
An Adjacency Matrix Approach to Delay Analysis

in Temporal Networks

John M. Shea

Wireless Information Networking Group

University of Florida, Gainesville FL

jshea@ece.ufl.edu

Joseph P. Macker

Information Technology Division

Naval Research Laboratory, Washington DC

joseph.macker@nrl.navy.mil

Abstract—Wireless communications networks are often mod-
eled as graphs in which the vertices represent wireless devices
and the edges represent the communication links between them.
However, graphs fail to capture the time-varying nature of wire-
less networks. Temporal networks are graphs in which the sets of
nodes or edges are time-varying. We consider the most common
case, in which the set of nodes is fixed but the presence of edges
changes over time. Most previous work on analyzing temporal
networks has focused on summary measures that combine the
contributions of different paths by using different weights for
paths with different delays. Such summary measures are efficient
to compute but may lose valuable information about the temporal
behavior of the network. We propose techniques that characterize
the delays of all paths between nodes in temporal networks.
We then apply these techniques to identify dominant patterns
in the temporal paths connecting nodes. Example temporal
networks are used to illustrate these phenomena, and we consider
implications to wireless networks.

I. INTRODUCTION

Graphs are commonly used to model a wide variety of

systems in which a group of entities are represented by the

vertices and the relations or connections between them are

represented by the edges. For instance, in wireless networks,

radios are often represented by vertices, and the presence of an

edge between two vertices indicates that the associated radios

share a communication link. However, in many real systems,

the entities and/or their relationships and connections change

with time. The notion of graphs can be extended to capture

these time dependencies, in which case they are referred to as

temporal networks [1, 2]. The most common class of temporal

networks are those with a fixed set of vertices, but a time-

varying set of edges. For instance, in wireless networks, the

edges may represent communication links that vary over time

because of motion, fading, or jamming.

The time-varying nature of temporal networks make analyz-

ing them more complicated than graphs. Moreover, tools from

graph theory cannot directly apply to temporal networks. For

instance, the paths between nodes in a graph are transitive:

if node A can reach node B and node B can reach node C,

then node C can be reached from node A. The same is not

necessarily true in a temporal network [1, 2]. The maximum

set of disconnected paths between vertices in a graph can

This research was funded in part by the Naval Research Laboratory’s
Characterization and Performance Prediction in Ad hoc Networks (CAPPAN)
project and by the National Science Foundation under grant number 1642973.

Fig. 1. Four node linear network.

be found in polynomial time, but to even determine whether

there are two disjoint time-respecting paths in a temporal

network is NP-complete [3]. Most authors have focused on

extending summary measures used to analyze importance of

nodes to graph connectivity from graphs to temporal networks.

For instance, in [4], the authors introduce temporal closeness

centrality and temporal betweenness centrality. A survey of

these and other metrics is in [3]. Methods for calculating

temporal distances are described in [5].

The goal of the work presented in this paper is to move

beyond summary measures of connectivity and develop new

techniques to compute the number of end-to-end paths with a

given delay between any two vertices. Our approach is to use a

form that is analogous to the usual product of adjacency matri-

ces for computing the number of paths between two vertices.

We then use time-domain decompositions and visualizations

to extract meaning from these measures.

II. TEMPORAL NETWORKS AND DIFFERENTIAL DELAY

Consider temporal networks of the form G = (V, E (t)),
where V is a set of vertices that does not change over time and

E(t) is a time-varying set of edges such that E(t) ∈ V×V . Let

G = (V,∪tE (t)) denote the non-temporal network that results

from superimposing the sets of edges that exist at all times.

Throughout this paper, we assume that V represents a set of

communicators, the edges E(t) represent communication links

among them, and the communicators wish to send information

over the edges.

Consider first a linear temporal network, which is defined

as a temporal network G for which G is a linear network. In

such a network, the nodes can be drawn on a horizontal line

such that the nodes only share edges with the nodes that are

immediately to their left or right. In addition, we assume that

G is simple for every t. That is there are no self-loops and

the edges are undirected. We also assume that the edges are

unweighted and that G is connected.

An example of such a network with four nodes is shown

in Fig. 1. In a drawing of a temporal network, we can label



Fig. 2. Four node temporal network.

Input Link Time Output Link Time Delay

1 2 1

1 5 4

1 8 7

2 5 3

2 8 6

3 5 2

3 8 5

TABLE I
POSSIBLE COMMUNICATION FROM NODE 0 TO NODE 2 AND RESULTING

DELAYS FOR EXAMPLE FOUR-NODE NETWORK.

each edge with the times at which that edge is present in the

network. Consider the following scenario for the edges:

• 0 ↔ 1 is available during times 1, 2, and 3;

• 1 ↔ 2 is available during times 2, 5, and 8; and

• 2 ↔ 3 is available during times 6 and 10.

Then the temporal network can be drawn as shown in Fig. 2.

For a temporal network, we require that walks be time-

respecting. That is, the walk must specify not only the set of

edges connecting the nodes, but also an ordered set of times

at which those edges exist. Mathematically, we can express a

walk W as

W =
⋃

n∈{1,2,...N}

jn−1

tn→ jn,

where jn ∈ V for all n ∈ {0, 1, . . . , N}, (jn−1, jn) ∈ E(tn)
for all n ∈ {1, 2, . . . , N}, and t1 < t2 < . . . < tN .

We define the differential delay across two links as the

difference in time between when the information can be

transmitted across the first link and when it can be trans-

mitted across the second link. In this paper, we assume that

information cannot flow over multiple edges in a single time,

and so for a given input link time, the output link can only

be used at times that are strictly greater than the input link

time. The analytical methods developed in this paper are easily

extendable to cases where information can flow over multiple

links in a single time. Thus, for links 0 ↔ 1 and 1 ↔ 2 in the

example shown in Fig. 2, the possible communication times

using these links and the associated differential link times

shown in Table I.

Similarly, we can find the end-to-end differential delay over

a path consisting of multiple consecutive edges. Here, the end-

to-end differential delay is defined as the difference in the

times between when information is first transmitted over the

first link in the path to when it is delivered to the destination

over the last link in the path. For the links 0 ↔ 1, 1 ↔ 2,

and 2 → 3, a few of the possible paths and the associated

end-to-end differential delays are shown in Table II.

III. TEMPORAL ADJACENCY MATRICES

As shown in Section II, the differential delays for a temporal

network can be found by enumerating all of the temporal walks

Link 0 → 1 Link 1 → 2 Link 2 → 3 Differential
Time Time Time Delay

1 2 6 5

1 5 6 5

2 5 6 4

3 5 6 3

1 8 10 9

TABLE II
SEVERAL VALID COMMUNICATION TIMES FROM NODE 0 TO NODE 3 AND

RESULTING DELAYS FOR EXAMPLE FOUR-NODE NETWORK.

between two nodes and then calculating the delays. However, it

is very challenging to enumerate all of the temporal walks for

even small networks, even when the number of time instances

is less than 10. Thus, in this paper, we present a mathematical

technique to enumerate the end-to-end delays via an approach

similar to how the adjacency matrix is used for enumeration

of paths in non-temporal graphs.

Consider a temporal graph G with a fixed set of N ver-

tices/nodes, but where the set of edges changes depending

on the time. Without loss of generality, we assume that the

vertices are labeled 0, 1, . . . , N − 1. For our purposes, we

assume that the set of edges is defined on a time index set

of the form {0, 1, . . . , T − 1}.

We propose a new temporal adjacency matrix (TAM) for

G, which is an N × N matrix in which entry (i, j) contains

information about the times in which node i can communicate

with node j. We use A to denote the TAM to distinguish it

from the usual adjacency matrix A. We use the notation Ai,j

to denote the entry of A in the ith row and jth column.

A. Temporal Adjacency Matrix Entries

As with the usual adjacency matrix, the diagonal entries of

A are set to the integer 0; Ai,i = 0 for i = 0, 1, . . . , N − 1. If

there is not an edge connecting vertex i to vertex j at any time,

then Ai,j = 0. Unlike a usual adjacency matrix, if nodes i and

j share an edge at any time, the (i, j)th entry of the temporal

adjacency matrix is itself a matrix. Such entries are defined in

a way that will allow us to determine the path delays between

any two nodes through a type of product of temporal adjacency

matrices, just as products of the usual (unweighted) adjacency

matrix allow us to count the number of paths connecting two

vertices. The nonzero entries of a temporal adjacency matrix

are in the form of a partitioned matrix,

Ai,j =

[

Ci,j
Di,j

]

.

We begin by defining Di,j . Let Ti,j be a row vector

containing the time indices of when there is an edge from

node i to node j. If

Ti,j =
[

t1 t2 . . . tM
]

,

then

Di,j =

[

st1 st2 . . . stM

s−t1 s−t2 . . . s−tM

]

,



and Ci,j = IM , the identity matrix of size M ×M . This form

will facilitate computation of the possible end-to-end delays,

as shown further below.

For matrix E that is an element of a temporal adjacency

matrix, we use C(E) and D(E) to refer to the component

matrices in the form

E =

[

C(E)
D(E)

]

,

where D(E) is the last two rows of E.

Consider again the temporal network shown in 2. Link 0 →
1 is available at times 1,2,3, and so the temporal adjacency

matrix entry A0,1 is

A0,1 =













1 0 0
0 1 0
0 0 1
s1 s2 s3

s−1 s−2 s−3













Link 1 → 2 is up at times 2,5,8, and so A1,2 is

A1,2 =













1 0 0
0 1 0
0 0 1
s2 s5 s8

s−2 s−5 s−8













B. Defining Multiplication for Entries of the Temporal Adja-

cency Matrix

As explained above, the entries of a temporal adjacency

matrix are themselves matrices (or else 0). We will need

to perform a multiplication-like operator on the entries in

computing the delays using the temporal adjacency matrices.

Let � be the multiplication operator for two entries of the

temporal adjacency matrix. We define � below.

Consider the product L � R, where L and R are entries

of a temporal adjacency matrix. Later we will generalize this

definition to apply to other classes of matrices created from

temporal adjacency matrices. If either L = 0 or R = 0, we

define L�R = 0.

Now consider the case where both L 6= 0 and R 6= 0.

C(L) is multiplied by a two-link delay matrix created from

D(L) and D(R). For the case where L and R are elements

of temporal adjacency matrices, C(L) is an identity matrix,

and we only need concern ourselves with the two-link delay

matrix. However, below, we show a general technique that can

still be applied when L is not a temporal adjacency matrix,

which we will utilize in Section III-D.

We begin to investigate the necessary computation by uti-

lizing the example from Fig. 2. For the pair of links 0 → 1
and 1 → 2, we first compute the outer product of D(L)2 and

D(R)1, which we denote by T .

T =





s−1

s−2

s−3



 ·
[

s2 s5 s8
]

= D(L)T2 D(R)1

=





s s4 s7

1 s3 s6

s−1 s2 s5



 ,

where D(X)j denotes the jth row of D(X).
Note that for the (i, j)th entry, the power of s represents the

difference in times between the ith time the input path was

available and the jth time the output path was available. These

are the possible differential delays for information flowing

over the two links except that negative delays are not feasible,

because the information would use the second link at a time

before it traveled over the first link. To preserve only the

possible two-link delays, we must eliminate the entries with

nonpositive exponents by replacing those entries with 0.

Define the function S+(sm) by

S+(sm) =

{

sm, m > 0

0, m <= 0
.

If T is a matrix with entries ti,j of the form smi,j , then

define S+(T ) as the matrix with entries S+(ti,j). Thus, for

the example,

T̃ = S+(T ) =





s s4 s7

0 s3 s6

0 s2 s5





Finally, we let

C(L�R) = C(L) · T̃ ,

D(L�R) = D(R),

and the final multiplication operation for entries in a temporal

adjacency matrix is:

L�R =

[

C(L) · S+(D(L)T2 D(R)1)
D(R)

]

=













s s4 s7

0 s3 s6

0 s2 s5

s2 s5 s8

s−2 s−5 s−8













By inspecting this matrix, we can determine all the possible

delays and the output link times from which they are derived.

In particular, for the output link at time 2, look at column 1;

for the output link at time 5, look at column 2; for the output

link at time 8, look at column 3. Then we see that for packets

coming from the output link at time 2, the only possible delay

is 1 (there is only an s1 term). This is because the only time

the packets could have propagated across the first link is at

time 1, resulting in a path delay of 1. For the output link at

time 5, the possible delays are 2, 3, or 4. The packets could

have come from the first link at times 1, 2, 3. Similarly, for

the output link at time 8, the possible delays are 5, 6, or 7.



C. Cumulative Differential Path Delays

The exponents of the entries in C(L � R) are all possible

nonzero delays for the path with links that have temporal

adjacency matrix entries L and R. Moreover, all path delays

are associated with the time that the last link is used, which

is the power of s in the first row of D(L�R). Thus, we call

L�R a cumulative differential path delay (CDPD) matrix.

The power of the CDPD matrix is that it can then be used

to compute the delay on an additional link by just multiplying

(using �) with the entry of the temporal adjacency matrix for

that link. Consider a sequence of operations (Ai,j �Aj,k) �
Ak,`. For concreteness, let us use the example network above

and consider (A0,1 � A1,2) � A2,3. Let Q = A0,1 � A1,2.

Since D(Q) = D(A1,2), the same arguments as before show

that V = S+
(

D(Q)T2 D(A2,3)1
)

is a matrix of the delays

between the edge 1 ↔ 2 and the edge 2 ↔ 3. Mathematically,

we have

V = S+(D(Q)T2 · D(A2,3)1) = S+(A1,2)
T
2 · D(A2,3)1)

= S+









s−2

s−5

s−8



 ·
[

s6 s10
]





= S+









s4 s8

s1 s5

s−2 s2







 =





s4 s8

s1 s5

0 s2





Note that each row of this matrix represents the delays that

are possible for one of the possible up times of the link 1 ↔
2. In particular, the first row represents the additional delays

when the information flows over 1 ↔ 2 at time 2, the second

row is for time 5, and the third row is for time 8. Now, C(Q�
A1,2) = C(Q) · V

The following lemma summarizes properties of the CDPD

matrix for linear temporal networks.

Lemma 1. Let G be a linear temporal network, and let H
denote the CDPD matrix given by

H = Aj0,j1 �Aj1,j2 � . . .�AjN−1,jN ,

for a total of N products.

1. The (j, k)th entry of C(H) can be written in the form

Nds
d.

2. The nonzero entries of the kth column of C(H) are

unique.

3. If the (1, j)th entry of D(Aj0,j1) is sα and the (1, k)th
entry of D(H) is sβ , and the (j, k)th C(H) is Nds

d,

then Ni is the number of temporal paths from node j0
to node jN with differential delay d = β − α and for

which the path j0 → j1 is taken at time α and the path

jN−1 → jN is taken at time β.

Proof: By induction on the number of edges traversed,

N .

Basis Let N=2. Since the network is linear, all valid paths

are of the form

P =
(

i
t1→ j

)

∪
(

j
t2→ k

)

,

where t2 > t1.

Then

H = Ai,j �Aj,k =

[

C(Ai,j) · S
+
[

D(Ai,j)
T
2 D(Aj,k)1

]

D(Aj,k)

]

=

[

S+
[

D(Ai,j)
T
2 D(Aj,k)1

]

D(Aj,k)

]

,

where the last step follows from C(Ai,j) = I

For convenience of exposition, let

U = (Ai,j)2 =
[

s−u1 s−u2 . . . s−uK ,
]

where {u1, u2, . . . uK} are the times that the link from i to j

is available. Similarly, let

V = (Ai,j)1 =
[

sv1 sv2 . . . svL
]

,

where {v1, v2, . . . , vL} are the times that the link from j to k

is available.

Then the (m,n)th entry of D(Ai,j)
T
2 D(Aj,k)1

is s−umsvn = svn−um , and the (m,n)th entry of

S+
[

D(Ai,j)
T
2 D(Aj,k)1

]

is svn−um if vn > um and 0
otherwise.

The condition that vn > um is the causality condition that

the link i → j is taken before the link j → k. Moreover, when

vn > um, vn − um is the differential delay across the links.

Thus, for every time um that the link i → j is available and

every time vn that the link j → k is available, the (m,n)th
entry of H is svn−um if vn > um and 0 otherwise. Note that

for a given n, the possible values of vn − um are unique,

since {u1, u2, . . . uK} are unique. Thus, any nonzero term in

the nth column of S+
[

D(Ai,j)
T
2 D(Aj,k)1

]

is unique and is

of the form sd for some d.

Note that the (1, n)th entry of D(H) is svn , the (1,m)th
entry of D(Ai,j) is sum , and the (m,n)th entry of C(H) is

svn−um = sd if vn > um and 0 otherwise. For a given um

and vn, there is either one temporal path connecting the two

states or none (if the causality condition is violated). Thus,

if the (m,n)th entry is written as Nds
d, Nd ∈ {0, 1} is the

number of temporal paths connecting state i to state k, where

the edge i → j is taken at time d− vn and the edge j → k is

taken at time vn.

Inductive step Now, consider a path of N edges, and

assume the lemma holds up to time N − 1.

Let

H̃ = Aj0,j1 �Aj1,j2 � . . .�AjN−2,jN−1

and

H = H̃ � AjN−1,jN .

Similar to before, let

U = (Aj0,j1)2 =
[

s−u1 s−u2 . . . s−uK ,
]

where {u1, u2, . . . uK} are the times that the link from j0 to

j1 is available. Similarly, let

V = (AjN−2,jN−1
)1 =

[

sv1 sv2 . . . svL
]

,



where {v1, v2, . . . , vL} are the times that the link from jN−2

to jN−1 is available. Let

W = (AjN−1,jN )1 =
[

sw1 sw2 . . . swM
]

,

where {w1, w2, . . . , wM} are the times that the link from jN−1

to jN is available.

The (m,n)th term of H̃ can be written as Nm,ns
dm,n ,

where dm,n = vn − um. The (n, q)th term of

S+
[

D(Ai,j)
T
2 D(Aj,k)1

]

is S+ [swq−vn ].
Thus, the (m, q)th term of H is

L
∑

n=1

Nm,ns
vn−ums+

[

swq−vn
]

= swq−um

L
∑

n=1

Nm,n1wq>vn
.

(1)

(Property 1 is proved.)

Note that for the qth column of D(H), the entries are of

the form Nm,qs
wq−um , where the {um} are unique. Thus, the

entries in the qth column are unique. (Property 2)

By inspection of (1), the value of the (m, q)th term of H
is the sum of the number of paths that traverse from state j0
to state jN−1 that traverse the link j0 → j1 at at time um

and that can traverse the link jN−1 → jN at time wq because

the arrival time vn at state jN−1 is less than wq . Since these

account for all the temporal paths from state jN−1 to jN , (1)

is the total number of paths from j0 to jN that traverse the link

j0 → j1 at at time um and that traverse the link jN−1 → jN
at time wq . (Property 3)

Now consider the use of this technique to calculate all the

end-to-end-differential delays for the network in Fig. 2:

A0,1 �A1,2 �A2,3 =













2s5 3s9

s4 2 ∗ s8

s3 2 ∗ s7

s6 s10

s−6 s−10













By inspecting this result, we see that for the output link at time

6, there are two paths of delay 5, corresponding to 1 →2→ 6

and 1 →5→ 6. There are two paths with delay 7: 3 →5→ 10

and 3 →8→ 10.

Because the entries of a temporal adjacency matrix that

correspond to a single link require a lot of space and are more

difficult to parse than the underlying information, we introduce

the following convention. For a link that is up at times `,m,

and n, we write Ãi,j = Ã(`,m, n) to denote that

Ai,j =













1 0 0
0 1 0
0 0 1
s` sm sn

s−` s−m s−n













.

When the times that is link is available are increased, the size

of the matrix Ai,j increases correspondingly.

D. Extension to General (Non-linear) Temporal Networks

The results above explain how to find the elements of the

temporal adjacency matrix and show how to perform computa-

tions using these entries. We are now ready to further explore

the temporal adjacency matrix and define matrix multiplication

for such matrices.

We define an operator � that generalizes matrix multipli-

cation for regular matrices to temporal adjacency matrices.

As in normal matrix multiplication, the (i, j)th entry depends

on the entries in the ith row and the jth column. In normal

matrix multiplication, the (i, k)th entry is multiplied by the

(k, j)th entry and these are summed for all k. For the �

operator, we take Ai,k�Ak,j and we concatenate the columns

of these outputs to preserve the information from each �
operation. Because the outputs may vary in the number of

rows, additional rows of zeros are added where needed to make

the columns all have an equal number of rows.

We explain the procedure for calculating � through an

example.

Consider the network with the following temporal availabil-

ity:

A =









0 Ã(1, 5) Ã(2, 3) 0

Ã(1, 5) 0 0 Ã(4)

Ã(2, 3) 0 0 Ã(1, 6, 8)

0 Ã(4) Ã(1, 6, 8) 0









Let A2 = A � A. The overall matrix A2 is large, so we

consider a few of the components. The value of A2
2,2 is the

concatenation of the results of A2,0 � A0,2 and A2,3 � A3,2

because for the other A2,k �Ak,2, at least one of the values

is zero. Thus, the two components of A2
2,2 are

A2,0 �A0,2 =

0 s

0 0
s2 s3

s−2 s−3

and

A2,3 �A3,2 =

0 s5 s7

0 0 s2

0 0 0
s s6 s8

s−1 s−6 s−8

Since these have different numbers of rows, the two results

cannot be concatenated until additional zeros are added to the

result of A2,0�A0,2, above the bottom two rows. The overall

result is

A2
2,2 =

0 s 0 s5 s7

0 0 0 0 s2

0 0 0 0 0
s2 s3 s s6 s8

s−2 s−3 s−1 s−6 s−8

We can create a differential delay polynomial (DDP) that

captures all of the differential delays between two nodes over

a specified number of steps as

DDP(Aj,k) =
∑

`

a`s
`

where a` is the number of paths with differential delay equal

to `. The DDP can be created by summing all of the elements




