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Abstract—Wireless communications networks are often mod-
eled as graphs in which the vertices represent wireless devices
and the edges represent the communication links between them.
However, graphs fail to capture the time-varying nature of wire-
less networks. Temporal networks are graphs in which the sets of
nodes or edges are time-varying. We consider the most common
case, in which the set of nodes is fixed but the presence of edges
changes over time. Most previous work on analyzing temporal
networks has focused on summary measures that combine the
contributions of different paths by using different weights for
paths with different delays. Such summary measures are efficient
to compute but may lose valuable information about the temporal
behavior of the network. We propose techniques that characterize
the delays of all paths between nodes in temporal networks.
We then apply these techniques to identify dominant patterns
in the temporal paths connecting nodes. Example temporal
networks are used to illustrate these phenomena, and we consider
implications to wireless networks.

I. INTRODUCTION

Graphs are commonly used to model a wide variety of
systems in which a group of entities are represented by the
vertices and the relations or connections between them are
represented by the edges. For instance, in wireless networks,
radios are often represented by vertices, and the presence of an
edge between two vertices indicates that the associated radios
share a communication link. However, in many real systems,
the entities and/or their relationships and connections change
with time. The notion of graphs can be extended to capture
these time dependencies, in which case they are referred to as
temporal networks [1, 2]. The most common class of temporal
networks are those with a fixed set of vertices, but a time-
varying set of edges. For instance, in wireless networks, the
edges may represent communication links that vary over time
because of motion, fading, or jamming.

The time-varying nature of temporal networks make analyz-
ing them more complicated than graphs. Moreover, tools from
graph theory cannot directly apply to temporal networks. For
instance, the paths between nodes in a graph are transitive:
if node A can reach node B and node B can reach node C,
then node C' can be reached from node A. The same is not
necessarily true in a temporal network [1, 2]. The maximum
set of disconnected paths between vertices in a graph can
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Fig. 1.

Four node linear network.

be found in polynomial time, but to even determine whether
there are two disjoint time-respecting paths in a temporal
network is NP-complete [3]. Most authors have focused on
extending summary measures used to analyze importance of
nodes to graph connectivity from graphs to temporal networks.
For instance, in [4], the authors introduce temporal closeness
centrality and temporal betweenness centrality. A survey of
these and other metrics is in [3]. Methods for calculating
temporal distances are described in [5].

The goal of the work presented in this paper is to move
beyond summary measures of connectivity and develop new
techniques to compute the number of end-to-end paths with a
given delay between any two vertices. Our approach is to use a
form that is analogous to the usual product of adjacency matri-
ces for computing the number of paths between two vertices.
We then use time-domain decompositions and visualizations
to extract meaning from these measures.

II. TEMPORAL NETWORKS AND DIFFERENTIAL DELAY

Consider temporal networks of the form G = (V, & (t)),
where V is a set of vertices that does not change over time and
E(t) is a time-varying set of edges such that £(¢) € V x V. Let
G = (V,U€ (t)) denote the non-temporal network that results
from superimposing the sets of edges that exist at all times.
Throughout this paper, we assume that ) represents a set of
communicators, the edges £(t) represent communication links
among them, and the communicators wish to send information
over the edges.

Consider first a linear temporal network, which is defined
as a temporal network G for which G is a linear network. In
such a network, the nodes can be drawn on a horizontal line
such that the nodes only share edges with the nodes that are
immediately to their left or right. In addition, we assume that
G is simple for every ¢. That is there are no self-loops and
the edges are undirected. We also assume that the edges are
unweighted and that G is connected.

An example of such a network with four nodes is shown
in Fig. 1. In a drawing of a temporal network, we can label
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Fig. 2. Four node temporal network.

Input Link Time  Output Link Time || Delay

1 2 1
1 5 4
1 8 7
2 5 3
2 8 6
3 5 2
3 8 5
TABLE 1

POSSIBLE COMMUNICATION FROM NODE (0 TO NODE 2 AND RESULTING
DELAYS FOR EXAMPLE FOUR-NODE NETWORK.

each edge with the times at which that edge is present in the
network. Consider the following scenario for the edges:

e 0 <> 1 is available during times 1, 2, and 3;

e 1 < 2 is available during times 2, 5, and §; and

e 2 ¢ 3 is available during times 6 and 10.
Then the temporal network can be drawn as shown in Fig. 2.

For a temporal network, we require that walks be time-
respecting. That is, the walk must specify not only the set of
edges connecting the nodes, but also an ordered set of times
at which those edges exist. Mathematically, we can express a

walk W as
w- U

ne{l,2,..N}

where j, € V for all n € {0,1,..., N}, (jn_1,7Jn) € E(tn)
foralln e {1,2,...,N},and t; < i2 <...<tn.

We define the differential delay across two links as the
difference in time between when the information can be
transmitted across the first link and when it can be trans-
mitted across the second link. In this paper, we assume that
information cannot flow over multiple edges in a single time,
and so for a given input link time, the output link can only
be used at times that are strictly greater than the input link
time. The analytical methods developed in this paper are easily
extendable to cases where information can flow over multiple
links in a single time. Thus, for links 0 <> 1 and 1 <> 2 in the
example shown in Fig. 2, the possible communication times
using these links and the associated differential link times
shown in Table I.

Similarly, we can find the end-to-end differential delay over
a path consisting of multiple consecutive edges. Here, the end-
to-end differential delay is defined as the difference in the
times between when information is first transmitted over the
first link in the path to when it is delivered to the destination
over the last link in the path. For the links 0 <> 1, 1 <> 2,
and 2 — 3, a few of the possible paths and the associated
end-to-end differential delays are shown in Table II.
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III. TEMPORAL ADJACENCY MATRICES

As shown in Section II, the differential delays for a temporal
network can be found by enumerating all of the temporal walks

Link 0 -1 Linkl—2 Link2—3 Differential
Time Time Time Delay
1 2 6 5
1 5 6 5
2 5 6 4
3 5 6 3
1 8 10 9
TABLE II

SEVERAL VALID COMMUNICATION TIMES FROM NODE 0 TO NODE 3 AND
RESULTING DELAYS FOR EXAMPLE FOUR-NODE NETWORK.

between two nodes and then calculating the delays. However, it
is very challenging to enumerate all of the temporal walks for
even small networks, even when the number of time instances
is less than 10. Thus, in this paper, we present a mathematical
technique to enumerate the end-to-end delays via an approach
similar to how the adjacency matrix is used for enumeration
of paths in non-temporal graphs.

Consider a temporal graph G with a fixed set of N ver-
tices/nodes, but where the set of edges changes depending
on the time. Without loss of generality, we assume that the
vertices are labeled 0,1,..., N — 1. For our purposes, we
assume that the set of edges is defined on a time index set
of the form {0,1,...,7 — 1}.

We propose a new femporal adjacency matrix (TAM) for
G, which is an N x N matrix in which entry (7, ;) contains
information about the times in which node 7 can communicate
with node j. We use A to denote the TAM to distinguish it
from the usual adjacency matrix A. We use the notation A; ;
to denote the entry of A in the ith row and jth column.

A. Temporal Adjacency Matrix Entries

As with the usual adjacency matrix, the diagonal entries of
A are set to the integer 0; A; ; =0fori=0,1,...,N—1.1If
there is not an edge connecting vertex ¢ to vertex j at any time,
then A; ; = 0. Unlike a usual adjacency matrix, if nodes ¢ and
j share an edge at any time, the (4, j)th entry of the temporal
adjacency matrix is itself a matrix. Such entries are defined in
a way that will allow us to determine the path delays between
any two nodes through a type of product of temporal adjacency
matrices, just as products of the usual (unweighted) adjacency
matrix allow us to count the number of paths connecting two
vertices. The nonzero entries of a temporal adjacency matrix
are in the form of a partitioned matrix,

Cij
Aij = {m } )
T [ Diy
We begin by defining D; ;. Let T;; be a row vector

containing the time indices of when there is an edge from
node ¢ to node j. If

Tij=[t t ta ],
then
D — stt gtz glm
BT gt gtz gm0



and C; ; = Iy, the identity matrix of size M x M. This form
will facilitate computation of the possible end-to-end delays,
as shown further below.

For matrix E' that is an element of a temporal adjacency
matrix, we use C(F) and D(E) to refer to the component
matrices in the form

),

where D(F) is the last two rows of E.

Consider again the temporal network shown in 2. Link 0 —
1 is available at times 1,2,3, and so the temporal adjacency
matrix entry Ag; is

Link 1 — 2 is up at times 2,5,8, and so A; o is

1 0 0
0 1 0
0 0 1

82 85 8

V)

B. Defining Multiplication for Entries of the Temporal Adja-
cency Matrix

As explained above, the entries of a temporal adjacency
matrix are themselves matrices (or else 0). We will need
to perform a multiplication-like operator on the entries in
computing the delays using the temporal adjacency matrices.
Let © be the multiplication operator for two entries of the
temporal adjacency matrix. We define © below.

Consider the product L ® R, where L and R are entries
of a temporal adjacency matrix. Later we will generalize this
definition to apply to other classes of matrices created from
temporal adjacency matrices. If either L = 0 or R = 0, we
define L © R = 0.

Now consider the case where both I # 0 and R # 0.
C(L) is multiplied by a two-link delay matrix created from
D(L) and D(R). For the case where L and R are elements
of temporal adjacency matrices, C(L) is an identity matrix,
and we only need concern ourselves with the two-link delay
matrix. However, below, we show a general technique that can
still be applied when L is not a temporal adjacency matrix,
which we will utilize in Section III-D.

We begin to investigate the necessary computation by uti-
lizing the example from Fig. 2. For the pair of links 0 — 1
and 1 — 2, we first compute the outer product of D(L)s and

D(R);, which we denote by T

M1
S
T=| s2 [s* 7 s°] = D(L)]D(R),
-3
[ s st ST
= 1 s3 8|,
s 52 80

where D(X); denotes the jth row of D(X).

Note that for the (i, j)th entry, the power of s represents the
difference in times between the ith time the input path was
available and the jth time the output path was available. These
are the possible differential delays for information flowing
over the two links except that negative delays are not feasible,
because the information would use the second link at a time
before it traveled over the first link. To preserve only the
possible two-link delays, we must eliminate the entries with
nonpositive exponents by replacing those entries with 0.

Define the function S (s™) by

m s™, m >0
Sﬂs):{o m<=0

If T is a matrix with entries ¢; ; of the form s™#7, then
define ST (T') as the matrix with entries S (¢; ;). Thus, for
the example,

} s st &7
T=ST(T)=1]0 s s
0 s2 §°

Finally, we let y
C(LOR)=C(L)-T,

D(L ® R) = D(R),

and the final multiplication operation for entries in a temporal
adjacency matrix is:

[ C(L) - S*(D(L)§ D(R),)
LOR= _ D(R)
[ s s s7
0 53 58
= 0 52 s°
52 s° 58
s72 s75 g8

By inspecting this matrix, we can determine all the possible
delays and the output link times from which they are derived.
In particular, for the output link at time 2, look at column 1;
for the output link at time 5, look at column 2; for the output
link at time 8, look at column 3. Then we see that for packets
coming from the output link at time 2, the only possible delay
is 1 (there is only an s’ term). This is because the only time
the packets could have propagated across the first link is at
time 1, resulting in a path delay of 1. For the output link at
time 5, the possible delays are 2, 3, or 4. The packets could
have come from the first link at times 1, 2, 3. Similarly, for
the output link at time 8, the possible delays are 5, 6, or 7.



C. Cumulative Differential Path Delays

The exponents of the entries in C(L ® R) are all possible
nonzero delays for the path with links that have temporal
adjacency matrix entries L and R. Moreover, all path delays
are associated with the time that the last link is used, which
is the power of s in the first row of D(L ® R). Thus, we call
L © R a cumulative differential path delay (CDPD) matrix.

The power of the CDPD matrix is that it can then be used
to compute the delay on an additional link by just multiplying
(using ®) with the entry of the temporal adjacency matrix for
that link. Consider a sequence of operations (A; ; © A1) ©
Al ¢. For concreteness, let us use the example network above
and consider (Ap1 © A12) ©® Ags. Let Q = Ag1 © Aj 9.
Since D(Q) = D(A;2), the same arguments as before show
that V. = ST (D(Q)3D(Asz3)1) is a matrix of the delays
between the edge 1 <+ 2 and the edge 2 ++ 3. Mathematically,
we have

V =57(D(Q)3 - D(A2,3)1) = ST(A12); - D(Az:3)1)

i
— gt s | . [56 510]
58
[ st s st s
=9t st s° _ st &
572 52 0 2

Note that each row of this matrix represents the delays that
are possible for one of the possible up times of the link 1 <+
2. In particular, the first row represents the additional delays
when the information flows over 1 <> 2 at time 2, the second
row is for time 5, and the third row is for time 8. Now, C(Q ®
Ai2) =CQ)-V

The following lemma summarizes properties of the CDPD
matrix for linear temporal networks.

Lemma 1. Let G be a linear temporal network, and let H
denote the CDPD matrix given by

H= Aj07j1 © Aj17j2 ©...

for a total of N products.

1. The (j,k)th entry of C(H) can be written in the form
Ndsd.

2. The nonzero entries of the kth column of C(H) are
unique.

3. If the (1,7)th entry of D(Aj,.j,) is s and the (1,k)th
entry of D(H) is s°, and the (j,k)th C(H) is Nys?,
then N; is the number of temporal paths from node jg
to node jn with differential delay d = 8 — « and for
which the path jo — j1 is taken at time o and the path
IN—1 — jN IS taken at time [3.

© 'Aijthv

Proof: By induction on the number of edges traversed,
N.
Basis Let N=2. Since the network is linear, all valid paths
are of the form

P=(i%5)u(iBk),

where to > 1.

Then
4 ea o [C(A) - ST D(A)S D(Aj ]
H= Am © .Aj,k; = [ D(-Aj,k)

_ { S* [D(Ai1)3 D(Aji)] ]
D(Aj k) ’

where the last step follows from C(A; ;) =1

For convenience of exposition, let

U= (.Ai’j)g = [ s gT U2

§TUE ]

where {u1,us,...ux} are the times that the link from ¢ to j
is available. Similarly, let

V= (Ai,j)l = [ s¥1 gv2

svL ],

where {v1,va,...,vr} are the times that the link from j to k
is available.

Then the (m,n)th entry of D(A;;)ID(A;x)
is s7Umg¥n = gUn~%m_  and the (m,n)th entry of
ST [D(Ai)ID(Ajp)1] is sv7Um if v, > u, and 0
otherwise.

The condition that v,, > u,, is the causality condition that
the link ¢ — j is taken before the link j — k. Moreover, when
Up > Um, Unp — Up, 1S the differential delay across the links.

Thus, for every time u,,, that the link ¢+ — j is available and
every time vy, that the link j — k is available, the (m,n)th
entry of H is sY»~%m if v, > u,, and 0 otherwise. Note that
for a given n, the possible values of v,, — u,, are unique,
since {u1,us,...uk} are unique. Thus, any nonzero term in
the nth column of ST [D(A; ;)T D(A;)1] is unique and is
of the form s? for some d.

Note that the (1,n)th entry of D(H) is s”», the (1,m)th
entry of D(A; ;) is s*m, and the (m,n)th entry of C(H) is
§n=Um = % if v, > u,, and O otherwise. For a given u,,
and v, there is either one temporal path connecting the two
states or none (if the causality condition is violated). Thus,
if the (m,n)th entry is written as Ngs?, Ng € {0,1} is the
number of temporal paths connecting state 4 to state k£, where
the edge ¢ — j is taken at time d — v,, and the edge j — k is
taken at time v,,.

Inductive step Now, consider a path of N edges, and
assume the lemma holds up to time N — 1.

Let

H= A.jO:jl © Aj1,j2 ©...0 AjN—27jN—1

and
H=HO AjN—l:jN'

Similar to before, let
U = (A4j,,5,)2 =

[ sTUL gTU2 §TUK, ]

where {uy,us,...ux} are the times that the link from j, to
71 is available. Similarly, let

V= (AjN72:jN—l)1 = [ s st sUE ] )



where {v1,va,...,vy} are the times that the link from jy_o
to jy_1 is available. Let

W= (A= [ s s s ]

where {w1,ws, ..., wys } are the times that the link from jn_;
to jn is available.

The (m,n)th term of H can be written as Ny s%mn,
where dy, = Un — Upm. The (n,¢)th term of
St [D(Ai7j)§D(Aj,k)1j| is St [qu_v"].

Thus, the (m, ¢)th term of H is

L L

Unp—U =+ Wq—V _ L Wg—u
E Ny s’ "ms [s a “] = gWa—Um E Ninnlwg>v, -
n=1

n=1
()
(Property 1 is proved.)

Note that for the gth column of D(#), the entries are of
the form N, ,s*e~ "™, where the {u,,} are unique. Thus, the
entries in the gth column are unique. (Property 2)

By inspection of (1), the value of the (m,q)th term of H
is the sum of the number of paths that traverse from state j,
to state jy_1 that traverse the link jo — 71 at at time u,,
and that can traverse the link jy_; — jn at time w, because
the arrival time v,, at state jy_1 is less than w,. Since these
account for all the temporal paths from state jy—1 to jn, (1)
is the total number of paths from j, to j that traverse the link
jo — J1 at at time w,, and that traverse the link jy_1 — jn
at time w,. (Property 3) ]

Now consider the use of this technique to calculate all the
end-to-end-differential delays for the network in Fig. 2:

2s° 3sY
st 2% 88
Ap1 O Ao O Agg = | s° 25T
6 g0
s—6 10

By inspecting this result, we see that for the output link at time
6, there are two paths of delay 5, corresponding to 1 —2— 6
and 1 —5— 6. There are two paths with delay 7: 3 —5— 10
and 3 —8— 10.

Because the entries of a temporal adjacency matrix that
correspond to a single link require a lot of space and are more
difficult to parse than the underlying information, we introduce
the following convention. For a link that is up at times ¢, m,
and n, we write A; ; = A(¢,m,n) to denote that

1 0 0

0 1 0

Aij = 0 0 1
st s s
st gmm  gn

When the times that is link is available are increased, the size
of the matrix A, ; increases correspondingly.

D. Extension to General (Non-linear) Temporal Networks

The results above explain how to find the elements of the
temporal adjacency matrix and show how to perform computa-
tions using these entries. We are now ready to further explore

the temporal adjacency matrix and define matrix multiplication
for such matrices.

We define an operator [ that generalizes matrix multipli-
cation for regular matrices to temporal adjacency matrices.
As in normal matrix multiplication, the (4, j)th entry depends
on the entries in the ¢th row and the jth column. In normal
matrix multiplication, the (¢, k)th entry is multiplied by the
(k,j)th entry and these are summed for all k. For the [J
operator, we take A; , ©.Ay, ; and we concatenate the columns
of these outputs to preserve the information from each ©®
operation. Because the outputs may vary in the number of
rows, additional rows of zeros are added where needed to make
the columns all have an equal number of rows.

We explain the procedure for calculating [] through an
example.

Consider the network with the following temporal availabil-
ity:

0 A(L,5) A2,3) 0
Az A(1,5) 0 0 A4
| A(2,3) 0 0 A(1,6,8)
0 A4)  A(1,6,8) 0

Let A2 = A A. The overall matrix A2 is large, so we
consider a few of the components. The value of A%Q is the
concatenation of the results of Ay o ® Ago and Az 3 ® A3 9
because for the other Aj j, ©® Ay 2, at least one of the values
is zero. Thus, the two components of A%Q are

0 S
0 0
A200 Ay = 2 &
s72 73
and
0 5P s7
0 0 52
Ass@Azo= 0 0 0
s s0 s8
sl g6 58

Since these have different numbers of rows, the two results
cannot be concatenated until additional zeros are added to the
result of As g ® A2, above the bottom two rows. The overall
result is

0 s 0 5P s7

0 0 0 0 52

A3,= 0 0 0 0 0O
52 53 s 50 58

s72 §73 g1 g6 48

We can create a differential delay polynomial (DDP) that
captures all of the differential delays between two nodes over
a specified number of steps as

DDP(A; 1) = Y ags’
14

where ay is the number of paths with differential delay equal
to £. The DDP can be created by summing all of the elements
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Fig. 3. Disconnected network clusters (blue nodes) served by a data mule

(green node).

of the matrix entry A;; except for the last two rows. For
instance,
2y _ 2 5T
DDP(A5,) = s+ s+ 5"+,

indicating that there is exactly one path from node 2 back
to node 2 for each of the differential delays, 1, 2, 5, and 7.
We define the differential delay matrix (DDM) of a temporal
adjacency matrix as the matrix M = DDM(A) such that
M, = DDP(A; ). Applying these rules to A%, we have
DDM(A?%) =

s+ s 0 0 s+ 8%+ st 288
0 st s* 422+ 0
0 252 +5% ST+ +s7+s 0

s% +2s 0 0 ST+ 8%+ &2

Thus, for instance, considering only two-hop paths between
nodes 0 and 3, there are two temporal paths with differential
delay 3 and one temporal path for each of the differential
delays 4, 5, and 6. The differential delays for temporal paths
of length 3 are completely characterized by DDM(A3%) =

0 2 T +s%+25° 0
s2 0 0 257 +25° + s
st 0 0 T4 8% 4+ ¢

0 2s* sT 482 0
IV. EXAMPLE APPLICATION TO DELAY TOLERANT

NETWORK

We consider a network that consists of four clusters of
randomly scattered nodes. The clusters cannot communicate
but are served by a data mule that travels between the clusters
to carry data between them, as shown in Fig. 3. Because of
space limitations, we only consider the first 4 steps of the
data mule’s travel among the nodes. For each pair of nodes,
we use the methods of Section III to determine the number
of walks of length 1, 2, and 3 that exist between those nodes.
In the heat maps in Fig. 4, the (i, j)th pixel color indicates
indicate the log of the number of walks (red=most, dark

0 5 10 15 20

Fig. 4. Visualization of number of paths connecting nodes.

blue=0) connecting node 7 to node j at the specified delay.
The results show that as the data mule progresses around
the network, it increases the connectivity significantly, but
additional travel around the network is needed to reach full
connectivity. Moreover, different pairs of nodes have very
different levels of connectivity.

V. CONCLUSION

In this paper, we presented a new method for computing
the possible delays for communication among nodes in a
temporal network. We extended the idea of adjacency matrices
for graphs to handle the time-varying nature of temporal
networks. The techniques are appropriate for implementation
on computers and can be used to produce visualizations that
give insight into network dynamics.
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