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ABSTRACT: The reduction in powertrain noise over the last decade has led to an increased focus
in reducing tire-road noise, largely due to the environmental concerns related to road traffic noise in
industrial countries. Computational Fluid Dynamic (CFD) simulations conducted using ANSYS
FLUENT, are presented here with the objective of understanding air-pumping noise generation
mechanisms in tire-road contact. The CFD model employs a large eddy simulation (LES) turbu-
lence modeling approach, where the filtered compressible Navier-Stokes equations are solved for
two-dimensional (2D) tire geometries, and temporal and spatially accurate pressure fluctuations
are utilized to determine sound pressure levels and dominant frequencies. The 2D tire geometry
is employed to study the noise effects resulting from single and multiple grooves with prescribed
sidewall movement, which represents deformations due to the tire movement on a road surface.
Validation of the model is conducted through qualitative and quantitative comparisons with previ-
ous computational and industry testing studies. These simulations are intended to provide a deeper
understanding about the small-scale noise generation as well as the near- and far-field acoustics,
thereby identifying control parameters that can help optimize the tire performance in terms of
acoustics through novel and improved designs and paving the way for the automotive manufac-
turer to compare a variety of tires’ noise and vibration characteristics without spending time and

money for vehicle pass-by tests.
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Introduction

Traffic noise has a significant contribution towards environmental noise pollution in developed
countries due to the presence of a large number of vehicles. Powertrain noise and tire noise form a
major part of this vehicle noise. Tire noise is very critical to noise control, since unlike other noise
sources, it is relatively difficult to attenuate the tire noise after it is produced [1]. Furthermore,
tire noise represents the largest percentage of noise, after engine noise, even under accelerating
conditions [2]. Over the last decade, due to the reduction in powertrain noise in vehicles, tire noise
control with regards to the overall vehicle noise has received an increased attention.

It is important to have knowledge about the sources of tire noise in order to control them. One
should also understand the interactions between the tire and the road in order to fully understand
the noise generation mechanisms, which due to their complex nature, require sophisticated models.
These mechanisms can be roughly divided into (a) noise generation mechanisms and (b) amplifi-
cation/reduction mechanisms [3,4]. The generation mechanisms are further divided into structure-
borne and air-borne mechanisms, which are responsible for high frequency and low frequency
noise, respectively. Structure-borne noise is caused by mechanical vibrations and tire impact. On
the other hand, air-borne noise is caused mainly by air turbulence, resonance effects and the dis-
placement of air when the tire tread comes in contact with the road surface at the tire/road interface.
The amplification/reduction mechanisms can influence both structure-borne and air-borne noise.
One of the most important amplification mechanisms in tire/road noise is the horn effect, which
is caused by the horn-like geometry formed by the tire belt and the road surface. The horn effect
influences acoustic wave propagation and can lead to amplifications of upto 10-20 dB [5].

Air-borne noise control in tires has not received as much attention as structure-borne noise in
the literature. This is mainly because, experimentally, it is quite difficult to isolate the aerodynamic
sources and a lot of care has to be given in order to ensure the obtained data is not polluted by

vibration and background noise. However, computationally, this can be achieved using an accurate



numerical model, that can represent the complex phenomenon involved in tire/road interaction and
resulting effect on the air. Among air-borne noise generation mechanisms, air pumping is caused
by the displacement of air in the pockets between tire tread and road surface [6]. One of the first
studies in air pumping mechanism was done by Hayden [7], where he described the mechanism
using acoustic monopoles, assuming that the density and pressure fluctuations in the air during air
pumping are low. However, Gagen [8,9] argued that due to the sluggish nature of air in responding
to changes in volume, there are large density and pressure fluctuations which invalidate the use
of monopole theory. He proposed the “squeezed acoustic wave equation” for squeezed cavity
systems [8] and later extended it to consider the non-linear effects in air pumping [9]. However,
his equation represented a simplified case and still did not take into account the geometrical effects
in air pumping and propagation.

A direct computational approach that can be used to analyze noise generation during tire/road
interaction is the use of a fluid structure interaction (FSI) solver. This kind of approach involves
the coupling of a structural solver, which calculates the structural deformations of a tire and the
tire grooves, with a fluid solver, which provides a solution for the resulting effects on the surround-
ing air. However, limitations in computational resources and modeling complexity limits the use
of FSI. An alternative approach is to bypass the use of the structural solver and model deforma-
tions instead. Kim et al. [10] used such an approach to propose a three-stage hybrid technique for
predicting air pumping noise generation. The three steps involved were a small-scale noise gener-
ation, near-field noise propagation and far-field noise prediction, where flow properties from one
step were used to predict the effects in each successive step. The small-scale noise generation was
studied using a piston/sliding-door/cavity geometry and the solution was obtained using the groove
as the frame of reference. This approach had a one-way interaction between the different steps of
analysis and hence, the effect of tire geometry and flow dynamics on the small-scale pumping were
not taken into account.

The current study proposes a new unified methodology for the prediction of air-pumping noise

generation in tires, where the small-scale air pumping, horn effect as well as far-field noise are



predicted through a single process. The method consists of a 2D tire with one or more lateral
grooves sliding along the tire curvature to represent tire rotation. The grooves undergo volume
changes due to prescribed deformations of the side walls when they are close to the tire/road
interface and the resulting pumping phenomenon is analyzed along with the near-field and far-
field noise at different receiver locations. Two different cases are studied here. The first is a tire
with a single groove and the second is a tire with two grooves. The small-scale air pumping is
solved considering the combined influences of the rotating tire, deforming groove and presence
of the horn geometry on the air. The numerical solution of this problem is obtained using the
commercial code ANSYS FLUENT, which is a finite volume based solver for the Navier-Stokes
equation. The Ffowcs-Williams and Hawkings (FW-H) acoustic model is additionally solved in
order to predict the far-field acoustics. Pressure signals at specific near-field and far-field locations
are collected and spectral analysis is done using Fast Fourier Transform (FFT) and Short Time

Fourier Transform (STFT) algorithms.

Model for air pumping noise prediction

The model used for the prediction of air pumping consists of a 2D tire geometry with lateral
grooves which slide along the tire surface and undergo prescribed deformations. Due to the two-
dimensional nature of the study, horn geometry is present only on the upstream and downstream
sides of the tire and not on the axial directions. The different stages involved in the modeling
process has been schematically shown in Figure 1.

The description of the model is divided into six stages according to the state of the tire groove.
In stage I, the tire groove approaches the upstream side of the tire/road interface. Since it is in mo-
tion, the air pocket that is present inside the groove is not stationary and has a certain flow property
associated with it, as is the case in real scenarios. As the groove approaches the tire/road interface,
a prescribed deformation of the groove side walls is triggered, as shown in stage II. The volume
changes due to this deformation causes a rise in air pressure and as a result, pumping process is

initiated. At the same time, the groove gradually starts to close, as it moves into the contact patch.
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FIG. 1 — Schematic diagram showing different stages of the tire groove in the prediction model of
air pumping noise, along with consideration for horn effect
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Furthermore, the presence of the horn geometry takes into account the horn effect on the upstream
side. In stage III, the groove is in the contact patch and there is no deformation prescribed at this
stage. The groove moves through the contact patch and approaches the downstream side of the
tire/road interface in stage I'V. At the beginning of stage V, the groove starts leaving the contact
patch and starts to open up, as it is returning to its original shape. The air that is trapped inside the
groove at high pressure is suddenly released during this stage. This causes an interruption in the
suction of outside air into the cavity although its volume is increasing. This phenomenon has been
referred to as Helmholtz resonance phenomenon in some studies [11, 12]. The high pressure air
that escapes out from the groove on the downstream side is influenced by the horn geometry. The
groove finally reaches its original shape in stage VI. For the far-field acoustic analysis, a control
surface is chosen which surround the tire geometry and input for the acoustic model is obtained
from this control surface. A solution for the acoustic model is obtained simultaneously while solv-
ing the fluid dynamic equations and hence, there are no further solutions stages involved. In order
to simulate a tire rolling over a rotating drum like in an experimental setup, ambient air flow is
not considered. Furthermore, the road and tire is moving on a common operating velocity (See
the Computational Details section for more details). It should be noted that only air-borne noise

generation and propagation mechanisms are taken into account using this model.



Governing equations

The air pumping model discussed in the previous section is solved using a set of governing equa-
tions for the air. Since the pumping process involves large changes in density and pressure of
air, the compressible forms of the governing equations are used for the fluid. However, a com-
plete solution of the fluid, both near-field and far-field is not economical in terms of computational
resources and time. Therefore, an acoustic model is used to predict far-field acoustics in air pump-
ing, after the near-field is solved using a direct computational approach. This section discusses the

governing equations related to the fluid model as well as the acoustic model.

Computational fluid dynamic (CFD) equations

The compressible forms of the LES-filtered continuity (Eq. (1)) and momentum equations (Eq.
(2)) are solved in order to take the compressible properties of air into account and also model the
turbulence in the resulting flow.
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Equation (2) is also called the filtered compressible Navier-Stokes equation where , g;; is the
stress tensor due to molecular viscosity and 7;; is the subgrid-scale (SGS) stress tensor, defined

using Boussinesq hypothesis for LES models.
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In Eq. (4), u; is the SGS turbulent viscosity. For the LES Smagorinsky model, it is defined by,
= pLY|S]| (5)

In Eq. (5), Ly is the mixing length for the subgrid scale and }S’ ‘ =4/2S; jS,- i S; ; 1s the strain-rate

tensor for the resolved scale, defined by,

— 1 /Jy; 8ﬁj
Sij_i(an_{—axi) (6)

For a compressible flow, the filtered energy equation is additionally solved. The air is assumed

to be an ideal gas in this study. The filtered energy equation is defined by,
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where, hy; and A are the sensible enthalpy and thermal conductivity respectively. The subgrid
enthalpy flux term on the right side of Eq. (7) is approximated using the gradient hypothesis

M T
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where, C), is the specific heat for the fluid and Pr; is the subgrid Prandtl number.
These governing equations for the fluid are discretized and solved using the finite volume solver

in ANSYS FLUENT.

FW-H acoustic model

The acoustic model used in this study is the Ffowcs-Williams and Hawkings (FW-H) model, which

is an inhomogeneous wave equation derived from the continuity and Navier-Stokes equations [13].



The FW-H equation is written as
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Here, u; is the fluid velocity in x; direction, u,, is the fluid velocity normal to surface f =0,
v; is the surface velocity in x; direction, v, is the surface velocity normal to the surface, & (f)
is the Diract delta function and H (f) is the Heaviside function. The surface f = 0 mentioned
here is the mathematical surface that embeds the exterior flow problem in an unbounded space in
order obtain the solution using the generalized function theory and the free-space Green function.
Furthermore, in Eq. (9), n; is the unit normal vector pointing towards the exterior region, ag is
the far-field acoustic velocity and p’ is the far-field sound pressure. Also, Tj; is the Lighthill stress

tensor obtained by the relation,
T;j = puiu;+ P — ag (p — Po) & (10)

P;; in Equations (9) and (10) is the compressive stress tensor, which for a Stokesian fluid is
given by,
au,- du j 20 Uy

Bj=péij— axj+(9_)ci_§8_)q(5ij (11

The acoustic wave equation in Eq. (9) is solved using the assumptions that there are no ob-
stacles between the sound source and the receivers, in order to obtain the acoustic pressure due to
monopole, dipole and quadrupole sources. In FLUENT, the solution of the FW-H equation can
be obtained simultaneously with the CFD equations and acoustic pressure at the receiver locations
can be obtained on the fly. Therefore, using the acoustic model in order to predict the far-field

acoustics can be done simultaneously and it is also economical compared to a direct solution.



Spectral analysis tools

After the flow properties and acoustic pressure are obtained for the receiver locations, spectral
analysis tools are used in order to analyze the sound generated during air pumping. For this pur-
pose, the Fast Fourier Transform (FFT) tool available in FLUENT is used. The FFT tool calculates
the power spectral density (PSD) spectrum from the evolution of acoustic pressure, which can then

be used to obtain the sound pressure level (SPL) spectrum using the relation,

PSD
SPL = 1010g10 (T) (12)
Pref

In Eq. (12), Py =2 % 107> Pa is the reference pressure at the threshold of human hearing.
Prior to implementing the FFT algorithm, the static offset of the pressure signal is removed using
the mean value removal tool. However, no windowing functions are used due to the impulsive
nature of the signal. It is common practice to use the A-Weighted SPL spectrum over a 1/3-Octave
Band in order to analyze tire noise. The A-Weighted SPL is the SPL weighted by the A-scale
function, which closely approximates the frequency response of a human.

Due to the non-stationary nature of the pressure signal, a time variation of the sound is nec-
essary to provide more information. For this purpose, a Short-Time Fourier Transform (STFT)
algorithm is used to obtain a spectrogram in Matlab. The STFT algorithm divides the signal into
sections and applies Discrete Fourier Transform (DFT) algorithm on each section to obtain the time
variation of the frequency spectrum, which can then be plotted to obtain a spectrogram. A win-
dowing function is applied on each section of the signal before DFT and for this purpose, Hanning

window is used in this study.

Computational details

The governing equations mentioned in the previous section are solved for a computational model
using a set of numerical parameters. The computational model, mesh and numerical parameters

used to obtain the numerical solution are discussed in this section. Furthermore, the methodology



for the collection of acoustic data at the near-field and far-field are also discussed here.

Computational geometry and mesh

The diameter of a 215/60R16 tire is considered in the 2D tire geometry for this study. The tire
geometry considered here is undeformed. The only difference between the two cases considered
in this study, named Case 1 and Case 2 henceforth, are that Case 1 has only one groove while Case

2 has two grooves on the tire. The geometry for both the cases can be seen in Figure 2.

Groove-1

Groove-2

(a) Case 1 (b) Case 2

FIG. 2 — Analysis geometry for 2D tire with dimensions of a 215/60R16 tire, for two different
cases, (a) Case 1 with one groove (b) Case 2 with two grooves

The grooves are of size Smm x 10mm similar to [14] and are initially placed far away from the
contact patch. This is done so that the initial fluctuations generated as the tire starts rotating, is
cleared out of the computational domain. For Case 1, the initial position of the groove is at 659 ,
from the point of tangency of tire with road. For Case 2, groove-1 is at the same position as the
groove for Case 1 and groove-2 is placed 5° towards the contact patch, relative to groove-1.

The computational mesh used for this study is shown in Figure 3. The mesh shown in the

10



figure is for Case 1, and is very similar to Case 2 as well, the only difference being the additional
groove. The mesh size near the tire is made up of the similar sized elements so that the near-field
pressure fluctuations are resolved accurately. Mesh biasing is used to coarsen the mesh which are
farther from the tire, in order to absorb the generated pressure fluctuations before they reach the

boundaries. A non-conformal mesh is used between the grooves and tire-exterior domain for both

FIG. 3 — Computational mesh used for the simulation with a close-up view of the meshing near
the groove for Case 1

the cases, in order to enable the use of the sliding mesh technique. Addition of inflation layers
on the tire surface is not done to make sure that the size of the non-conformal mesh between the
tire surface and the grooves are the same. Instead, the mesh size is made fine around the tire. The
cut-out surface at the contact patch results in a good quality mesh with a minimum orthogonal
quality of around 0.77.

A mesh independence test is also conducted in order to ensure that the results obtained are

spatially accurate. Two cases with 4 x 10° elements and 5.2 x 10° elements are run for Case 2 and
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pressure data is collected at different locations. It is found that the maximum difference in pressure
values for the main pumping signals are in the range of 5Pa and the small amplitude pressure waves
captured towards the end of the simulation, after the main pressure wave has already passed, are
slightly out of phase. However, due to very small amplitudes compared to the main pressure signal,
they will not influence the results noticeably. Thus, it is concluded that the solution is spatially
accurate and mesh independent. The results presented here are for 5.2 x 10° mesh elements, most

of which are structured.

Numerical parameters and boundary conditions

The parameters used for the simulation are shown in Table 1. The simulation is carried out for a
vehicle speed of 40km/hr. This velocity is used as the boundary condition for the road surface
to represent a rotating drum (as in an experiment) and a rotating boundary condition is also used
equivalent to the vehicle speed for the tire surface. The prescribed deformations of the groove
result in a 23% deformation by volume. Volume monitors in FLUENT are used to analyze the
groove deformations.

In order to define the start and end of deformation of the grooves on the upstream and down-
stream sides, the angular displacement of the grooves are used as triggers. The boundaries sur-
rounding the domain are treated as freestream boundaries so that any pressure fluctuations that are
generated pass through them without any reflections. Since the tire grooves start their rotation from
a position far away from the contact patch, it is assumed that the domain attains a steady condition
before the pumping process begins and there are no background pressure fluctuations which effect
the pumping pressure data. So, it can be concluded that the study closely represents an experimen-
tal setup inside an anechoic chamber. It should be noted that the parameters for the study, including
the prescribed volumetric deformations, are similar to the ones used in the experimental study by
Takami et al. [15].

For the finite volume solver, a bounded central difference scheme is used for the momentum

equations while second order upwind schemes are used for all other equations. Pressure-velocity
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coupling is achieved using the PISO scheme. Temporal discretization employs a second order
implicit scheme. User defined functions (UDF) are used in order to move and deform the grooves.
A non-conformal sliding mesh technique is used in order to rotate the grooves along the tire surface.

Similarly, layering technique is used to change the mesh during groove deformation.

Collection of near-field and far-field acoustic data

Spectral analysis is conducted for pressure data collected at various near-field and far-field receiver
locations (Table 2) in order to study how the noise characteristics change as the acoustic waves
propagate through the computational domain. Some of the receiver locations are similar to the
experimental study by Takami et al. [15]. For consistency, these receivers are named receivers 1,
3,9 and 11, similar to their paper. Since this study only involves two-dimensional cases, only the
receivers which fall on the symmetry plane of the tire are used from the experiment. Furthermore,
in order to study acoustic properties at locations farther away from the tire, two receiver locations 2
and 4 are additionally used. Therefore, there are six receivers in total, three each, on the upstream
and downstream sides of the tire.

The near-field receiver locations fall inside the control surface (the red-line in the figure), as
shown in Figure 4 and the pressure data for these locations are obtained through direct computation.
The far-field receivers fall outside the computational domain and directly solving for air pressure
at these locations requires a huge amount of computational resources. Consequently, the control
surface is used as the source for the FW-H acoustic model. Pressure data at every 50 time steps is
collected at the receiver locations for both cases 1 and 2 for a simulation time interval of 0.03 s,
and spectral analysis is done using the FFT tool in FLUENT and STFT algorithm in Matlab. This

results in a frequency resolution of around 34 Hz and a sampling frequency of 20 kHz.

Results and discussion

In this section, the results obtained from the simulation for the two cases mentioned in the previous

sections are discussed. The propagation of pressure waves along the horn geometry in the upstream
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Control surface

00 - -~

FIG. 4 — Details related to collection of acoustic data

and downstream sides of the tire for Case 2 is discussed using instantaneous pressure contours
along with close-up views of the grooves. The close-up views are used to show the different stages
that the grooves undergo at the tire/road interface. Furthermore, results obtained from the spectral
analysis of the two cases are discussed in order to study the sound generated at near-field and

far-field receiver locations.

Pressure Contours

The pressures contour showing the propagation of pressure waves generated due to air pumping
on the upstream and downstream sides of the tire in Case 2 are shown in Figure 5. The figure
also contains close-up views of the grooves at the tire/road interface in order to show the different
stages that the grooves undergo in the proposed model. Since the pressure contours for Case 1
does not provide any additional details regarding the propagation of acoustic waves through the
horn geometry, they are not shown here.

Figure 5a shows the instantaneous pressure contour generated due to air pumping when the
grooves are moving through the tire/road interface, on the upstream side. The deformed shape of

groove-2 and the undeformed groove-1 can be seen in the close-up view. When compared to the
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FIG. 5 — Instantaneous pressure contour showing propagation of pressure waves through horn
geometry for Case 2 when the grooves are at (a) the upstream side of the tire (b) the downstream
side of the tire

schematic diagram in Figure 1, groove-1 is at stage I while groove-2 is at stage III. The pressure
waves that are seen in the figure are therefore generated due to the deformation of groove-2. It
can be seen that the air at high pressure is trapped inside groove-2. Since the analysis is 2D in
nature, this high pressure air only escapes out when the grooves open up at the downstream side.
However, in a real 3D simulation scenario, sound is generated in the axial direction of the tire
as well, giving rise to a directivity pattern in air pumping noise. It can be seen that the pressure
waves generated due to the deformation of the grooves are modified due to the horn geometry in
the upstream direction.

Figure 5b shows the propagation of the pressure waves through the horn geometry in the down-
stream side of the tire, along with a close-up view of the two grooves. When compared to Figure
1, groove-1 is at stage IV while groove-2 is at stage VI. The pressure waves traveling through the
horn geometry occur due to the release of the high pressure air from groove-2 as it opens up on
the downstream side. Furthermore, groove-2 also returns back to its original shape as it leaves the
tire/road interface. Also, the horn effect is something that is caused due to the horn geometry in

both the upstream and downstream sides of the tire. It can be seen from the pressure diagrams that
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the pressure waves generated from the grooves travel through the horn geometry and this influences

the noise propagation.

Influence of additional groove on pressure signal

Since the calculations presented here involve the modeling of the generation and propagation of
air pumping noise in a single stage, the influence of placing multiple grooves in a tire, on the
propagation of acoustic waves through the horn geometry can also be studied. The influence of the
additional groove present in Case 2, compared to Case 1 on the propagation of the pressure waves
through the horn geometry is studied using the evolution of the pressure signal with time at the

near-field receiver 11, as shown in Figure 6.
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FIG. 6 — Comparison of pressure evolution at receiver 11 for the different cases studied (a) Case
1(b) Case 2

The pressure evolution diagram for Case 1 (Figure 6a) shows one distinct pressure wave gen-
erated due to air pumping by the single tire groove. On the other hand, the pressure evolution for
Case 2 (Figure 6b), shows two distinct pressure waves, generated due to the pumping effect of the
two grooves present in the tire. The first pressure wave is generated due to groove-2 while the
second is generated due to groove-1. In the close-up view of the pressure wave due to groove-2, a
secondary minimum (shown by the arrow-head) can be seen after the primary minimum. However,

when the close-up view of the pressure wave in groove-1 (Figure 6a), the secondary wave is not
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present. It can be seen in Figure 5 that groove-1 is a part of the upstream horn geometry when
the pressure waves generated by groove-2 propagates. However, the horn geometry for Case 1 is
formed only by the smooth tire curvature. Therefore, it can be inferred that the secondary wave
visible in the pressure evolution diagram in Figure 6b is generated due to the presence of a groove
in the horn geometry.

Furthermore, when the two primary pressure waves in Figure 6b are compared, it can be seen
that the first pressure wave is of a smaller magnitude than the second wave. However, the nature
of the second pressure wave is similar to the primary wave for Case 1, seen in Figure 6a. This can
also be attributed to the presence of the additional groove on the horn geometry when the pumping
pressure wave due to groove-2 propagates. The change in the nature of the pressure signal can alter

the spectral characteristics of the air pumping noise and this is discussed in the following sections.

Acoustic characteristics of tire with one groove

The near-field and far-field receivers are used to study the spectral characteristics of the generated
noise as the pressure waves generated by air pumping propagates. The one-sided 1/3-Octave band
spectrum of the A-weighted SPL at the different receiver locations for Case 1 can be seen in Figure
7. Kim et al. [10] reported that most of the energy in air pumping is concentrated in the range of
2-8 kHz. This can also be seen in the SPL spectrum. The decay of acoustic energy with distance
is evident from the frequency spectrum since the SPL values decrease as the receiver locations are
farther away from the tire. Furthermore, it can be seen that most of the energy is concentrated at
a frequency band of 2 kHz for the near-field receivers. As the sound propagates to the far-field
locations, the concentration of energy in this band gradually diffuses and the spectrum is of a more
broadband type.

In order to study the frequency spectrum in more detail, the STFT algorithm is used to obtain
spectrograms for the pressure signal at the receivers. The spectrograms for this case are shown in
Figure 8. The colored contour in the spectrograms represent the acoustic energy associated with

the noise. The diagrams on the left column are for the upstream receiver locations 11, 1 and 2 while
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FIG. 7 — A-weighted SPL spectrum for tire with single groove at near-field and far-field receivers

the ones on the right column are for the downstream receivers 9, 3 and 4. Thus, the change in the
nature of pumping noise as it travel through the air can be studied comparatively from the first row
to the last in each column. The spectrograms contain one distinct color band corresponding to the
primary pressure wave generated due to the tire groove. It can be seen in Figure 8a that the acoustic
energy is concentrated at the range of 2 kHz, which was also seen in the SPL diagram. A higher
mode in the range of 4 kHz can also be seen in the spectrogram. The higher mode is not visible in
the downstream near-field receiver 9 (Figure 8b). As the receiver locations are farther away, higher
frequencies start to appear in the color bands as their significance in the overall acoustic spectrum
increases. This was also seen in the SPL spectrum. At receiver 2, a third frequency mode can be
seen at around 8 kHz. Thus, the transition to a broadband nature of pumping sound on the far-field

receivers, which was seen in the SPL diagrams (Figure 7) is also seen in the spectrograms.
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FIG. 8 — Spectrogram showing time variation of frequency distribution for tire with a single
groove at near-field and far-field receiver locations (a) Receiver 11 (b) Receiver 9 (c) Receiver
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Acoustic characteristics of tire with two grooves

The one-sided 1/3-Octave band spectrum of the A-weighted SPL at the different receiver locations
for Case 2 can be seen in Figure 9. Due to the presence of two grooves, the acoustic energy is
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FIG. 9 — A-weighted SPL spectrum for tire with two grooves at near-field and far-field receivers

higher than Case 1. However, the nature of decay of the sound with distance is similar to Case 1.
The spectrograms shown in Figure 10 provide more details on the nature of the sound and
the influence of the additional groove in this case. The diagrams on the left column are for the
receiver locations on the upstream side of the tire while those on the right column are for the
receiver locations on the downstream side of the tire. The presence of two grooves in the tire
implies that there are two distinct color bands, corresponding to the two primary pressure signals
at different times. Distinct dark bands in the range of 2 kHz can be seen, corresponding to the
peaks in pressure signal. As discussed previously, the presence of a groove in the horn geometry

changes the nature of the pressure signal at the receivers. The corresponding change in the spectral
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characteristics can be observed by comparing the two color bands. It can be seen that the whenever
there is a groove present in the horn geometry, the acoustic energy for higher frequencies are less
pronounced. On the other hand, when the horn geometry is a smooth curvature, the pressure signals
are not affected. Consequently, the second band for the upstream receivers and first band for the
downstream receivers are similar to the bands seen in the corresponding receiver spectrograms for

Case 1.

Conclusion

A unified model for the simulation of air pumping noise generation and propagation is proposed
here. The proposed model is described using several stages of the grooves along the tire/road in-
terface and these stages are illustrated in the numerical solution. The numerical solution for the
model is obtained using the finite volume solver and FW-H acoustic model in the commercial soft-
ware, ANSYS FLUENT, where groove deformations are prescribed through UDFs. The results
for a tire with (a) one groove and (b) two grooves are presented in order to study the influence of
the additional groove in tires. Pressure signals at different near-field and far-field receiver loca-
tions are obtained using direct simulations and by using the FW-H acoustic model, and spectral
characteristics is used to study the air pumping sound generation and propagation mechanisms.
Since the solution for all scales of air pumping was obtained in a single stage, it was possible to
study the interaction between the noise generation mechanisms and propagation mechanisms using
this model. It was found that the presence of the additional groove in the tire slightly changes
the acoustic characteristics of air pumping. Furthermore, as the receiver locations move farther
away, it was found that the noise changes into a more broadband type, with most of the energy
concentrated in the range of 2-8 kHz, which is consistent with previous reports [4, 10]. Due to
the two-dimensional nature of the simulation, the directivity pattern of air pumping cannot be
studied. Other important aspects involved in tire rotation such as flow dynamics due to motion
of the grooves, tire/road interaction and irregularities in horn geometry due to grooves can be

taken into account through this model. However, the proposed method paves the way for a unified
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model in 3D, where all the important aspects of air pumping can be studied and applied in order to

optimize tire acoustics through CFD.

Acknowledgments

The authors would like to thank the National Science Foundation (NSF) Center for Tire Research
(CenTiRe) for their technical and financial support during this study. We would also like to ac-
knowledge Dr. Tomonari Furukawa and his research team at Virginia Tech. for making parametric

details about their tire noise experiment available to us.

References

[1] Heckl, M., 1986. “Tyre noise generation”. Wear, 113(1), pp. 157-170.

[2] Iwao, K., and Yamazaki, 1., 1996. “A study of the mechanism of tire/road noise”. JSAE
Review, 17, pp. 139-144.

[3] Sandberg, U., and Ejsmont, J., 2002. Tyre/Road Noise Reference Book. INFORMEX, Harg,
SE-59040 Kisa, Sweden.

[4] Eisenblaetter, J., Walsh, S., and Krylov, V., 2010. “Air-related mechanisms of noise genera-

tion by solid rubber tyres with cavities”. Applied Acoustics, 71, pp. 854—860.

[5] Graf, R., Kuo, C.-Y., Dowling, A., and Graham, W., 2002. “On the horn effect of a tyre/road
interface, part i: Experiment and computation”. Journal of Sound and Vibration, 256(3),

pp- 417-431.

[6] Braun, M., Walsh, S., Horner, J., and Chuter, R., 2013. “Noise source characteristics in the

iso 362 vehicle pass-by noise test: Literature review”. Applied Acoustics, 74, pp. 1241-1265.

[7] Hayden, R., 1971. “Roadside noise from the interaction of a rolling tire with the road sur-

face”. Proceedings of Purdue Noise Contr Conf, pp. 62—67.

23



[8] Gagen, M., 1999. “Novel acoustic sources from squeezed cavities in car tires”. J. Acoust.

Soc. Am., 106(2), pp. 794-801.

[9] Gagen, M., 2000. “Nonlinear acoustic sources in squeezed car tyre cavities”. Noise & Vibra-

tion Worldwide, 31(4), pp. 9-19.

[10] Kim, S., Jeong, W., Park, Y., and Lee, S., 2006. “Prediction method for tire air-pumping
noise using a hybrid technique”. J. Acoust. Soc. Am., 119(6), pp. 3799-3812.

[11] Hamet, J., Deffayet, C., and Pallas, M., 1990. “Air pumping phenomena in road cavities”.
Proceedings of INTROC, 90, pp. 19-29.

[12] Nilsson, N., 1979. “Air resonant and vibrational radiation — possible mechanisms for noise

from cross-bar tires”. Proceedings of INTROC, pp. 93—1009.

[13] ANSYS, INC., 2014. ANSYS Academic Research, Help System, ANSYS Fluent Users Guide,
Release 15.0.7 ed.

[14] Gautam, P., and Chandy, A., 2015. “Understanding tire acoustics through computational fluid
dynamics (CFD) of grooves with deforming walls”. Proceedings of Internoise 2015/ASME

NCAD Meeting (In Publication).

[15] Takami, K., and Furukawa, T., 2015. “Study of tire noise characteristics with high-resolution

synchronous images”. Proceedings of EURONOISE, pp. 2113-2118.

[16] Winroth, J., 2013. “Dynamic contact stiffness and air-flow related source mechanisms in the

tyre/road contact”. Thesis (Chalmers University of Technology).

[17] Van Keulen, W., and Duskov, M., 2005. “Inventory study of basic knowledge on tyre/road

noise”. Delft, Nizozemska, oktober.

24



List of Figures

10

Schematic diagram showing different stages of the tire groove in the prediction

model of air pumping noise, along with consideration for horn effect . . . . . . . . 5
Analysis geometry for 2D tire with dimensions of a 215/60R16 tire, for two

different cases, (a) Case I with one groove (b) Case 2 with two grooves . . . . . . 10
Computational mesh used for the simulation with a close-up view of the meshing

near the groove for Case 1 . . . . . . . . . . . . e 11
Details related to collection of acousticdata . . . . . . .. .. ... ... ..... 14
Instantaneous pressure contour showing propagation of pressure waves through

horn geometry for Case 2 when the grooves are at (a) the upstream side of the tire

(b) the downstream side of the tire . . . . . . . . . . . . ... ... .. ..., 15
Comparison of pressure evolution at receiver 11 for the different cases studied (a)

Case 1 (b) Case2 . . . . . . . . . . @ i e e 16
A-weighted SPL spectrum for tire with single groove at near-field and far-field
FECCIVETS . . o v v i v i i i e e e e e e e e 18
Spectrogram showing time variation of frequency distribution for tire with a single
groove at near-field and far-field receiver locations (a) Receiver 11 (b) Receiver 9

(c) Receiver 1 (d) Receiver 3 (e) Receiver 2 (f) Receiver4 . . . . . . . .. .. ... 19
A-weighted SPL spectrum for tire with two grooves at near-field and far-field
FECEIVETS . . . v v v v i i it e e e e e e e e e e e e e e e 20
Spectrogram showing time variation of frequency distribution for tire with two
grooves at near-field and far-field receiver locations (a) Receiver 11 (b) Receiver

9 (c) Receiver 1 (d) Receiver 3 (e) Receiver 2 (f) Receiver4 . . . . . . . ... ... 21

25



List of Tables

1 Details for boundary conditions and simulation parameters

2 Coordinate locations of near-field and far-field receivers for collection of acoustic

pressuredata . . . . . ... ...

26



TABLE 1 — Details for boundary conditions and simulation parameters

Parameter Value

Tire size 215/60R16
Vehicle velocity 40 km/hr
Groove dimensions Smm x 10mm
Volume deformation 23 %

Groove separation value (Case 2) | 5°(~ 29mm)

TABLE 2 — Coordinate locations of near-field and far-field receivers for collection of acoustic
pressure data

Receiver Position (mm,mm)
11 (near-field, upstream) (-290,75)

1 (far-field, upstream) (-1330,390)

2 (far-field, upstream) (-7500,500)

9 (near-field, downstream) | (290,75)
3 (far-field, downstream) | (1330,390)
4 (far-field, downstream) | (7500,500)




