate decomposable and responsive power models for cmps. In
IEEE Transactions on Computers, 2012.

[15] H. Bjornsson, G. Chockler, T. Saemundsson, and Y. Vigfusson. Dynamic perfor-
mance profiling of cloud caches. In SoCC, 2013.

[16] S. Bouchenak. Automated control for sla-aware elastic clouds. In FeBid, 2010.

[17] Rodrigo N Calheiros, Rajiv Ranjan, Anton Beloglazov, César AF De Rose, and Ra-
jkumar Buyya. Cloudsim: a toolkit for modeling and simulation of cloud computing

environments and evaluation of resource provisioning algorithms. Software: Prac-
tice and experience, 41(1):23-50, 2011.

[18] Aniket Chakrabarti, Bortik Bandyopadhyay, and Srinivasan Parthasarathy. Improv-
ing locality sensitive hashing based similarity search and estimation for kernels. In
European Conference on Machine Learning, 2016.

[19] Yu Chen. Detecting web page structure for adaptive viewing on small form factor
devices. In WWW, 2003.

[20] G. Chockler, G. Laden, and Y. Vigfusson. Design and implementation of caching
services in the cloud. In IBM Technical Report, 2012.

[21] P. Costa. Bridging the gap between applications and networks in data centers. In
SIGOPS, 2013.

[22] J. Dean. Achieving rapid response times in large online services, 2012.

[23] J. Dean and L. Barroso. The tail at scale. In Communications of the ACM, 2013.

189

[24] C. Delimitrou and C. Kozyrakis. Paragon: Qos-aware scheduling for heterogeneous
datacenters. In ASPLOS, 2013.

[25] C. Delimitrou and C. Kozyrakis. Quasar: Resource-efficient and qos-aware cluster
management. In ASPLOS, 2014.

[26] Christina Delimitrou, Nick Bambos, and Christos Kozyrakis. Qos-aware admission
control in heterogeneous datacenters. In /[EEE ICAC, 2013.

[27] Christina Delimitrou and Christos Kozyrakis. Bolt: I know what you did last sum-
mer... in the cloud. In ASPLOS, 2017.

[28] C. Ding and Y. Zhong. Predicting whole-program locality through reuse distance
analysis. In ACM SIGPLAN 2003 conference on Programming Language Design
and Implementation, 2003.

[29] Dormando. Memcached: A distributed memory object caching system. www.
memcached.org.

[30] Hadi Esmaeilzadeh, Emily Blem, Renee Amant, Karthikeyan Sankaralingam, and
Doug Burger. Dark silicon and the end of multicore scaling. In ISCA, 2011.

[31] M. Etinski, J. Corbalan, J. Labarta, and M. Valero. Optimizing job performance
under a given power constraint in hpc centers. In International Green Computing
Conference, 2010.

[32] R. Falsett, R. Seyer, and C. Siemers. Limitation of the response time of a software
process, December 29 2004. WO Patent App. PCT/EP2003/000,721.

[33] W. Felter, K. Rajamani, T. Keller, and C. Rusu. A performance-conserving approach
for reducing peak power consumption in server systems. In SUPERCOMPUTING,
2005.

[34] D. Ferrucci, E. Brown, J. Chu-Carroll, J. Fan, D. Gondek, A. Kalyanpur, A. Lally,
J. Murdock, E. Hyberg, J. Prager, N. Schlaerfer, and C. Welty. The ai behind
watson—the technical article. In The AI Magazine, 2010.

[35] Rodrigo Fonseca, George Porter, Randy H. Katz, Scott Shenker, and Ion Stoica.
X-trace: A pervasive network tracing framework. In USENIX NSDI, 2007.

[36] D. Ford, F. Labelle, F. Popovici, M. Stokely, V.-A. Truong, L. Barroso, C. Grimes,
and S. Quinlan. Availability in globally distributed storage systems. In USENIX
Symp. on Operating Systems Design and Implementation, 2010.

190

[37] B. Forrest. Bing and google agree: Slow pages lose users. radar.oreilly.com,
20009.

[38] Armando Fox, Steven D. Gribble, Yatin Chawathe, and Eric A. Brewer. Adapting
to network and client variation using infrastructural process proxies: lessons and
perspectives. Personal Communications, 5:10-19, 1998.

[39] Erik Frey. bashreduce : mapreduce in a bash script.

[40] X. Fu, X. Wang, and C. Lefurgy. How much power oversubscription is safe and
allowed in data centers. In IEEE ICAC, 2011.

[41] Anshul Gandhi, Parijat Dube, Alexei Karve, Andrzej Kochut, , and Li Zhang. Adap-
tive, model-driven autoscaling for cloud applications. In International Conference
on Autonomic Computing, 2014.

[42] J. Gantz and D. Reinsel. Extracting value from chaos. In IDC, 2011.

[43] A. Gelfond. Tripadvisor architecture - 40m visitors, 200m dynamic page views, 30tb
data. http://highscalability.com, June 2011.

[44] H. Ghasemi and N. Kim. Rcs: runtime resource and core scaling for power-
constrained multi-core processors. In PACT, 2014.

[45] A. Ghazal, T. Rabl, M. Hu, F. Raab, M. Poess, A. Crolotte, and H. Jacobsen. Big-
bench: Towards an industry standard benchmark for big data analytics. In ACM
SIGMOD, 2013.

[46] I. Goiri, R. Bianchini, S Nagarakatte, and T Nguyen. Approxhadoop: Bringing
approximations to mapreduce frameworks. In ACM ASPLOS, 2015.

[47] 1. Goiri, K. Le, M. E. Haque, R. Beauchea, T. D. Nguyen, J. Guitart, J. Torres, and
R. Bianchini. Greenslot: scheduling energy consumption in green datacenters. In

International Conference for High Performance Computing, Networking, Storage,
and Analysis, 2011.

[48] I. Goiri, K. Le, T. D. Nguyen, J. Guitart, J. Torres, and R. Bianchini. Greenhadoop:
leveraging green energy in data-processing frameworks. In European Conference on
Computer Systems, 2012.

[49] J. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin. Powergraph: Distributed
graph-parallel computation on natural graphs. In USENIX OSDI, 2012.

191

[50] Google. Google cloud platform pricing calculator - google cloud platform. https:
//cloud.google.com/products/calculator/, 2015.

[51] Y. Guo, P. Lama, J. Rao, and X. Zhou. V-cache: Towards flexible resource provi-
sioning for multi-tier applications in iaas clouds. In International Symposium on
FParallel and Distributed Processing, 2013.

[52] Saurabh Gupta, Devesh Tiwari, Christopher Jantzi, James Rogers, and Don
Maxwell. Understanding and exploiting spatial properties of system failures on
extreme-scale hpc systems. In Int’l Conference on Dependable Systems and Net-
works (DSN), 2015.

[53] J. Hardman. Nas parallel benchmarks. http://www.nas.nasa.gov/
publications/npb.html, 2012.

[54] Yuxiong He, Sameh Elnikety, James Larus, and Chenyu Yan. Zeta: Scheduling
interactive services with partial execution. In ACM SOCC, 2012.

[55] Yuxiong He, Sameh Elnikety, and Hongyang Sun. Tians scheduling: Using partial
processing in best-effort applications. In ICDCS, 2011.

[56] Yuxiong He, Zihao Ye, Qiang Fu, and Sameh Elnikety. Budget-based control for
interactive services with adaptive execution. In /IEEE ICAC, 2012.

[57] Henry Hoffmann and Martina Maggio. Pcp: A generalized approach to optimizing
performance under power constraints through resource management. In Interna-
tional Conference on Autonomic Computing, 2014.

[58] Henry Hoffmann, Stelios Sidiroglou, Michael Carbin, Sasa Misailovic, Anant Agar-
wal, and Martin C. Rinard. Dynamic knobs for responsive power-aware computing.
In ASPLOS, 2001.

[59] S. Hsiao, L. Massa, and V. Luu. An epic tripadvisor update: Why not run on the
cloud? the grand experiment. http://highscalability.com, October 2012.

[60] S Huang and W Feng. Energy-eflicient cluster computing via accurate workload
characterization. In Proceedings of the 2009 9th IEEE/ACM International Sympo-
sium on Cluster Computing and the Grid, pages 68—75. IEEE Computer Society,
20009.

[61] Jinho Hwang and Timothy Wood. Adaptive performance-aware distributed memory
caching. In IEEE ICAC, 2013.

192

[62] Intel. Intel xeon phi coprocessor. http://www.colfax-intl.com/nd/
downloads/Xeon-Phi-Coprocessor-Datasheet.pdf, 2014.

[63] Intel Corporation. Github - intel-hadoop/big-data-benchmark-for-big-bench:
Big bench workload development. https://github.com/intel-hadoop/
Big-Data-Benchmark-for-Big-Bench, 2016.

[64] International Technology Roadmap for Semiconductors. The itrs dram cost is the
cost per bit (packaged microcents) at production. http://www.itrs.net/.

[65] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly. Dryad:
distributed data-parallel programs from sequential building blocks. In EuroSys
Conf., 2007.

[66] V. Jalaparti, P. Bodik, S. Kandula, I. Menache, M. Rybalkin, and C. Yan. Speeding
up distributed request-response workflows. In SIGCOMM, 2013.

[67] M. Jeon, Y. He, S. Elnikety, A. Cox, and S. Rixner. Adaptive parallelization of web
search. In EuroSys Conf., 2013.

[68] Niranjan Kamat, Prasanth Jayachandran, Kathik Tunga, and Arnab Nandi. Dis-
tributed interactive cube exploration. In ICDE, 2014.

[69] Rishi Kapoor, George Porter, Malveeka Tewari, Geoffrey M. Voelker, and Amin
Vahdat. Chronos: Predictable low latency for data center applications. In SOCC,
2012.

[70] J. Kelley, C. Stewart, S. Elnikety, and Y. He. Cache provisioning for interactive nlp
services. In Workshop on Large-Scale Distributed Systems and Middleware, 2013.

[71] Jaimie Kelley and Christopher Stewart. Balanced and predictable networked storage.
In International Workshop on Data Center Performance, 2013.

[72] Jaimie Kelley, Christopher Stewart, Nathaniel Morris, Devesh Tiwari, Yuxiong He,
and Sameh Elnikety. Measuring and managing answer quality for online data-
intensive services. In International Conference on Autonomic Computing, 2015.

[73] Jaimie Kelley, Christopher Stewart, Devesh Tiwari, Sameh Elnikety, Yuxiong
He, and Nathaniel Morris. Open-source benchmarks for online data-intensive
services (tutorial). http://web.cse.ohio-state.edu/~kelley.530/ubora/
tutorial.html, 2015.

193

[74] Jaimie Kelley, Christopher Stewart, Devesh Tiwari, and Saurabh Gupta. Adaptive
power profiling for many-core hpc architectures. In International Conference on
Autonomic Computing, 2016.

[75] J. Kephart and J. Lenchner. A symbiotic cognitive computing perspective on auto-
nomic computing. In /EEE ICAC, 2015.

[76] Arijit Khan, Xifeng Yan, Shu Tao, and Nikos Anerousis. Workload characterization
and prediction in the cloud: A multiple time series approach. In Network Operations
and Management Symposium (NOMS), 2012 IEEE, pages 1287-1294. IEEE, 2012.

[77] Z. Khayyat, K. Awara, A. Alonazi, H. Jamjoom, D. Williams, and P. Kalnis. Mizan:
a system for dynamic load balancing in large-scale graph processing. In European
Conference on Computer Systems, 2013.

[78] M. Kicherer. anyc / librapl github. http://github.com/anyc/librapl, 2013.

[79] T. Kidd. Intel xeon phi coprocessor power management
configuration: Using the micsmc command-line interface.
https://software.intel.com/en-us/blogs/2014/01/31/
intel-xeon-phi-coprocessor-power-management-configuration-using-the-micsmc-
2014.

[80] T. Komoda, S. Hayashi, T. Nakada, S. Miwa, and H. Nakamura. Power capping
of cpu-gpu heterogeneous systems through coordinating dvfs and task mapping. In
ICCD, 2013.

[81] YongChul Kwon, Magdalena Balazinska, Bill Howe, and Jerome Rolia. Skewtune:
Mitigating skew in mapreduce applications. In ACM SIGMOD, 2012.

[82] A. Kyrola, G. Blelloch, and C. Guestrin. Graphchi: Large-scale graph computation
on just a pc. In USENIX OSDI, 2012.

[83] Palden Lama and Xiaobo Zhou. Aroma: Automated resource allocation and config-
uration of mapreduce environment in the cloud. In Proceedings of the 9th Interna-
tional Conference on Autonomic Computing, IEEE ICAC, 2012.

[84] Lawrence Livermore National Security. Minife summary v 2.0. https://
asc.llnl.gov/CORAL-benchmarks/Summaries/MiniFE_Summary_v2.0.pdf,
2014.

[85] George Lawton. LAMP lights enterprise development efforts. Computer, 9:18-20,
2005.

194

[86] G. Lee, N. Tolia, P. Ranganathan, and R. Katz. Topology-aware resource allocation
for data-intensive workloads. In APSys, 2010.

[87] Jon Lenchner. Knowing what it knows: selected nuances of watson’s strategy. http:
//ibmresearchnews.blogspot.com, 2011.

[88] J. Levon, P. Elie, and M. Johnson. Oprofile - a system profiler for linux. http:
//oprofile.sourceforge.net/.

[89] Bo Li, Jianxin Li, Jinpeng Huai, Tianyu Wo, Qin Li, and Liang Zhong. Enacloud:
An energy-saving application live placement approach for cloud computing environ-
ments. In Cloud Computing, 2009. CLOUD’09. IEEE International Conference on,
pages 17-24. 1EEE, 2009.

[90] Hyeontaek Lim, Bin Fan, David G. Andersen, and Michael Kaminsky. SILT: A
memory-efficient, high-performance key-value store. In ACM SOSP, Cascais, Por-
tugal, October 2011.

[91] Lucid Imagination. The case for lucene/solr: Real world search applications. White
Paper, 2008.

[92] T. Luo, R. Lee, M. Mesnier, F. Chen, and X. Zhang. hstorage-db: heterogeneity-
aware data management to exploit full capacity of hybrid storage systems. In VLDB,
2012.

[93] Steve Mackie. How fast is our data volume growing. Storage Strategies Inc., 2009.

[94] H. Madhyastha, J. McCullough, G Porter, R Kapoor, S Savage, A. Snoeren, and
A Vahdat. scc: Cluster storage provisioning informed by application characteristics
and slas. In FAST, 2012.

[95] Christopher Manning, Prabhakar Raghavan, and Hinrich Schtze. Introduction to
Information Retrieval. Cambridge University Press, 2008.

[96] F. McSherry, D. G. Murray, R. Issacs, and M. Isard. Differential dataflow. In CIDR,
2013.

[97] D. Meisner, B. Gold, and T. Wenisch. Powernap: Eliminating server idle power. In
ACM ASPLOS, March 2009.

[98] D. Meisner, C. Sadler, L. Barroso, W-D. Weber, and T. F. Wenisch. Power manage-
ment of on-line data intensive services. In ISCA, 2011.

195

[99] S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shivakumar, and M. Tolton adn
T. Vassilakis. Dremel: Interactive analysis of web-scale dataasets. In VLDB, 2010.

[100] Daniel Menasce. Workload characterization.
https://cs.gmu.edu/ menasce/cs672/slides/CS672-wkldchar.pdf, 1999.

[101] Daniel Menasce. Workload characterization. In IEEE Internet Computing, 2003.

[102] M. Mitzenmacher. The power of two choices in randomized load balancing. IEEE
Transactions on Parallel and Distributed Systems, 2001.

[103] R.W. Moore and B.R. Childers. Using utility prediction models to dynamically
choose program thread counts. In IEEE Int. Symp. Performance Analysis of Systems
Software, 2012.

[104] Nathaniel Morris, Siva Meenakshi Renganathan, Christopher Stewart, Robert Birke,
and Lydia Chen. Sprint ability: How well does your software exploit bursts in pro-
cessing capacity? In International Conference on Autonomic Computing, 2016.

[105] Stephanie Muhammad, Jaimie Kelley, and Christopher Stewart. Ed watson: Teach-
ing big data to k-12 students. 2016 Spring Undergraduate Research Expo, 2016.

[106] Derek G Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul Barham,
and Martin Abadi. Naiad: a timely dataflow system. In Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Principles, pages 439-455. ACM,
2013.

[107] Derek G. Murray, Malte Schwarzkopf, Christopher Smowton, Steven Smith, Anil
Madhavapeddy, and Steven Hand. Ciel: a universal execution engine for distributed
data-flow computing. In USENIX NSDI, 2011.

[108] A. Nandi, C. Yu, P. Bohannon, and R. Ramakrishnan. Distributed cube material-
ization on holistic measures. In IEEE 27th International Conference on Data Engi-
neering, 2011.

[109] National Human Genome Research Institute. Dna sequencing costs. http://www.
genome.gov/sequencingcosts/, 2013.

[110] Netflix. Netflix prize. http://www.netflixprize.com/, 2009.

[111] Hiep Nguyen, Zhiming Shen, Xiaohui Gu, Sethuraman Subbiah, and John Wilkes.
Agile: Elastic distributed resource scaling for infrastructure-as-a-service. In Inter-
national Conference on Autonomic Computing, 2013.

196

[112] Bin Nie, Devesh Tiwari, Saurabh Gupta, Evgenia Smirni, and James H. Rogers. A
large-scale study of soft-errors on gpus in the field. In IEEE International Sympo-
sium on High Performance Computer Architecture (HPCA), 2016, 2016.

[113] Cynthia Nottingham. Linux vm sizes microsoft azure. https:
//azure.microsoft.com/en-us/documentation/articles/
virtual-machines-1linux-sizes/, 2016.

[114] K. Ousterhout, A. Panda, J. Rosen, S. Venkataraman, R. Xin, S. Ratnasamy,
S. Shenker, and 1. Stoica. The case for tiny tasks in compute clusters. In HotOs,
2013.

[115] K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica. Sparrow: Scalable scheduling
for sub-second parallel jobs. In SOSP, 2013.

[116] Sergio Pacheco-Sanchez, Giuliano Casale, Bryan Scotney, Sally McClean, Gerard
Parr, and Stephen Dawson. Markovian workload characterization for qos prediction
in the cloud. In Cloud Computing (CLOUD), 2011 IEEE International Conference
on, pages 147-154. IEEE, 2011.

[117] Joao Paiva, Pedro Ruivo, Paolo Romano, and Luis Rodrigues. Autoplacer: Scalable
self-tuning data placement in distributed key-value stores. In International Confer-
ence on Autonomic Computing, 2013.

[118] D. A. Patterson and J. L. Hennessy. Computer Organization and Design, Fourth
Edition: The Hardware/Software Interface (The Morgan Kaufman Series in Com-
puter Architecture and Design. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 2008.

[119] Russell Power and Jinyang Li. Piccolo: Building fast, distributed programs with
partitioned tables. In USENIX OSDI, 2010.

[120] A. Rasmussen, M. Conley, R. Kapoor, V. Lam, G. Porter, and A. Vahdat. Themis:
An i/o-efficient mapreduce. In ACM SOCC, 2012.

[121] A. Rasmussen, G. Porter, M. Conley, G. Madhyastha, R. Mysore, A. Pucher, and
A. Vahdat. Tritonsort: A balanced large-scale sorting system. In USENIX NSDI,
2012.

[122] Redislabs. Redis. http://redis.io/, 2016.

[123] Shaolei Ren, Yuxiong He, Sameh Elnikety, and Kathryn McKinley. Exploiting pro-
cessor heterogeneity in interactive services. In IEEE ICAC, 2013.

197

[124] Shaolei Ren, Yuxiong He, Sameh Elnikety, and Kathryn S McKinley. Exploiting
processor heterogeneity in interactive services. In ICAC, pages 45-58, 2013.

[125] Research Studios Austria Forschungsgesellschaft mbH. Easyrec-open source rec-
ommendation engine. http://easyrec.org/, 2014.

[126] C. Roe. The growth of unstructured data: What to do with all those zettabytes?
www.dataversity.net, 2012.

[127] Nilabja Roy, Abhishek Dubey, and Aniruddha Gokhale. Efficient autoscaling in
the cloud using predictive models for workload forecasting. In Cloud Computing
(CLOUD), 2011 IEEE International Conference on, pages 500-507. IEEE, 2011.

[128] O. Sarood, A. Langer, A. Gupta, and L. Kale. Maximizing throughput of overpro-
visioned hpc data centers under a strict power budget. In IEEE Supercomputing,
2014.

[129] M. C. Schatz. Cloudburst: highly sensitive read mapping with mapreduce. Bioin-
formatics, 25(11):1363-1369, 2009.

[130] Nico Schlaefer. The ephyra question answering system. https://sourceforge.
net/projects/openephyra/, 2013.

[131] R. Schone, D. Hackenberg, and D. Molka. Memory performance at reduced cpu
clock speeds: An analysis of current x86 64 processors. In HOTPOWER, 2014.

[132] Kai Shen, Arrvindh Shriraman, Sandhya Dwarkadas, Xiao Zhang, and Zhuan Chen.
Power containers: An os facility for fine-grained power and energy management on
multicore servers. In ACM ASPLOS, 2012.

[133] D. Shue, M. Freedman, and A. Shaikh. Performance isolation and fairness for multi-
tenant cloud storage. In USENIX OSDI, 2012.

[134] B. Sigelman, L. Barroso, M. Burrows, P. Stephenson, M. Plakal, D. Beaver, S. Jas-
pan, and C. Shanbag. Dapper, a large-scale distributed systems tracing infrastructure.
In Google Technical Report, 2010.

[135] Michael Sindelar, Ramesh K Sitaraman, and Prashant Shenoy. Sharing-aware al-
gorithms for virtual machine colocation. In Proceedings of the twenty-third annual
ACM symposium on Parallelism in algorithms and architectures, pages 367-378.
ACM, 2011.

198

[136] SINTEF. Big data, for better or worse: 90% of world’s data generated over last two
years. http://www.sciencedaily.com/releases/2013/05/130522085217.
htm, May 2013.

[137] R. Smith. Intel’s knights landing co-processor detailed. http://www.anandtech.
com, 2014.

[138] Yee Jiun Song, Marcos K. Aguilera, Ramakrishna Kotla, and Dahlia Malkhi. Rpc
chains: Efficient client-server communication in geodistributed systems. In USENIX
NSDI, 2009.

[139] Simon Spinner, Giuliano Casale, Xiaoyun Zhu, and Samuel Kounev. Librede: A
library for resource demand estimation. In Proceedings of the 5th ACM/SPEC Inter-
national Conference on Performance Engineering, 2014.

[140] C. Stewart, T. Kelly, and A. Zhang. Exploiting nonstationarity for performance
prediction. In EuroSys Conf., March 2007.

[141] C. Stewart and K. Shen. Performance modeling and system management for multi-
component online services. In USENIX NSDI, May 2005.

[142] C. Stewart and K. Shen. Some joules are more precious than others: Managing
renewable energy in the datacenter. In Workshop on Power Aware Computing and
Systems(HotPower), September 2009.

[143] C. Stewart, K. Shen, A. Iyengar, and J. Yin. Entomomodel: Understanding and
avoiding performance anomaly manifestations. In /[EEE MASCOTS, 2010.

[144] Christopher Stewart, Aniket Chakrabarti, and Rean Griffith. Zoolander: Efficiently
meeting very strict, low-latency slos. In ICAC, 2013.

[145] W.C.L. Stewart, E. N. Drill, and D. A. Greenberg. Finding disease genes: a fast and
flexible approach for analyzing high-throughput data. European Journal of Human
Genetics, 19(10):1090, 2011.

[146] M. Stokely, A. Mehrabian, C. Albrecht, F. Labelle, and A. Merchant. Projecting disk
usage based on historical trends in a cloud environment. In ScienceCloud, 2012.

[147] M. Suleman, M. Quresh, and Y.N. Patt. Feedback-driven threading: Power-efficient
and high-performance execution of multi-threaded workloads on cmps. In ACM
ASPLOS, 2008.

199

[148] T. Anome et al. Wikipedia:modelling wikipedia’s growth. https://en.
wikipedia.org/wiki/Wikipedia:Modelling Wikipedia’s_growth, 2014.

[149] Kun Tang, Devesh Tiwari, Saurabh Gupta, Ping Huang, Qiqi Lu, Christian Engel-
mann, and Xubin He. Power-capping aware checkpointing: On the interplay among
power-capping, temperature, reliability, performance, and energy. In Int’l Confer-
ence on Dependable Systems and Networks (DSN), 2016.

[150] Technology Laboratory’s (ITL) Retrieval Group. Text retrieval conference data.
http://trec.nist.gov/data.html, 2014.

[151] The Apache Software Foundation. Welcome to apache hadoop. hadoop.apache.
org.

[152] The Apache Software Foundation. = Apache hadoop 2.7.1 - apache hadoop
nextgen mapreduce (yarn). https://hadoop.apache.org/docs/r2.7.1/
hadoop-yarn/hadoop-yarn-site/YARN.html, 2015.

[153] The Apache Sofware Foundation. Apache lucene. http://lucene.apache.org/
core/, 2016.

[154] Devesh Tiwari, Saurabh Gupta, George Gallarno, Jim Rogers, and Don Maxwell.
Reliability lessons learned from gpu experience with the titan supercomputer at oak
ridge leadership computing facility. In Supercomputing (SC), 2015.

[155] Devesh Tiwari et al. Understanding gpu errors on large-scale hpc systems and the

implications for system design and operation. In International Symposium on High
Performance Computer Architecture (HPCA), 2015.

[156] J. Treibig, G. Hager, and G. Wellein. Likwid: A lightweight performance-oriented
tool suite for x86 multicore environments. In The First International Workshop on
Parallel Software Tools and Tool Infrastructures, 2010.

[157] C.-H. Tsai, J. Chou, and Y.-C. Chung. Value-based tiering management on hetero-
geneous block-level storage system. In CloudCom, 2012.

[158] Vernon Turner, David Reinsel, F. John Gantz, and Stephen Minton. The digital
universe of opportunities: Rich data and the increasing value of the internet of things.
IDC Report, 2014.

[159] Evangelos Vlachos, Michelle L Goodstein, Michael A Kozuch, Shimin Chen, Babak
Falsafi, Phillip B Gibbons, and Todd C Mowry. Paralog: Enabling and accelerating

200

online parallel monitoring of multithreaded applications. ACM SIGARCH Computer
Architecture News, 38(1):271-284, 2010.

[160] William Voorsluys, James Broberg, Srikumar Venugopal, and Rajkumar Buyya.
Cost of virtual machine live migration in clouds: A performance evaluation. In /EEE
International Conference on Cloud Computing, pages 254-265. Springer, 2009.

[161] Shinan Wang, Bing Luo, Weisong Shi, and Devesh Tiwari. Application config-
uration selection for energy-efficient execution on multicore systems. Journal of
Parallel and Distributed Computing, 87:43-54, 2016.

[162] Christopher Ward, N Aravamudan, Kamal Bhattacharya, Karen Cheng, Robert
Filepp, R Kearney, B Peterson, Larisa Shwartz, and Christopher C Young. Work-
load migration into clouds challenges, experiences, opportunities. In Cloud Comput-
ing (CLOUD), 2010 IEEE 3rd International Conference on, pages 164—171. IEEE,
2010.

[163] A. Waterland, J. Appavoo, and M. Seltzer. Parallelization by simulated tunneling.
In Workshop on Hot Topics in Parallelism, 2012.

[164] T. White. Hadoop: The definitive guide. O’Reilly Media, Sebastopol, CA, 2012.

[165] A. Wierman, Z. Liu, I. Liu, and H. Mohsenian-Rad. Opportunities and challenges
for data center demand response. In IEEE IGCC, 2014.

[166] Wikimedia Foundation. Wikimedia downloads. https://dumps.wikipedia.
org/, 2014.

[167] Timothy Wood, KK Ramakrishnan, Prashant Shenoy, and Jacobus Van der Merwe.
Cloudnet: dynamic pooling of cloud resources by live wan migration of virtual ma-
chines. In ACM Sigplan Notices, volume 46, pages 121-132. ACM, 2011.

[168] J. Xie, S. Yin, X. Ruan, Z. Ding, J. Majors, and X. Qin. Improving mapreduce
performance via data placement in heterogeneous hadoop clusters. In International
Heterogeneity in Computing Workshop, 2010.

[169] Zichen Xu, Nan Deng, Christopher Stewart, and Xiaorui Wang. Cadre: Carbon-
aware data replication for geo-diverse services. In International Conference on Au-
tonomic Computing, 2015.

[170] D. Yang and C. Stewart. Zoolander: Modelling and managing replication for pre-
dictability. In Technical Report, The Ohio State University, 2011.

201

[171] Kejiang Ye, Xiaohong Jiang, Dawei Huang, Jianhai Chen, and Bei Wang. Live
migration of multiple virtual machines with resource reservation in cloud computing
environments. In Cloud Computing (CLOUD), 2011 IEEE International Conference
on, pages 267-274. IEEE, 2011.

[172] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J. Franklin,
S. Shenker, and 1. Stoica. Resilient distributed datasets: A fault-tolerant abstraction
for in-memory cluster computing. In NSDI, 2012.

[173] Huazhe Zhang and Henry Hoffmann. Maximizing performance under a power cap:
A comparison of hardware, software, and hybrid techniques. In ASPLOS, 2016.

[174] Z. Zhang, L. Cherkasova, and B. Loo. Performance modeling of mapreduce jobs in
heterogeneous cloud environments. In IEEE CLOUD, 2013.

[175] Z. Zhang, L. Cherkasova, A. Verma, and B. Loo. Automated profiling and resource
management of pig programs for meeting service level objectives. In IEEE ICAC,
September 2012.

[176] Y. Zheng, B. Ji, N. Shroff, and P. Sinha. Forget the deadline: Scheduling interactive
applications in data centers. In CLOUD, 2015.

[177] Shlomo Zilberstein. Using anytime algorithms in intelligent systems. Al Magazine,
17(3), 1996.

202

