Early Work on Modeling Computational Sprinting

Nathaniel Morris and

Christopher Stewart
The Ohio State University

CCS CONCEPTS

» Computer systems organization — Performance of sys-
tems; Modeling techniques;

KEYWORDS

Computational Sprinting, Resource Management, Prediction
Accuracy, CPU Throttling, Simulation, Queuing Models

ACM Reference Format:

Nathaniel Morris and Christopher Stewart, Robert Birke and Lydia
Chen, and Jaimie Kelley. 2017. Early Work on Modeling Computa-
tional Sprinting. In Proceedings of SoCC '17, Santa Clara, CA, USA,
September 24-27, 2017, 1 pages.
https://doi.org/10.1145/3127479.3132691

Ever tightening power caps constrain the sustained process-

ing speed of modern processors. With computational sprinting,
processors reserve a small power budget that can be used to in-
crease processing speed for short bursts. Computational sprint-
ing speeds up query executions that would otherwise yield slow
response time. Common mechanisms used for sprinting include
DVES, core scaling, CPU throttling and application-specific
accelerators.

It is challenging to set good sprinting policies. Policies based
on human intuition often consider a small portion of possi-
ble settings and perform poorly when workloads or hardware
change. In early work, we have started to explore a model-
driven approach that sets sprinting policies based on their ex-
pected response time. To be precise, we propose a class of
performance models that accept the following types of input:
arrival rate, sustained processing rate, sprint rate and sprinting
budget. Our models characterize response time and sprinting
frequency.

A key component of early success with modeling computa-
tional sprinting has be the use of random decision forests. We
use this graphical learning method to map marginal sprint rate
(i.e the rate for a fully sprinted execution), workload, and sprint
policies to effective sprint rate (i.e the rate that amortizes the
dynamic runtime factors)— changing a difficult non-separable
problem into distinct solvable parts. Specifically, the effect
sprint rate can be fed into classic queuing models and simula-
tors to predict response time.

We have already evaluated the accuracy of our approach
across five workloads on a dedicated machine using DVFS
for sprinting. Figure 1 plots relative error for each workload.
The curves for all of the workloads are close in shape. Jacobi,
Stream, NN, Leukocyte, and BFS had median error below 5%.
Across all workloads, 75th percentile error was below 10%.

Permission to make digital or hard copies of part or all of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for third-party components of
this work must be honored. For all other uses, contact the owner/author(s).
SoCC ’17, September 24-27, 2017, Santa Clara, CA, USA

© 2017 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-5028-0/17/09.
https://doi.org/10.1145/3127479.3132691

Robert Birke and Lydia Chen
IBM Research Ziirich

Jaimie Kelley

Denison University

100% =
-
80% o
w 60%1 oo
c | K eeeee- NN
20%4 ff Jacobi
= Stream
20% 4 Leuk
------ BFS

0%

0% 5% 10% 15% 20% 25% 30% 35% 40%>40%
Relative Error

Fig. 1: CDFs of prediction error across workloads.
We observed similar results on other architectures. Query ex-
ecution kernels, whether constrained by compute, memory or
synchronization, did not affect our approach’s accuracy. This
is because our workload profiler accurately calibrates our ap-
proach for each kernel. Leukocyte has strong workload execu-
tion phases. Some phases are more amenable to computational
sprinting than others. Nonetheless, our approach translates be-
tween marginal and effective sprint rate actively, using only
workload-specific profiles.
Related Work: Queuing models can predict response time
for server systems [6]. However, these models assume queuing
delay and service time are independent. Interdependent queuing
and service times lead to complicated and fragile models [2,
5]. When the focus is throughput, rather than response time,
tree based offline profiling techniques work well and nearly
optimally [3, 4, 8]. If profiles change during online execution,
agent-based game theoretic approaches can provide optimal
throughput-oriented sprinting policies [1, 7]. Our work targets
the very challenging problem of understanding the impact of
sprinting on response time.
Acknowledgements: This work is funded in part by NSF grants
CAREER CNS-1350941 and CNS-1320071.
REFERENCES

[1] Songchun Fan, Seyed Majid Zahedi, and Benjamin C. Lee. 2016. The
Computational Sprinting Game. In ASPLOS. 561-575.

Kristen Gardner, Samuel Zbarsky, Sherwin Doroudi, Mor Harchol-Balter,
and Esa Hyytid. 2015. Reducing Latency via Redundant Requests: Exact
Analysis. In Sigmetrics. 347-360.

[3] J. Kelley, C. Stewart, N. Morris, D. Tiwari, Yuxiong He, and S. Elnikety.
2015. Measuring and Managing Answer Quality for Online Data-Intensive
Services. In IEEE ICAC.

Nikita Mishra, John Lafferty, and Henry Hoffmann. 2017. ESP: A Machine
Learning Approach to Predicting Application Interference. In International
Conference on Autonomic Computing.

Nathaniel Morris, Siva Meenakshi Renganathan, Christopher Stewart,
Robert Birke, and Lydia Chen. 2016. Sprint Ability: How Well Does
Your Software Exploit Bursts in Processing Capacity?. In International
Conference on Autonomic Computing.

Christopher Stewart, Aniket Chakrabarti, and Rean Griffith. 2013. Zo-
olander: Efficiently Meeting Very Strict, Low-Latency SLOs. In IEEE
International Conference on Autonomic Computing.

Seyed Majid Zahedi, Songchun Fan, Matthew Faw, Elijah Cole, and Ben-
jamin C Lee. 2017. Computational Sprinting: Architecture, Dynamics, and
Strategies. ACM Trans. on Computer Systems 34, 4 (2017), 12.

Huazhe Zhang and Henry Hoffmann. 2016. Maximizing Performance
Under a Power Cap: A Comparison of Hardware, Software, and Hybrid
Techniques. In ASPLOS. 545-559.

[2

[4

(5

[6

[7

[8



