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Abstract—The seafloor high-definition camera (CamHD)

installed on the Ocean Observatories Initiative (OOI) Ca-

bled Array (CA) provides real-time video of the Mushroom

vent at the ASHES hydrothermal field in the Axial Volcano

caldera on the Juan de Fuca spreading zone (Figure 1).

CamHD performs a pre-programmed 13-minute motion

sequence every 3 hours. The video captured during this

sequence is stored as a 13GB HD video file in the OOI

Cyber-Infrastructure (CI) at Rutgers University. As of

July 2017 there are approx. 6700 videos in the CI, all of

which are publicly accessible through a conventional HTTP

interface. Unfortunately, it is impractical for a researcher

(and taxing on the CI bandwidth) to download, store, and

process the extent of the video archive for analysis.

We describe two elements of our efforts to accelerate

CamHD video analysis: a cloud-hosted application which

provides a simplified interface for extracting individual

frames from CamHD videos in a time- and bandwidth-

efficient manner; and a tool for the automatic isolation

and identification of video subsets showing a sequence of

known camera positions. Automatic identification of these

video segments allows rapid and automatic development

of e.g., time lapse videos.

I. INTRODUCTION

The NSF-funded Ocean Observatories Initiative (OOI)

Cabled Array (CA) provides long-term, persistent band-

width and power, and instantaneous data exfiltration, for

over 120 distinct instruments installed off the Oregon

Coast. One such instrument is the high-definition camera,

CamHD, which is located at the ASHES hydrothermal

vent field within the caldera of Axial Seamount. [1]

CamHD is situated less than 2 meters from the hy-

drothermal vent Mushroom (Figure 1), which affords it

a sweeping view of the geology and biology of a unique

chemotrophic ecosystem. To minimize disturbance to the

local ecosystem, CamHD operates on a regular schedule,

turning its lights on every three hours to perform an

approx. 13-minute-long pre-programmed sequence of

pan, tilt and zoom maneuvers.

The resulting video is transmitted as uncompressed

1080i HD video to shore where it is stored at the OOI

Cyber Infrastructure (CI) at Rutgers University in both

the lossless Apple ProRes video file format, and in the

lossy H.264 video format. These two versions of each

13-minute video requires approximately 13 GB and 850

MB apiece, respectively.

Having both short video sequences and long-time-

series images of Mushroom allows for powerful analy-

ses of the spatial and temporal evolution of processes

including the growth of individual chimneys through

mineral deposition, the growth and spread of bacterial

mats, and the behavior and population dynamics of

macrofauna. [2], [3] These broad-scale analyses can be

meaningfully accelerated through computer-vision-based

automated analysis tools. [4]

Upon embarking on this early exploratory analyses,

we rapidly encountered two confounding issues with data

Fig. 1. The CamHD high-definition camera and Mush-

room hydrothermal vent. (NSF Ocean Observatories Initia-

tive/ROPOS/University of Washington)



access. First, the sheer volume of data stored in the CI is

significant (and ever-growing). Most video manipulation

tools are designed for manipulating local files, a service

which is not provided by the OOI CI. Instead, videos

must be manually downloaded from Rutgers for analysis,

a step which is both time consuming and expensive if

storing large numbers of the uncompressed video files.

Second, meta-information about the camera’s position

throughout each video is scant and unreliable. While the

camera motion is nominally consistent between videos,

small variations in system timing result in significant

jitter in camera position as a function of elapsed time

within a video. Further, system malfunctions often result

in videos which show only a portion of the camera’s

motion. In either case, there is no a priori method, other

than manual video review, for correlating a particular

field of view on the vent with elapsed time within a

video.

The most general solution to the second problem uses

the photometric information within the video frames

themselves to estimate camera motion, independent of

expected video sequencing or the presence/absence of

other motion metadata (motor commands, etc.). Such an

algorithm could be scaled to analyze the existing archive

of CamHD video as well as newly collected videos to

provide a consistent parallel metadata stream describing

the video contents.

Moreover, performing repeated, broad-scale video pro-

cessing over the extent of the CamHD archive is likely

to be an essential activity for future CamHD analyses.

However, such large scale video analysis of the archive

CamHD archive rapidly runs afoul of the first problem.

Rather than relying on the necessary computational re-

source being co-located with the OOI CI, or maintaining

a local mirror of the OOI CI local, we consider a

third route where content-aware access of the CI video

archive is provided by a service which can be run either

locally or publicly on the internet. This service provides

a consistent, scalable method for accessing individual

frames from CamHD movies on the CI.

We describe the three components of this work sep-

arately below. First, Section II describes lazycache, a

web-based microservice for remote access to video meta-

information and retrieval of individual frames from

ProRes files stored on the OOI CI. Sections III and

III-A then describes the algorithms used to identify and

extract static segments (time spans where the camera is

stationary) from a given video files, and to run those

algorithms en masse over the CamHD video archive

utilizing both local computers and the commercial cloud.

Finally, Section IV describes the process of using pho-

tometric comparisons to associated static sections with a

predefined set of scene labels.

II. LAZYCACHE FOR EFFICIENT FRAME ACCESS

Our initial development focused methods for time-,

storage-, and bandwidth-efficient access to single frames

from movies in the CI which did not require download-

ing full video files. The resulting algorithm relies on the

underlying structure of the Quicktime file format used

to store the uncompressed CamHD files, and the ability

of many web servers (including those used at CI) to

provide subsets of files on request. This latter technology

is the basis for, for example, “restarting” downloads from

websites.

The uncompressed CamHD video files are stored at CI

in the Apple Quicktime audio-visual container format,

while individual frames of video are stored as data

within the Quicktime container encoded in ProRes 422, a

“lossless” format.1 The Quicktime format stores data as

a tree of data structures or “atoms,” each of which starts

with a header containing both atom type and total size.

The overall structure of a Quicktime file can be quickly

ascertained by enumerating the atom tree within the file

and extracting a relatively small number of metadata

atoms. [5]

Based on this knowledge of the Quicktime file format

a set of software libraries were written in the Go lan-

guage: lazyfs implements the standardized Go interface

for a random access, read-only file (io.ReaderAt)

using HTTP requests to read content from a remote web

site.2 With lazyfs, a remote, HTTP-served file can be read

like a local file, albeit with a significant speed penalty.

On top of this, lazyquicktime parses the Quicktime

container format,3 operating identically on conventional

files and lazyfs. lazyquicktime uses a parsimonious read

strategy to quickly extract the Atom tree for a given file

and identify the metadata required to address individual

video frames within the files. Finally, the go-proress-

ffmpeg library provides a Go wrapper around the ffm-

peg video encoding/decoding library, taking individual

ProRes-encoded frames from a Quicktime file and con-

verting it to a Go-language Image.4 That Image can

then be directly manipulated in Go or re-encoded using

standard Go libraries to e.g., a PNG of JPEG image file.

1ProRes does utilize color space subsampling, so it is lossless in
the spatio-temporal dimensions, but lossy in color space.

2https://github.com/amarburg/go-lazyfs
3https://github.com/amarburg/go-lazyquicktime
4https://github.com/amarburg/go-prores-ffmpeg



Together, these libraries provide the necessary tools

to remotely access a Quicktime file hosted on a web

server, retrieve the index within the video file, and extract

individual frames in a bandwidth-efficient manner.

An immediate concern of this approach, however,

is that the Go language is less popular than e.g.,

Python or Matlab for scientific computing. To provide a

language-agnostic API, the core Quicktime functionality

is wrapped in a networked microservice, known as lazy-

cache, which exports the frame extraction functionality

via a HTTP API. This allows any language to retrieve

images using specially formatted HTTP calls, which

can be created using language-specific HTTP-access

libraries.5 lazycache also provides machine-readable,

JSON-format method for browsing the CI data repos-

itory and retrieving CamHD movie metadata (length,

number of frames, etc.). For efficiency, lazycache caches

intermediate results, including extracted video frames.

In this way, a single lazycache instance can efficiently

provide video frames for a large number of hosts. At

the same time, as it is a conventional webserver, off-the-

shelf load-balancing techniques can be used to distribute

client requests across a cluster of lazycache instances.

Utilizing HTTP as a transport necessarily induces a

performance cost. Relative to a “normal” library (such

as might be linked into a Go program or imported into a

Python script), lazycache incurs three significant costs:

• the time required to encode the images as an image,

and subsequently decode on the client,

• the costs of SSL encryption if the HTTPS transport

is used. This can be avoided by using unencrypted

HTTP.

• the additional time costs for passing data between

the client and the server. If the two are co-located

on the same machine, the latter is trivial.

Relative to decoding locally-available video files, there

is also the significant performance penalty for download-

ing all data from Rutgers for every operation, although

this cost is the same for both the HTTP-based lazycache

and a more conventional library like lazyquicktime. This

cost can be balanced against the time- and storage costs

of downloading whole files locally before accessing.

(benchmarks here)

A. Deployment

The lazycache binary and its dependencies (e.g., ffm-

peg, etc.) are packaged as a Docker image, greatly

simplifying deployment. For public use, lazycache is

5https://github.com/amarburg/go-lazycache

deployed to the Google App Engine (GAE), a software-

as-a-service offering within the Google Cloud Platform

product line. A GAE application is described using a

service-description language, which in turn references

the lazycache Docker image description file. GAE uses

this file to create a reference Docker image and deploy

it across one or more computers in the Google cloud

infrastructure, transparently providing the load balancing

architecture necessary for those instances to appear as

a single endpoint on the internet. Behind the scenes,

GAE monitors the health of individual instances and

adds additional copies as workload increases. In this

way, a GAE-hosted application can respond transparently

and automatically to widely varying workloads, and the

cost of operation is based solely on the resources (CPU

time) consumed. The downside to this architecture is that

the system will automatically scale number of instances

(and thus running costs) to meet peak loads without

intervention or even notification to the app owner.

III. CAMERA MOTION ESTIMATION AND ITS

ACCELERATION

Lazycache provides an efficient method for retriev-

ing single images from a video, an essential first step

for archive-wide video analysis. The second task is

to automatically identify and label segments of each

video based on camera position. This is decomposed

into sub-tasks. First, an optical-flow-based method is

used to calculate apparent image motion at regular

intervals throughout a video files (this section). This

is a costly procedure, running at approx. 1/3–1/4 re-

altime on modern multi-core processor, which would

necessitate months of processing per year of archived

video. However, this task is trivially parallelizable on

a per-video basis and can be accelerated by employing

more computers, in this case, large numbers of compute

instances purchased in the commercial cloud (Section

III-A). Having performed this costly calculation for a

given video, statistical techniques can be used to estimate

blocks of consistent camera motion (zooming in, pan-

ning left, static, etc.), and subsequently use photometric

matching to label the static sections based on their field

of view (Section IV).

The low contrast, large amount of background mo-

tion, and abundance of soft “organic” edges renders

feature-based image-registration approaches unreliable,

so camera motion is estimated using dense optical flow.

Given the highly constrained motion of the camera (only

zoom, pan, and tilt), in principal any robust scale-aware

correlation-based matching algorithm should provide



good results, however the ready availability of multi-core

and GPU-accelerated optical flow algorithms in OpenCV

[6] provides a good starting point for development. This

optical flow calculation dominates the computational cost

of the velocity estimation and is an ideal place for

optimization.

The motion estimator algorithm steps through a movie

at even intervals (currently every 10 frames). At each

step it estimates the local camera velocity by finite

differences, estimating the apparent transform between

an image a small delta (2 frames) before and after the

current frame. These two images are retrieved through

a lazycache instance, are preprocessed, and heuristics

are used to detect and discard known corner cases

e.g., if camera lights are off or the frame is out of

focus. A dense optical flow algorithm then calculates the

apparent motion at each image pixel. This flow image is

then downscaled, effectively performing a spatial block-

average on the flow estiamte. Finally, the resulting flow

field is fit to a similarity transform, which is then stored

for that frame. A JSON file containing all estimated

similarities for a given movie is stored for later analysis.

A. Scaling of Velocity Estimation

A single CamHD recording contains approximately

25,000 frames (13 minutes at 30 fps). With the the

optical flow algorithm processing every tenth frame, a

single video requires approximately one hour to process

on a high-end Core i7 processor. While this is fast

enough to keep up with the rate of video acquisition (one

new video every three hours), it insufficient to adequately

process the backlog of videos in the CI archive. To

address this, the calculation can be scaled out across

a cluster of computers, each processing one video at a

time. This trivial parallelization offers a linear increase

in processing speed with increased computing resources.

This scaling is achieved through a combination of

three technologies. First, the optical flow algorithm,

along with all necessary dependencies, is also packaged

within a Docker runtime container. While introducing an

additional layer of complexity, Docker provides highly

repeatable, transferrable runtime environment, simplify-

ing software deployment. The interface to the runtime is

written as a Python module.

Second, the RQ work queue package is used to

coordinate work across computers in the cluster.6 RQ is

a Python-native queueing library which uses the Redis

in-memory datastore for coordination. The RQ client

6http://python-rq.org

uses Python’s native introspection capability to serialize

Python function calls for execution on worker nodes.

Because of this, the RQ worker can be written in a

generic manner (it does not need to be customized for the

tasks it may be asked to perform), so long as the desired

Python libraries are available in the local environment.

Finally, Docker Swarms are used for cluster orches-

tration. The swarm concept is a recent addition to the

Docker ecosystem, and allows multiple computers to

be confederated into a centrally managed “swarm” of

resources (each running Docker). From a single work-

station, containers can be deployed to all members of

the cluster.

For the processing detailed here, two independent

computer clusters are used, both referencing a single,

shared RQ work queue. One consists of a set of three

Core i7 desktop computers operating on a shared net-

work. Onto this cluster, multiple copies of both the

lazycache server software and the optical flow processor

are deployed. On startup, the workers query the Redis

server and execute any stored jobs. The load balancing

features built into Docker Swarms allows each optical

flow processor to distribute its queries to any of the local

lazycache instances within the cluster.

The second cluster is constructed from Google Com-

pute Engine (GCE) virtualized PC instances. A single

instance acts as a swarm manager (this instance also

provides the shared Redis server for both clusters). The

worker nodes are defined as a Google Instance Group: a

collection of identical compute instances cloned from

a reference image. The Google cluster is constructed

from eight instances of the n8-highcpu-1 compute

node, a virtual computer with eight virtual cores (vC-

PUs) and 7.2 GB of memory. These are configured as

preemptible instances, an option whereby Google can

proactively shut down instances as needed to meet surge

demand from other customers. In exchange, preemptible

instances are significantly less expensive than equivalent

non-preemptible compute instances, at a cost of $0.06

per 8-core instance per hour ($0.48/hour for the en-

tire cluster) versus $0.24/hour for the non-preemptible

instances. The Google compute cluster is otherwise

configured identically to the desktop cluster.

Both clusters are tasked by inserting tasks into the

shared RQ queue. Any idle assets in either cluster will

retrieve pending jobs from the queue and start work.

In this way the commercial cluster (which has fixed

costs when operating) can be started, stopped, and scaled

without explicit reconfiguration of the work queue.

Relative benchmarking information for the four com-



TABLE I
COMPARATIVE BENCHMARKS FOR OPTICAL FLOW PROCESSING.

CPU Freq. (GHz) Threads Seconds Net sec. Actual sec.

(GHz) per movie per frame per frame

Intel Core i7-3770K 3.5 8 5140.33 0.21462 16.613
Intel Core i7-5820K 3.3 12 3370.24 0.14181 16.294
Intel Core i7-6700K 4.0 8 3086.79 0.12857 9.976
Xeon ”Sandy Bridge” vCPU 2.6 8 6220.31 0.26655 20.469

puter types (3 generations of Core i7 desktops and the

Google compute instances) are given in Table I. Within

the table, CPU gives the CPU model, with Google virtual

CPUs denoted by the relative generation of Xeon pro-

cessor and clock speed; Freq. gives the base CPU clock

speed, while Threads gives the number of simultaneous

threads for the CPU (2 per core for CPUs with Hyper-

Threading, and 1 per vCPU on cloud instances). Seconds

per movie gives the mean wall clock time to process

a single movie; Net seconds per frame gives the total

throughput of the optical flow processor (seconds per

movie / frames per movie), while Actual seconds per

frame gives the wall clock time spent processing each

frame. Due to parallelism within the software, each

worker processes multiple frames at once.

As noted above, each worker in a cluster runs two

instances of the optical flow algorithm increasing the

odds that the CPU is fully loaded as each worker

transitions between multi- and single-threaded phases.

As such, the performance benchmarks do not give the

minimum processing time for each processor. The CPU

performance times are roughly inline with the synthetic

CPU benchmarks for the relative processors, however it

is trivial (and inexpensive) to procure large numbers of

cloud compute instances. At $0.06 per instance per hour,

each movie require approximately $0.11 to process, and

the total throughput of the cloud compute resources is

limited only by the resource limits imposed by Google.

IV. STATIC SECTION ANALYSIS

The velocity estimates produced by the optical-flow

technique are used to estimate and label regions of

consistent camera motion within each video file. In

contrast to the velocity estimation, this algorithm is time

efficient and can be run serially on a single computer

without explicit parallelization to a cluster.

The algorithm relies on classification of contiguous

time regions within each video. After smoothing the

estimated X- (pan), Y- (tilt) and scale (zoom) transforms,

a hysteresis-based classifier is used to find time segments

where the camera appears to be at rest. These “static”

segments are labelled by their starting and ending frame

numbers. The periods between each static section is then

examined and labelled as “zoom in”, “zoom out”, “pan

left”, etc. based on its average motion.

Having isolated the frame spans within each movie

where the camera is static, the final step is to label

or tag each segment corresponding to a known camera

position or field of view. As the camera trajectory is pre-

programmed, the number and ordering of these camera

positions are known a priori. In total, 23 distinct static

camera positions are present in the current CamHD

sampling pattern, at nine distinct camera positions and

three zoom levels (the camera is not zoomed to every

level at every position).

In practice, minor variations in camera motion, as well

as ambiguities in isolating static sections lead to a high

degree of variation in the estimated motion sequence.

For example, small variations in timing between cam-

era motions can result in some static sections being

completely elided. When the camera is at maximum

zoom, movement patterns in the resident vent fauna or

Schlieren from local venting can be mis-classified as

camera motion.

For robustness, classification starts with a photometric

classifier. For a small set of “ground truth” videos

(approx. 2 per month, < 1% of all videos), the static

regions are isolated automatically, then labelled by hand.

New videos are then labelled through comparison

to these hand-labelled videos, with matching currently

performed in a brute force manner. After partitioning

the new movie into motion segments, a set of N = 3

exemplar frames are drawn from each static section. A

DFT-based correlation algorithm is used to estimate the

correlation minima between each image and M sample

frames drawn from each region in the ground truth set.

Each correlation results in an estimated translation and

an RMS pixel difference at that shift. Results which

indicate a shift of greater than 10% of image dimension

in either direction are immediately discarded as non-

matches. For the remaining M × N correlations, the



Ground Truth Video #1 Video #2

Time from GT 3 hours 14 days

Label

d2 p1 z0

d2 p0 z2

Fig. 2. Sample static regions identified by comparison to ground truth imagery. Video #1 is the next video in sequence, captured 3 hours
later. Video #2 is from two weeks later. Scene d2 p1 z0 in both videos, and d2 p0 z2 for video #1 were labelled by photometric matching to
the ground truth image. For the d2 p0 z2 segment from video #2, the local currents have shifted such that hot vent fluids are now intruding
between the camera and the vent. In this case, the photometric matching fails, however the label is correctly inferred by comparing the labels
of consecutive static segments to the reference sequence.

highest and lowest RMS errors are discard and the mean

is used as an aggregate matching score between the

particular static section in the movie being examined and

the associated region.

These scores are then sorted, and the match is consid-

ered good if the ratio between the highest and second-

highest RMS is less than a preset ratio. If this heuristic

is not achieved, the segment remains unlabelled.

After attempting photometric matching on all static

segments in a movie, two post-processing steps are used

to resolve any remaining unidentified frames. First, each

unlabelled segment is compared photometrically to its

nearest neighbors which have been successfully labelled

(both before and after). If this correlation matches with

a very low RMS, the unlabelled segment assumes the

label of the neighbor. Finally, a priori region sequence

is considered. If an unlabelled region is preceded and

followed by labelled regions, the sequence is compared

to a reference sequence of regions.

A sample of the resulting processing is shown in

Figure 2.

V. CONCLUSION

All software and resulting metadata from this project

are available publicly through repositories on the Github

software sharing site, and are described in the project

blog.7. Automatically-generated metadata (frame veloc-

7https://camhd-analysis.github.io/public-www/

ities and labelled regions) are stored in JSON files in a

Github repository, including documentation on the file

format for development of new analyses.8. The authors

welcome inquiries about further CamHD processing and

use of the video meta-information.
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