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Recent studies have shown that fringe-adjusted joint transform correlation (FJTC) can be effectively applied for 

single class and even multiclass object detection in hyperspectral imagery (HSI). However, directly utilizing FJTC 

based techniques for HSI processing may not be eficient due to the fact that HSI may contain a large volume of data 
redundancy. Therefore, incorporating dimensionality reduction (DR) methods prior to the object detection procedure 

is suggested. In this paper, we combine several DRs individually with class-associative spectral FJTC (CSFJTC), and 

then compare their performance on single class and multiclass object detection tasks using a real-world hyperspectral 

data set. Test results show that the CSFJTC with denoising autoencoder provides superior performance compared to 

the alternate methods for detecting few dissimilar patterns in the scene. © Anita Publications. All rights reserved.
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1 Introduction 

 Rapid advances in sensor technology increasingly provide great platform for developing many 

sophisticated object detection algorithms. For instance, most of the hyperspectral cameras today can provide 

hundreds to thousands of spectral bands to represent each pixel of interest. This dramatically improves the 

accuracy of object detection and characterization. Meanwhile, processing large volume of hyperspectral data 

poses challenges for researchers to extract useful information and to improve object detection performance 

in terms of accuracy and computational time.

 In the past few decades, several efforts have been made to develop various object detection methods 

using Hyperspectral Imagery (HSI). The HSI-based object detectors can be categorized into two approaches: 

deterministic and probabilistic. Deterministic methods, such as spectral angle mapper [1], are comparably 

easy to implement since they usually do not require statistical modeling and estimation of target and/or 

background structures as probabilistic methods do; although probabilistic approaches may be more robust 

when considering noise effects. Therefore, developing more sophisticated methods for robust object detection 

using HSI is imperative. 

 Spectral Fringe-adjusted Joint Transform Correlation (SFJTC) [2], as a deterministic approach, has 

shown superior performance compared to alternates for detecting a set of similar patterns in HSI, while 

Class-associative SFJTC (CSFJTC) [3] is capable of detecting multiple dissimilar patterns simultaneously 

with single query from each class of pattern. It has also demonstrated that CSFJTC outperforms the state-of-

the-art object detectors including both deterministic and probabilistic methods. Original concept of CSFJTC 
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is derived from Joint Transform Correlator (JTC) [4], which is one of the most successful optical correlators, 

has been widely used in many ields of studies [5-7]. JTC computes joint correlation of the input signal and 

the reference signal in the correlation plane in order to identify and localize targets of interest. One of the main 

merits of JTC is that it can be processed in real-time and does not require precise positioning. However, JTC 

suffers from broad correlation sidelobes and strong zero order peak [8-13]. To overcome the drawbacks of the 

classical JTC, a number of JTC variants have been proposed such as Binary JTC (BJTC) [8], Fringe-adjusted 

JTC (FJTC) [13], logarithmic FJTC (LFJTC) [14], rotation invariant FJTC [15], distortion-invariant FJTC 

[16], and phase-encoded FJTC [17]. Considering HSI-based object detection, techniques such as SFJTC, 

and its variants such as discrete wavelet transform SFJTC [18], logarithmic SFJTC [19] and CSFJTC have 

been proposed. In practice, CSFJTC may be more desirable since it can detect both single and multiple class 

objects using only one spectral signature from each class. 

 However, JTC-based techniques for HSI processing may not be effective or eficient for two 
reasons: 1) HSI usually contains a large volume of data redundancy and highly correlated bands that could 

affect the detection performance; 2) there exists interclass and intraclass spectral variations that could 

deteriorate pattern discriminability of a detector. Therefore, incorporating a preprocessing technique, such as 

dimensionality reduction (DR) methods prior to the object detection procedure is suggested [20, 21]. In this 

paper, we combine several DRs individually with CSFJTC, quantitatively analysis their performance, and 

then determine the contribution of DR methods for CSFJTC on object detection tasks in HSI. 

 The remainder of this paper is organized as follows. Section II reviews FJTC, SFJTC, CSFJTC 

and then introduces the proposed DR-based CSFJTC. Section III provides the experimental results and 

comparison. Finally, Section IV concludes this paper. 
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Fig. 1. Algorithmic low of FJTC. FFT: Fast Fourier Transform; JPS: Joint Power Spectrum; IFFT: Inverse FFT; 
FAF: Fringe-adjusted Filter.

2 Theoretical Analysis

2.1 FJTC

A typical architecture of FJTC is depicted in Fig. 1. As shown in Fig. 1, FJTC contains the reference 

image and the input image, which are usually separated by a distance 2y0. If r(x,y + y0) denotes the reference 

image function, and s(x,y - y0) represents the input scene containing n objects s1(x-x1,y-y1), s2(x-x2,y-y2), … , 

sn(x-xn,y - yn), then the joint image function f(x,y) can be expressed as

 f(x,y) = r (x,y + y0) + ∑
n

i = 1
si (x – xi, y – yi) (1)
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The Fourier transform of the input joint image function in the Fourier plane is written as

 F(u,v) = |R(u,v)| exp[jφr (u,v) + jvy0 ] + ∑
n

i = 1
|Si (u,v)| exp[ jφsi (u,v) – juxi – jvyi ]  (2)

where |R(u,v)| and | Si (u,v) | are the amplitudes; φr (u,v) and φsi (u,v) are respectively the phases of the Fourier 

transforms of r(x,y) and si(x,y), whereas u and v are mutually independent frequency domain variables. 

Accordingly, the joint power spectrum (JPS) is computed by

 |F(u,v)|2 = |R(u,v)|2 + ∑
n

i = 1
|Si (u,v)|2 

  + 2 ∑
n

i = 1
|Si (u,v) || R(u,v) |cos[φsi (u,v) – φr (u,v) – uxi – vyi – 2vy0

  + 2 ∑
n

i = 1
 

k ≠ i

∑
n

k = 1
|Si(u,v)||Sk(u,v)|cosφsi(u,v) – φsk(u,v) – uxi + uxk – vyi + vyk] (3)

 In Eq. (3), |R(u,v)|2 are |Si(u,v)|2 are zero-order terms which produces additional autocorrelation 

between the targets and the reference. It is therefore suggested to use Fourier plane image subtraction (FPIS) 

[22] to eliminate the side effects. The FPIS can be achieved by subtracting the input-scene only power 

spectrum and the reference only power spectrum from |F(u,v)|2, expressed as

 C(u,v) = |F(u,v)|2 – |R(u,v)|2

                 
–  ∑

n

i = 1

|Si(u,v)|2 + 2 ∑
n

i = 1
k ≠ i

∑
n

k = 1
|Si(u,v)||Sk(u,v)| × cos[φsi(u,v) – φsk(u,v) – uxi + uxk – vyi + vyk]

            = 2 ∑
n

i = 1
|Si (u,v) ||R(u,v) |cos[φsi (u,v) – φr (u,v) – uxi – vyi – 2vy0  (4)

 To avoid the pole problem associated with an inverse ilter, Fringe-Adjusted Filter (FAF) [13] is 

applied to the resultant JPS in Eq. (4). FAF is deined as 

 Hfaf (u,v) = 
B(u,v)

A(u,v) + |R(u,v)|2
  (5)

where A(u,v) and B(u,v) are either constants or functions of u and v. Finally, the FJTC correlation output is 

computed by inverse Fourier transform of the FAF transformed C(u,v) as

 c(x) = F –1 {C(u,v) × Hfaf (u,v)} (6)

2.2 SFJTC

 The diagram of SFJTC is shown in Fig. 2. The computational process of SFJTC is similar to FJTC. 

The main difference is that SFJTC computes on one-dimensional signal (e.g., one pixel in hyperspectral 

imagery) for each input sample, whereas FJTC operates on a two-dimensional image data as one input 

sample. 

 In addition, study in [2] proposed to use Peak-to-Clutter Mean (PCM) instead of Correlation Peak 

Intensity (CPI) to discriminate the targets from the background, because false signals may produce CPI that 

have very close value with that from true signals in the correlation plane. The PCM is deined as

 PCM = 
CPI

L – 1
 

∑
c~i ≠ CPI

c~i
 (x) (7)

where L represents the half length of the correlation output vector. If the target presents in an unknown input 

image, the output of SFJTC in the half correlation plane will produce a high and sharp correlation peak at the 

location of the target in the scene.
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Fig. 2. Algorithmic low of SFJTC. FFT: Fast Fourier Transform; JPS: Joint Power Spectrum; IFFT: Inverse FFT; 
FAF: Fringe-adjusted Filter; PCM: Peak-to-Clutter Mean.
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Fig. 3. Algorithmic low of CSFJTC. JS: Joint Spectrum; FFT: Fast Fourier Transform; JPS: Joint Power Spectrum; 
CJPS: Combination of JPS; IFFT: Inverse FFT; CSGFAF: Class-associated Generalized Fringe-adjusted Filter. 
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2.4 CSFJTC

 Figure 3 shows a block diagram of CSFJTC. The major difference between SFJTC and CSFJTC 

lies on the number of dissimilar input-reference-signal which accounts for the number of dissimilar patterns. 

Speciically, CSFJTC can handle multiple dissimilar patterns while SFJTC is designed only for detecting 
single class pattern. Consequently, the strategy for computing the joint signature is also different. In CSFJTC, 

the joint spectral signature is calculated separately for each reference spectrum. If we consider only two 

reference spectral signatures, denoted as r1(x) and r2(x), then the joint signatures are computed by Eqs. (8)-

(11): 

f11i (x) = r1 (x + d) + si (x – d) (8)

f21i (x) = r1 (x + d) – si (x – d)     (9)

f12i (x) = r2 (x + d) + si (x – d)    (10)

f22i (x) = r2 (x + d) – si (x – d)    (11)

where si = [si1, si2, …, siL] represents the ith (i = 1,2,…, M) pixel spectrum when a hyperspectral dataset 

contains M pixels {si}
M
i=1, and the corresponding joint spectral signature is represented by fi. In the following 

steps, the fast Fourier transform is applied to Eqs. (8)-(11) separately and then JPS is computed. The removal 

of zero-order term is achieved by Eqs. (12) and Eqs (13):

 P1i
 (u) = T11i –

 T21i = 4|R1(u)||Si(u)| cos[φr1(u) – φsi(u) + 2ud] (12)

  P2i
 (u) = T12i

 – T22i = 4|R2(u)||Si(u)| cos[φr2(u) – φsi (u) + 2ud] (13)

where T11i, T21i, T12i, T22i are the JPS of f11i, f21i, f12i, and f22i, respectively. To detect two classes of objects 

simultaneously, the JPS in (12) and (13) are further combined as

 Pi (u) = a1 P1i (u) + a2 P2i (u)

           = a1 {4|R1(u)||Si (u) |cos[φr1 (u) – φsi (u) + 2ud ]}

           + a2
 {4|R2(u) ||Si (u) |cos[φr2 (u) – φsi (u) + 2ud]} (14)

where a1
 and a2

 are constants which control the energy content of the input signal. Next, Class-associative 

Spectral Generalized FAF (CSGFAF) [3] is multiplied to Pi (u), that yields

 ~
Gi

(u) = 
[a1P1i(u) + a2P2i(u)]ϵ + |R1(u)|m + |R2(u)|m

 (15)

where ϵ is a constant. The parameter m is a constant that may be either 0, 1 or 2. Finally, the CSGFAF iltered 
JPS is inverse Fourier transformed to obtain the correlation output. The detailed mathematical description of 

CSFJTC can be found in [3]. 

2.4 Proposed Scheme

 In our proposed framework, four popular DR methods, which are Principal Component Analysis 

(PCA) [23], Probabilistic PCA (PPCA) [24], Denoising AutoEncoder (DAE) [25], and Factor Analysis (FA) 

[26], are individually combined with CSFJTC to perform object detection in HSI. All of these four DR 

methods are available in [27, 28]. The speciic procedures are summarized as follows: the raw HSI is irst sent 
to all four above mentioned DR methods separately while retaining irst ive components to extract useful 
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information, then the reference pixel signature from each class is randomly selected, inally the selected 
references and DR transformed data are fed into CSFJTC to perform the target detection task. A schematic of 

DR-based CSFJTC is depicted in Fig. 4.

3 Experiments and Discussion

 The performance of four DR-based CSFJTC methods are examined using Area-Under-Receiver-

Operating Characteristic (ROC) (AUROC). The AUROC describes the total area under ROC that is computed 

by the true positive rate as a function of the false positive rate. AUROC = 1 refers to the perfect detection, 

whereas AUROC<1 represents the possibility of a false positive detection. The parameters CSGFAF in 

CSFJTC were empirically set as a1= a2 = 0.5, ϵ =10–3 and m = 2. We also vary the number of components 

from 1 to 5 for all DR methods to investigate their effect on the detection outputs. In addition, the number for 

a dissimilar pattern is selected from {1, 3, 5}.

 

Raw HSI

PCA + CSFJTC

PCMpca+csfjtc

PPCA + CSFJTC

PCMppca+csfjtc

DAE + CSFJTC

PCMdae+csfjtc

FA + CSFJTC

PCMfa+csfjtc

Dimensionality Redunction

(PCA, PPCA, DAE, FA)
Select Reference spectra

Fig. 4. DR-based CSFJTC for single/multiclass object detection.

3.1 Datasets

 Salinas dataset [29]: This image was collected by AVIRIS over Salinas Valley, California. The data 

contains 224 spectral bands and each band has a size of 512×217 pixels with a spatial resolution of 3.7-meter 

per pixel. For better analysis, we removed twenty water absorption bands (108-112, 154-167, 224) before 

experiments, which results in 204 bands HSI. There are sixteen classes of targets contain in this image, 

including Brocoli, Fallow, Stubble, Celery, Grapes, Soil, Corn, Lettuce, Vinyard and their different types as 

shown in Fig. 5. Figs. 5 (a) and Fig 5 (b) show the corresponding false color composite image and ground 

truth data, respectively. 

3.2 Results and Discussion

 The experimental results are shown in Fig. 6 and Tables 1, 2, and 3. From Fig. 6, it can be observed 

that varying number of components (i.e., feature dimension) causes different detection accuracy for all DR 

methods. For instance, for three-class pattern detection, the AUROC of PCA-based CSFJTC is ranging 

from 0.6598 to 0.9340, which indicates that the number of feature dimension is a critical step. Furthermore, 

the values of AUROC tends to decrease when the targets contain more dissimilar patterns. This trend is 

especially obvious for DAE-based CSFJTC where AUROC is dropped from 0.9990 to 0.5655 if the number 
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of components is set to 5. This is because detecting more dissimilar patterns poses challenges to discriminate 

the pattern from the background and noise which may eventually affect the score of AUROC. Additionally, it 

is worth noting that DAE-based CSFJTC yields better results than the alternate methods for single-class and 

3-class pattern detection, however, the performance is weakening when comes to detecting more dissimilar 

patterns.

(a) (b) 
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Fig. 5. The Salinas scene dataset. (a) False-color composite. (b) Ground truth
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Fig. 6. Performance comparison using various number of components

Table 1. AUROC versus number of feature dimension for single class of object detection. The highest accuracy is marked 

in boldface. 

Methods
Number of Feature Dimension

1 2 3 4 5

PCA+CSFJTC 0.6678 0.9727 0.9355 0.8979 0.6498

DAE+CSFJTC 0.5084 0.9983 0.9831 0.9984 0.9990

PPCA+CSFJTC 0.7264 0.9644 0.8958 0.9722 0.9448
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FA+CSFJTC 0.8115 0.9738 0.9772 0.9826 0.9838

Spectral Only 0.9884

Table 2. AUROC versus number of feature dimension for 3 classes of object detection.

Methods
Number of Feature Dimension

1 2 3 4 5

PCA+CSFJTC 0.7933 0.9340 0.8016 0.8005 0.6598

DAE+CSFJTC 0.6311 0.9514 0.9295 0.8413 0.9343

PPCA+CSFJTC 0.7811 0.9235 0.8463 0.8654 0.7994

FA+CSFJTC 0.7127 0.9386 0.9246 0.9413 0.9499

Spectral Only 0.7673

Table 3. AUROC versus number of feature dimension for 5 classes of object detection.

Methods
Number of Feature Dimension

1 2 3 4 5

PCA+CSFJTC 0.7594 0.9291 0.4417 0.5029 0.4449

DAE+CSFJTC 0.5790 0.1349 0.0098 0.0426 0.5655

PPCA+CSFJTC 0.6848 0.9094 0.3085 0.8254 0.6409

FA+CSFJTC 0.8366 0.4252 0.9534 0.9440 0.9339

Spectral Only 0.5105

 One of the important aspects of introducing DR techniques to CSFJTC is to improve the detection 

performance. And it is evident that DR- based CSFJTC is superior compared to the spectral-only based 

CSFJTC in our experiments as shown in Tables 1-3. Especially for ive-class pattern detection, we are able 
to achieve AUROC of 0.9534 while spectral-only method reaches only 0.5105. On the other hand, using less 

dimensional data obtained by DR, the computational speed can be potentially increased. 

4 Conclusion

 In this paper, we irst provide a review of FJTC based pattern recognition techniques including 
FJTC, SFJTC and CSFJTC, and then introduce DR-based CSFJTC methods for single class and multiclass 

object detection frameworks. The evaluation is performed on the application to detect dissimilar patterns 

from HSI. Based on experimental results, it is concluded that DAE-based CSFJTC is robust for pattern 

discrimination when targets involve less dissimilar patterns. Also we observed that by varying the number of 

components in DR methods can yield different results which points out the signiicance of feature dimension 
for pattern detection. Therefore, developing a more advanced DR method for CSFJTC that are less sensitive 

to feature dimension will be our future research direction. 
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