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Abstract—Instilling resilience in transportation systems is a major
challenge for our cities and communities. In this paper, the problem
of studying the resilience of transportation networks in face of
flooding in coastal cities is addressed. An analytical framework,
based on the game-theoretic concept of Wardrop equilibrium, is
introduced to model the network before and after flooding. The
proposed solution seeks to shift capacity, either totally or partially,
between road sides to decrease the travel time of some flow demands
while slightly increasing the travel time of other flow demands.
Preliminary results show that the average travel time is shown to
be better than the case of flooding.

I. INTRODUCTION

Resilience is a term used to describe a system’s performance
under disruptive events such as natural disasters or planned
attacks. It is defined as the ability of a system or a critical
infrastructure (CI) to adapt to or rapidly recover from potentially
disruptive events [1]. Critical infrastructure are those physical
and cyber systems that are vital to the functioning of our modern
economic and societies. In the United States, Transportation
systems are one of the main CIs according to the Department of
Homeland Security (DHS) [2]. Transportation systems help move
people and goods across the country therefore their functionality
and reliability should be maintained especially at emergency
times.

Transportation systems are prone to natural disasters such as
earthquakes and flooding. Earthquakes usually have a higher ef-
fect on transportation systems especially on roads and bridges [3].
Several approaches studied the problem of restoring the trans-
portation networks after natural disasters, especially earthquakes,
such that minimizing the restoration time and/or cost [3]-
[5]. As earthquakes can cause physical damage to roads or
bridges, restoration techniques usually focus on restoring specific
roads/bridges, under a limited budget, to achieve the most traffic
flow in the least restoration time. On the other hand, the problem
of studying the transportation network in case of flooding did
not get much attention in literature. This is because, the effect
of flooding in most cases is temporary and the problem affects
mostly coastal cities not any city like earthquakes. Recently [6],
[7] studied the effect of flooding on traffic flow. The authors
in [6], proposed to direct drivers to use alternative routes based
on the expected flood severity. The model is mainly empirical that
directs drivers away from roads that are high likely to have low
traveling speeds due to flooding. In [7], introduced the integration
of flooding models into traffic simulators to measure the effect
of flooding on planed trips that need to be canceled or rerouted.
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The main contribution of this paper is to develop an analytical
framework to study and improve the resilience of transportation
systems in face of flooding in coastal cities. In particular, we
are interested in improving the total system’s travel time for
drivers in case of flooding by partially or totally changing
some roads traffic direction. We use game theory to model the
transportation network and calculate the total system’s travel
time under equilibrium. We propose to calculate the increased
travel time under flooding based on flooding severity and roads’
preparedness. A bi-level problem is introduced to determine
changes in roads’ directions to maximize the traffic low under
flooding. This change is constrained by the available budget and
should be temporary and ends once the flooding is over.

II. SYSTEM MODEL

We consider a transportation network defined by a directed
graph G = (V,€£), where £ represents the directed edges or
roads and V represents the intersection points which can be
sources, destinations, or intermediate points. Bi-directional roads
are modeled as two different edges, an edge for each direction.
We will refer to edges as links in the following.

Flow based travel time function for a link a is given by:

to =ta,o-(1+a-(%)ﬁ), (1)

where . is the free flow travel time for link a determined by
the maximum speed allowed on link a, x, is the amount of flow
on the link, C, is the capacity of the link determined by the road
condition and its number of lanes. @ and 3 are two parameters
that are typically set to 0.15 and 4 respectively [8].

We propose to model the flooding effect as a decrease in the
speed with which cars can use the link. This results in an increase
in the free flow travel time for the link at the time of flooding
tq,; as follows:
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where « is the flooding severity and v > 0, P is the road
preparedness which depends on how the link is well prepared
by drainage systems or pumps to withstand flooding and p > 1.
Both ~, P take values based on predefined categories.

To study the traffic equilibrium, flow demands are given
between certain origin-destination (O-D) pairs in the network.
We consider all the possible paths between every (O-D) pair.
At equilibrium, all different used paths between any (O-D)
pair, should have the same travel time according to Wardrop
equilibrium. Wardrop equilibrium is calculated as follows for the



network:
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where f[° is the flow on path k that belongs to the (O-D) pair
(7, 8), gre is the total demand between (O-D) pair (r, s). The first
constraint is called the flow reservation rule as it ensures that the
amount of flow on all paths between any (O-D) pair equals the
total flow demand between this pair. The second constraint, is
the non-negativity as there is no negative flow. Finally, 67¢. is an
indicator that equals 1 if the link a is part of the path k& between
the (0-D) pair (r, s), and 0 otherwise.

The solution to (3), gives the equilibrium flow assignment for
each path int the network. The amount of flow on each link
is the summation of the flow of all the paths this link is part
of. The travel time of each link can then be calculated from
(1) by substituting the optimal flow assignment. Finally, the
total system’s travel time is the time between each (O-D) pair
multiplied by the total flow on this path.

The problem in (3) is considered again after updating the free
flow travel time as in (2). This gives the increased total travel
time in case of flooding. The proposed approach is then applied
to derive the optimal change in links direction that can achieve
the maximum possible travel time. The proposed approach works
as follows: links that share the same road but opposite directions
are couple together. A capacity shift can occur between coupled
links which is either full or partial shift. In full shift, both links are
assumed to have the same direction, which means the capacity
of one link is transfered to the other link. This is proposed to
occur in practical situations by declaring any road as a one-way
road in times of flooding. In partial shift, a fixed number of lanes
from one direction are assumed to serve as the opposite direction.
This means partial capacity from one direction is transferred to
the other direction. In practical, this can occur by using temporary
separators between lanes and signals to indicate the change.

where

ITI. PRELIMINARY RESULTS

We applied the proposed framework to the network in Fig. 1.
Link capacities are as shown in the figure. There are two (O-D)
pairs (1,4) and (3,4) with the demand values 80, 60 respectively.
Free-flow link travel times are assumed to be 30,20, 20, 30, 30
for links 1 — 5,6 — 10 respectively. The solution of the proposed
framework was to shift the whole capacity from link 6 to link 1.
This resulted in an increase in the travel flow time on path 2 but
a significant decrease in path 1 travel time. Travel time for both
paths and their average are shown in Fig. 2.

IV. PLAN FOR THE FULL PAPER

In the full paper, we will derive the analytical optimal solution
for the problem of capacity shifting. We want to solve the prob-
lem under budget constraint where shifting the whole capacity is

Fig. 1: A sample transportation network to test the proposed
framework.
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Fig. 2: Total System’s travel time.

assumed to cost less than shifting part of the capacity as the later
requires more physical resources to be used. Finally, we want to
consider the coupling effect between edges representing the same
road but with the different directions. This coupling will appear
in (1) as an extra term pertaining link x5, where a is the opposite
direction as in link a. This coupling effect, while being small,
can result in different analysis.
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