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Abstract—Kinases are enzymes that mediate phosphate
transfer. Extracting information on kinases from biomedical
literature is an important task which has direct implications for
applications such as drug design. In this work, we develop
KinDER, Kinase Document Extractor and Ranker, a biomedical
natural language processing tool for extracting functional and
disease related information on kinases. This tool combines
information retrieval and machine learning techniques to
automatically extract information about protein kinases. First, it
uses several bio-ontologies to retrieve documents related to
kinases and then uses a supervised classification model to rank
them according to their relevance. This was developed to
participate in the Text-mining services for Human Kinome
Curation Track of the BioCreative VI challenge. According to the
official BioCreative evaluation results, KinDER provides state-
of-the-art performance for extracting functional information on
kinases from abstracts.
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I. INTRODUCTION

With the steady advancement of computing power and
decline in memory cost over the years has come the ability to
work with increasingly larger data sets in more complex ways.
These opportunities have opened up the relatively new fields of
computer-driven  bioinformatics and natural language
processing. These two areas, when in conjunction, can allow
for automatic extraction of important information from
biomedical literature written in plain, unstructured text. An
example of where this is advantageous could be having the
ability to intelligently search through all existing journal
articles about a specific cellular structure in order to aggregate
current knowledge about that structure. This process is
currently done by hand via human curators. As there are
literally millions of journal articles published each year, there
is much room for improvement. One such group of bio-entities
of high interest are the human protein kinases, a specific type
of enzyme that can phosphorylate (add a phosphate to) other
proteins. This process can activate or inhibit various other
proteins, and plays an important role in cellular communication
and hormone action (1). An automated, intelligent search tool
for protein kinases could dramatically improve the curation
process and potentially assist the scientific community in better
understanding these important proteins. This report describes
the development, implementation, and testing of a pipeline to
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do just this. In particular, the KinDER (Kinase Document
Extractor and Ranker) pipeline allows users to enter a specific
human protein kinase in addition to an axis (be it disease, or
biological function), and returns predictions of which
documents from either a collection of PubMed database journal
articles or MEDLINE database abstracts contain relevant
information to those criteria. Furthermore, KinDER can be
used to predict ~500 character snippets of text which contain
relevant information to the search criteria. This tool was
developed in order to participate in the Track 2 (Text-mining
services for Human Kinome Curation) of BioCreAtIvE
(Critical Assessment of Information Extraction systems in
Biology) challenge held in 2017.

II. METHODOLOGY

KinDER is composed of two main components: 1)
Document Retrieval component which retrieves documents
annotated with kinases and axis terms using dictionaries and 2)
Document Ranking and Information Extraction component
which uses machine learning to rank those documents based on
relevancy, as depicted in the figure below. There are a
significant number of data processing steps that occur inside
these two components that make up the full KinDER pipeline
(Fig. 1). The following subsections will describe those steps in
more detail.

A. Data

We use the BioCreative Track 2 official dataset as the
input data for KinDER. Included in this were PubMed articles
(approx. 260,000) and MEDLINE abstracts (approx. 4.4
million) in BioC format (2), lists of kinase names and
synonyms, and a gold standard dataset of kinase names and
associated relevant documents. This challenge has three
subtasks: Abstract Triage, FullText Triage, and Snippet
Selection. In order to annotate documents based on their
relevancy to the disease axis (DIS), we considered the HPO
(3), ORDO (4), NCITd (5) (hand culled subset comprised of
only disease related subsections of NCIT), PDO (6), OAE (7),
IDO (8), ICD10 (9), MeSH (10) and DOID (11) bio-ontology
annotation dictionaries available from the NCBO annotator
website (12). For annotating the biological process axis (BP)
we considered the GO (13) dictionary from NCBO as well as
a concept recognition dictionary developed by Funk et al. (14-



Fig. 1. N2 (N-squared) Diagram of KinDER Pipeline.

15), which we refer to as GO2. According to our preliminary
results (see Fig. 2 and Fig. 3), we chose HPO and NCITd for
DIS annotation and GO for BP annotation.

B.  Input Pre-Processing

This first stage takes the input data described previously and
converts it into formats useful for the annotation stage. The
document annotator chosen for this pipeline was
ConceptMapper (CM) (16), an annotation engine for the
Apache UIMA framework (17). This tool is discussed in more
detail in the next subsection. Input processing has two main
steps: article extraction and dictionary creation. In order to
handle the large collection of documents provided in BioC
format, a custom python library was developed using Ixml’s
iterparse object (18), which significantly improves memory
efficiency compared to existing libraries. This step also
consisted of writing scripts which converted BioCreative’s
XML lists of kinase synonyms, NCBO’s CSV dictionaries,
and the GO.obo dictionaries into XML formatting for
ConceptMapper. Original BioCreative kinase dictionaries
were also enhanced by using kinase synonyms from UniProt
(19), adding any new synonyms that were not already
provided. These appended dictionaries were then run through
string-processing scripts to convert Roman numerals to Arabic
numerals and remove unnecessary spaces between words.
These variants were added as additional synonyms, as
opposed to replacing old ones.

C. Document Annotation

As mentioned previously, CM was chosen as the primary
dictionary look up tool for the KinDER pipeline. This tool
takes a directory of text files to annotate, as well as a
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dictionary to annotate with. By default, it automatically
handles all stemming and stop word removal. For improving
efficiency, the CM output files were compressed into custom
summary structs containing basic information on each
annotation made including the term that was a “hit” as well as
its position in the document and the canonical term which it
refers to. In addition, these structs stored metadata about the
documents such as the number of total hits, the number of
unique terms, and sets/counts of matched terms.

D. Feature Extraction

The main goal of this stage is to provide meaningful
information to enable successful downstream classification of
documents as relevant or irrelevant. This task is broken down
into three main processes: 1) cross-reference validation, which
attempts to filter out obviously irrelevant documents (i.e.
documents that do not contain both a kinase and an axis term),
2) feature vector generation, which creates vectors of
meaningful metadata that the downstream machine learning
algorithm can use to learn from, and finally 3) creation of
corresponding binary labels for the training subset of feature
vectors based on the BioCreative gold standard.

In generating feature vectors to train the machine learning
based Document Ranking portion of the KinDER pipeline,
two types of features were generated, both using the set of
documents that made it through the initial round of cross
referencing based selection. The first approach is the standard
Bag of Words (BOW) feature model which uses TFIDF
features values (20). In our model, two and three-gram term
combinations were also included in the vocabulary.

For the second approach, six metrics were chosen as
features (referred to as the “engineered feature set” or ENG).
They are, Kinase Score: the number of kinase annotations
normalized by total words, Axis Score: the number of axis
term annotations normalized by total words, Relevancy Score:
The product of the kinase score and axis score, Proximity
Score: The minimum number of words separating a kinase and
axis annotation, and Proximity 10-Count and Proximity 50-
Count: the number of pairs of kinase and axis annotations that
are within 10 and 50 words of one another. We apply standard
pre- and post-processing techniques including stemming, and
the removal of standard English stop words before
constructing both types of above features.

E.  Machine Learning Model Selection and Training

We model this problem as a binary classification problem in
which we distinguish between relevant vs irrelevant articles.
We used the Scikit-learn (21) Python machine learning library
for implementing the machine learning models. An initial
model selection phase was conducted comparing three
supervised classification algorithms and it was determined that
Support Vector Machines (SVMs) were the most promising
avenue. For the BP FullText and BP Abstract subtasks, eight
SVM models were evaluated based on SVM kernel (linear vs
gaussian) and feature type (BOW vs ENG). For the DIS
FullText and DIS Abstract subtasks, sixteen models were



evaluated based on kernel (linear vs gaussian), features (BOW
vs ENG) and the ontology (HPO vs NCITd).

Each classifier model was trained using the full set of gold
standard relevant documents and only a 10-20% random
sample of the total irrelevant documents. Several classifiers
utilizing BOW were also restricted to feature vectors of total
length 100,000 (only the 100,000 most common terms). It was
found through preliminary experiments that restrictions on
training set size and feature vector length did not significantly
impact model scoring (data not shown). Computational efforts
were performed on the Hyalite High-Performance Computing
System, which is operated and supported by University
Information Technology Research Cyberinfrastructure at
Montana State University.

F. Test Kinase Classification and Ranking Paradigm

Saved classification models were used for ranking the
documents based on their relevance. Document subsets for the
test data created in the document annotation stage were fed
into their respective classifiers and assigned a classification
and confidence score. All documents within a subset were
sorted based on the classifier confidence score.

G. Snippet Selection

In order to extract a snippet of text 500 characters or less
which contained sufficient relevant information to make an
accurate annotation for the article, we used the following
method. First, the two annotated terms, kinase and axis, that
were in closest proximity in the article was identified. Next an
approximate 500-character excerpt encapsulating the two
terms as close to the middle as possible was captured. Finally,
the excerpt length was rounded down in order to begin and
end at the start and end of sentences.

III. EXPERIMENTAL SETUP

A.  Document Retreival

To determine the best ontology for document retrieval,
standard metrics of precision, recall, and F-1 Score were
utilized. To calculate these, two sets of articles of equal size,
one containing gold standard positives and the other
containing gold standard negatives were created. The default
settings of ConceptMapper were used.

B.  Document Classification and Ranking

Three classifier models were compared: K-Nearest
Neighbors, Support Vector Machines, and Naive Bayes. For
evaluating the machine learning models, in both comparing
models in the initial model selection phase and selecting
hyperparameters when tuning models for the ranking phase, a
3-fold stratified cross validation technique (22) was used. We
used AUROC (23) as our evaluation measure. In training
models for ranking, a grid search with nested cross validation
(24) approach was used.
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IV. RESULTS

A. Document Retrieval

According to the results of ontology comparison for both
the Abstract and the FullText sets depicted in Fig. 2 and Fig.
3, we chose NCITd and HPO for the disease axis, and GO for
the function axis.

B.  Ranking and Information Extraction

Initial SVM scoring results were promising for the BOW
model which significantly outscored the engineered feature set
as seen in Fig. 4 and Fig. 5. Furthermore, the linear kernel
SVM performed best across all subtasks and ontologies,
slightly beating out gaussian kernel models, likely due to a
larger hyperparameter search space used because of more
efficient training times.

C. Official BioCreative Track 2 Results

In addition to prediction made by our machine learning
models described above, we made a set of submissions based
on several rule-based models that were each using the six
ENG feature types. In this method, each document was
assigned a relevancy score or an aggregate score of all
calculated feature vectors, and the predictions were made
purely on this basis without any machine learning. According
to Table I which shows the MAP (mean average precision —
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Fig. 2. Bio-ontology comparison for Abstract subtask.

m Precision mRecall mFl

Fig. 3. Bio-ontology comparison for FullText subtask.



Fig. 4. SVM performance on Abstract subtask. LSVM/ SVM: SVMs using
linear/gaussian kernel, BOW: bag-of-words features, ENG: engineered
features.

Fig. 5. SVM performance on FullText subtask. LSVM/ SVM: SVMs using
linear/gaussian kernel, BOW: bag-of-words features, ENG: engineered
features.

the higher is better) scores for our top three submissions in
each of the subtasks, and as predicted by our preliminary tests,
using a BOW machine learning model outperformed
engineered feature sets. In addition, however, we observe that
the rule-based methods using engineered features
outperformed the machine learning methods for subtask 2
(FullText). It is important to note that, for the Abstract BP
subtask, KinDER provides state-of-the-art performance among
all submissions.

V. CONCLUSION AND FUTURE WORK

To conclude, KinDER has been shown to have the
potential to become an effective tool for automating
biocuration efforts, particularly in the functional domain.
However, much work is still necessary to improve both the
recall of document annotation and the ranking paradigms.

The creation and experimentation with KinDER
revealed several additional avenues of necessary research in
the field. Perhaps the most glaring problem was the lack of a
comprehensive list of synonyms for proteins kinases. Though
several synonym lists exist, we found through experimentation
that none are exhaustive when it comes to the various ways
that authors notate kinases. We also found that manually
expanding the synonym lists (for instance changing roman
numerals to numbers and vice versa) increased our recall. A
more comprehensive list would improve results for computer-
driven biocuration.
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TABLE L OFFICIAL BIOCREATIVE RESULTS.

Subtask Model MAP
Abstract - DIS HPO - LSVM BOW 0.098
NCITd - LSVM BOW 0.096
NCITd - Relevancy Score® 0.080
Abstract - BP GO - LSVM BOW 0.201
GO - Relevancy Score® 0.197
GO - LSVM BOW® 0.187
FullText - DIS NCITd - Aggregate Score® 0.118
NCITd - Relevancy Score® 0.112
HPO - Relevancy Score® 0.100
FullText - BP GO - Aggregate Score® 0.293
GO - Kinase Score® 0.278
GO - Proximity Score* 0.271

& Rule-based methods.

Using only 20% of the training data to train the classifier.

Within the machine learning portion of our work, many
improvements could be made in the comprehensiveness of
model selection and training. The extent of model selection
was fairly limited due to resource constraints for this study
and examining further models e.g. random forests or neural
networks may lead to improved predictions over SVMs.
Training SVMs is a highly resource intensive process for
larger datasets, making it difficult to test more than a handful
of hyperparameters. A more extensive parameter sweep
trained on a larger, more balanced dataset would likely
improve KinDER’s performance. In addition, should a golden
standard data set containing examples for every kinase we are
interested in ranking be released this problem could be
rethought as a multiclass classification problem which would
simplify many aspects of the problem.

In addition to triage improvements, our process for
snippet selection did not incorporate any machine learning
techniques. If we were able to incorporate ML, we believe our
snippet selection process would improve as well. Lastly,
though KinDER is a fully functional standalone pipeline, its
current web user interface is very limited. The evolution of
KinDER into an end-to-end tool for biocuration could lend
itself well to future bio-curation projects.
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