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ABSTRACT

Occupant identification proves crucial in many smart home appli-
cations such as automated home control and activity recognition.
Previous solutions are limited in terms of deployment costs, iden-
tification accuracy, or usability. We propose SenseTribute, a novel
occupant identification solution that makes use of existing and
prevalent on-object sensors that are originally designed to monitor
the status of objects they are attached to. SenseTribute extracts richer
information content from such on-object sensors and analyzes the
data to accurately identify the person interacting with the objects.
This approach is based on the physical phenomenon that differ-
ent occupants interact with objects in different ways. Moreover,
SenseTribute may not rely on users’ true identities, so the approach
works even without labeled training data. However, resolution of
information from a single on-object sensor may not be sufficient to
differentiate occupants, which may lead to errors in identification.
To overcome this problem, SenseTribute operates over a sequence
of events within a user activity, leveraging recent work on activity
segmentation. We evaluate SenseTribute using real-world experi-
ments by deploying sensors on five distinct objects in a kitchen and
inviting participants to interact with the objects. We demonstrate
that SenseTribute can correctly identify occupants in 96% of trials
without labeled training data, while per-sensor identification yields
only 74% accuracy even with training data.

CCS CONCEPTS

« Computer systems organization — Sensor networks;

KEYWORDS

Occupant Identification; On-object Sensing; Sensor Fusion

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

BuildSys, November 8-9, 2017, Delft, Netherlands

© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-5544-5/17/11...$15.00
https://doi.org/10.1145/3137133.3137152

Shijia Pan
Carnegie Mellon University
MofTett Field, CA
shijiapan@cmu.edu

Pei Zhang

Carnegie Mellon University
Moffett Field, CA
peizhang@cmu.edu

Manal Kumar Sinha
Carnegie Mellon University
MofTett Field, CA
manalkus@cmu.edu

Patrick Tague
Carnegie Mellon University
Moffett Field, CA
tague@cmu.edu

ACM Reference Format:

Jun Han, Shijia Pan, Manal Kumar Sinha, Hae Young Noh, Pei Zhang,
and Patrick Tague. 2017. SenseTribute: Smart Home Occupant Identification
via Fusion Across On-Object Sensing Devices. In Proceedings of The 4th
International Conference on Systems for Energy-Efficient Build Environments
(BuildSys). ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/
3137133.3137152

1 INTRODUCTION

Occupant identification is fundamental in providing many value-
added services for smart homes. Personalized home control such as
comfort adjustments for lighting and HVAC proves to be important
for user convenience as well as energy and cost savings [5, 15, 39].
Furthermore, occupant identification supports activity recognition
and/or occupant behavior analysis [43].

Prior works investigate the use of body-worn sensors for occu-
pant identification [20, 21, 33]. Such solutions, however, are intru-
sive and are less practical because users are required to always carry
or wear the sensors. To solve this problem, infrastructure-based so-
lutions have also been explored. However, they make use of sensors
that may invade privacy, such as cameras and microphones [30, 41].
To overcome such problems, researchers also introduce solutions
leveraging special purpose sensors such as infrared or vibration
sensors [24, 27, 36, 37]. Because these solutions deploy the sen-
sors specifically for occupant identification purposes, the solutions
come at high hardware and installation costs. Researchers also
explore existing infrastructure, such as WiFi, to help identify occu-
pants [43, 44]. However, they make strong assumptions - requiring
a user to walk in a straight line, or to stay within a line-of-sight
between transceivers — limiting their practicality.

Hence, to overcome the aforementioned limitations of prior work
and provide a more practical and yet cost effective solution, we ask
the following question - instead of building and deploying specific
sensors to provide a practical occupant identification solution, can
we leverage sensing capabilities of existing IoT devices within a
smart home? To answer this question, we observe an emerging
trend in commercial on-object sensing devices [1-3, 18, 31], which
are detachable wireless sensor nodes that retrofit home objects
such as doors, windows, drawers, and/or refrigerators, to monitor
and report the object status over the home network. These devices
are already prevalent, and are projected to be more ubiquitous
throughout smart homes [16, 35].
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Figure 1: SenseTribute utilizes the physical phenomenon
that different people interact with objects at home (e.g.,
knocking or opening a door) differently such that resulting
signals captured by on-object sensing devices are (1) suffi-
ciently differentiable across different home occupants; and
(2) similar within different trials of the same occupant.

On-object sensing devices are typically equipped with accelerom-
eters and/or gyroscopes to monitor object status (e.g., door opened
or closed). However, we explore the possibility of re-purposing
these devices to provide more expressive data rather than just ob-
ject status. Specifically, we find that the way a person interacts
with an object is rather unique and can differentiate among peo-
ple. For example, different family members tend to open a door or
refrigerator in different manners, possibly due to different phys-
ical build, strength, and habit. We present SenseTribute, a novel
occupant identification mechanism for smart home settings, which
takes advantage of this physical phenomenon using representa-
tive features from accelerometer and gyroscope measurements to
distinguish home occupants. SenseTribute enables attribution of
sensory measurements to the originating user, hence the name. Fig-
ure 1 depicts an example of repeated accelerometer measurements
for two different users, highlighting the important capabilities to
distinguish between users and match subsequent user readings.

SenseTribute utilizes supervised learning techniques to first train
the model using collected bootstrapping data as training data, along
with the corresponding training labels. Subsequently, upon collect-
ing testing data, SenseTribute performs classifications using the
trained model. While some application scenarios may ask the occu-
pants to initially provide the training labels (e.g., names of persons
associated with the training data) during a bootstrapping phase,
such approach may be impractical in other scenarios due to usabil-
ity problems. Hence, we design SenseTribute to be robust against
this challenge, specifically, even in scenarios where the users do
not provide the training labels. In such cases, SenseTribute is still
able to identify the occupants, but with pseudo-identifiers instead of
explicit identifiers such as names (e.g., Persons A and B rather than
Alice and Bob). Pseudo-identifiers still support most of smart home
applications such as aforementioned personalized home control
and identifying occupants of recognized activities, and may even
be suitable for privacy-preserving applications. This is made possi-
ble because SenseTribute infers the labels by utilizing unsupervised
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learning techniques to cluster the bootstrapping data into cluster
identifiers. Subsequently, SenseTribute trains the model using the
training data and the corresponding cluster identifiers as quasi-
training labels. The quasi-training labels are labels that do not have
information to map the cluster identifiers to occupant identities
such as names.

Even with this classification approach, each on-object sensing
device provides limited information content, yielding low identifica-
tion accuracy. Performance degrades even further if training labels
are not provided. In order to solve this challenge, we introduce
SenseTribute’s Ensemble Module to amplify the information content
across multiple on-object sensing devices, thereby boosting the
accuracy of the overall occupant identification. The Ensemble Mod-
ule relies on related research on activity segmentation [23, 28, 40],
which segments out a sequence of events belonging to a single ac-
tivity segment performed by the same person, out of entire sensor
data streams of multiple persons’ events. For example, a cooking
breakfast activity may consist of multiple sensor events performed
by a same user such as opening the refrigerator, followed by taking
out a frying pan, followed by turning on the stove.

We design and implement SenseTribute and evaluate its feasibility
by conducting real-world empirical experiments with five distinct
sensor pairs (accelerometer and gyroscope), each attached to five
different objects — door, refrigerator, drawer, towel dispenser, and
window. We invite five participants to perform a sequence of events
that interact with these objects. We choose five participants, as this
number is greater than an average of 3.14 persons per home in
the United States [10]. From our empirical analysis, SenseTribute is
able to correctly identify occupants with 96% accuracy even when
the training labels are not provided, while the average accuracy
from per-object identification yields 74%, even with training labels.
Overall, we make the following contributions in this paper.

o We design SenseTribute to extract expressive data from on-
object sensors and identify occupants in a smart home.

e We demonstrate how SenseTribute achieves high identifi-
cation accuracy by combining observations across several
sensors on different objects, even without labeled training
data.

o We evaluate SenseTribute by conducting real-world experi-
ments with participants interacting with different objects in
a kitchen, each interfaced with a sensor node.

The remainder of this paper is organized as following. We present
background information and related work in Section 2. We then
present the details of SenseTribute’s design and implementation in
Section 3, and its evaluation results in 4. Subsequently, we present
discussion and conclusion in Sections 5 and 6, respectively.

2 BACKGROUND AND RELATED WORK

We first present on-object sensing devices and their prevalence. We
then introduce activity segmentation often studied in the field of
activity recognition, and how SenseTribute utilizes it. Furthermore,
we describe related work onoccupant identification.

2.1 On-Object Sensing Devices

On-object sensing devices are popular smart home gadgets that en-
able home owners to monitor the status of various objects — such as
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doors and drawers — by simply attaching the device to each object.
An on-object device is commonly equipped with inertial sensors
(e.g., accelerometer and/or gyroscope), which sense the movement
of object it is attached to. The sensor signals are then processed
to output object status — such as door or drawer open/close — and
reports the events to home owner’s smartphone over the cloud.
Companies such as Notion [2] and Samsung SmartThings [3] are
industry leaders, while there are many other commercial solutions
from various vendors [1, 18, 31]). These devices are projected to be
more prevalent in smart homes in the near future [16, 35]. We de-
sign SenseTribute to extract more expressive data than mere status
of objects, namely to infer the identities of occupants in a home.
Hence, SenseTribute inherently eliminates the costly need to build
and deploy specific sensing devices for occupant identification.

2.2 Activity Segmentation

Activity segmentation — an actively studied topic in activity recog-
nition field - segments out a sequence of events that are performed
by a single occupant. However, this is a difficult problem because
different events are performed by different persons that may be
temporally overlapping within a single stream of sensor data. Hence
researchers make use of combinations of sensor patterns and tem-
poral information to identify a sequence of events that constitute a
single activity segment [23, 28, 40]. For example, consider Person4
cooking breakfast, while Persong watching TV in the living room.
The cooking breakfast activity segment may consist of a sequence of
events such as: {kitchen door opening, fridge door opening, and pasta
drawer opening]. On the other hand, watching TV activity segment
may consist of a sequence of events such as: {sitting down on sofa,
taking out remote control, TV turning on/. Each of the sequence of
events belonging to the same activity segment are grouped together,
even though there may be temporal overlaps between individual
events. Activity segmentation is one of the important foundations
when designing SenseTribute. Specifically, Ensemble Module exploits
the above property that a sequence of events within an activity
segment is performed by the same user, enabling SenseTribute to
combine the confidence of a sequence of events (see Section 3.5).

2.3 Occupant Identification

Smart home occupant identification is an important problem. Per-
sonalized home control is gaining much attention such as user-
specific comfort adjustments for lighting and HVAC for conve-
nience as well as energy efficiency [5, 15, 39]. Due to potentially
significant cost-savings, this is a real-world problem that are heavily
studied by appliance manufacturers as well. Furthermore, occupant
identification supports many activity recognition applications. This
is because understanding who is performing the recognized activity
is a building block to associating activities to individual occupants,
rather than just knowing that someone at home has performed
the activity [43] (e.g., splitting costs between roommates based on
individual energy consumption or even simply providing feedback
to which family member consumes most energy).

Due to the importance of occupant identification problem, prior
works explore solutions by deploying infrastructure-based sensors.
Researchers utilize ultrasonic-based doorway sensors to capture
the movements and the physical characteristics such as height [24]
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and/or weight [27] of persons. Researchers also utilize structural
vibration-based sensors to detect occupant’s gait patterns [36, 37].
Occupants strike the floor with different gait patterns, inducing
unique structural vibration waveform. Similarly, researchers also
exploit changes in body electric potential due to walking [22]. While
these solutions are promising first steps, all of them utilize hard-
ware that are specifically built and deployed to solve the occupant
identification problem. This inevitably incurs high cost both in
terms of hardware as well as deployment costs.

Prior work also explore solutions that use existing infrastructure
such as Wi-Fi to utilize channel state information (CSI) induced by
occupant’s walking pattern [43, 44]. While these solutions do not
incur additional hardware or deployment costs, they face challenges
in limited deployment practicality. This is because these solutions
require the occupants to either (1) only walk in a straight line [43];
or (2) stay within the line of sight between WiFi transceivers [44].

As opposed to the related work, SenseTribute inherently reduces
the hardware and deployment cost because it utilizes existing and
prevalent on-object sensing devices deployed by users, and simultane-
ously provides a more practical occupant identification by perform-
ing simple software modifications to extract information necessary
to identify the occupants.

3 DESIGN AND IMPLEMENTATION

We now present SenseTribute’s design and implementation. We
describe the details SenseTribute’s algorithm when the training
labels are known and unknown. We also explain how SenseTribute
ensembles different objects to amplify the identification accuracy.

3.1 SenseTribute Overview

SenseTribute’s goal is to identify the occupants by leveraging sig-
nals of on-object sensors utilizing supervised learning techniques.
SenseTribute is divided into two phases — a Bootstrapping and Iden-
tification Phases. First, during the Bootstrapping Phase, SenseTribute
trains a classification model from the collected sensor data (i.e.,
history data). Subsequently, in its Identification Phase, SenseTribute
tests newly collected sensor data, to finally identify the occupant.

In order to train the model for classification, the system requires
training labels (i.e., ground truth occupant identity corresponding
to the collected history data). However, it may be more practical
for certain applications to not collect user provided training labels
(e.g., to increase usability). We account for this problem, and design
SenseTribute to automatically adapt its training scheme based on
the availability of user-provided labels.

We present the flow chart diagrams to depict the overall SenseTribute
design as shown in Figure 2(a). Specifically, when the training labels
are provided to the system by the users (i.e., known labels scenario),
SenseTribute utilizes the traditional supervised learning techniques,
by taking as input for the Training Module, the (1) training label
and (2) data. For the training label, SenseTribute utilizes the user-
provided ground truth labels. For the training data, SenseTribute
first processes the collected history data in Pre-processing Module),
and then extracts necessary features in Feature Extraction Module.
Finally, at the end of the Identification Phase, the Testing Module
outputs the Predicted Occupant Label, along with the classification
probabilities of all the potential classes.
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(a) SenseTribute’s Flow Chart Diagram per Object
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Figure 2: (a) Flow-chart diagram of SenseTribute for an individual object. During Bootstrapping Phase, collected history data
and ground truth labels are used to train a model. If ground truth label is unavailable, SenseTribute clusters history data to infer
training labels. Subsequently, during Identification Phase, SenseTribute uses the trained model to predict occupant identity. (b)
Subsequent to the identification phase in (a), SenseTribute further ensembles classification probabilities from n different objects

and predicts occupant identity with higher accuracy.

However, SenseTribute is also capable of operating even when
users do not provide the ground truth labels (i.e., unknown labels
scenario), by utilizing a hybrid approach of unsupervised and su-
pervised learning techniques. Similar to known labels scenario, the
history data are used to process and extract features. However, the
features are now input to Clustering Module, which computes and
outputs the clustered indices. We use these indices as quasi-labels
that substitute the ground truth labels. Quasi-labels represent differ-
ent clusters, or groups, corresponding to the history data. However,
as opposed to the ground truth labels, quasi-labels (1) do not carry
information to be directly mapped to specific occupant’s explicit
identities such as names; and (2) are prone to some amount of error
due to clustering. Finally, the Testing Module outputs the predicted
pseudo-identifier labels, along with the classification probabilities of
all the potential classes. Similar to quasi-labels, pseudo-identifiers do
not carry information to be directly mapped to the specific occupant
identities such as names, but are still valuable because they can be
used to sufficiently distinguish different occupants (e.g., Person
vs. Persong). While clustering algorithms such as K-Means provide
linear decision boundaries, we design SenseTribute using classifica-
tion as the backbone framework for the simplicity of integrating
both known and unknown labels scenarios.

Since the information content from a single object may not
be sufficient to accurately identify the occupants, we introduce
SenseTribute’s Ensemble Module subsequent to the Identification
Module of each object, to “ensemble” the classification probabilities
to arrive at a higher occupant identification accuracy. Figure 2(b)
depicts the corresponding flowchart diagram.

3.2 Pre-processing and Feature Extraction

3.2.1 Pre-processing. Prior to extracting the features from the
raw sensor data, we first perform noise reduction to increase the

(a) Raw Data
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Figure 3: We use spectral subtraction to increase the Signal-
to-Noise Ratio (SNR). (a) depicts raw time-series gyroscope
signal; and (b) depicts the resulting spectral subtraction.

Signal-to-Noise Ratio (SNR) and the subsequent classification and
clustering performance. We make use of spectral subtraction [8],
used in speech recognition to remove background noise, because
the ambient noise is similar to inherent sensor noise. Spectral sub-
traction performs the operation S(w) = Y(w) — N(w), where Y(w),
S(w), and N(w), are the frequency-domain spectra of the noisy sen-
sor reading, desired signal, and noise, respectively. We estimate the
noise spectrum N(w) by sampling the ambient noise, which can be
performed by sensor nodes, in practice, prior to the Pre-processing
Module. Figure 3 depicts an example of single-axis gyroscope signal
corresponding to opening and closing a drawer.

3.2.2  Feature Extraction. SenseTribute then performs feature ex-
traction on the pre-processed signal. We extract features from both
time and frequency domains as characteristics of the induced sig-
nal. We list the features used in this work in Table 1. Vectors x;,
and yq are time and frequency domain representations of the data,
respectively, and N and M are the number of elements in x and v,
respectively. The Root Mean Square (RMS) (in time or frequency
domains as RMS and FFTR s, respectively) reflects the variation
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Feature Domain | Expression

: N 2
RMS time \/l/N Zp:l x5
FFTrpms frequency \/l/M 234:1 yé

Peak2RMS | time max(|x|)/\/1/N Zﬁlzl xp|?

Energy time Z;]:l l(})\?(xf,
SMA time 1/N Zp=1 xpl
FFTmax frequency | max(yq)
Mean time % Zg]:l Xp
Median time median(xp)

Table 1: Features used in SenseTribute, where vectors, x, and
Yyq are time and frequency domain representations of the
pre-processed data, respectively. N and M are the number
of elements in x and y, respectively.

; KNOCK oPerson, 1 FRIDGE oPerson,
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x
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Figure 4: We plot feature pairs for knock and fridge door
open/close event types for comparison. Knock plot depicts suf-
ficient separation of features across Persons A, B, D, and E,
while Person C has a large overlapping area. Fridge plot de-
picts sufficient separation for Persons A, B, and E, while Per-
sons C and D have large overlapping areas.

within a signal segment, a relatively widely used feature that effec-
tively describes the signal. The peak-to-RMS ratio of time domain
signal, Peak2RMS, measures more detailed signal distribution in
addition to RMS. For example, a person with thicker finger bones
knocking on the door may trigger an impulse signal with a sharp
waveform, which may lead to a higher Peak2RMS value. We also
compute the log energy entropy [14, 34], Energy, which measures
the signal distribution. Signal magnitude area [7, 9], SMA, mea-
sures the average of the signal amplitude. The maximum value of
frequency domain signal, FFTp,4x, provides the peak amplitude of
Yyq- Finally, we use the common statistical mean and median of x,
as measurements of central tendency.

Furthermore, we compare the feature distributions of different
occupants by plotting feature pairs. Figure 4 depicts two examples
of feature pairs (Peak2RMS vs. SMA) from two distinct sensors
on a door (capturing knocking events) and refrigerator (capturing
refrigerator opening and closing events). Each marker represents
a feature comparison per occupant (i.e., Persony to Persong). We
make the following two observations. First, we observe that within
each sensor, the feature pair provides information to distinguish
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different occupants at a fairly sufficient manner. For example, for
knocking event, Persony, Persong, Personp, and Persong exhibits
sufficient separation, while Personc exhibits large overlapping area
with other occupants. Second, we also observe that across the two
events from different objects, different feature pairs contribute to
separating the occupants. For example, the feature pairs performed
well in distinguishing Personp for knocking on a door but poorly
for opening and closing a refrigerator.

3.3 Known Labels Scenario

In the application scenario where the user provides the ground
truth labels for the training label, we leverage supervised learn-
ing techniques to perform occupant identification. We implement
SenseTribute’s classification modules (i.e., Training and Testing Mod-
ules) with Support Vector Machines (SVM) [6] using Radial Basis
Function (RBF) kernel. We choose SVM because it requires rela-
tively small amount of training data to achieve high classification
accuracy, compared to other classification methods such as neu-
ral networks. We implement the modules using publicly available
LIBSVM [11]. We use multi-class SVM classification to classify n
occupants in smart home settings, where n > 2. First, the Training
Module takes as input aforementioned feature vector of the train-
ing data and the training label to compute the trained model. This
module concludes the end of Bootstrapping Phase.

Second, the Testing Module in the Identification Phase takes as
input the trained model and the feature vector of the testing data.
This module performs the SVM classification to output the follow-
ing: (1) classification probabilities, Pr[O = o;], of all possible classes
(i.e., occupants), o1, ..., op; and (2) final predicted label which is the
occupant, o; that yields highest Pr[O = o;].

3.4 Unknown Labels Scenario

When he user does not provide any training labels, we leverage a hy-
brid approach of supervised and unsupervised learning techniques
to perform occupant identification. The unknown and known
labels scenarios are equivalent in computing the feature vector.
However, it differs in that the system no longer has the given train-
ing labels to be input to the classification modules. Hence, we infer
the training labels using the unsupervised learning techniques.
Specifically, we implement the Clustering Module with K-Means
clustering [25, 32], which takes a feature vector from the history
data and the number of cluster groups K. We assume that K, i.e.,
number of occupants in a home is known (see Section 5.2). K-Means
clustering algorithm groups each of the input observations into K
clusters with the smallest distance to the corresponding computed
centroid. This module outputs the clustered indices, which will
be subsequently used as the training label, in the Training Mod-
ule. We note that the clustered indices are quasi-labels, which does
not map directly to occupants’ explicit identifiers (e.g., occupants’
names such as Amy vs. Bob). However, quasi-labels provide ade-
quate information to identify occupants to their pseudo-identifiers
(e.g., Persong vs. Personp) at the end of the Identification Phase.

3.5 Ensemble Module

Each object’s identification accuracy (output from Figure 2(a)) are
limited because each object has either low resolution of information,
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or same occupant may occasionally interact with the object in
slightly different manner. Furthermore, for the case of the unknown
labels, accumulated errors from clustering contributes to lower per-
object identification accuracy. Hence, we design Ensemble Module to
amplify the occupant identification accuracy. SenseTribute ensembles
identification probabilities of individual objects, as depicted in the
flow chart diagram in Figure 2(b). Specifically, this module takes as
input the resulting classification probabilities, Pr[O = o;], where
i = 1,...,n (indicating n potential classes, i.e., n occupants), from
each of the Testing Modules belonging to m different sensors each
interfaced with different objects, defined as S;j, where j = 1,...,m
Subsequently, this module outputs the final predicted occupant
identity, o*, which has an amplified identification accuracy, which
we evaluate in Section 4.

To implement the ensemble algorithm, we formulate this problem
as the conditional probability depicted in Equation 1:

0" = argmax Pr[O = 0; | S1,...,Sm], 1)
0;
This finds the most likely occupant o* given sensor data Sy, . .., Spy.

We assume independence across each sensor, Sj, and use Bayes’
theorem to rewrite this formulation as shown in Equation 2:

0" = argmaxl_[Pr[O =0; | Sjl, (2)
[ j:1

where each of the probabilities, Pr[O = o; | S;], is equivalent to
the output probabilities, Pr[O = o;], of each sensor.

4 EVALUATION

In this section, we first present the experiment setup and evaluate
SenseTribute’s performance.

4.1 Experiment Setup

4.1.1 Apparatus. We conduct our experiment by facilitating five
objects in a kitchen each with a sensor node. The objects include -
door, fridge door, drawer, towel dispenser, and window. Each sensor
node comprises of an Arduino Uno [4] interfaced with ADXL335
tri-axis accelerometer [17] and LPY503AL dual-axis gyroscope [42],
sampling each axis at 5KHz. These sensor are attached to the objects
so that the accelerometer’s Z-Axis is perpendicular to the object’s
surface, and the gyroscope’s X-Axis revolves around an imaginary
line perpendicular to the floor, as depicted in Figure 5. The rest of
this evaluation only considers using the two axes, and we discuss
practical considerations later in Section 5.3.

4.1.2  Data Collection. We invited five participants, which is
higher than an average people per family of 3.14 persons [10]. We
ask each participant to perform a predefined activity of operating
the aforementioned objects — i.e., opening closing door, fridge, cab-
inet drawer and window, and pulling towel from towel dispenser.
We now refer to event type as the event type — object pair (e.g., door
represents opening/closing door). We performed the study after ob-
taining approval of Institutional Review Board (IRB) and conducted
the experiment in compliance to the IRB’s recommendations.

J. Han et al.
E1: Knock
‘ E2: Door ‘ E3: Frldg! | E4: Drawer l ES: Towel ‘ | E6: Window
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Figure 5: We depict experiment setup conducted in a kitchen.
Participants are asked to perform prescribed events.

Gender | Height | Weight | Age
Person A | Female | 1.59m 51kg 28
Person B | Male 1.75m 76kg 33
Person C | Male 1.65m 45kg 27
Person D | Female | 1.65m 50kg 30
Person E | Female | 1.85m 95kg 26

Table 2: Table presents demographics of five participants.

4.2 Known Labels Scenario

We evaluate SenseTribute when the system is given the training
labels, performing an SVM classification as described in Section 3.3.
We report the classification accuracy by varying number of occu-
pants from i = 2,...,5, where each variation is an average of all
possible combinations, (f) (e.g., 3 occupants case is an average of
(g) = 10 instances). Each instance of combination is an average
result of a 10-fold cross-validation (i.e., Leave-One-Out) as we have
ten trials per occupant. Figure 6 depicts the result for all six event
types. We observe that as the number of occupants increases, the
classification accuracy decreases, for each of the event types. This is
intuitive as introducing more classes (i.e., occupants) to the classifier
introduces more room for error. The average of all six event types
with five number of occupants yields 74%, as reported in Section 1.

We further note that different event types result in different accu-
racy, due to certain objects being more distinctive. We observe that
objects that provide relatively consistent interaction yielded better
classification accuracy. For example, knocking on door and opening
and closing a drawer leads to more information to sufficiently distin-
guish occupants, while dispensing towel did not produce sufficient
information on its own. We notice that the towel often got ripped
during dispensing in multiple trials, and consequently yielded dif-
ferent interactions even within same subject.

We also report the classification accuracy per occupant (Person4
through Persong), per event type (Figure 7).Certain event type yields
high classification accuracy for one person, but low for another
person while a different event type yields flipped results for the
same pair of persons. For example, Knock and Door event types
yield relatively high and low classification accuracy for Persong,
respectively. However, the two event types conversely yield rela-
tively low and high accuracy for Personp, respectively. SenseTribute
takes advantage of such phenomenon to amplify its identification
accuracy in its Ensemble Module (Section 3.5).
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Figure 6: Figure depicts classification accuracy by varying
number of occupants of each event type (for known labels sce-
nario). Each data point is an average accuracy of all combi-
nations within each number of occupants. As the number of
occupants increases, classification accuracy decreases. The
average accuracy of different event types for five occupants
case yields 74%.
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Figure 7: Figure depicts classification accuracy due to dif-
ferent participants. Certain pair of event types yield contra-
dicting accuracy across different participants. SenseTribute
takes advantage of such phenomenon to amplify the final
accuracy in its Ensemble Module.

4.3 Unknown Labels Scenario

We now evaluate SenseTribute when the training labels are not
provided by the user. As presented in Section 3.4, SenseTribute uti-
lizes a hybrid approach of unsupervised and supervised learning —
i.e., using clustering result as quasi-labels, to replace the unknown
training labels. To provide a comprehensive view of how clustering
accuracy affects the classification accuracy, we set clustering accu-
racy artificially from 25% to 100%, for each event type, as depicted
in Figure 8. For example, a clustering accuracy of 50% indicates that
half of the training labels selected at random are made incorrect
on purpose. We repeat this process a thousand times and report
the average for each data point in this figure. We show the result
of five occupants case as an example. This figure illustrates that as
the clustering accuracy increases, the corresponding classification
accuracy also increases (with 100% corresponding to known labels).

We now evaluate the performance of the Clustering Module. The
clustering accuracy is computed as Rand Index [38], which is defined
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Figure 8: Figure depicts how varying clustering accuracy af-
fects classification accuracy by artificially setting clustering
accuracy from 25% to 100% for each event type (for five occu-
pants case). Classification accuracy increases as clustering
accuracy increases for all event types.
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Figure 9: Figure depicts clustering accuracy when varying
number of occupants for each event type (for unknown la-
bels scenario). Knock and Drawer yield decreasing accuracy
while other event types yield increasing accuracy, as the
number of occupants increase.

as Equation 3:

TP+TN

TP+TN +FP+FN’ ®)
where TP, TN, FP, and FN, are True Positive and Negative, and False
Positive and Negative, respectively. Figure 9 depicts the clustering
accuracy (i.e., Rand Index), when we vary the number of occupants
i = 2,...,5. Each of the data points is an average of all possible
combinations of i occupants, (?) Furthermore, we report the av-
erage of a thousand iterations for all instances. We note that the
clustering accuracy decreases as the number of occupants increase
for Knock and Drawer event types. However, the rest of the event
types yield results that have increasing clustering accuracy as the
number of occupants increase. This is because Knock and Drawer,
which yield high classification accuracy for Known Labels scenario,
have features that are sufficiently differentiable, while the rest of
the event types do not follow this trend. Hence, during clustering
of two occupants case, the two centroids may be very close to each
other, yielding low clustering accuracy. However, when the num-
ber of occupants increase, more centroids are introduced, yielding
higher clustering accuracy.

Clustering Accuracy (Rand Index) =
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Figure 10: Figure depicts the classification accuracy when
varying number of occupants for each event type, for the
unknown labels scenario. As number of occupants increases,
corresponding accuracy also decreases.

Finally, we evaluate the classification accuracy of SenseTribute’s
Unknown Labels scenario (i.e., output of Testing Module). We com-
pute the classification accuracy in a similar manner to the afore-
mentioned Figure 8, namely purposely degrading the correctness
of the training label. Only this time, we take the actual empirical
results of clustering accuracy from Figure 9 instead of the artificial
numbers. We apply this strategy rather than directly applying the
output of the clustering indices as the training label. This is because
Clustering Module outputs clustered indices, which is at times dif-
ficult to map to corresponding ground truth labels. However, this
is necessary when computing the final classification accuracy for
evaluation purposes. While improving clustering algorithm would
certainly help to solve this issue, we concentrate on evaluating
the effects of clustering accuracy on classification accuracy. Fig-
ure 10 depicts the effect of the classification accuracy as we vary
the number of occupants, where each data point, again depicts an
average of all possible (f) combinations, and each combination is an
average of 10-fold cross validation (i.e., Leave-One-Out). We make
two interesting observations. First, similar to Figure 6 of the Known
Labels scenario, this figure depicts an intuitive trend of decreasing
classification accuracy as the number of occupants increase. This
trend exists even for the event types that have increasing clustering
accuracy with number of occupants from Figure 9. This is because
the effect of increasing the number of SVM classes outweighs the
effect of correct labels. Second, we also observe that classification
accuracy are relatively lowered compared to Figure 6 of Known
Labels scenario due to the incorrect labels.

4.4 Ensemble Classification Accuracy

We now evaluate SenseTribute’s Ensemble Module for both the known
and unknown labels scenarios. To provide a comprehensive view of
how the number of ensemble event types, and availability of training
labels affect the classification accuracy, we present Figure 11. We
report the classification accuracy when varying number of events
to ensemble from j = 2, ..., 6, where each variation is an average
of all (6.) combinations. Again, each combination is an average of
10-fold cross valuation (i.e., Leave-One-Out). We artificially assign
equal clustering accuracy per event type, again by artificially de-
grading the correctness of training label accordingly. We degrade
different training label at random, and repeat this process for a
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Figure 11: Figure depicts how (1) number of ensemble event
types; and (2) availability of training labels affect classifica-
tion accuracy. We artificially assign equal clustering accu-
racy per event type. As number of ensemble event types in-
creases, accuracy increases, except for the 25% case. Also,
lower per event type clustering accuracy yields lower clas-
sification accuracy due to more mislabeled training data.
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Figure 12: This figure depicts increasing classification accu-
racy as we ensemble more number of event types, for both
Known and Unknown Labels scenarios. We observe high clas-
sification accuracy even if the training labels are not known.

thousand times to report an average value. Each of the lines plots
depict different clustering accuracy - 25%, 50%, 75%, and 100% —
assigned per event type. The 100% clustering accuracy line graph
represents the known labels scenario. We observe the trend of in-
creasing classification accuracy as we ensemble more event types.
This is intuitive as we have more information content to amplify
the confidence of occupant identification. The 25% per event type
curve does not follow this trend, however, due to the fact that most
of the training labels are incorrect, which would actually hurt the
performance as the number of event types increases.

Noting the effects of number of event types and availability of
training labels on classification accuracy, we now evaluate the per-
formance of ensemble for both known and unknown labels scenarios,
as depicted in Figure 12. From these two plots, we make the follow-
ing two observations. (1) We observe that the classification accuracy
increases as we ensemble more event types for both known and un-
known labels scenarios. For example, we observe for the unknown
labels scenario, an increase from 84% to 96%. This is intuitive, and
in fact, one of the main contributions of SenseTribute, as increasing
information content ultimately amplifies the accuracy of occupant
identification. (2) We observe only a small difference in the result-
ing classification accuracy between the known and unknown labels
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Figure 13: Figure depicts classification accuracy of ensemble
of event types for different occupants when labels are known.
As the number of ensemble event types increases, the accu-
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Figure 14: Figure depicts classification accuracy of ensemble
of event types for different occupants when labels are un-
known. As the number of ensemble event types increases, the
accuracy also increases.

scenarios. We further observe that the difference reduces as we
ensemble more event types. This important observation means that
SenseTribute provides a practical solution that does not require users
to provide manual labels with no significant impact on occupant
identification.

We also present the classification accuracy per occupant for
different number of event types. Again, we report the average over
all combinations. Figures 13 and 14 depict the corresponding results
for known and unknown labels scenarios, respectively. For both
figures, we observe the similar trend as we ensemble more number
of event types, we achieve higher classification accuracy.

5 DISCUSSION

In this section, we further discuss practical considerations and
directions for further study with respect to activity segmentation,
unsupervised learning techniques, and sensor calibration.

5.1 Additional Contextual Information

We highlight two additional contextual information that may poten-
tially be helpful for SenseTribute, namely order and time of events.
In this work, we design SenseTribute to perform occupant identifica-
tion based on the results of activity segmentation, which provides
a sequence of events that are performed by a single person. In
Section 4, we evaluate scenarios where the order of events (in an
activity segment) are same across different participants. However,
in practice, there is a high probability that the order may vary. For
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example, when making a bowl of cereal, Person4 may take out
a bowl from cabinet, milk from fridge, and cereal from cupboard,
while Personpg may perform the same activity in an opposite order.
In addition, different occupants may conduct the same activity at
different times of the day. For example, Person4 usually makes ce-
real around 8 a.m., while Persong does the same at 10 a.m. Taking
the above two observations into account, we hint at the possibility
of a hybrid approach of solving both the activity segmentation
and occupant identification problem simultaneously. This hybrid
approach would potentially increase the performance with the ad-
ditional contextual information. Furthermore, the hybrid approach
may even increase the identification accuracy despite inconsisten-
cies in different interactions by the same user over time, or similar
interactions by different users.

5.2 Unsupervised Learning

Recall that when the training labels are not provided by the user,
SenseTribute utilizes clustering to infer the quasi-training labels.
We evaluate our results by clustering the history data during boot-
strapping phase. When SenseTribute is deployed in practice, we can
utilize online learning techniques [12, 13, 29] to improve the results
of clustering. This is because, over time, the clustering accuracy
would increase as the system collects more data, ultimately leading
to potentially higher identification accuracy.

Furthermore, in our evaluation, we assume the knowledge of
“K” (i.e., number of occupants) in the K-means clustering algorithm.
We make such assumptions because it is practical to have such
prior knowledge of how many people live at home. Granted, we
note that if guests are introduced to smart home, it may lead to less
accurate results. In practice, however, there are clustering methods
to estimate the optimal “K”, such as Elbow method [26]. Also, there
are other clustering algorithms that do not require the number of
clusters [19]. However, we leave this study for future work.

5.3 Sensor Calibration

Recall from our evaluation that we deploy sensors on different ob-
jects with consistent orientation of accelerometers and gyroscopes
as presented in Section 4.1. While we conducted the experiment as
a proof-of-concept, in practice, we cannot assume such deployment.
Hence, the system would need a simple but important calibration
phase, to identify the axes that have relatively richer information
content. SenseTribute may benefit from the calibration phase, as
identifying a specific set of features and axes per object and/or event
type would ultimately increase the identification performance.

6 CONCLUSION

We present SenseTribute, a smart home occupant identification sys-
tem that leverages existing and prevalent on-object sensing devices
equipped with inertial sensors, which are traditionally designed to
monitor status of objects such as doors. SenseTribute re-purposes
these devices, and exploits machine learning techniques to pro-
vide a low-cost, non-intrusive, and practical occupant identification
system in a smart home with high accuracy, even when training
labels are unavailable. Furthermore, SenseTribute combines infor-
mation from multiple sensors on different objects to amplify the
identification accuracy. We evaluate SenseTribute using real-world
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experiments with five on-object sensors deployed on distinct ob-
jects. The system achieves identification accuracy of 96% when
the training labels are unknown, while only achieving per-object
accuracy of 74% on average even when the labels are known.
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