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Abstract—The seafloor high-definition camera (CamHD)
installed on the Ocean Observatories Initiative (OOI) Ca-
bled Array (CA) provides real-time video of the Mushroom
vent at the ASHES hydrothermal field in the Axial Volcano
caldera on the Juan de Fuca spreading zone (Figure 1).

CamHD performs a pre-programmed 13-minute motion
sequence every 3 hours. The video captured during this
sequence is stored as a 13GB HD video file in the OOI
Cyber-Infrastructure (CI) at Rutgers University. As of
July 2017 there are approx. 6700 videos in the CI, all of
which are publicly accessible through a conventional HTTP
interface. Unfortunately, it is impractical for a researcher
(and taxing on the CI bandwidth) to download, store, and
process the extent of the video archive for analysis.

We describe two elements of our efforts to accelerate
CamHD video analysis: a cloud-hosted application which
provides a simplified interface for extracting individual
frames from CamHD videos in a time- and bandwidth-
efficient manner; and a tool for the automatic isolation
and identification of video subsets showing a sequence of
known camera positions. Automatic identification of these
video segments allows rapid and automatic development
of e.g., time lapse videos.

I. INTRODUCTION

The NSF-funded Ocean Observatories Initiative (OOI)
Cabled Array (CA) provides long-term, persistent band-
width and power, and instantaneous data exfiltration, for
over 120 distinct instruments installed off the Oregon
Coast. One such instrument is the high-definition camera,
CamHD, which is located at the ASHES hydrothermal
vent field within the caldera of Axial Seamount. [1]
CamHD is situated less than 2 meters from the hy-
drothermal vent Mushroom (Figure 1), which affords it
a sweeping view of the geology and biology of a unique
chemotrophic ecosystem. To minimize disturbance to the
local ecosystem, CamHD operates on a regular schedule,
turning its lights on every three hours to perform an
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approx. 13-minute-long pre-programmed sequence of
pan, tilt and zoom maneuvers.

The resulting video is transmitted as uncompressed
1080i HD video to shore where it is stored at the OOI
Cyber Infrastructure (CI) at Rutgers University in both
the lossless Apple ProRes video file format, and in the
lossy H.264 video format. These two versions of each
13-minute video requires approximately 13 GB and 850
MB apiece, respectively.

Having both short video sequences and long-time-
series images of Mushroom allows for powerful analy-
ses of the spatial and temporal evolution of processes
including the growth of individual chimneys through
mineral deposition, the growth and spread of bacterial
mats, and the behavior and population dynamics of
macrofauna. [2], [3] These broad-scale analyses can be
meaningfully accelerated through computer-vision-based
automated analysis tools. [4]

Upon embarking on this early exploratory analyses,
we rapidly encountered two confounding issues with data
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access. First, the sheer volume of data stored in the CI is
significant (and ever-growing). Most video manipulation
tools are designed for manipulating local files, a service
which is not provided by the OOI CI. Instead, videos
must be manually downloaded from Rutgers for analysis,
a step which is both time consuming and expensive if
storing large numbers of the uncompressed video files.

Second, meta-information about the camera’s position
throughout each video is scant and unreliable. While the
camera motion is nominally consistent between videos,
small variations in system timing result in significant
jitter in camera position as a function of elapsed time
within a video. Further, system malfunctions often result
in videos which show only a portion of the camera’s
motion. In either case, there is no a priori method, other
than manual video review, for correlating a particular
field of view on the vent with elapsed time within a
video.

The most general solution to the second problem uses
the photometric information within the video frames
themselves to estimate camera motion, independent of
expected video sequencing or the presence/absence of
other motion metadata (motor commands, etc.). Such an
algorithm could be scaled to analyze the existing archive
of CamHD video as well as newly collected videos to
provide a consistent parallel metadata stream describing
the video contents.

Moreover, performing repeated, broad-scale video pro-
cessing over the extent of the CamHD archive is likely
to be an essential activity for future CamHD analyses.
However, such large scale video analysis of the archive
CamHD archive rapidly runs afoul of the first problem.
Rather than relying on the necessary computational re-
source being co-located with the OOI CI, or maintaining
a local mirror of the OOI CI local, we consider a
third route where content-aware access of the CI video
archive is provided by a service which can be run either
locally or publicly on the internet. This service provides
a consistent, scalable method for accessing individual
frames from CamHD movies on the CI.

We describe the three components of this work sep-
arately below. First, Section II describes lazycache, a
web-based microservice for remote access to video meta-
information and retrieval of individual frames from
ProRes files stored on the OOI CI. Sections III and
III-A then describes the algorithms used to identify and
extract static segments (time spans where the camera is
stationary) from a given video files, and to run those
algorithms en masse over the CamHD video archive
utilizing both local computers and the commercial cloud.

Finally, Section IV describes the process of using pho-
tometric comparisons to associated static sections with a
predefined set of scene labels.

II. LAZYCACHE FOR EFFICIENT FRAME ACCESS

Our initial development focused methods for time-,
storage-, and bandwidth-efficient access to single frames
from movies in the CI which did not require download-
ing full video files. The resulting algorithm relies on the
underlying structure of the Quicktime file format used
to store the uncompressed CamHD files, and the ability
of many web servers (including those used at CI) to
provide subsets of files on request. This latter technology
is the basis for, for example, “restarting” downloads from
websites.

The uncompressed CamHD video files are stored at CI
in the Apple Quicktime audio-visual container format,
while individual frames of video are stored as data
within the Quicktime container encoded in ProRes 422, a
“lossless” format.! The Quicktime format stores data as
a tree of data structures or “atoms,” each of which starts
with a header containing both atom type and total size.
The overall structure of a Quicktime file can be quickly
ascertained by enumerating the atom tree within the file
and extracting a relatively small number of metadata
atoms. [5]

Based on this knowledge of the Quicktime file format
a set of software libraries were written in the Go lan-
guage: lazyfs implements the standardized Go interface
for a random access, read-only file (io.ReaderAt)
using HTTP requests to read content from a remote web
site.2 With lazyfs, a remote, HTTP-served file can be read
like a local file, albeit with a significant speed penalty.
On top of this, lazyquicktime parses the Quicktime
container format,? operating identically on conventional
files and lazyfs. lazyquicktime uses a parsimonious read
strategy to quickly extract the Atom tree for a given file
and identify the metadata required to address individual
video frames within the files. Finally, the go-proress-
[ffmpeg library provides a Go wrapper around the ffim-
peg video encoding/decoding library, taking individual
ProRes-encoded frames from a Quicktime file and con-
verting it to a Go-language Image.* That Image can
then be directly manipulated in Go or re-encoded using
standard Go libraries to e.g., a PNG of JPEG image file.

"ProRes does utilize color space subsampling, so it is lossless in
the spatio-temporal dimensions, but lossy in color space.
Zhttps://github.com/amarburg/go-lazyfs
3https://github.com/amarburg/go-lazyquicktime
*https://github.com/amarburg/go-prores-ffmpeg



Together, these libraries provide the necessary tools
to remotely access a Quicktime file hosted on a web
server, retrieve the index within the video file, and extract
individual frames in a bandwidth-efficient manner.

An immediate concern of this approach, however,
is that the Go language is less popular than e.g.,
Python or Matlab for scientific computing. To provide a
language-agnostic API, the core Quicktime functionality
is wrapped in a networked microservice, known as lazy-
cache, which exports the frame extraction functionality
via a HTTP API. This allows any language to retrieve
images using specially formatted HTTP calls, which
can be created using language-specific HTTP-access
libraries.” lazycache also provides machine-readable,
JSON-format method for browsing the CI data repos-
itory and retrieving CamHD movie metadata (length,
number of frames, etc.). For efficiency, lazycache caches
intermediate results, including extracted video frames.
In this way, a single lazycache instance can efficiently
provide video frames for a large number of hosts. At
the same time, as it is a conventional webserver, off-the-
shelf load-balancing techniques can be used to distribute
client requests across a cluster of lazycache instances.

Utilizing HTTP as a transport necessarily induces a
performance cost. Relative to a “normal” library (such
as might be linked into a Go program or imported into a
Python script), lazycache incurs three significant costs:

« the time required to encode the images as an image,
and subsequently decode on the client,

o the costs of SSL encryption if the HTTPS transport
is used. This can be avoided by using unencrypted
HTTP.

o the additional time costs for passing data between
the client and the server. If the two are co-located
on the same machine, the latter is trivial.

Relative to decoding locally-available video files, there
is also the significant performance penalty for download-
ing all data from Rutgers for every operation, although
this cost is the same for both the HTTP-based lazycache
and a more conventional library like lazyquicktime. This
cost can be balanced against the time- and storage costs
of downloading whole files locally before accessing.

(benchmarks here)

A. Deployment

The lazycache binary and its dependencies (e.g., ffm-
peg, etc.) are packaged as a Docker image, greatly
simplifying deployment. For public use, lazycache is

Shttps://github.com/amarburg/go-lazycache

deployed to the Google App Engine (GAE), a software-
as-a-service offering within the Google Cloud Platform
product line. A GAE application is described using a
service-description language, which in turn references
the lazycache Docker image description file. GAE uses
this file to create a reference Docker image and deploy
it across one or more computers in the Google cloud
infrastructure, transparently providing the load balancing
architecture necessary for those instances to appear as
a single endpoint on the internet. Behind the scenes,
GAE monitors the health of individual instances and
adds additional copies as workload increases. In this
way, a GAE-hosted application can respond transparently
and automatically to widely varying workloads, and the
cost of operation is based solely on the resources (CPU
time) consumed. The downside to this architecture is that
the system will automatically scale number of instances
(and thus running costs) to meet peak loads without
intervention or even notification to the app owner.

ITII. CAMERA MOTION ESTIMATION AND ITS
ACCELERATION

Lazycache provides an efficient method for retriev-
ing single images from a video, an essential first step
for archive-wide video analysis. The second task is
to automatically identify and label segments of each
video based on camera position. This is decomposed
into sub-tasks. First, an optical-flow-based method is
used to calculate apparent image motion at regular
intervals throughout a video files (this section). This
is a costly procedure, running at approx. 1/3-1/4 re-
altime on modern multi-core processor, which would
necessitate months of processing per year of archived
video. However, this task is trivially parallelizable on
a per-video basis and can be accelerated by employing
more computers, in this case, large numbers of compute
instances purchased in the commercial cloud (Section
III-A). Having performed this costly calculation for a
given video, statistical techniques can be used to estimate
blocks of consistent camera motion (zooming in, pan-
ning left, static, etc.), and subsequently use photometric
matching to label the static sections based on their field
of view (Section IV).

The low contrast, large amount of background mo-
tion, and abundance of soft “organic” edges renders
feature-based image-registration approaches unreliable,
so camera motion is estimated using dense optical flow.
Given the highly constrained motion of the camera (only
zoom, pan, and tilt), in principal any robust scale-aware
correlation-based matching algorithm should provide



good results, however the ready availability of multi-core
and GPU-accelerated optical flow algorithms in OpenCV
[6] provides a good starting point for development. This
optical flow calculation dominates the computational cost
of the velocity estimation and is an ideal place for
optimization.

The motion estimator algorithm steps through a movie
at even intervals (currently every 10 frames). At each
step it estimates the local camera velocity by finite
differences, estimating the apparent transform between
an image a small delta (2 frames) before and after the
current frame. These two images are retrieved through
a lazycache instance, are preprocessed, and heuristics
are used to detect and discard known corner cases
e.g., if camera lights are off or the frame is out of
focus. A dense optical flow algorithm then calculates the
apparent motion at each image pixel. This flow image is
then downscaled, effectively performing a spatial block-
average on the flow estiamte. Finally, the resulting flow
field is fit to a similarity transform, which is then stored
for that frame. A JSON file containing all estimated
similarities for a given movie is stored for later analysis.

A. Scaling of Velocity Estimation

A single CamHD recording contains approximately
25,000 frames (13 minutes at 30 fps). With the the
optical flow algorithm processing every tenth frame, a
single video requires approximately one hour to process
on a high-end Core i7 processor. While this is fast
enough to keep up with the rate of video acquisition (one
new video every three hours), it insufficient to adequately
process the backlog of videos in the CI archive. To
address this, the calculation can be scaled out across
a cluster of computers, each processing one video at a
time. This trivial parallelization offers a linear increase
in processing speed with increased computing resources.

This scaling is achieved through a combination of
three technologies. First, the optical flow algorithm,
along with all necessary dependencies, is also packaged
within a Docker runtime container. While introducing an
additional layer of complexity, Docker provides highly
repeatable, transferrable runtime environment, simplify-
ing software deployment. The interface to the runtime is
written as a Python module.

Second, the RQ work queue package is used to
coordinate work across computers in the cluster.® RQ is
a Python-native queueing library which uses the Redis
in-memory datastore for coordination. The RQ client

®http://python-rq.org

uses Python’s native introspection capability to serialize
Python function calls for execution on worker nodes.
Because of this, the RQ worker can be written in a
generic manner (it does not need to be customized for the
tasks it may be asked to perform), so long as the desired
Python libraries are available in the local environment.

Finally, Docker Swarms are used for cluster orches-
tration. The swarm concept is a recent addition to the
Docker ecosystem, and allows multiple computers to
be confederated into a centrally managed “swarm” of
resources (each running Docker). From a single work-
station, containers can be deployed to all members of
the cluster.

For the processing detailed here, two independent
computer clusters are used, both referencing a single,
shared RQ work queue. One consists of a set of three
Core 17 desktop computers operating on a shared net-
work. Onto this cluster, multiple copies of both the
lazycache server software and the optical flow processor
are deployed. On startup, the workers query the Redis
server and execute any stored jobs. The load balancing
features built into Docker Swarms allows each optical
flow processor to distribute its queries to any of the local
lazycache instances within the cluster.

The second cluster is constructed from Google Com-
pute Engine (GCE) virtualized PC instances. A single
instance acts as a swarm manager (this instance also
provides the shared Redis server for both clusters). The
worker nodes are defined as a Google Instance Group: a
collection of identical compute instances cloned from
a reference image. The Google cluster is constructed
from eight instances of the n8-highcpu-1 compute
node, a virtual computer with eight virtual cores (vC-
PUs) and 7.2 GB of memory. These are configured as
preemptible instances, an option whereby Google can
proactively shut down instances as needed to meet surge
demand from other customers. In exchange, preemptible
instances are significantly less expensive than equivalent
non-preemptible compute instances, at a cost of $0.06
per 8-core instance per hour ($0.48/hour for the en-
tire cluster) versus $0.24/hour for the non-preemptible
instances. The Google compute cluster is otherwise
configured identically to the desktop cluster.

Both clusters are tasked by inserting tasks into the
shared RQ queue. Any idle assets in either cluster will
retrieve pending jobs from the queue and start work.
In this way the commercial cluster (which has fixed
costs when operating) can be started, stopped, and scaled
without explicit reconfiguration of the work queue.

Relative benchmarking information for the four com-



TABLE 1
COMPARATIVE BENCHMARKS FOR OPTICAL FLOW PROCESSING.

CPU Freq. (GHz) Threads Seconds Net sec. Actual sec.
(GHz) per movie per frame per frame
Intel Core i7-3770K 35 8 5140.33 0.21462 16.613
Intel Core i7-5820K 33 12 3370.24 0.14181 16.294
Intel Core i7-6700K 4.0 8 3086.79 0.12857 9.976
Xeon ”Sandy Bridge” vCPU 2.6 8 6220.31 0.26655 20.469

puter types (3 generations of Core i7 desktops and the
Google compute instances) are given in Table I. Within
the table, CPU gives the CPU model, with Google virtual
CPUs denoted by the relative generation of Xeon pro-
cessor and clock speed; Freq. gives the base CPU clock
speed, while Threads gives the number of simultaneous
threads for the CPU (2 per core for CPUs with Hyper-
Threading, and 1 per vCPU on cloud instances). Seconds
per movie gives the mean wall clock time to process
a single movie; Net seconds per frame gives the total
throughput of the optical flow processor (seconds per
movie / frames per movie), while Actual seconds per
frame gives the wall clock time spent processing each
frame. Due to parallelism within the software, each
worker processes multiple frames at once.

As noted above, each worker in a cluster runs two
instances of the optical flow algorithm increasing the
odds that the CPU is fully loaded as each worker
transitions between multi- and single-threaded phases.
As such, the performance benchmarks do not give the
minimum processing time for each processor. The CPU
performance times are roughly inline with the synthetic
CPU benchmarks for the relative processors, however it
is trivial (and inexpensive) to procure large numbers of
cloud compute instances. At $0.06 per instance per hour,
each movie require approximately $0.11 to process, and
the total throughput of the cloud compute resources is
limited only by the resource limits imposed by Google.

IV. STATIC SECTION ANALYSIS

The velocity estimates produced by the optical-flow
technique are used to estimate and label regions of
consistent camera motion within each video file. In
contrast to the velocity estimation, this algorithm is time
efficient and can be run serially on a single computer
without explicit parallelization to a cluster.

The algorithm relies on classification of contiguous
time regions within each video. After smoothing the
estimated X- (pan), Y- (tilt) and scale (zoom) transforms,
a hysteresis-based classifier is used to find time segments
where the camera appears to be at rest. These “static”

segments are labelled by their starting and ending frame
numbers. The periods between each static section is then
examined and labelled as “zoom in”, “ pan

left”, etc. based on its average motion.

LRI

zoom out’,

Having isolated the frame spans within each movie
where the camera is static, the final step is to label
or tag each segment corresponding to a known camera
position or field of view. As the camera trajectory is pre-
programmed, the number and ordering of these camera
positions are known a priori. In total, 23 distinct static
camera positions are present in the current CamHD
sampling pattern, at nine distinct camera positions and
three zoom levels (the camera is not zoomed to every
level at every position).

In practice, minor variations in camera motion, as well
as ambiguities in isolating static sections lead to a high
degree of variation in the estimated motion sequence.
For example, small variations in timing between cam-
era motions can result in some static sections being
completely elided. When the camera is at maximum
zoom, movement patterns in the resident vent fauna or
Schlieren from local venting can be mis-classified as
camera motion.

For robustness, classification starts with a photometric
classifier. For a small set of “ground truth” videos
(approx. 2 per month, < 1% of all videos), the static
regions are isolated automatically, then labelled by hand.

New videos are then labelled through comparison
to these hand-labelled videos, with matching currently
performed in a brute force manner. After partitioning
the new movie into motion segments, a set of N = 3
exemplar frames are drawn from each static section. A
DFT-based correlation algorithm is used to estimate the
correlation minima between each image and M sample
frames drawn from each region in the ground truth set.
Each correlation results in an estimated translation and
an RMS pixel difference at that shift. Results which
indicate a shift of greater than 10% of image dimension
in either direction are immediately discarded as non-
matches. For the remaining M x N correlations, the



Ground Truth Video #1 Video #2
Time from GT 3 hours 14 days
Label
d2_pl_z0
d2_p0_z2

Fig. 2. Sample static regions identified by comparison to ground truth imagery. Video #1 is the next video in sequence, captured 3 hours
later. Video #2 is from two weeks later. Scene d2_p/_z0 in both videos, and d2_p0_z2 for video #1 were labelled by photometric matching to
the ground truth image. For the d2_p0_z2 segment from video #2, the local currents have shifted such that hot vent fluids are now intruding
between the camera and the vent. In this case, the photometric matching fails, however the label is correctly inferred by comparing the labels

of consecutive static segments to the reference sequence.

highest and lowest RMS errors are discard and the mean
is used as an aggregate matching score between the
particular static section in the movie being examined and
the associated region.

These scores are then sorted, and the match is consid-
ered good if the ratio between the highest and second-
highest RMS is less than a preset ratio. If this heuristic
is not achieved, the segment remains unlabelled.

After attempting photometric matching on all static
segments in a movie, two post-processing steps are used
to resolve any remaining unidentified frames. First, each
unlabelled segment is compared photometrically to its
nearest neighbors which have been successfully labelled
(both before and after). If this correlation matches with
a very low RMS, the unlabelled segment assumes the
label of the neighbor. Finally, a priori region sequence
is considered. If an unlabelled region is preceded and
followed by labelled regions, the sequence is compared
to a reference sequence of regions.

A sample of the resulting processing is shown in
Figure 2.

V. CONCLUSION

All software and resulting metadata from this project
are available publicly through repositories on the Github
software sharing site, and are described in the project
blog.”. Automatically-generated metadata (frame veloc-

"https://camhd-analysis.github.io/public-www/

ities and labelled regions) are stored in JSON files in a
Github repository, including documentation on the file
format for development of new analyses.’. The authors
welcome inquiries about further CamHD processing and
use of the video meta-information.
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