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Abstract—Kinases are enzymes that mediate phosphate 
transfer. Extracting information on kinases from biomedical 
literature is an important task which has direct implications for 
applications such as drug design. In this work, we develop 
KinDER, Kinase Document Extractor and Ranker, a biomedical 
natural language processing tool for extracting functional and 
disease related information on kinases.  This tool combines 
information retrieval and machine learning techniques to 
automatically extract information about protein kinases. First, it 
uses several bio-ontologies to retrieve documents related to 
kinases and then uses a supervised classification model to rank 
them according to their relevance. This was developed to 
participate in the Text-mining services for Human Kinome 
Curation Track of the BioCreative VI challenge. According to the 
official BioCreative evaluation results, KinDER provides state-
of-the-art performance for extracting functional information on 
kinases from abstracts. 
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I. INTRODUCTION

With the steady advancement of computing power and 
decline in memory cost over the years has come the ability to 
work with increasingly larger data sets in more complex ways. 
These opportunities have opened up the relatively new fields of 
computer-driven bioinformatics and natural language 
processing. These two areas, when in conjunction, can allow 
for automatic extraction of important information from 
biomedical literature written in plain, unstructured text. An 
example of where this is advantageous could be having the 
ability to intelligently search through all existing journal 
articles about a specific cellular structure in order to aggregate 
current knowledge about that structure. This process is 
currently done by hand via human curators. As there are 
literally millions of journal articles published each year, there 
is much room for improvement. One such group of bio-entities 
of high interest are the human protein kinases, a specific type 
of enzyme that can phosphorylate (add a phosphate to) other 
proteins. This process can activate or inhibit various other 
proteins, and plays an important role in cellular communication 
and hormone action (1). An automated, intelligent search tool 
for protein kinases could dramatically improve the curation 
process and potentially assist the scientific community in better 
understanding these important proteins. This report describes 
the development, implementation, and testing of a pipeline to 

do just this. In particular, the KinDER (Kinase Document 
Extractor and Ranker) pipeline allows users to enter a specific 
human protein kinase in addition to an axis (be it disease, or 
biological function), and returns predictions of which 
documents from either a collection of PubMed database journal 
articles or MEDLINE database abstracts contain relevant 
information to those criteria. Furthermore, KinDER can be 
used to predict ~500 character snippets of text which contain 
relevant information to the search criteria. This tool was 
developed in order to participate in the Track 2 (Text-mining 
services for Human Kinome Curation) of BioCreAtIvE 
(Critical Assessment of Information Extraction systems in 
Biology) challenge held in 2017. 

II. METHODOLOGY

KinDER is composed of two main components: 1) 
Document Retrieval component which retrieves documents 
annotated with kinases and axis terms using dictionaries and 2) 
Document Ranking and Information Extraction component 
which uses machine learning to rank those documents based on 
relevancy, as depicted in the figure below. There are a 
significant number of data processing steps that occur inside 
these two components that make up the full KinDER pipeline 
(Fig. 1). The following subsections will describe those steps in 
more detail.  

A. Data
We use the BioCreative Track 2 official dataset as the

input data for KinDER. Included in this were PubMed articles 
(approx. 260,000) and MEDLINE abstracts (approx. 4.4 
million) in BioC format (2), lists of kinase names and 
synonyms, and a gold standard dataset of kinase names and 
associated relevant documents. This challenge has three 
subtasks: Abstract Triage, FullText Triage, and Snippet 
Selection. In order to annotate documents based on their 
relevancy to the disease axis (DIS), we considered the HPO 
(3), ORDO (4), NCITd (5) (hand culled subset comprised of 
only disease related subsections of NCIT), PDO (6), OAE (7), 
IDO (8), ICD10 (9), MeSH (10) and DOID (11) bio-ontology 
annotation dictionaries available from the NCBO annotator 
website (12). For annotating the biological process axis (BP) 
we considered the GO (13) dictionary from NCBO as well as 
a concept recognition dictionary developed by Funk et al. (14- 
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Fig. 1. N2 (N-squared) Diagram of KinDER Pipeline. 

15), which we refer to as GO2. According to our preliminary 
results (see Fig. 2 and Fig. 3), we chose HPO and NCITd for 
DIS annotation and GO for BP annotation. 

B. Input Pre-Processing
This first stage takes the input data described previously and

converts it into formats useful for the annotation stage. The 
document annotator chosen for this pipeline was 
ConceptMapper (CM) (16), an annotation engine for the 
Apache UIMA framework (17). This tool is discussed in more 
detail in the next subsection. Input processing has two main 
steps: article extraction and dictionary creation. In order to 
handle the large collection of documents provided in BioC 
format, a custom python library was developed using lxml’s 
iterparse object (18), which significantly improves memory 
efficiency compared to existing libraries. This step also 
consisted of writing scripts which converted BioCreative’s 
XML lists of kinase synonyms, NCBO’s CSV dictionaries, 
and the GO.obo dictionaries into XML formatting for 
ConceptMapper. Original BioCreative kinase dictionaries 
were also enhanced by using kinase synonyms from UniProt 
(19), adding any new synonyms that were not already 
provided. These appended dictionaries were then run through 
string-processing scripts to convert Roman numerals to Arabic 
numerals and remove unnecessary spaces between words. 
These variants were added as additional synonyms, as 
opposed to replacing old ones.  

C. Document Annotation
As mentioned previously, CM was chosen as the primary

dictionary look up tool for the KinDER pipeline. This tool 
takes a directory of text files to annotate, as well as a 

dictionary to annotate with. By default, it automatically 
handles all stemming and stop word removal. For improving 
efficiency, the CM output files were compressed into custom 
summary structs containing basic information on each 
annotation made including the term that was a “hit” as well as 
its position in the document and the canonical term which it 
refers to. In addition, these structs stored metadata about the 
documents such as the number of total hits, the number of 
unique terms, and sets/counts of matched terms.  

D. Feature Extraction
The main goal of this stage is to provide meaningful

information to enable successful downstream classification of 
documents as relevant or irrelevant. This task is broken down 
into three main processes: 1) cross-reference validation, which 
attempts to filter out obviously irrelevant documents (i.e. 
documents that do not contain both a kinase and an axis term), 
2) feature vector generation, which creates vectors of
meaningful metadata that the downstream machine learning
algorithm can use to learn from, and finally 3) creation of
corresponding binary labels for the training subset of feature
vectors based on the BioCreative gold standard.

In generating feature vectors to train the machine learning 
based Document Ranking portion of the KinDER pipeline, 
two types of features were generated, both using the set of 
documents that made it through the initial round of cross 
referencing based selection. The first approach is the standard 
Bag of Words (BOW) feature model which uses TFIDF 
features values (20). In our model, two and three-gram term 
combinations were also included in the vocabulary.  

For the second approach, six metrics were chosen as 
features (referred to as the “engineered feature set” or ENG). 
They are, Kinase Score: the number of kinase annotations 
normalized by total words, Axis Score: the number of axis 
term annotations normalized by total words, Relevancy Score: 
The product of the kinase score and axis score, Proximity 
Score: The minimum number of words separating a kinase and 
axis annotation, and Proximity 10-Count and Proximity 50-
Count: the number of pairs of kinase and axis annotations that 
are within 10 and 50 words of one another. We apply standard 
pre- and post-processing techniques including stemming, and 
the removal of standard English stop words before 
constructing both types of above features. 

E. Machine Learning Model Selection and Training
We model this problem as a binary classification problem in

which we distinguish between relevant vs irrelevant articles. 
We used the Scikit-learn (21) Python machine learning library 
for implementing the machine learning models. An initial 
model selection phase was conducted comparing three 
supervised classification algorithms and it was determined that 
Support Vector Machines (SVMs) were the most promising 
avenue. For the BP FullText and BP Abstract subtasks, eight 
SVM models were evaluated based on SVM kernel (linear vs 
gaussian) and feature type (BOW vs ENG). For the DIS 
FullText and DIS Abstract subtasks, sixteen models were 
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evaluated based on kernel (linear vs gaussian), features (BOW 
vs ENG) and the ontology (HPO vs NCITd).  
    Each classifier model was trained using the full set of gold 
standard relevant documents and only a 10-20% random 
sample of the total irrelevant documents. Several classifiers 
utilizing BOW were also restricted to feature vectors of total 
length 100,000 (only the 100,000 most common terms). It was 
found through preliminary experiments that restrictions on 
training set size and feature vector length did not significantly 
impact model scoring (data not shown). Computational efforts 
were performed on the Hyalite High-Performance Computing 
System, which is operated and supported by University 
Information Technology Research Cyberinfrastructure at 
Montana State University.   

F. Test Kinase Classification and Ranking Paradigm
Saved classification models were used for ranking the

documents based on their relevance. Document subsets for the 
test data created in the document annotation stage were fed 
into their respective classifiers and assigned a classification 
and confidence score. All documents within a subset were 
sorted based on the classifier confidence score.  

G. Snippet Selection
In order to extract a snippet of text 500 characters or less

which contained sufficient relevant information to make an 
accurate annotation for the article, we used the following 
method. First, the two annotated terms, kinase and axis, that 
were in closest proximity in the article was identified. Next an 
approximate 500-character excerpt encapsulating the two 
terms as close to the middle as possible was captured. Finally, 
the excerpt length was rounded down in order to begin and 
end at the start and end of sentences. 

III. EXPERIMENTAL SETUP

A. Document Retreival
To determine the best ontology for document retrieval,

standard metrics of precision, recall, and F-1 Score were 
utilized. To calculate these, two sets of articles of equal size, 
one containing gold standard positives and the other 
containing gold standard negatives were created. The default 
settings of ConceptMapper were used. 

B. Document Classification and Ranking
Three classifier models were compared: K-Nearest

Neighbors, Support Vector Machines, and Naïve Bayes. For 
evaluating the machine learning models, in both comparing 
models in the initial model selection phase and selecting 
hyperparameters when tuning models for the ranking phase, a 
3-fold stratified cross validation technique (22) was used. We
used AUROC (23) as our evaluation measure. In training
models for ranking, a grid search with nested cross validation
(24) approach was used.

IV. RESULTS

A. Document Retrieval
According to the results of ontology comparison for both

the Abstract and the FullText sets depicted in Fig. 2 and Fig. 
3, we chose NCITd and HPO for the disease axis, and GO for 
the function axis. 

B. Ranking and Information Extraction
Initial SVM scoring results were promising for the BOW

model which significantly outscored the engineered feature set 
as seen in Fig. 4 and Fig. 5.  Furthermore, the linear kernel 
SVM performed best across all subtasks and ontologies, 
slightly beating out gaussian kernel models, likely due to a 
larger hyperparameter search space used because of more 
efficient training times. 

C. Official BioCreative Track 2 Results
In addition to prediction made by our machine learning

models described above, we made a set of submissions based 
on several rule-based models that were each using the six 
ENG feature types. In this method, each document was 
assigned a relevancy score or an aggregate score of all 
calculated feature vectors, and the predictions were made 
purely on this basis without any machine learning. According 
to Table I which shows the MAP (mean average precision –  

Fig. 2. Bio-ontology comparison for Abstract subtask. 

Fig. 3. Bio-ontology comparison for FullText subtask. 
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Fig. 4. SVM performance on Abstract subtask. LSVM/ SVM: SVMs using 
linear/gaussian kernel, BOW: bag-of-words features, ENG: engineered 
features. 

Fig. 5. SVM performance on FullText subtask. LSVM/ SVM: SVMs using 
linear/gaussian kernel, BOW: bag-of-words features, ENG: engineered 
features. 

the higher is better) scores for our top three submissions in 
each of the subtasks, and as predicted by our preliminary tests, 
using a BOW machine learning model outperformed 
engineered feature sets. In addition, however, we observe that 
the rule-based methods using engineered features 
outperformed the machine learning methods for subtask 2 
(FullText). It is important to note that, for the Abstract BP 
subtask, KinDER provides state-of-the-art performance among 
all submissions. 

V. CONCLUSION AND FUTURE WORK 

To conclude, KinDER has been shown to have the 
potential to become an effective tool for automating 
biocuration efforts, particularly in the functional domain. 
However, much work is still necessary to improve both the 
recall of document annotation and the ranking paradigms. 

The creation and experimentation with KinDER 
revealed several additional avenues of necessary research in 
the field. Perhaps the most glaring problem was the lack of a 
comprehensive list of synonyms for proteins kinases. Though 
several synonym lists exist, we found through experimentation 
that none are exhaustive when it comes to the various ways 
that authors notate kinases. We also found that manually 
expanding the synonym lists (for instance changing roman 
numerals to numbers and vice versa) increased our recall. A 
more comprehensive list would improve results for computer-
driven biocuration.  

TABLE I. OFFICIAL BIOCREATIVE RESULTS. 

a. Rule-based methods. 
b. Using only 20% of the training data to train the classifier.

Within the machine learning portion of our work, many 
improvements could be made in the comprehensiveness of 
model selection and training. The extent of model selection 
was fairly limited due to resource constraints for this study 
and examining further models e.g. random forests or neural 
networks may lead to improved predictions over SVMs. 
Training SVMs is a highly resource intensive process for 
larger datasets, making it difficult to test more than a handful 
of hyperparameters. A more extensive parameter sweep 
trained on a larger, more balanced dataset would likely 
improve KinDER’s performance. In addition, should a golden 
standard data set containing examples for every kinase we are 
interested in ranking be released this problem could be 
rethought as a multiclass classification problem which would 
simplify many aspects of the problem. 

In addition to triage improvements, our process for 
snippet selection did not incorporate any machine learning 
techniques. If we were able to incorporate ML, we believe our 
snippet selection process would improve as well. Lastly, 
though KinDER is a fully functional standalone pipeline, its 
current web user interface is very limited. The evolution of 
KinDER into an end-to-end tool for biocuration could lend 
itself well to future bio-curation projects. 
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