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Abstract We propose a novel approach to multi-fingered grasp planning leveraging
learned deep neural network models. We train a convolutional neural network to
predict grasp success as a function of both visual information of an object and grasp
configuration. We can then formulate grasp planning as inferring the grasp configu-
ration which maximizes the probability of grasp success. We efficiently perform this
inference using a gradient-ascent optimization inside the neural network using the
backpropagation algorithm. Our work is the first to directly plan high quality multi-
fingered grasps in configuration space using a deep neural network without the need
of an external planner. We validate our inference method performing both multi-
finger and two-finger grasps on real robots. Our experimental results show that our
planning method outperforms existing planning methods for neural networks; while
offering several other benefits including being data-efficient in learning and fast
enough to be deployed in real robotic applications.
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1 Introduction and Motivation
Learning-based approaches to grasping [20, 21, 13, 17, 11] have become a pop-
ular alternative to geometric [19, 1, 3, 4] and model-based planning [6, 16] over
the past decade. In particular grasp learning has shown to generalize well to previ-
ously unseen objects where only partial-view visual information is available. More
recently, researchers have looked to capitalize on the success of deep neural net-
works to improve grasp learning. Broadly speaking deep neural network methods
for grasp learning can be split into two approaches: predicting grasp success for an
image patch associated with a gripper configuration [13, 8, 17, 14, 15, 9, 23] and
directly predicting a grasp configuration from an image or image patch using re-
gression [18, 12, 24]. While these deep learning approaches have shown impressive
performance for parallel jaw grippers (e.g. [17]) relatively little work has focused
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on the more difficult problem of multi-fingered grasping [23, 24, 10]. We believe
two primary difficulties restrict the use of deep learning for multi-fingered grasping
(1) the input representation used for grasp configurations in neural networks and (2)
the reliance on external planners for generating candidate grasps.

In order to combat these two problems, we propose an alternative approach to
grasp planning with deep neural networks, where we directly use the learned net-
work for planning. In our work, we train a network to predict grasp success; how-
ever, we use the trained network in a substantially different and novel way from
currently employed sampling methods for grasp planning. The grasp representation
we use fundamentally enables our approaches’ success. In addition of giving the
neural network the image patch, z, as input, we also provide the grasp configuration
parameters, θ (e.g. joint (preshape) angles, wrist pose, etc.).

Once trained, given a new object patch, z, we perform inference over the grasp
parameters, θ , in order to maximize the probability of grasp success P(Y = 1|z,θ)
learned by our convolutional neural network (CNN). We perform this probabilistic
inference as a direct optimization over θ using constrained gradient-ascent, which
leverages the efficient computation of gradients in neural networks, while ensuring
joint angles remain within their limits. Thus, our approach can quickly plan reliable
multi-fingered grasps given an image of an object and an initial grasp configuration.

Our planner offers a number of benefits over previous deep-learning approaches
to multi-fingered grasping. Kappler and colleagues [10] learn to predict if a given
palm pose will be successful for multi-fingered grasps using a fixed preshape and
perform planning by evaluating a number of sampled grasp poses. Varley et al. [23]
present a deep learning approach to effectively predict a grasp quality metric for
multi-fingered grasps, but rely on an external grasp planner to provide candidate
grasps. In contrast, our method learns to predict grasp success as a function of both
the palm location and preshape configuration and plans grasps directly using the
learned network. Saxena et al. [21] also perform grasp planning as inference us-
ing learned probabilistic models; however they use separate classifiers for both the
image and range data, using hand selected models instead of a unified deep model.
Zhou and Hauser [25] concurrently propose a similar optimization-based grasp plan-
ning approach to ours using a similar CNN architecture. In contrast to our work, they
do not interpret planning as probabilistic inference; they optimize only for hand
pose, ignoring hand joint configurations; and they validate only in simulation.

Veres et al. [24] train a conditional variational auto-encoder (CVAE) deep net-
work to predict the contact locations and normals for a multi-fingered grasp given
an RGBD image of an object. In order to perform grasping an external inverse kine-
matics solver must be used for the hand to try and reach the desired contact poses
as best as possible. Implicit in such a regression method as proposed in [24] lies the
assumption that there exists a unique best grasp for a given object view. In contrast,
our method can plan multiple high quality grasps for a given object using different
initial configurations. This offers the robot the option of selecting a grasp best suited
for its current task. Additionally, we show that our classification-based network can
effectively learn with a smaller dataset compared with a regression network, which
can not leverage negative grasp examples.
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We propose two novel CNN architectures to encode grasp configurations for our
planner, but many alternatives would surely also work. Our proposed multi-channel
network (c.f. 3.1) has a similar architecture to that of [14], but we train on joint
configurations instead of motor commands and use only a single image as input, as
we evaluate grasps and do not learn a controller to perform grasping. Our alternative
patch-based network described in Section 3.2 was inspired by the fingertip patches
used in [23]; however, we construct our patches as a function of the grasp parameters
differently in order to improve learning and efficiently perform gradient ascent.

The contributions of this paper are as follows:
• We present a method for performing grasp planning as probabilistic inference in

a deep neural network, that
– is the first work to directly optimize over grasp configurations inside a learned

deep network;
– is data-efficient compared with direct regression CNNs;
– can naturally predict a variable number of high quality grasps;
– can improve initial grasp configurations which would fail to result in success-

ful grasps;
– requires far fewer grasps as initializations than sampling-based approaches.

• We propose two novel CNN architectures for use with our planning algorithm.
• We provide a multi-finger grasp dataset from simulation with more realistic data

than currently existing simulation datasets.
• We experimentally validate the effectiveness and efficiency of our inference

method for both multi-finger and two-finger grasp planning on real robots.
In the next section we provide a formal description of our grasp planning ap-

proach. We follow this in Section 3 with an overview of our approach to multi-
finger grasp learning and the novel CNN architectures for predicting grasp success.
We then give a thorough account of our experiments and results in Section 4. We
conclude with a brief discussion in Section 5.

2 Grasp Planning as Probabilistic Inference
Following [3] we define the grasp planning problem as finding a grasp pre-shape
configuration (hand joint angles and palm pose). The robot then moves to this pose
and executes a controller to close the hand forming the grasp on the object. We focus
on scenarios where a single object of interest in isolation exists in the scene. Impor-
tantly, we assume no explicit knowledge of the object beyond this sensor reading.
The problem we address states, given such a grasp scenario, plan a grasp preshape
configuration that allows the robot to successfully grasp and lift the object without
dropping it.

We propose planning grasps by finding the grasp configuration which maximizes
the grasp success probability. We use a deep neural network to predict the probabil-
ity of grasp success, Y , as a function of the sensor readings, z, and hand configura-
tion, θ . We formalize probabilistic grasp inference as an optimization problem:

argmax
θ

p(Y = 1|θ ,z,w) = f (θ ,z,w)

subject to θmin ≤ θ ≤ θmax.
(1)
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In Eq. 1 f (θ ,z,w) defines a neural network classifier with logistic output trained
to predict the grasp success probability as a Bernoulli distribution over Y . The pa-
rameters w define the neural network parameters. We encode joint limits and the
reachable workspace of the robot hand as constraints on the decision variables. We
can now directly optimize over θ in order to infer the maximum likelihood grasp
estimate, θ ?.

In order to efficiently solve this optimization we use a gradient-ascent approach,
which leverages the structure of the neural network to efficiently compute gradients.
The gradients are computed using the well-known backpropogation algorithm with
respect to the grasp input, θ , instead of the more typical optimization of network
parameters, w, during learning. The complete algorithm takes as input the current
object image, z, and an initial grasp configuration, θ 0. We compute the success
probability by evaluating a forward pass of the neural network, then update the
grasp parameters, θ , using backpropogation in backwards pass through the network.
We iterate these forward and backward passes until convergence. We handle the
linear constraints using gradient projection and apply a backtracking line search to
determine the gradient step length at each iteration. Initial hand configurations could
be generated in a number of different ways, we describe the heuristic approach we
use in Section 4.1.

Our formulation allows for a number of straightforward extensions, which we
do not consider in this work. First, adding a prior over θ would allow one to infer
the Maximum a posteriori (MAP) grasp estimate, which could also be learned from
data. This could encode, for example, generally effective preshapes independent of
the object. Additionally other constraints could be added to the optimization such
as collision avoidance constraints or the full forward kinematics of the robot arm.
Finally, other sensing modalities could be given as input to the neural network if
available such as tactile or haptic information. In the next section we define two
neural network architectures we use in evaluating our approach. However, many
other networks would likely work well within our framework, as long as they use
the same inputs and outputs required by our planner.

3 Deep Networks for Multi-fingered Grasp Learning
We present two novel neural network architectures designed to predict the proba-
bility of grasp success for multi-fingered hands. Importantly, the networks operate
as a function of both a grasp configuration and RGBD image of the object of inter-
est. For a given RGBD image we compute the surface normals and curvature from
the associated point cloud giving an 8-channel representation (i.e. RGB (3), depth
(1), normal (3), and curvature (1)). In the remainder of this section we first detail the
specifics of the two networks. We then explain the training algorithm used, followed
by a brief discussion of the gradient computation necessary to perform the inference
described in the previous section.

3.1 A Multi-channel Grasp Configuration and Image CNN
We define a multi-channel deep neural network which takes as input a grasp con-
figuration and RGBD image grasp patch and predicts as output the probability of
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grasp success. We extract a 400×400 pixel object patch from the 8-channel RGBD
representation. In our experiments we examine both keeping this object patch fixed
and moving it as a function of the palm pose of the grasp. The configuration RGBD
CNN takes the grasp patch and the grasp preshape configuration as the input to learn
to predict the grasp success probability. We pass the image patch through two convo-
lution layers and one max pooling layer. We first process the grasp configuration, θ ,
through one fully connected layer. We tile the resulting grasp configuration features
point-wise across the spatial dimensions of the response map of the pool1 features
output from the image feature channel (c.f. [14]). This generates a concatenation
of the grasp configuration and image features which pass through one convolution
layer, then one max pooling layer, followed by two-fully connected layers, and a
final logistic regression output layer. Figure 1 shows this “config-CNN” structure in
detail. The config-CNN contains 61k parameters in total.
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Fig. 1: The config-CNN architecture. Top left: the RGBD representation, z, extracted grasp patch,
p, and image patch network channel m(·). Bottom: the Allegro hand and grasp configuration net-
work channel n(·). Right: the combined feature network layers and output k(·).

3.2 An Image Patch Based CNN for Grasping
As an alternative to the config-CNN, we define an image based network inspired
by [23]. We extract image patches related to the palm pose and fingertip locations for
a given grasp configuration, θ . Each image patch is passed through two convolution
layers, one max pooling layer, and one fully connected layer fc1. We concatenate the
features from each finger and palm fc1 and feed these into one fully connected layer
followed by a logistic regression output. We show the structure of the “patches-
CNN” in Figure 2 implemented for the Baxter parallel jaw gripper as an example.
However, extending it for use on a multi-finger hand is straightforward.

We use the same 8 channel image representation as with the config-CNN. We
extract a 200×200 pixel patch centered at the projected palm location and oriented
to align with the project palm orientation. We extract 100× 100 pixel patches for
each finger centered at the projected fingertip location in the image rotated to align
with the projected palm orientation. Our patches-CNN has 316k parameters in total.
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Fig. 2: The patches-CNN architecture and patch input. Finger and palm patches are extracted from
the 8-channel RGBD representation on the left. The red bounding box represents the palm patch.
The blue and green boxes define the patches for the two Baxter gripper fingers.

3.3 Training
We train our classifiers using the common cross entropy loss function:

argmin
w

M

∑
i=1
−yi log( f (θ ,z,w))− (1− yi) log(1− f (θ ,z,w)) (2)

where yi defines the ground truth grasp label as 1 if successful and 0 if failed. We
optimize for training by stochastic gradient descent (SGD) using Adam optimizer
with mini-batches of size 8 for 6,000 iterations. The learning rate starts at 0.001 and
decreases by 10× every 2,000 iterations. We apply dropout to prevent overfitting
keeping weights with a probability of 0.75 and apply Xavier initialization [5] for
the weights. For the multi-finger grasp CNN training, we oversample positive grasps
making sure at least one positive grasp exist in each mini-batch. The same training
set up is used for the patches-CNN, except we train for 60,000 iterations with the
learning rate decreasing by 10x every 20,000 iterations. When training on the two-
fingered grasps dataset from [13] we do not oversample, but mirror each grasp patch
to double the number of training examples. We implemented and trained all of our
neural network models using TensorFlow (http://tensorflow.org/.).

3.4 Computing Gradients for Image Patches in Inference
Since, we define the patches used as input to our CNNs, as a function of the grasp
configuration, θ , we must compute the gradient of the patch with respect to the
configuration parameters for use in inference. In the patches-CNN the gradient takes
the form:

∂ f
∂θ

=
N

∑
i=0

∂ f
∂ pi

∂ pi

∂θ
(3)

where we define the sum over the derivatives with respect to the image patches pi
associated with the N−1 fingers and palm.

We can decompose the config-CNN f (·)into sub-modules m, k, and n so that
f = k(m(p(z,θ)),n(θ)) as shown in Fig. 1. This gives the following equation in
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computing the gradient:

∂ f
∂θ

=
∂k
∂n

∂n
∂θ

+
∂k
∂m

∂m
∂ p

∂ p
∂θ

(4)

We use backpropogation to compute most of the terms in Equations 3 and 4;
however, for both networks we use finite differences to estimate the patch gradient
with respect to the hand configuration:

∂ p
∂θ

=
p(z,θ + ε)− p(z,θ − ε)

2ε
(5)

4 Experimental Validation
In this section, we describe our simulation-based training data collection pro-
cess and the experimental evaluation of our grasp inference approach. We con-
duct multi-finger grasp experiments using the same four-fingered Allegro hand
mounted on a Kuka LBR4 arm in simulation and on the real robot. We com-
pare to a heuristic grasp procedure, as well as the two dominant approaches to
deep-learning based grasp planning: sampling and regression. Finally, we show
the applicability of our inference method to two-finger grippers by preforming
real-world experiments on the Baxter robot. All data and software used in this
paper are available for use at: https://robot-learning.cs.utah.edu/
project/grasp_inference.

4.1 Multi-finger Grasping Data Collection
We developed a grasping system using ROS that runs both in simulation and on the
real robot. We collected simulated grasps data using the Allegro hand mounted on
the Kuka LBR4 arm inside the Gazebo simulator with the DART physics engine
(https://dartsim.github.io/). We use Blensor [7] to generate RGB and depth images
simulating a Kinect camera we use in real-world experiments. Example images gen-
erated by blensor can be seen in Figure 3.

For a given trial we place the selected object, with a predetermined support sur-
face facing down, at a location chosen uniformly at random from a 0.2×0.2m rect-
angle area with a uniformly random orientation. We then perform object segmenta-
tion by fitting a plane to the table using RANSAC and extract the points above the
table. We compute a 3D bounding box of the segmented object using PCA used to
generate heuristic grasps associated with the bounding box’s top face and its two
faces closer to the camera.

We generate a grasp for a given face by setting the palm to be a fixed distance
from the face center (2cm for top grasps and 3cm for side grasps) in the direction
of its surface normal. For data collection we add zero mean Gaussian noise with
a standard deviation of 1mm along the normal to get a more diverse set of grasps.
We rotate the palm to align with the bounding box face. For side grasps we have
the thumb pointing towards the top, for top grasps we randomly select to align with
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either the major or minor axis of the face and add an additional small amount of
random noise. We generate a preshape by randomly sampling joint angles for the
first two joints of all fingers within a reasonable range, fixing the last two joints
of each finger to be zero. The preshape of the Allegro hand has 14 parameters: 6
for the palm pose and 8 for joint angles. In data collection, each preshape reach-
able for the arm using the RRT-connect motion planner in Moveit is executed and
recorded. In experiments, all 3 preshapes are used as initializations for inference.

(a) The RGB image.

(b) The depth image.
Fig. 3: The RGB and depth
image generated by Blensor
for one grasp trial of the “de-
tergent” object. The bottom
part of the orange robot arm
can be seen in the left side of
the image.

For grasping the object we first use a position controller
to move the finger preshape joints to the desired pre-
shape, followed by moving the arm to reach the de-
sired palm preshape pose. We then use a simple grasp
controller to close the hand. The controller closes the
fingers at a constant velocity stopping each finger in-
dependently when contact is detected by the measured
joints velocities being close to zero. We found slightly
different controllers to work well for top grasps versus
side grasps. For most grasps the controller closes the
last three joints of non-thumb fingers and the last two
joints of the thumb. Importantly, the last three joints in-
cludes both preshape and non-preshape joints. However,
for overhead grasps the controller closes only the second
joint of non-thumb fingers and only the third joint of the
thumb.

If after closing the hand the robot can lift the object to
a height 0.15m without dropping it, the system labels the
grasp as successful. We used this grasp system to collect
a dataset containing 1507 grasp trials. The dataset cov-
ers all 125 objects of the Bigbird [22] dataset with an av-
erage of 12 grasps per object, depending on how many
grasps were reachable by the planner. Of the collected
grasps attempted 159 were successful.

4.2 Grasp Classification CNN Evaluation
We first compare the performance of our two proposed network architectures config-
CNN and patches-CNN. We train the networks using a random 80% of the collected
data and test with the remaining 20%. We repeat this procedure to perform a five-
fold cross validation. We compare two different cross validation scenarios. In the
first the training set contains examples of all objects in the test set. In the second
scenario objects in the testing set are held out from the training set to simulate
observing novel objects. We refer to these scenarios as “seen” and “unseen” respec-
tively. In both scenarios, each fold contains approximately the same percentage of
successful grasps as the complete data-set.

The patches-CNN performs poorly for the classification of multi-finger grasps
for both seen and unseen scenarios. The network predicts all test grasps as failure
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cases. Different training parameters (e.g. learning rate, dropout probability, the num-
ber of batches, the number of training iterations, and the oversampling of successful
grasps) were attempted to improve learning, including using the successful settings
from the config-CNN. As such we do not report detailed results from the patches-
CNN. The comparative success of the config-CNN shows that having direct access
to the grasp configuration parameters allows the network to learn a more useful
feature representation than providing this information indirectly through the image
patch.

Fig. 4: The average ROC curve of five-fold cross valida-
tion for seen and unseen objects. For seen objects, the AUC
mean is: 0.83 the AUC std: 0.02. For unseen objects, the
AUC mean is: 0.82, the AUC std: 0.06. For random guess-
ing, the AUC mean is: 0.5.

The average receive operator
characteristic (ROC) curve and
the area under the ROC curve
(AUC) for the config-CNN can
be seen in Figure 4 along with
the performance of selecting
a label at 50% probability for
comparison. Table 1 shows the
mean and standard deviation
of the accuracy and F1 score
across all validation folds for
both seen and unseen objects.
We treat predictions with grasp
probability above 0.4 as posi-
tive, based on the ROC curve
and our desire for high recall.
As we can see, the config-CNN
predicts multi-finger grasp success reasonably well for both seen and unseen objects,
significantly outperforming chance.

Table 1: Accuracy and F1 score of the RGBD config-CNN of the 5-fold cross validation for seen
and unseen objects. We list the mean with standard deviation in parentheses.

Experiment Accuracy F1

Seen 0.766 (0.038) 0.405 (0.016)
Unseen 0.756 (0.05) 0.385 (0.096)
Random 0.5 (-) 0.172 (0.02)

As an additional comparison to our proposed networks we implemented a regres-
sion network to directly predict the grasp configuration parameters, θ , as a function
of the 8-channel RGBD object patch. We implemented a network architecture sim-
ilar to the RGBD channel of our config-CNN, except that we removed the third
convolution layer used for concatenating the configuration and grasp patch features.
The output layer of the regression CNN consists of separate linear regression out-
puts for each grasp parameter. We apply ridge regression to regularize the network
with a strength of 0.5 in addition to the standard least-squares loss function.

In order to predict good grasps, the regression CNN can only learn from the
159 successful grasp examples in our dataset and makes no use of the remaining
1348 samples. Unsurprisingly this is far too few samples to reasonably learn in
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our regression CNN with 90k parameters. The regression CNNs in [18, 12] have at
least 60M parameters and the CVAE deep learning model in [24] has more than 2M
parameters, thus we find it highly unlikely that they will work with our data-set.

We further validate the regressors performance by examining the distance be-
tween the predicted grasp and the ground truth example for a given object pose.
The mean Euclidean distance between the predicted preshape palm location and the
successful ground truth preshape palm location was above 0.4m and the minimum
distance was above 0.2m. Thus the grasp regression CNN cannot predict palm lo-
cations within an effective distance of the object for grasping. The predicted palm
orientations and joint angles were also far from the ground truth preshapes. We ex-
amined alternative deeper and shallower network structures for regression, but found
none which could effectively learn from such a limited amount of data.

4.3 Multi-finger Grasp Inference in Simulation
We first evaluate our inference procedure for multi-finger grasp planning by per-
forming grasping experiments on 10 objects of daily life from the Bigbird dataset.
We test grasps for each object at 5 different random poses on the table. For each
pose we generate three initial grasp configurations following the heuristic described
in Section 4.1. We apply our CNN gradient ascent planner to each initialization and
select the grasp preshape configuration with highest predicted grasp success prob-
ability for execution on the robot. The robot automatically selects to close with the
top or side grasp controller depending on which bounding box face was used for
initialization. If the planned grasp is not reachable by the arm motion planner, then
we generate a new random object pose for evaluation.

We used the following parameters in performing inference. We constrained the
palm location to be within a 0.1×0.1×0.1m cube around the palm location given
as initialization. We restrict the palm orientation to stay within 0.3 rad of the initial
pose expressed in XYZ Euler angles. All preshape joint angles were restricted to
the same limits used with the heuristic grasp. The maximum number of iterations
for the inference is 100. We set the initial step size for backtracking line search to
0.001 and allow it a maximum of 10 iterations for each gradient ascent step. We set
the control parameter of backtracking line search to 0.5.

We found that changing the object image patch as a function of the palm pose
did not significantly change the grasps resulting from inference. As such, we only
compute the change in grasp configuration using the gradient ∂k

∂n
∂n
∂θ

(c.f. Sec. 3.1).
This approximation sped up the inference procedure significantly without noticeably
changing the grasps generated by the planner.

We examine our grasp planner on both seen and unseen objects. For the seen sce-
nario we train the learner on the entire training set. In the unseen case we only hold
out the test object from the training set to simulate the robot viewing a novel ob-
ject. We compare our planner to three baselines. First we perform the three heuristic
grasps for each object pose used by the planner. We ignore cases where the arm
planner could not find a plan to reach the grasp pose. This gives a maximum of 15
heuristic grasps per object. The second approach evaluates the three heuristic grasps
using the learned network and selects the one with highest predicted success prob-
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Fig. 5: Simulation Success Rate Results: Success rate for executed grasps on previously seen
objects (top) and previously unseen objects (bottom) in simulation.

ability to execute. We term this approach “max-eval” and executed it on an addi-
tional 5 random object poses per object. Our final comparison performs a sampling
approach where we generate 150 random grasp configurations. We evaluate all 150
generated grasps with our learned network and execute the grasp with highest pre-
dicted probability. Unlike the other three methods, the heuristic approach produced
a variable number of reachable grasps for each object pose. In total we collected
121 heuristic grasp attempts for seen and 110 for unseen.

Figure 5 shows the grasping success rates for our method and the baselines com-
parisons. We report the rate of successful grasps for each object in both the previ-
ously seen and unseen cases. We note that our inference planner performs signifi-
cantly better than the alternative approaches for both scenarios. Most importantly,
for grasp initializations which would fail, the gradient-based optimization can re-
fine these failure grasps to be successful. For example for the unseen scenario, a
side grasp initialized for the “spray adhesive” object failed, but succeed after infer-
ence at the same object pose. We report the average success probability predicted
by the network in Figure 6 for the initial heuristic grasps and the grasps found after
inference for both the seen and unseen cases. We see that the inference is clearly
improving the predicted probability, but has fairly low confidence in its prediction.

Our planner performs best with objects that can be easily enveloped from the
side. It never selects precision grasps. For larger objects such as boxes the inference
planner generally selects top grasps. For shorter objects, our arm planner had a dif-
ficult time finding plans which would not collide with the table, especially for side
grasps. In terms of timing the inference-based planner takes approximately 2 to 3
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Fig. 6: Simulation Predicted Grasp Success Probability Results: Probability of grasp success
predicted by the network for multi-fingered grasps for previously seen (left) and unseen (right)
objects in simulation.

seconds for each initialization, while sampling takes around 6 seconds to evaluate
the 150 sampled grasp preshapes, comparable to the time to perform inference with
3 initializations. Max-eval takes 0.1 to 0.2 second for 3 initializations. The computer
used to run the training and simulation experiment has an Intel-i74790k with 64GB
RAM and an Nvidia GeForce GTX 970 graphics card (1.1 GHz base clock rate and
4G memory) running Ubuntu 14.04 with ROS Indigo.

4.4 Real Robot Multi-finger Grasp Inference
We evaluate our config-CNN trained on the simulated grasp data on the real robot.
We compare our proposed CNN gradient ascent inference to the heuristic grasp and
the “max-eval” grasp planner using the same heuristic initializations. We do not
compare to the regression network on the real robot, because of its poor perfor-
mance in simulation. We perform inference and max-eval following the same pro-
cedures used with the simulated data, except for one minor modification. In order to
overcome the issue of planned grasps being in collision with the table, we limit the
minimum z-axis value of the hand position to remain above the table. We perform
experiments on 5 objects from the YCB dataset [2], only the “pringles” can objects
was present in the training data; however, it was a different flavor. We evaluate each
object at 5 random poses.

Figure 7 summarizes the results of these experiments. We note that the infer-
ence results perform better than our comparison methods in all cases. Similar with
simulation, the gradient-based optimization can refine these failure grasps to be suc-
cessful. For example, a side grasp initialized for the “pitcher” object failed, but suc-
ceed after inference at the same object pose. In Figure 8 we show several example
grasps generated by our grasp inference planner. We see that while most grasps are
enveloping, different finger spreads are used to accommodate the different object
geometries. The inference-based planner and max-eval have similar running time
with simulation experiments run on similar hardware.
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Fig. 7: Comparison of success rates for multi-fingered grasping on the real robot. Pringles was
seen in training, all other objects are previously unseen.

Fig. 8: Examples of successful grasps generated by our inference approach to grasp planning.

4.5 Experiments for Two-finger Gripper Grasp Inference
As a final evaluation we apply our grasp inference approach to planning two-
fingered griper grasps on the Baxter robot. We train our patches-CNN (c.f. Fig-
ure 2) to predict two-finger gripper grasp success using the Cornell grasp dataset
from [13]. Our patches-CNN network has similar classification performance on an
offline validation dataset as the deep network results reported in [13]. To highlight
the role of the inference procedure, and not the network, we chose to evaluate the
patches-CNN, and not the config-CNN, as it is more similar to previous approaches
tested on this dataset than our config-CNN.

We initialize our gradient ascent inference using four different configurations
(grasp rectangle center, orientation, and gripper width) for a given object location.
For all initializations we set the bounding box center to the estimated center of the
segmented object and provide a random orientation. We initialize the gripper width
to be 30 pixels. We perform inference initialized with all four configurations and se-
lect the configuration with highest predicted success probability to execute. We set
the maximum number of iterations for gradient ascent to 10 and set the initial step
size of the backtracking line search to 0.05. We set the maximum number of itera-
tions for the backtracking line search to 5 per ascent step and the control parameter
of backtracking line search to 0.5. We transform the rectangle found through infer-
ence to a 3D grasp pose using the same method as [13]. If the robot can then lift the
object without dropping it to a height 0.2m, we label it successful. We selected 10
objects, some coming from the YCB dataset, with varying shape, texture, and visual
properties comparable to the variability of the items used in [13]. Among these 10
objects different examples of the stapler, screw driver, and umbrella all appear in the



14 Lu, Chenna, Sundaralingam, and Hermans

0 20 40 60 80 100

Pringles

Asus Xtion

Screw Driver

Umbrella

Foam Cube

Lego Blocks

T-Shirt

Paint Can

Jello

Stapler

All

Success Rate (%)

Initialization Inference

0 0.2 0.4 0.6 0.8 1

0.09

0.47

0.24

0.62

0.02

0.66

0.49

0.01

0.23

0.05

0.29

0.97

0.99

0.99

0.99

0.98

0.96

0.96

0.99

0.99

0.99

0.98

Unseen Avg. Predicted Success Probability

Fig. 9: Success rate for executed grasps and the associated probability of grasp success predicted
by the network for Baxter 2-finger grasps.

Cornell dataset; however, the other 7 objects are entirely novel. For each object we
evaluate grasps at three random poses. As a comparison to our inference approach
we test all four random initial configurations for each object.

Figure 9 shows the success rate and success probability predicted by the patches-
CNN for both inference and the initial heuristic grasps for all experiments. The in-
ference significantly improves upon the initializations with an average success rate
of 84% across all objects. This performance is comparable to the success rate shown
in [13]. However, our inference takes only 4 initializations to achieve the same suc-
cess rate, far fewer than the number of grasp samples required in [13]. Inline with
our multi-finger experiments, we see that the CNN gradient inference can improve
initial configurations which would fail to generate successful grasps. However, the
trained network is over confident in its prediction of success probability predicting
at lest 96% confidence, while only being successful 84% of the time.

5 Conclusions

We presented a novel approach for multi-fingered grasp planning formulated as
probabilistic inference in a learned deep neural network. Our planning algorithm
generally achieves higher grasp success rates compared with sampling-based ap-
proaches currently used for grasping with neural networks, while still running fast
enough for use in a deployed robotic system. We showed the successful applica-
tion of our grasp optimization approach on two novel neural network architectures.
Additionally, our CNN classification approach to learning grasp success allows for
more data-efficient learning of grasps compared to directly predicting grasps as out-
put of a neural network regression model.

Our multi-fingered grasping results leave room for significant improvement. Im-
portantly any improvement to the underlying classifier will immediately be lever-
aged by our planner. As immediate extensions we are examining the use of learned
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priors over grasp parameters, θ , as well as using priors over the neural network
weights w, to have better-calibrated predictions of the probability of grasp success,
for reliable use within task-level planners. Finally, we wish to explore active data
collection to further improve the data efficiency of our learning algorithm while also
learning a wider variety of grasps.
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