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Ever tightening power caps constrain the sustained process-

ing speed of modern processors. With computational sprinting,
processors reserve a small power budget that can be used to in-
crease processing speed for short bursts. Computational sprint-
ing speeds up query executions that would otherwise yield slow
response time. Common mechanisms used for sprinting include
DVES, core scaling, CPU throttling and application-specific
accelerators.

It is challenging to set good sprinting policies. Policies based
on human intuition often consider a small portion of possi-
ble settings and perform poorly when workloads or hardware
change. In early work, we have started to explore a model-
driven approach that sets sprinting policies based on their ex-
pected response time. To be precise, we propose a class of
performance models that accept the following types of input:
arrival rate, sustained processing rate, sprint rate and sprinting
budget. Our models characterize response time and sprinting
frequency.

A key component of early success with modeling computa-
tional sprinting has be the use of random decision forests. We
use this graphical learning method to map marginal sprint rate
(i.e the rate for a fully sprinted execution), workload, and sprint
policies to effective sprint rate (i.e the rate that amortizes the
dynamic runtime factors)— changing a difficult non-separable
problem into distinct solvable parts. Specifically, the effect
sprint rate can be fed into classic queuing models and simula-
tors to predict response time.

We have already evaluated the accuracy of our approach
across five workloads on a dedicated machine using DVFS
for sprinting. Figure 1 plots relative error for each workload.
The curves for all of the workloads are close in shape. Jacobi,
Stream, NN, Leukocyte, and BFS had median error below 5%.
Across all workloads, 75th percentile error was below 10%.
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Fig. 1: CDFs of prediction error across workloads.
We observed similar results on other architectures. Query ex-
ecution kernels, whether constrained by compute, memory or
synchronization, did not affect our approach’s accuracy. This
is because our workload profiler accurately calibrates our ap-
proach for each kernel. Leukocyte has strong workload execu-
tion phases. Some phases are more amenable to computational
sprinting than others. Nonetheless, our approach translates be-
tween marginal and effective sprint rate actively, using only
workload-specific profiles.
Related Work: Queuing models can predict response time
for server systems [6]. However, these models assume queuing
delay and service time are independent. Interdependent queuing
and service times lead to complicated and fragile models [2,
5]. When the focus is throughput, rather than response time,
tree based offline profiling techniques work well and nearly
optimally [3, 4, 8]. If profiles change during online execution,
agent-based game theoretic approaches can provide optimal
throughput-oriented sprinting policies [1, 7]. Our work targets
the very challenging problem of understanding the impact of
sprinting on response time.
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