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Abstract

Streaming video algorithms dynamically select between

different versions of a video to deliver the highest quality

version that can be viewed without buffering over the

client’s connection. To improve the quality for viewers,

the backing video service can generate more and/or better

versions, but at a significant computational overhead.

Processing all videos uploaded to Facebook in the most

intensive way would require a prohibitively large cluster.

Facebook’s video popularity distribution is highly skewed,

however, with analysis on sampled videos showing 1% of

them accounting for 83% of the total watch time by users.

Thus, if we can predict the future popularity of videos, we

can focus the intensive processing on those videos that

improve the quality of the most watch time.

To address this challenge, we designed Chess, the first

popularity prediction algorithm that is both scalable and

accurate. Chess is scalable because, unlike the state-of-

the-art approaches, it requires only constant space per

video, enabling it to handle Facebook’s video workload.

Chess is accurate because it delivers superior predictions

using a combination of historical access patterns with

social signals in a unified online learning framework. We

have built a video prediction service, ChessVPS, using

our new algorithm that can handle Facebook’s workload

with only four machines. We find that re-encoding popular

videos predicted by ChessVPS enables a higher percentage

of total user watch time to benefit from intensive encoding,

with less overhead than a recent production heuristic, e.g.,

80% of watch time with one-third as much overhead.

1 Introduction

Video is increasingly a central part of people’s online

experience. On Facebook alone, there are more than 8

billion video views each day [2]. Clients stream these

videos by progressively downloading video chunks from

a provider according to an adaptive bitrate (ABR) [33, 39]

algorithm. ABR algorithms strive to dynamically select

the version of a video with the highest bitrate a connection

can sustain without pausing. Higher bitrates provide

higher quality, but are larger and thus require clients

to have higher-bandwidth connections. The different

versions of the video used by ABR algorithms are typically

generated when a video is uploaded [3]. Generating the

different versions for the large volumes of videos uploaded

to Facebook each day requires a large fleet of servers.

There is a trade-off between the amount of computation

spent processing a video to prepare it for streaming and

the quality of experience for viewing that video. Videos

uploaded to Facebook are by default encoded to a small

number of standard versions with FFmpeg [16]. However,

investing in more computation can improve playback

experience by improving or increasing the choices for the

ABR algorithm. First, more computation can improve

the choices by further compressing a video at a fixed

quality. For instance, Facebook’s QuickFire engine [1]

uses up to 20× the computation of the standard encoding

to produce a version of the video with similar (or higher)

quality that is ~20% smaller than the standard encoding.

Second, more computation can increase the choices for

the streaming algorithm by generating more versions

of the video at different bitrates. In both cases, added

computation increases the highest quality version of a

video that can be streamed for some users.

Unfortunately, it is infeasible to compute the highest-

quality encodings for all videos. Using QuickFire and

increasing the number of versions of each video, for

example, would require a fleet at several tens the scale of

the already large processing fleet at Facebook. Fortunately,

video popularity is highly skewed, with 1% of the videos

accounting for over 80% of the watch time, i.e., the time

users spend viewing video. This skew enables us to achieve

most of the quality improvement with only a fraction of the

computation by generating the highest-quality encodings

for only the most popular videos.

The challenge in exploiting this insight is in scalably and

accurately predicting the videos that will become popular.

State of the art popularity prediction algorithms [9, 10, 45]

are accurate but do not scale to handle the Facebook

video workload because they keep per-video state that is

linear in its past requests. Simple heuristics that exploit

information from the social network scale, but are not

accurate. For example, predicting popular videos based on

owner like count requires 8×more resources to cover 80%

of watch time than what would be needed with clairvoyant

predictions, which only runs QuickFire encoding on videos

with the largest future watch time.

We overcome this challenge with Chess—Constant

History, Exponential kernels, and Social Signals—the
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The Need for Accurate Prediction The variety of ac-

cess patterns in Figure 2b suggests that accurately pre-

dicting future watch time will be challenging. Prediction

needs to be accurate so additional computation is used

where it will be the most useful. Using simple heuris-

tics based on features from the social network is quick,

but unfortunately is not accurate. For instance, a recent

production heuristic was to re-encode a video if the like

count of the owner exceeded 10,000. As our evaluation in

Section 6 shows, this heuristic is inaccurate: it requires

re-encoding 8× as many videos as a clairvoyant predictor

to cover 80% of the video watch time. Our goal is to

provide predictions with higher accuracy so higher watch

time coverage can be achieved with fewer resources.

The Need for Scalable Prediction Video popularity

prediction for Facebook must be scalable because there are

tens of millions of videos uploaded each day. Identifying

popular videos thus requires predicting the popularity

of a large active set of videos. In the video prediction

service described in Section 5 we track 80 million videos.

The previous state of the art in popularity prediction,

SEISMIC, is accurate but unfortunately does not scale to

our workload because it stores the timestamp and watch

time of each past request. This linear per-video state

would require ~10TB of memory to make predictions for

80 million videos, and methods requiring more features

per request [10] have an even larger memory usage.

4 The Chess Prediction Algorithm

Achieving high watch time coverage through additional

processing requires quick, accurate, and scalable predic-

tion of video popularity. This section describes the core of

Chess, the novel prediction algorithm we designed with

these goals in mind. We focus on three key features:

1. Harnessing past access patterns with constant space

and time overhead.

2. Combining different features in a unified model.

3. Efficient online training using the recent access data.

4.1 Utilizing Past Access Patterns with EDWT

A common theme in popularity prediction is exploiting

past access patterns [13, 36, 43, 45]. The state of the art

approaches do so by modeling behavior as a self-exciting

process that predicts future accesses based on all past

accesses. A past access at time t is assumed to provide

some influence on future popularity at time τ, as modeled

by a kernel function φ(τ − t). The kernel function, φ,

is a probability density function defined on [0,+∞), and

it is commonly chosen to be a decreasing function, so

that a session’s influence is initially high and gradually

converges to zero over time.

Self-exciting processes predict future popularity—i.e.,

watch time—based on the sum of the influence of all past

requests from the current time to infinity. Let i be an index

over the past viewing sessions of a video. Let ti and xi be

the corresponding timestamp and watch time, respectively

of the session. Then, for the purposes of ranking different

videos, the total future watch time for i is modeled as

F̃ (t) =
∑

ti ≤t

∫

+∞

τ

xiφ(τ − ti)dτ.

One key insight in Chess is using a kernel that allows

for efficient updates to popularity predictions. Previous

popularity prediction algorithms used power-law kernels

that provide high accuracy predictions, but require each

new prediction to compute over all past accesses [13, 45].

This requires storage and computation linear in the past

requests to each video, which is not feasible in our setting.

In contrast, we set φ to be the exponential kernel, or

φ(t) = 1

w
exp (−t/w), where w represents a time window

modeling how long past requests’ influence lasts into the

future. Such a kernel allows us to simplify the computation

of a new prediction to only require the last prediction, F̃,

and its timestamp, u, which drastically reduces the space

and time overhead. Below is the simplified update rule for

a new session with watch time x beginning at time t with

a previous session having occurred at time u < t. The

resulting prediction is the exponentially decayed watch

time (EDWT):

F̃ (t) =
∑

ti ≤t

xi

∫ ∞

t

φ(τ − ti)dτ

=

x

w

+

∑

ti ≤u

xi exp

(

−(t − ti)

w

)

=

x

w

+ exp

(

−(t − u)

w

)

∑

ti ≤u

xi exp

(

−(u − ti)

w

)

=

x

w

+ exp

(

−(t − u)

w

)

F̃ (u). (1)

4.2 Combining Efficient Features in a Framework

While EDWTs are efficiently computable, they are weaker

predictors of popularity than self-exciting processes with

more complex kernels as shown in our evaluation (§6). We

overcome this limitation of EDWTs with the second key

insight in the Chess design: combining many weak, but

readily computable, signals through a learning framework

achieves high accuracy while remaining efficient. We

use a neural network as our learning framework with two

types of features as input: stateless and stateful.

Stateless features are quantities that do not change

dramatically during the life-cycle of a video. A prediction

service does not need to keep any state associated with

these features or their past values. Instead it can query
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them from the social network at prediction time. For

our purposes, the most important are the social features,

including the number of likes and friends of the video

owner. They also include the video’s length, its age, and

several other easily queryable social features.

Stateful features are quantities that can vary dynamically

throughout the life-cycle of the video. Past access patterns

are one type of stateful feature. The changing pattern of the

number of comments, likes, shares, saves for later viewing,

etc. are all stateful features as well. They are stateful in

that a prediction service needs to keep state associated with

them between predictions. We use exponential kernels to

keep this state constant per-video and we combine four

kernels with different time windows—1, 4, 16, and 64

hours—to capture more complex patterns.

We use the stateless and stateful features as input to a

2-layer neural network (NN) with 100 hidden nodes for

predicting total future watch time. We find that neural

networks reduce the prediction error by 40% compared

to linear models, but more complex models, i.e., adding

more layers or using more hidden nodes do not further

improve accuracy. We initially selected all features from

the social network that we thought could provide some

signal and then trimmed those that did not have an effect

on prediction accuracy. We made features stateless or

stateful based on our intuition, e.g., friends of the video

owner is stateless because it changes little during the

lifetime of the video. We also tried several different sets

of time windows for stateful features and settled on 1,

4, 16, and 64 hours as providing the highest accuracy.

We did this feature engineering using a setup similar to

the single prediction experiments in our evaluation, on a

separate and earlier month-long trace.

Another important technique for boosting accuracy is

logarithmic scaling of both the feature values and predic-

tion targets. Because these values can vary from 10-108

depending on video popularity, they need to be prop-

erly scaled to avoid optimization difficulties. Although

linear scaling, in the form of standardization [6], is the

commonly used method in statistical learning, we find

that logarithmic scaling, i.e., x → log(x + 1), delivers

much better performance for our workload. It ensures

the model is not biased towards only predicting extremely

popular videos, achieves good prediction accuracy across

the whole popularity spectrum, and improves the coverage

ratio of QuickFire by as much as 6% over linear scaling.

We use this method in all our evaluations.

4.3 Efficient Online Model Update

Naively training our model would require a large set of

training examples with their full future watch time, which

is unknown. To address this issue, we use an example

queue to generate training examples from the recent past,

and use them as approximations for the future. When

a video is accessed, its current state is appended to the

queue. While the video is in the queue we track its watch

time and feature values. Later, when an example is evicted

from the queue it becomes training data with the difference

in watch time between its entry and eviction used as the

target future watch time. As an added benefit, because

examples keep entering and being evicted from the queue,

the prediction model is continuously updated at a constant

learning rate to keep up with changes in the workload.

The example queue needs to be carefully designed in

order to minimize the memory and CPU overhead while

achieving the best model accuracy. We found that two

design parameters are key to balancing this trade-off:

prediction horizon and example distance. Section 6.3

investigates the effect of varying each parameter and

shows that setting them properly leads to high accuracy

with low memory and CPU overhead.

The prediction horizon is the time difference between

entry and eviction of examples from the queue. In other

words, an example is evicted and becomes training data

when its age in the queue exceeds the prediction horizon.

A larger horizon provides a better approximation of total

future watch time, but it also results in a longer queue with

higher memory usage. For our workload, a prediction

horizon of 6 days achieves a good tradeoff with high

accuracy and low overhead.

We found our example queue was flooded by data

points from the most popular videos due to the skewed

power law distribution in video access. Many of these

data points were effectively redundant and did not help

improve accuracy. This is because the input values and

the prediction target will be very similar for the same

video at two nearby time points. We skip these redundant

examples using an admission policy that only allows a

new example into the queue if the difference between its

timestamp and the most recent example for the same video

is greater than a threshold. We call this threshold the

example distance D because it ensures there is at least D

time between all examples of the same video. Although

this alters the training data distribution, we find D = 2h

achieves high accuracy while greatly reducing memory

overhead, due to the high skew and large volume of data.

5 The Implementation of ChessVPS

To make video popularity predictions continuously avail-

able we implemented the Chess video prediction service

(ChessVPS). ChessVPS validates the scalability of our

design by providing popularity prediction for Facebook’s

video workload while running on only four machines.

Figure 3 provides a high-level view of the architecture of

ChessVPS. The service uses 8 workers distributed across

4 machines to generate predictions on the full workload.

The key steps in the process are: 1) ingesting access logs,
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Predictor Ranking of videos based on:

Initial(1d) [36] Watch time in the initial day after upload, or total watch time if less than a day old.

SEISMIC-CF [45] State of the art popularity prediction using a power-law kernel, with followers of each

viewer set to constant for our application.

Owner-Likes Like count of the video owner. This was recently used in production.

EDWT(4h) Exponentially decayed watch time with a four hour time window.

NN(EDWT) Neural network model using only EDWT features with time windows 1h, 4h, 16h, 64h.

Chess Neural network model with stateless features (e.g., owner likes) and stateful features (e.g.,

video views, video likes) made efficient using EDWTs.

Clairvoyant Total future watch time of each video. This is unattainable in practice.

Table 1: Popularity predictors evaluated on Facebook’s video workload in our evaluation.

to yield the best performance on our dataset. The original

SEISMIC algorithm needs the number of followers of

each retweeter for predicting tweet popularity, which is

unsuitable for video watch time prediction on Facebook

because a viewer might not share the video after watching

and directly influence its followers. Based on a parameter

sweep, we settled on a constant 1000 for this setting on our

workload, with the ensuing method called SEISMIC-CF—

as shown below, its performance remains competitive even

with this modification. Initial(1d) [36] originally uses the

number of requests—watch time in our case—of the entire

first day for predicting popularity, but for our application,

if the video is less than 1 day old we use its total watch

time to generate a prediction instead of waiting.

Comparing to baselines that represent the state of the

art—Initial(1d) and SEISMIC-CF—and a recent produc-

tion heuristic—Owner-Likes—enables us to quantify how

much Chess improves on the state of the art and would

improve production. Comparing increasing subsets of

Chess—EDWT(4h) and NN(EDWT)—allows us to quan-

tify the improvement from each addition to Chess. Com-

paring to a clairvoyant predictor allows us to quantify how

far Chess is from a perfect predictor.

Experimental Methods and Workloads We use three

experimental methods with progressively more realistic re-

sults and time-consuming experiments: single prediction,

simulation, and real-time sampled processing. The single

prediction method resembles that used by prior work on

popularity prediction [18, 45] and enables comparisons

with SEISMIC. The simulation method enables us to run

many experiments in a reasonable time frame and we

validate its results using real-time sampled processing.

Workloads. Single prediction and simulation experi-

ments each use the same 35-day trace of video access

as their workload. The trace is comprised of full ac-

cess logs for a random sample of 1% of videos during 5

weeks. The workload for the real-time sampled processing

experiments was the full Facebook video workload.

Single prediction. The memory and computational

overhead of SEISMIC3 made it infeasible for us to run the

more realistic simulation (or real-time sampled processing)

experiments with it, so we designed the single prediction

method to enable evaluation against it. In this method

each predictor takes as input the historical information for

a video up to a time point and then issues predictions. The

predictions are then evaluated using the watch time of the

video in the 15 days immediately following the time point.

The input historical information and future watch time

of the videos are extracted from the trace as follows. First,

we select only the videos in the trace that are accessed on

one day at the midpoint of the trace. This limits the size of

the prediction to make the experiments feasible. Second,

we randomly pick a time point on that day for each video

to control for diurnal effects. Finally, we extract the trace

up to the time point for each video and the future watch

time in the 15 days following the time point.

Simulation. Our main evaluation method is simulation

of a video prediction service that runs hourly using our

35-day trace. In each simulation, we replay the whole

trace, train our prediction model continuously, and the

predictor ranks videos for re-encoding every hour. Once a

video is selected for re-encoding, it is recorded in a hash

table. The hash table is then queried for each request to see

whether the requested video has already been re-encoded

before. We use the initial 23 days of the trace to populate

the hash table, and report results on the last 12 days.

Real-time sampled processing. Our final evaluation

method is the most realistic and follows the description in

Section 5. The whole service operates on 4 machines, each

with 20 2.8GHz cores and 32GB memory, and processes

access logs of all Facebook videos in real time. We

then write a client using results from ChessVPS to make

encoding decisions in 10 minute intervals. The whole

system was run for a week for warm up and we present

the results from the next day.

3The implementation of SEISMIC is ~200× slower than Chess’s

implementation. However, part of this slowdown stems from SEISMIC

being implemented in the R language [45].
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computing intensive encoding methods or have more en-

coded versions. The relative performance between the

two methods concords with the simulation results shown

in Figure 6; the minute differences stem from a changing

workload and the logic for different encoding thresholds.

7 Related Work

Our work explores building a scalable and accurate popular

video prediction service, with applications on re-encoding

for improving streaming quality. In this section we discuss

related work on popularity prediction, video quality of

experience (QoE) optimization, and caching, which we

draw inspiration from for this study.

Popularity Prediction In recent years, the popularity

prediction of online content has attracted intense research

attention. Simple heuristics like counting requests in

the first few hours/days [36], or followers of the owner

are fast but inaccurate. Meanwhile, various methods

have been proposed for modeling Twitter/Facebook re-

sharing [10, 9, 44]. They usually maximize accuracy,

rely on more features and are memory/computation inten-

sive, e.g., requiring to store and scan multiple features of

each retweet/sharing when making every prediction. Our

method is designed for both accuracy and efficiency, and

delivers accurate, real-time prediction for all Facebook

videos with a small hardware footprint.

Self-exciting processes have been used for modeling

earthquakes [20], YouTube video accesses [13], and Twit-

ter resharing [45]. These methods use variants of power-

law kernels and thus store and process all past requests.

Instead, we use an exponential kernel to cut per-video

memory/computation overhead to O(1). Exponentially

decayed metrics are used in other contexts [12, 21]; our

contribution is using them for self-exciting processes and

appling them to popularity prediction. Furthermore, we

are the first to combine multiple exponentially-decayed ker-

nels in a learning framework, which allows us to match the

accuracy of a power-law kernel while remaining resource

efficient, thus obtaining the best of both worlds.

Video QoE Optimization As videos gain increasing

importance in people’s online activities, research on im-

proving video streaming QoE has flourished. Many of

them focus on the delivery path, e.g., selecting the best

bit-rate per chunk in ABR for efficiency, stability and

fairness [23, 24, 25, 42], and building a control plane for

video delivery [17, 28, 30]. On the upload and encoding

path, video codecs have evolved towards using higher

computation in exchange for higher compression, from

MPEG-2 [19] to the now widely adopted H.264 [34], and

gradually moving to the next generation codecs such as

VP9 [31] and H.265 [35]. In addition, QuickFire [1, 41]

and Netflix per-title encoding [4] try to improve com-

pression of existing codecs by finding the best encoding

configuration based on video content as well as resolution.

We explore another dimension in video encoding based on

feedback from delivery. By applying more processing to

popular videos, we optimize the overall trade-off between

encoding CPU and streaming QoE.

Caching We find the video re-encoding problem also

bears some interesting similarities to caching. By locating

hot data in a small but fast storage, caching saves access

latency and bandwidth [37]. Meanwhile, by spending

more CPU on the popular videos, re-encoding improves

the video streaming quality at given network conditions.

Many caching algorithms have been designed to ex-

ploit different characteristics of request patterns, includ-

ing recency (LRU [26]), frequency (LFU [29]), or both

(SLRU [27], MQ [46]). The exponentially decayed kernel

used as a building block in Chess combines both recency

and frequency, and the trade-off is tuned through the time

window parameter. Similar to length normalization, size-

aware caching [8, 11] also favors smaller items so more

can be cached in limited space, improving object hit-ratio.

8 Conclusion

Facebook serves billions of videos views every day and

new videos are uploaded at a rapid rate. With limited

CPU resources, it is challenging to identify which of

these videos would most benefit from re-encoding with

computing intensive methods like QuickFire that enhance

the viewing experience.

We have described an efficient video popularity pre-

diction service that has the Chess algorithm at its core.

Chess achieves scalability by summarizing past access

patterns with a constant number of values, and it achieves

efficiency by combining the past access patterns and other

features in a continuously updated neural network model.

Our evaluation show that compared to a recent production

heuristic, Chess reduces encoding CPU required by 3× to

cover 80% of user watch time with QuickFire.

While the focus of this paper has been popularity predic-

tion for the Facebook video workload, we conjecture that

our ChessVPS approach would generalize to efficiently

predict popularity in other settings.
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