
On the Cybersecurity of m-Health IoT Systems

with LED Bitslice Implementation
AbdelRahman Eldosouky and Walid Saad

Wireless@VT, Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, USA

Emails:{iv727,walids}@vt.edu

Abstract—The Internet of Things (IoT) will provide a large-
scale infrastructure that can support a plethora of new networked
services. One critical IoT application pertains to m-Health services
which allow monitoring the health status of patients while providing
the ability for a rapid response in emergency cases. Connecting
healthcare services to the IoT brings forward new security threats
and vulnerabilities that can jeopardize the patients’ private data. In
this paper, a novel security framework for m-Health IoT security is
proposed using the concept of moving target defense (MTD). MTD
allows the m-Health system to dynamically change its cryptographic
keys to increase uncertainty on an attacker and secure the data.
In the proposed scheme, the devices update their keys locally to
eliminate the risk of revealing new keys while they are being shared
with a gateway. A practical implementation is proposed based on
bitslicing LED, a lightweight encryption cipher, to improve the
performance of decrypting multiple packets at the same time. LED
bitsliced implementation was tested on an ARM Cortex-A53 and was
shown to consume half of the processor’s instructions compared to
the conventional implementation. The effect of applying MTD on
the number of processor’s instructions is evaluated and shown to
be bounded.

I. INTRODUCTION

The Internet of Things (IoT) is seen as a large-scale ecosystem

that will integrate a heterogeneous mix of devices, sensors, and

wearable devices. The IoT will be a major enablers for a variety

of smart services that range from large-scale sensing to smart

transportation [1] and healthcare [2]. M-Health systems that are

wireless-enabled healthcare systems will be one of the primary

services supported by the IoT system that will provide them

with pervasive Internet access [3]. As discussed in [2], m-Health

IoT systems include a number of smart devices and sensors that

monitor a patient’s medical conditions such as blood pressure,

pulse or body temperature. The measured data is then sent to

remote physicians via an access point or a gateway [4]. This

gateway is responsible for collecting and sending the data [5] as

well as providing wireless connectivity, via multiple networking

interfaces, to the m-Health IoT devices.

This pervasive wireless connectivity for small, m-Health IoT

devices, will bring forward new security challenges and vulner-

abilities. Malicious attacks can now leverage the connectivity of

these devices to launch remote attacks and potentially access

the patients’ critical data that is being transmitted by the m-

Health devices. Taking these attacks into consideration, security

and privacy constitute key concerns in all IoT systems. The

work in [6] highlights the main security issues in the IoT while

outlining the main existing solutions that have been developed to

maintain the confidentiality, authenticity, and integrity of data in

IoT. The authors discuss security features that need to be applied

in a security architecture of four levels distributed between the

This research was supported by the U.S. National Science Foundation under
Grants CNS-1524634, OAC-1541105, and OAC-1638283.

devices and the cloud. Device authentication, data encryption,

and key agreement are highlighted as the most critical security

requirements that need to be addressed at the devices side.

Note that some wireless security approaches, e.g., physical layer

security [7] cannot be used with the IoT due to its heterogeneous

nature.

Recently, such security requirements received significant at-

tention in the literature due to the specific nature of the IoT.

The huge number of heterogeneous limited-resources devices

in the IoT complicate the security mechanisms. The limited

resources make it hard for the IoT devices to run complex security

algorithms. Hence, lightweight encryption techniques are seen

as the cornerstone of IoT security. In [8], the authors present a

lightweight encryption method to authenticate RFID tags at the

readers. The work in [9] evaluates two major types of attribute-

based encryption on different IoT devices. This work shows that

the performance of attribute-based encryption cannot be readily

deployed in small IoT devices, due to resource constraints. A

more recent work in [10] proposes a lightweight attribute-based

encryption scheme based on elliptic curve cryptography. The

scheme is shown to have low communication overhead provided

that the number of attributes remains small.

While data encryption is not a sufficient security mechanism

for the IoT [11] as it does not protect against insider attacks, that

is not the case in m-Health IoT. In the IoT, both data encryption

and device authentication [12] are taken into consideration. How-

ever, as the devices in an m-Health system are usually operated

around the patient and known to the gateway, security mecha-

nisms are oriented more towards data encryption for enhancing

data privacy. In [4], the authors provide a prototype for applying

asymmetric, public key, encryption in an m-Health IoT system.

Due to the high computational power of public key encryption,

it is applied at the level of the gateway. The more recent work

in [13] demonstrates the benefits of applying cloud computing

in an m-Health system by using hybrid encryption schemes.

In hybrid schemes, symmetric secret key encryption, which is

known to have low computational power, is used between devices

and the gateway while a public key, which consumes significant

power but provides more security, is used between the gateway

and the cloud. However, in all these systems, using secret key

encryption can be problematic if the key was revealed by an

attacker through any of the known attacks.

One promising technique to improve a system’s security is

the so-called moving target defense (MTD) [14]. MTD is the

concept of continuously randomizing a system’s configuration

in order to increase the uncertainty and cost of an attack. In the

IoT, the system’s configuration can essentially include encryption

keys, network parameters or IP addresses. While applying MTD

improves a system’s security, it can also incur some costs that



reduce the overall performance. The authors in [15] applied MTD

by frequently changing the IP address of IoT devices to increase

the security. Security improvement and network latency were

studied for implementing MTD over low-powered personal area

networks. The work in [16] applies MTD using a stochastic game

between an attacker and a base station acting as a defender.

Multiple encryption techniques with multiple shared secret keys

are implemented at the nodes. The security benefit as well as

the MTD costs are studied in this scenario. However, existing

MTD works such as [15] and [16] are not designed for m-Health

IoT systems and do not provide specific implementations of the

encryption system.

The main contribution of this paper is an MTD security

framework tailored to the unique nature of m-Health IoT systems.

The framework uses a hybrid encryption scheme in which secret

keys are used to encrypt the data sent from the devices to the

gateway, and a public key to encrypt data from the gateway

over the Internet. The proposed MTD scheme is applied by

frequently changing the secret keys used in the communication

between the devices and the gateway. The gateway takes the

decision to update all the keys in the network hence allowing

each device to calculate its new key and start using it. The new

encryption key is generated by encrypting the old key using

another pre-shared key. Hence, only two secret keys need to

be pre-shared between each device and the gateway. A case

study is provided to study the effect of applying MTD on

an enhanced (in terms of performance) real system. In this

system, a lightweight encryption technique, LED [17], is used

for encrypting the data. As gateways typically apply performance

improvement techniques to speed up the process of decrypting the

collected data, we propose a new bitslice implementation for LED

that can be used at the gateway. To the best of our knowledge,

this is the first 64-bit bitslice implementation for LED algorithm.

We also provide a modified 32-bit version suitable for 32 bit

registers. The system is tested on a virtual 64-bit ARM Cortex-A

processor and the results show that the bitslice implementation

consumes half of the processor’s instructions compared to the

original LED implementation. Results also show that using MTD

and bitslice does not yield any significant degradation in the

system’s performance when some packets are missed compared

to the original implementation.

The rest of the paper is organized as follows. Section II

presents the proposed security mechanism and the MTD scheme.

In Section III, the bitslice implementation is presented in detail,

and the metrics used to measure the performance improvement

are discussed. Performance evaluation using a real-world imple-

mentation are presented in Section IV. Finally, conclusions are

drawn in Section V.

II. ENCRYPTION MODEL IN M-HEALTH IOT SYSTEM USING

MOVING TARGET DEFENSE

Consider an m-Health network consisting of a number of smart

devices and sensors, referred to as nodes, that monitor a patient’s

medical condition and send the measured readings to a gateway.

The gateway will send the collected data over the Internet to

a remote hospital or a clinic. Unless there is an emergency that

needs to be reported, we assume all the devices are synchronized

to send frequent updates about what they sense or measure.

The frequency of sending the updates depends on the medical

situation and the criticality of the patient’s health status.

All the data sent from the nodes is encrypted at each node

before it is sent to the gateway. The gateway decrypts the received

data and re-encrypts it using a more powerful encryption algo-

rithm to be sent over the Internet. Due to the resource limitations

of the IoT nodes, a lightweight encryption technique should be

used to encrypt the data at every node. Typically, symmetric

algorithms, which use a pre-shared secret key, are less power

demanding than asymmetric algorithms, which use two different

keys known as public and private keys. Therefore, symmetric

lightweight algorithms are more suitable for IoT nodes. A secret

key must be shared between every node and the gateway prior

to connecting to the Internet. At a given node i, a plaintext P

is encrypted using node i’s secret key Ki to get the ciphertext

C = EKi
(P ). The gateway, which is a computationally capable

device, will then use an asymmetric algorithm to decrypt the

data and send it over the Internet. This makes the m-Health

encryption system, a hybrid system combining both symmetric

and asymmetric encryption algorithms.

Symmetric encryption algorithms can be vulnerable to some

attacks like brute force attacks, known plaintext attacks, chosen

plaintext attacks, and differential cryptanalysis attacks. The goal

of all such attacks is to reveal the secret key used in the

encryption allowing the adversary to access and read the private

data or even send fake data impersonating another node by using

its key. To mitigate the effect of a successful attack and make the

system more resilient, we use MTD by frequently changing the

secret key used in the communication between every node and the

gateway. The gateway decides to update the keys and informs the

devices which should start using the new keys immediately. The

time needed to apply MTD, i.e., initiating new keys is decided by

the gateway depending on the frequency of sending new packets

from the devices. This potential time delay yields a trade-off

between increasing the attacker’s chance to perform a successful

attack and incurring more cost by frequently changing the keys

as discussed in Section III.

New secret keys are calculated by encrypting the old keys,

within each node, using another pre-shared secret key referred

to as the MTD key. Given a key Ki used by a node i, the new

key will be given by Kinew
= EKMTD

(Ki), where KMTD is the

pre-shared MTD key. Consequently, both the gateway and the

device can get the new key without having to share any additional

keys. Fig. 1 shows the proposed model for m-Health security

mechanism. Note that each node can use a different MTD key.

The use of MTD in this mechanism will increase the uncer-

tainty on any attacker, thus improving the security of the system.

This is due to the fact that there is no fixed key, no fixed time

to change the key, and the new keys are generated locally to

eliminate the possibility of being intercepted. Even if the attacker

was able to reveal one or more keys, it will not be able to reveal

the new keys as they are generated using the MTD key which is

stored locally at each node. Therefore, the attacker will lose any

privilege once the keys are updated and will have to start a new

attack.

Finally, the security mechanism proposed here does not require



Fig. 1. MTD security mechanism for m-Health IoT system.

Fig. 2. The four operations in a single LED round [17].

any device-level hardware modification. It only requires a small

software modification to add the pre-shared keys and to allow

the nodes to respond to the gateway signals of changing the key.

Next, we present the practical implementation of the proposed

mechanism. We define a performance improvement technique to

be used by the gateway in decrypting a number of packets at once

and then study the effect of applying MTD on the performance.

III. CASE STUDY: LED BITSLICED IMPLEMENTATION

A. LED Block Cipher

Lightweight encryption techniques are designed for resource-

constrained devices. Some techniques target the hardware such

as area on the chip, power, or energy consumption while others

provide light software such as low memory and small code

size. In this case study, we choose to implement LED block ci-

pher [17]. LED is hardware-oriented which provides the smallest

silicon footprint in its class of block ciphers with a reasonable

performance. LED was chosen for this case study as hardware

consumption is more critical because the software performance

can be improved by some techniques as shown later.

In terms of design, LED’s design is similar to the design

of advanced encryption standard (AES) schemes. The main

difference between LED and AES is that LED uses no key

schedule and the same key is applied every round. The user-

provided key can range from 64-bit to 128-bit. Increasing the

key length will increase the security and the power consumption

as well. In this work, since we adopt MTD and we depend on

the key change as a defense, no need to consider longer keys

which consume more computational power and hence a 64-bit

key will be suitable. LED applies rounds like AES. In each round,

four operations are applied to the state, which are: AddConstants,

SubCells, ShiftRows, and MixColumnsSerial. The state refers to

the current input to each round, which is initially the plaintext.

Fig. 2 shows the four operations in each round.

In AddConstants, some predefined constants are combined

with each state’s bits. SubCells is used to replace the bytes

of each cell in the state using an S-Box. ShiftRows is used to

Fig. 3. Bitsliced representation of 16 plaintext blocks into 16 64-bits processor’s
registers. Colors represent data that is stored in the same register.

rotate the cells to the left a number of times depending on their

row. Finally, MixColumnsSerial is used to multiply the cells by

another predefined matrix and the multiplication is done over a

defined Galois field. LED applies this round four times to the

same state before adding the key. This process is repeated eight

times, i.e., in total 32 rounds are applied to the state.

B. LED Bitsliced Implementation

Bitslicing is the process of slicing the data into its bit level

and performing the required operations on these bits. Bitslicing

is designed for a specific processor size, e.g., a 32-bit or a 64-

bit processor, which essentially maps to the size of the data

types that the processor can handle. In this case study, we design

a bitslicing scheme suitable for a 64-bit processor which can

typically be found in gateways and modern mobile devices.

Although bitslicing is not an optimization technique, it can

offer a great flexibility to improve the performance if it is used

appropriately.

LED encrypts a 64-bit plaintext. These 64-bits are organized

in a state as a 4×4 matrix of nibbles and each nibble consists of

4-bits. In the design of bitslicing implementation, we take every

nibble, 4-bits, to be the minimum chunk that will be processed.

Every nibble will be stored in a different processor’s register,

hence 16 blocks of plaintext should be processed at the same time

to make use of the 64-bits registers. In an m-Health IoT network,

as the gateway receives data from multiple devices, it is very

likely to have 16 or more plaintexts at a given time. Processing

data in such different arrangements, requires modifying all the

operations of the original LED. In addition to the four operations

of LED and the key adding step that must be modified, an

initialization operation need to be executed to transform data

blocks into the desired arrangement in processor’s registers. Next,

each modified operation is discussed in detail.

• BitTranspose: The 16 blocks of plaintext as well as their

corresponding 16 64-bit keys are transposed first to a form

suitable for bitslicing. Sixteen 64-bits registers are needed. Fig. 3

shows our bitslice implementation arrangement. Every first nibble

in each plaintext is stored in the first register, i.e., (r15) at

consecutive locations. The next nibbles are stored in the second

register r14 and so on to fill all the remaining registers.

• AddRoundKey: The encryption key is added first before

applying other operations. In AddRoundKey, every plaintext



Fig. 4. AddConstants operation of LED.

nibble is XORed with the corresponding nibble in the key. As the

plaintext and the key are transposed using the same mechanism,

every two nibbles need to be XORed will be in the same locations

of the transposed plaintext and the transposed key. Therefore, a

direct XOR operation can be applied to every pair of transposed

registers which gives a total of 16 processor instructions to apply

round keys. The original algorithm deals with separate nibbles

and needs to XOR every nibble separately, which requires 16

instructions for every plaintext and, thus, 256 instructions for

the 16 plaintext blocks. This process will be repeated 32 times

before each round, thus the transposed representation reduces

significantly the number of instructions required to apply round

keys.

• AddConstants: In AddConstants, half of the nibbles are

modified as shown in Fig. 4. Therefore, only eight out of the

sixteen registers need to be updated. Instead of using the original

constants provided by LED, new constants suitable for the bitslice

representation need to be calculated from the original constants.

These new constants will be stored and used directly each round.

Each nibble of the first column, in each state, is XORed with one

of four different values. These values are constant and, hence,

can be computed in advance. As each register holds the same

nibble in different plaintext blocks, each of these four values is

concatenated sixteen times to fit all of the nibbles. For example,

register r15 will be XORed with the new value 4 concatenated

16 times. The same is applied to registers r3, r7, and r11 which

hold the nibbles of the first columns in all plaintext blocks.

Nibbles in the second column, in each state, are XORed with

specific three bits of the round constants. The values of these

three bits, concatenated sixteen times, are stored in advance and,

hence, can be used directly in the bitslicing implementation. This

modification can save only a few processor instructions but is

necessary for the bitslicing implementation.

• SubCells: In SubCells, each nibble is replaced by a corre-

sponding value from the S-Box. As we still deal with a whole

nibble, no modification need to be applied to the S-Box. Each

nibble was separated from the register and then substituted from

the S-Box which requires twice the processor instructions used

in the original implementation.

• ShiftRows: In ShiftRows, each row of the state is shifted to

the left by a multiple of four bits as shown in Fig. 5. The figure

also shows which register is used to store each nibble in the state.

We made use of the fact that each register in this implementation

holds nibbles from the same location in each state. As such, all

the nibbles in the register need to be shifted by the same amount.

Therefore, instead of doing actual shifting, we need to just swap

the registers. For example, register r10 is placed in r11 then r9 is

Fig. 5. Registers considered for swapping in ShiftRows operation of LED.

placed in r10 then r8 is placed in r9 and, finally, r11 is placed in

r8 and so on for similar registers. We need one temporary register

for the swapping process, and five assignment instructions. This

can save a lot of instructions from the original operations where

nibbles were considered separately.

• MixColumnSerial: In this operation, a constant matrix is mul-

tiplied by the state matrix. Each row in this matrix is multiplied

by a column in the state matrix to update one nibble in the state

matrix. As multiplication is done nibble by nibble, we had to

define a new MixColumn operation that extracts nibbles from

the registers and use them in the multiplication process. Even

though a number of extra instructions are needed for separation,

the updated nibbles can be calculated for the all the 16 registers

at one iteration. This parallel calculation allows, in total, saving a

significant amount of instructions when compared to the original

case in which each plaintext is processed separately. For example,

nibbles from registers r15, r11, r7, and r4 are processed together

in the multiplication process which is different from the original

implementation in which multiple iterations are needed. The rest

of the columns are processed in the same way.

Finally, another version of this bitslicing was designed to suit

32-bit processors. A 32-bit version is obtained by decrypting 8

data blocks instead of 16. The 8 blocks are stored in 16 32-

bit registers in the same way discussed in the 64-bit version.

Similarly, every nibble from the plaintext is stored in a different

register. The rest of the operations will follow as the 64-bit ver-

sion but dealing with a smaller size of input. This implementation

could be used either for 32-bit processors or 64-bit processors

that support 32-bit registers. This implementation is beneficial

for the gateway when applying MTD as shown in Section IV.

C. Performance Metrics

The performance of bitslicing is maximized when the total

number of data blocks is available at the same time, this is

sixteen plaintext blocks in our implementation. Bitslicing uses

a constant number of processor’s instructions whether 16 blocks

are available or not. Here, we calculate the average number of

instructions needed to decrypt a plaintext block, a as follows:

a =
N

b
,

where N is the total processor instructions and b is the actual

number of blocks that were encrypted and is bounded by the

maximum number of blocks allowed by the design which is 16

in our implementation. Clearly, if we have fewer than sixteen

blocks, the average number of instructions per block will increase

and degrade the performance.

Another metric that we consider is the cost of applying MTD

in m-Health IoT systems that consist of heterogeneous devices



differing in their computational capabilities. Here, when the

gateway asks the devices to update their keys, they can have

different response times. Hence, they may encrypt new packets

using the old encryption key while the gateway is expecting

data encrypted with new keys. This incurs a processing cost

at the gateway, which is the wasted processor’s instructions

to decrypt data with wrong keys and the extra instructions

required to decrypt again using the old keys. We measure the

wasted instructions as the difference between the number of

instructions used to decrypt the maximum number of packets

that was expected and the number of instructions used for the

correctly decrypted packets. Th number of instructions needed

to re-decrypt packets using old keys will differ according to

the number of missed packets. The gateway is given the option

to re-decrypt the missed packets using either the original LED

implementation, the 32-bit slicing version, or the 64-bit bitslicing

version. This choice depends on the implementation that will use

the least number of instructions to re-decrypt the missed packets.

The choice of the re-decryption technique and the mathematical

formulation for the cost are discussed, in detail, in Section IV.

IV. EVALUATING LED BITSLICED IMPLEMENTATION

For our evaluation, we use an ARM Cortex-A 64-bit processor

as the target processor to evaluate our implementation. ARM 64-

bit processors such as Cortex-A53 and Cortex-A57 can be found

in many mobile devices. Evaluating the code on a real processor

is challenging as other operations can affect the measurements.

Therefore, we use the ARM development studio (DS-5) [18]

which gives the ability to create a virtual processor emulator

for a specific ARM processor then run the code on it. We use

Cortex-A53 as our implementation processor, and we adjust the

compiler optimization flags to the maximum performance in all

the next experiments. In Cortex-A53, we can use both 64-bit

registers or 32-bit registers which allows to use both our 32-bit

and the 64-bit bitsliced implementations.

The designed bitslice implementation presented in the previous

section is suitable for the encryption process, however, what is

typically done on the gateway is the decryption phase. Therefore,

we had to invert the encryption algorithm to get the decryption

scheme. The inverted operations are applied in a reverse order to

the original operations, i.e., InvMixColumnsSerial, InvShiftRows,

InvSubCells, and InvAddConstants which are the reverse oper-

ations applied in order. The inverted operations are designed as

follows. In InvMixColumnsSerial, the state is multiplied by the

inverse of the constant matrix that is used in MixColumnsSerial.

In InvShiftRows, the rows of the states are shifted to the right

with the same criteria of shifting as in ShiftRows. In InvSubCells,

the inverted S-Box is used for substitution. Finally, in InvAdd-

Constants, the same round constants as AddConstants are used

but provided in the reverse order of rounds. The bitslice is then

applied in the same way as the encryption process.

First, the bitslice implementation is evaluated to measure the

reduction in the number of processor instructions when applying

bitslicing. We used the reference LED implementation provided

by the work in [19]. Fig. 6 shows the average number of

instructions required to decrypt one block of plaintext data when

different number of plaintext blocks are available. We assume

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

100

200

300

400

500

600

700

800

900

1000

Number of decrypted blocks

A
v
e
ra

g
e
 n

u
m

b
e
r 

o
f 
in

s
tr

u
c
ti
o
n
s
 p

e
r 

b
lo

c
k

Original LED

64−bit Bitsliced LED

32−bit Bitsliced LED

Fig. 6. Average number of instructions required to decrypt one block in the
original LED implementation, 32-bit bitsliced applied twice, and the 64-bit
bitsliced implementation. The number of instructions is normalized by 1000 for
an easier representation.

that every block is received from a different device. We compare

the original LED implementation, our 32-bit bitsliced version,

and our main 64-bit bitsliced implementation. Note that the 32-

bit version processes only 8 blocks at a time and, thus, we apply

it twice for more than 8 blocks. From Fig. 6, we can see that the

original implementation has an approximately constant average.

In fact, there is only a small difference when the number of

packets is small due to the processor initialization instructions

having a higher effect on the total number of instructions.

However, this difference is not significant. The 32-bit bitsliced

version has the lowest average when there are 3 to 8 packets to

be decrypted. Our bitsliced implementation requires half of the

processor instructions required by the original implementation

when decrypting 8 packets. The increase after decrypting 8

packets happens because the processor will start over to apply

the bitslicing again and, thus, needs to execute more instructions.

Therefore, applying the 32-bit version twice consumes a little bit

more instruction than the 64-bit implementation. At 16 decrypted

packets, our 64-bit implementation consumes half of the proces-

sor instructions compared to the original implementation.

Finally, the results in Fig. 6 allow the gateway to determine

the algorithm that will be used to decrypt the number of available

packets. If there are less than 3 packets, the original algorithm is

preferred. The 32-bit implementation should be used when there

are 3 to 8 packets. The 64-bit implementation is superior for

more than 8 packets of data.

Next, we discuss the cost of applying MTD when bitslicing

is used at the gateway. Note that bitslicing itself is known to

increase the code size on the device, i.e., the gateway. However,

as the gateway is assumed to be a computationally capable device,

the increased code size will not be problematic so it will not be

considered as a cost here. The focus will be on the number of

wasted (or additional) processor instructions. Clearly, if all the

devices will send their next packets with the updated key, no

cost will be incurred. However, when some packets are received

encrypted with the old key, the gateway will decrypt them using

the new keys which will result in wrong packet formats. The

gateway will conclude that the key is not updated yet in these

devices and will re-decrypt these packets using the old keys.



4 8 12 16
0

500

1000

1500

2000

2500

3000

3500

4000

Number of decrypted blocks

C
o
s
t 
a
s
 a

 n
u
m

b
e
r 

o
f 
in

s
tr

u
c
ti
o
n
s

25% of the devices

50% of the devices

75% of the devices

Fig. 7. The cost of applying MTD in a system with late response devices. The
figure shows three cases for the percentage of the devices that will have a delay.
The number of instructions is normalized by 1000 for an easier representation.

Thus, we can formulate the cost as follows:

C =

{

(bmax − b) · (L32

8
+R), for 3 < bmax ≤ 8,

(bmax − b) · (L64

16
+R), for 8 < bmax ≤ 16,

}

where bmax is the maximum number of packets expected by the

gateway, b is the number of successfully decrypted packets, and

L32 and L64 are the total process’s instructions for the 32-bit and

64-bit bitsliced versions, respectively. The decryption cost R is

determined by the number of re-decrypted packets bmax − b. If

the number is 3 or less, the gateway will use the original LED to

decrypt each packet individually, if the number exceeds 3 either

version of bitslicing will be used and R will equal L32 or L64.

Fig. 7 shows the cost in terms of gateway processor instructions

if some devices send a single packet with the old encryption

key. Three cases are considered when one quarter, half, and

three quarters of the devices will send one packet with the old

key. In case only a quarter of the devices wrongly encrypt one

packet, we observe that the increase rate in the cost is less

after twelve packets. This is due to the fact that, after twelve

packets, the quarter will exceed three packets and, hence, the 32-

bit bitslice version will be used to re-decrypt the missed packets

thus reducing R as well as the total cost. A similar behavior

can be seen for the case of half of the devices, where the cost

increases at a slower rate after eight packets when the 32-bit

bitslice version is used. However, in the case of three quarters

of the devices, the increase in cost is higher after eight packets

as the 32-bit version was used until eight packets, i.e., R = L32

and the 64-bit version will be used after that consuming more

processor’s instructions as R = L64.

It is interesting to note that the maximum cost according

to this implementation is when all the sixteen packets need to

be re-decrypted, i.e., Cmax = 2 · L64. As L64 equals half of

the instructions required by the original LED implementation as

shown in Fig. 6, then the maximum cost equals the same number

of processor instructions of the original LED implementation, if

no packet is missed. Missed packets due to using MTD, with

the original LED implementation, are re-decrypted individually

causing more cost. Thus, the worst-case cost of applying MTD

with bitslicing is bounded by the best-case, no cost, of applying

MTD with the original LED implementation.

V. CONCLUSION

In this paper, we have proposed a novel security mechanism for

m-Health IoT systems. The mechanism depends on using secret

keys between the devices and the gateway and then applying

MTD by frequently changing the encryption keys used in the

network. The new key is calculated by encrypting the old key

using another pre-shared secret key known as the MTD key,

hence only one key needs to be shared between the gateway and

each device. We have applied this mechanism to a system which

involves a performance improvement technique for the encryption

algorithm using bitslicing. We have formulated a 32-bit and 64-

bit bitslicing implementations for LED, a light weight encryption

technique. We have also defined performance metrics for the

system including the cost for applying MTD. We have used a

virtual processor to evaluate both bitslicing implementations and

the cost of applying MTD. Implementation results have shown

that the bitslicing implementation significantly outperforms the

original implementation of the encryption algorithm. We have

also discussed the optimal packet number for using both bitslicing

versions.
REFERENCES

[1] M. Mozaffari, W. Saad, M. Bennis, and M. Debbah, “Unmanned aerial
vehicle with underlaid device-to-device communications: Performance and
tradeoffs,” IEEE Transactions on Wireless Communications, vol. 15, no. 6,
pp. 3949–3963, June 2016.

[2] R. S. Istepanian, A. Sungoor, A. Faisal, and N. Philip, “Internet of m-health
things ‘m-iot‘,” in IET Seminar on Assisted Living 2011. IET, 2011, pp.
1–3.

[3] R. Istepanian, S. Laxminarayan, and C. S. Pattichis, M-health. Springer,
2006.

[4] C. Doukas, I. Maglogiannis, V. Koufi, F. Malamateniou, and G. Vassi-
lacopoulos, “Enabling data protection through pki encryption in iot m-
health devices,” in IEEE 12th International Conference on Bioinformatics
& Bioengineering (BIBE), 2012, pp. 25–29.

[5] T. Park, N. Abuzainab, and W. Saad, “Learning how to communicate in the
internet of things: Finite resources and heterogeneity,” IEEE Access, vol. 4,
pp. 7063–7073, Nov. 2016.

[6] H. Suo, J. Wan, C. Zou, and J. Liu, “Security in the internet of things: a
review,” in International Conference on Computer Science and Electronics
Engineering (ICCSEE), vol. 3, 2012, pp. 648–651.

[7] W. Saad, X. Zhou, B. Maham, T. Başar, and H. V. Poor, “Tree formation
with physical layer security considerations in wireless multi-hop networks,”
IEEE Transactions on Wireless Communications, vol. 11, no. 11, pp. 3980–
3991, Nov. 2012.

[8] J.-Y. Lee, W.-C. Lin, and Y.-H. Huang, “A lightweight authentication
protocol for internet of things,” in International Symposium on Next-
Generation Electronics (ISNE). IEEE, 2014, pp. 1–2.

[9] X. Wang, J. Zhang, E. M. Schooler, and M. Ion, “Performance evaluation
of attribute-based encryption: Toward data privacy in the iot,” in IEEE
International Conference on Communications (ICC), 2014, pp. 725–730.

[10] X. Yao, Z. Chen, and Y. Tian, “A lightweight attribute-based encryption
scheme for the internet of things,” Future Generation Computer Systems,
vol. 49, pp. 104–112, 2015.

[11] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of things
(iot): A vision, architectural elements, and future directions,” Future Gen-
eration Computer Systems, vol. 29, no. 7, pp. 1645–1660, 2013.

[12] Y. Sharaf-Dabbagh and W. Saad, “On the authentication of devices in the
internet of things,” in Proceedings of 17th IEEE International Symposium
on a World of Wireless, Mobile and Multimedia Networks (WoWMoM),
Coimbra, Portugal, june 2016, pp. 1–3.

[13] S. L. Albuquerque and P. R. Gondim, “Security in cloud-computing-based
mobile health,” IT Professional, vol. 18, no. 3, pp. 37–44, 2016.

[14] H. Okhravi, T. Hobson, D. Bigelow, and W. Streilein, “Finding focus in
the blur of moving-target techniques,” IEEE Security & Privacy,, vol. 12,
no. 2, pp. 16–26, 2014.

[15] M. Sherburne, R. Marchany, and J. Tront, “Implementing moving target
ipv6 defense to secure 6lowpan in the internet of things and smart grid,”
in Proceedings of the 9th Annual Cyber and Information Security Research
Conference. ACM, 2014, pp. 37–40.

[16] A. Eldosouky, W. Saad, and D. Niyato, “Single controller stochastic games
for optimized moving target defense,” in IEEE International Conference on
Communications (ICC), 2016, pp. 1–6.

[17] J. Guo, T. Peyrin, A. Poschmann, and M. Robshaw, “The led block cipher,”
in Cryptographic Hardware and Embedded Systems–CHES 2011. Springer,
2011, pp. 326–341.

[18] ARM-Development-Tools. (2016) Arm ds-5 development studio. [Online].
Available: http://ds.arm.com/ds-5/

[19] J. Guo, T. Peyrin, A. Poschmann, and M. Robshaw. (2014) Led reference
implementation. [Online]. Available: http://led.crypto.sg/downloads


