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Abstract—Graph mining is an important data analysis
methodology, but struggles as the input graph size increases.
The scalability and usability challenges posed by such large
graphs make it imperative to sample the input graph and
reduce its size. The critical challenge in sampling is to identify
the appropriate algorithm to insure the resulting analysis
does not suffer heavily from the data reduction. Predicting
the expected performance degradation for a given graph and
sampling algorithm is also useful. In this paper, we present
different sampling approaches for graph mining applications
such as Frequent Subgrpah Mining (FSM), and Community
Detection (CD). We explore graph metrics such as PageRank,
Triangles, and Diversity to sample a graph and conclude
that for heterogeneous graphs Triangles and Diversity perform
better than degree based metrics. We also present two new
sampling variations for targeted graph mining applications. We
present empirical results to show that knowledge of the target
application, along with input graph properties can be used
to select the best sampling algorithm. We also conclude that
performance degradation is an abrupt, rather than gradual
phenomena, as the sample size decreases. We present the
empirical results to show that the performance degradation
follows a logistic function.
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I. INTRODUCTION

Graphs are a natural and flexible representation of a set of
entities and the relationships among them. Recent advance-
ments in the fields of social science, process automation, and
mobile computing have increased the interest in the fields of
graph theory, graph modeling, and graph mining. However,
the ever-increasing size of graphs from these domains has
made scalability a challenge.

Graph Mining is the process of extracting knowledge from
semi-structured graph datasets. The graph structure is as
important as the attributes of the entities involved. Different
graph mining operations are of interest such as Frequent
Subgraph Mining, Community Detection, and Clustering.
Each of these operations relies on different aspects of
the input graph, and different graph properties affect the
correctness and performance of the operations. Sampling
is the technique to generate a smaller representative graph
that can be used for the purpose of analysis instead of the
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original graph. There is a plethora of sampling techniques,
each preserving some properties of the graph. The optimal
sampling algorithm is the one that generates smaller graphs
with high accuracy, high quality, and low analysis run-time.

Our contribution is to present the impact of input graph
properties and application characteristics on the sampling
process. We discuss the major approaches and their trade-
offs for given graph properties. We present empirical re-
sults to show that application-specific sampling approaches
can generate sampled graphs with improved accuracy and
runtime metrics as shown in Figure 1. We find that graph
metrics such as motif and diversity can be used to sample
heterogeneous graphs and that they perform better than de-
gree based metrics as show in Table 1. Degree-based metrics
such as NodeRank and PageRank are easy to calculate and
can be used for homogeneous graphs. We conclude that a
logistic function represents the performance degradation be-
havior. We measure that for some dense graphs it is possible
to reduce problem size by 20%-30% without incurring more
than 5% loss in accuracy. We present our results using four
real-world graph datasets: (Citeseer, Power Grid Topology,
Internet P2P, Microsoft Academic Graph). We compare our
approach with existing sampling methods such as Random,
Sample and Hold, and Forest Fire.

H Density  Heterogeneity Metric(s) H
Low Low Degree, PageRank
High Low PageRank
Low High Triangle, Diversity
High High Triangle

Table I

GRAPH METRICS FOR SAMPLING

Several approaches to graph sampling have been proposed
in the literature. Al Hasan et al. [2] propose a generic sam-
pling framework that is based on the Metropolis-Hastings
algorithm to sample the output space of frequent subgraphs
[2]. Leskovec et al. [3] perform a thorough experimentation
on several diverse graph datasets and provide insight about
required sample size, sampling method to use, and novel
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metrics to measure the goodness of the sampling method.
They also present relations between properties of the orig-
inal and sampled graph. Zou et al. [4] evaluate different
sampling techniques and also provide sampling algorithms
for Frequent Subgraph Mining (FSM) applications, similar
to this research. However, our research reaches beyond the
quantitative analysis of specialized sampling algorithms and
attempts to predict the performance degradation and optimal
sample size.

Gao et al. [5] propose Uniform Random Edge (URE)
sampling to generate a sampled graph that accurately ap-
proximates various graph properties such as cut-set, volume,
association, complement volume, and complement asso-
ciation. They present empirical results of their sampling
approach on common graph mining tasks such as PageRank
and Community Detection. Ahmed et al. [6] propose a
generic stream sampling framework for big-graph analytics,
called Graph Sample and Hold (gSH), which samples from
massive graphs sequentially in a single pass, one edge at a
time. Lin et al. [7] and Wang et al. [8] published a survey of
various sampling and summarization approaches for social
networks. There has been some recent work in Task-Driven
Sampling that performs sampling for a specific task. Maiya
et al. [9] propose a stratified sampling approach to identify
community structure in the graph. Relational Classification
is used in social, biological, and information networks to
understand relationships between entities. Ahmed et al. [10]
propose a study to demonstrate the impact of sampling
algorithms on the Relational Classification problem. Venu et
al. [11] present a graph sparsification process for graph clus-
tering. Sparsification is defined as the process that preserves
all the nodes and reduces the edgeset only. Our approach
focuses on the graph properties and heterogeneity of the
graph to identify the best sampling strategy.

II. PROBLEM FORMULATION

This section defines Labeled Graph, and Sampled Graph.
It also describes the problems of Frequent Sub-Graph Min-

ing (FSM), and Community Detection (CD) and provides
their corresponding mathematical formulation. We use a
directed graph without self-loops for the purpose of this
research.

A. Definitions

Definition 1: Labeled Graph: A labeled graph is a directed
graph that can be represented as 4-tuple. G = (V, E, L, 1),
where V is set of vertices, E is set of Edges such that E
C V x V, L is set of labels on vertices and edges, and I is
a function V U E — L that assigns labels to vertices and
edges.

A Sampled Graph is an induced subgraph from the
original graph intended to exhibit similar graph properties
to the original graph. Any good sampling approach insures
that the sampled graph has predictable performance metrics.

B. Frequent Sub-Graph Mining

The Frequent Subgraph Mining (FSM) application con-
centrates on identification of frequent subgraphs within a
given graph data set [12] [13] [14] [15]. Different FSM
approaches have been proposed that deal with different
kinds of graphs and input setup. Algorithms such as gSpan
[14], FSG [16], and Gaston [17] treat input graphs in
a transactional setting. Holder et al. proposed SUBDUE
[13] that uses the Minimum Description Length (MDL)
principle to discover structures that compress the data and
represent structural concepts in the data. Arabesque [18] is a
distributed FSM implementation using MapReduce. NOUS
[19] is another distributed subgraph mining implementation
for dynamic knowledge graph streams. In many applications
we need to find frequent subgraphs in a single large graph
whereas some recent applications attempt to mine a contin-
uous graph stream and find frequent subgraphs in it.

Definition 2: Frequent Subgraph Mining: Given a graph
G =W, E, L, 1) and a scaler value min_support, the FSM
problem is to find a set of unique subgraphs G’y where every
subgraph has frequency greater than min_support.

For a given labeled graph, min_support can be defined in
two ways. The first approach is to consider two subgraphs
different if they have at-least one edge different. This leads
to higher min_support value than the second approach. The
second approach does not allow sharing any edge between
two subgraphs, although the nodes can be shared.

Any definition of min_support must exhibit the downward
closure property [18] [4]. This property restricts the selection
of min_support to be a monotonic function. The monotonic
property states that the frequency (i.e., support) of the
super-graph must be a strictly increasing or non-decreasing
function. This property is critical to prune the search space
as the bigger frequent patterns are discovered.

Minimum Image-based Support (MIS) [20] [18] is one
such metric, which defines the support of a pattern as the
minimum number of distinct mappings for any vertex over



all the pattern instances in the graph. As the pattern size
grows, the MIS of larger patterns are never greater than the
MIS of smaller sub-patterns. This attribute guarantees the
required monotonic property.

Multiple metrics can be used to compare the performance
of a sampled graph with respect to the original graph. Accu-
racy is one such metric that compares the number of frequent
subgraphs identified in both the original and sampled graph.
It is an easy to use, approximate but sufficient metric as it
does not guarantee to identify the same frequent subgraphs
in the sampled graph. Run Time is another such metric that
gives information about how much time it takes to mine the
entire graph and produce results. Accuracy and Run Time
can be used as user-provided constraints in approximate
graph mining of a single huge graph. We also looked at
the interestingness of the identified frequent sub-graphs.

C. Community Detection

The community detection (CD) application identifies co-
hesive substructures in the input graph. The substructure is
defined as an organization of the vertices and edges in the
graph such that the vertices and the edges joining them form
a cluster or community [21]. Given a graph, the problem of
community detection is to compute a partitioning of vertices
into communities that are closely related within and weakly
related across communities. Modularity is used to measure
the quality of communities detected [22] [23].

Definition 3 Community Detection: Given a graph G
= (V, E, L, 1), a community within the graph represents
a subset of V. The problem of community detection is to
compute a disjoint partition P of the graph that maximizes
the modularity of all the communities.

A partition is a separation in the vertex space using a
similarity function. Vertices are closely related in the same
partition and weakly related across partitions.

Modularity is a statistical measure for assessing the qual-
ity of a given community-wise partitioning (or equivalently,
clustering). Newman et al. [23] proposed a formal definition
of modularity which is also used by Louvain’s method [24],
one of the most used methods for identifying communities
in large networks. Modularity is a function of a set of all
communities, and all edge-weight values. A good clustering
method is one that clusters closely related elements (vertices)
as part of the same community (or cluster) while separating
weakly related elements into different clusters [22].

III. GRAPH SAMPLING APPROACHES

A fundamental goal of any sampling approach is to create
a representative sample of the input data. The selection
of sampling method, sample size, and the stability of the
sampled dataset as the sample size changes [3] are some
of the parameters influencing sampling validity and perfor-
mance. This section introduces various sampling algorithms
and their core sampling strategies.

A. General Purpose Approaches

Some of the general purpose sampling approaches are
applicable to a wide range of applications and datasets.
Random Sampling [25], Random Walk [26], and Forest
Fire [27] samplings provide different ways of sampling
a huge graph. Random Nodes selection sampling creates
a sample graph by randomly selecting a set of nodes N
with uniform probabilities. The resultant sampled graph is
created by using only the sampled N nodes and edges around
those nodes [4]. Random edges selection sampling approach
randomly selects a subset of edges and the resulting sampled
graph is constructed from the set of sampled edges. Random
Walk Sampling (RWS) randomly picks a starting node and
performs a random walk on the graph. New nodes are
selected randomly on every step, keeping track of already
selected nodes so that loops are avoided. Random Walk
Sampling is biased towards high degree nodes. There are
different variations of RWS and each returns a connected
graph. Random Walk With Restart performs random walk
and starts a new walk with a given probability. Random
Jump uses a probabilistic jump to reach to any node in the
network[26].

B. Application Specific Approaches

All of the commonly used sampling approaches do not
consider the target application and its requirements as one
of the parameters. Many applications rely on specific graph
properties. Graph Mining applications are dependent on
graph structure, edge distribution, node distribution, edge
growth rate, relative sub-graph frequency, etc. It is a process
of identifying trends, signatures, and a summary of the
graph. These are the examples of a comparative analysis that
relies on the relative change in the graph properties rather
than the absolute value of them. It is possible to exploit these
characteristics while sampling a graph for a specific graph
mining application.

FSM extracts frequent subgraphs relative to a support
threshold. Intuitively we can expect the same frequent sub-
graphs for a smaller graph for a smaller threshold. Similarly,
Community Detection identifies disjoint partitions of the
vertices for a given size graph. For an optimal sample
of the original graph, many of these communities should
still exist although with weaker modularity. Various other
applications such as link prediction, node/edge classification
and regression are also expected to exhibit similar trends.

This research concentrates on creating multi-dimensional
sampling strategies keeping the target application in mind.
The extent of the sampling impact on these applications is
a topic of interest for this research. We focus on the FSM
and CD applications and produce empirical results about the
effect of various sampling approaches on them.



C. Node Frequency Based Sampling Algorithm

We introduce the Node Frequency-based Sampling (NFS)
algorithm as a variant of Random Sampling. NFS samples
an input graph based on the frequencies of the source and
destination nodes of every edge. NFS works in two phases.
In the first phase it reads a graph and calculates the degree
distribution for all the nodes. It can be configured to use
indegree, outdegree, or both. For this research we used the
combined degree of a node as its representative degree value.
In phase one, NFS also identifies a sub-set of the nodes
based on a range of the most and least available nodes in
the graph. In the second phase, the same graph is traversed
edge-by-edge and every edge is probabilistically skipped if
the source and destination nodes of the edge are part of the
subset created in phase 1.

This approach aggressively removes nodes but at the same
time it has minimal negative impact on the correctness and
performance of the FSM application. For a given support
value, it is possible to remove some high frequency edges
without changing the frequent status of a pattern. Similarly
least frequent edges are also safely removed. The only
patterns which rely on few low frequency edges, such as
a bridge edge are prone to be tagged as non-frequent.
A configurable scalar variable accelerator is also used to
increase the rate at which nodes are excluded from the
sampled graph. Accelerator is set to a default value of 1.

Similarly, it is possible to remove some high frequency
nodes without changing the community structure. It does
reduce the community size, but the reduction is proportional
to the original community size. Algorithms 1, and 2 show the
pseudo-code of major components of the NFS algorithms.
Line 1 of Algorithm 1 computes the degree of all the

Algorithm 1 RangeAccelerator(G, R, o)
1: ng = vertexDegree(G)
2: Vi = {vin V(G) s.t. d(v) | R or d(v){ (100-R) }
3: G = SampleGraph(G, Vs, )
4: return G

vertices. ng a list of all graph nodes where Each element
of the list has (node_id, degree) entry. Line 2 gets a subset
of vertices that have node frequency in the given range.
The range is a value between 1 and 50. Line 3 creates the
resulting graph by calling auxiliary function SampleGraph.

In Algorithm 2, Line 1 initializes the output graph with no
edges. Line 2 initiates a linear iteration of the graph edges.
The loop visits every edge of the graph and calculates node
probability of the source and destination of the edge. The
probability determines whether to skip or add the current
edge in output graph. Line 4 uses o which is the accelerator
that increases the rate at which nodes are excluded (or
included). The default accelerator value is 1.

Algorithm 2 SampleGraph(G, Vs, o)
1: Goyut = Empty Graph
2: for each e(u,v) € G do
3: if uin V, OR vin V, then

4: P = axmax(d(u),d(v))/|E(G)|
5: if random(0,1) ; P then

6: add e to Gyt

7: else

8: skip e

D. Sample And Hold Algorithm

We also introduce a variant of NFS that uses the graph
sample and hold technique [6]. Graph Sample and Hold is
a one-pass algorithm that scans incoming edges one-by-one.
For each incoming edge, the edge is identified as to whether
the source or destination vertex of the edge is in the set of
visible vertices so far in the graph stream processing. Sample
and Hold algorithm sampling is governed by two scalar
values p and q. If the edge is identified, it is selected using
a probability g. Else, the edge is selected with a probability
p.

E. Range With Sample Hold

RangeWithSampleHold is an improved version of the
Graph Sample and Hold algorithm. In addition to the p and
q it also uses a range parameter to identify graph vertices
with degree in either very high or low value range.

Algorithm 3 RangeWithSampleHold(G, R, p, q)
1: Vigs = (rb
2: Gout = ¢
3. for each e(u,v) € E(G) do
4: if vin V(G) s.t. (d(v) { R) V (d(v) ¢ (100-R))
then

5: if uin V,;s OR v in V,,;, then

6: Add edge to G, with probability ¢
7: Add u,v to Vs

8: else

9: Add edge to G+ with probability p
10: Add u,v to Vs

Lines 1 and 2 of Algorithm 3 initialize G,y and V.
Line 3 onward, each edge of the graph is visited by the
algorithm and it is determined whether to add or skip that
edge in the output graph. RangeWithSampleHold uses range
R in addition to sample and hold probabilities p and ¢ to
make that decision.

This algorithm processes every graph edge for which the
associated nodes appear in the higher or lower range of the
degree distribution. All such edges are either retained in
or excluded from the output graph using the sample and
hold approach. By focusing on only the tail-end of the



degree distribution, this algorithm shows preferential bias
towards the subgraphs that form any pattern. As a result, this
algorithm outputs a graph with higher numbers of frequent
patterns of the given sample size.

F. Forest Fire Sampling

The Forest Fire (FF) sampling [3] is inspired by the work
on temporal graph evolution. It is based on Forest Fire Model
[27] that is a graph generation model. It randomly picks a
seed vertex and picks edges the way fire progresses in forest.
It starts with immediate neighbors and recursively picks their
neighbors. It works on two probabilities p and r. p is forward
burning probability and r is backward burning probability.
Graph vertex v is selected randomly and we sample the
subgraph originating from this vertex as explained in [3],
[27].

ForestFire algorithm requires knowledge of the vertex
neighborhood. Edges are selected one hop at a time. In a
distributed graph processing framework, it is a challenge to
optimally partition the graph such that vertex neighborhood
information is available locally. All the other sampling
approaches presented do not require extra neighborhood
knowledge. They compute graph level properties based on
vertex and edge distribution. This makes them more suitable
for distributed graph processing as the vertex partitioning
and neighborhood processing are expensive operations.

G. Non-degree based Graph Sampling

All the methods above use degree distribution of the graph
to identify a vertex or edge to remove from the output graph.
We identified that as the diversity and heterogeneity of the
graph increases, other graph metrics case be use to sample
the graph. We developed abstract version of the sampling
approaches that takes a graph metric, and a filter function to
sample the same graph. We looked at PageRank, Triangles,
and Diversity of a given vertex to include or skip it in the
sampled graph. It does require a preprocessing step where
the graph metrics is calculated. The Microsoft Academic
Graph [28] is a heterogeneous graph used for this analysis
and the results presented in the Experiment section show
that diversity, and triangle based sampling performs better
than degree based sampling.

IV. EXPERIMENTS

This section presents the experimental setup used to
execute different sampling algorithms using various datasets.
It also presents the empirical results and research findings.
Experimentation is done on a 3.1 GHz Intel Core i5 machine
with 16GB 1333 Mz DDR3 RAM and 4 Cores. It runs OS
X Yosemite Version 10.10.3 with AMD Radeon HD 1024
MB Graphics. Apache Spark is used to load the graph and
compute graph statistics such as degree, page rank, diversity,
and number of triangles [29]. GraMi [15] and NOUS [19]
are used as the frequent subgraph mining tool. Multiple runs
of the algorithms are executed using different datasets to

confirm the research findings and remove any dataset bias.
Community Detection experimentation is done using the
C++ implementation of the Louvain method [24]. Original
Citeseer dataset is converted to an edge list graph where
each line contains a pair ”s_id d_id”, where s_id is the id
of the source vertex and d_id is the id of destination vertex.
SampleHoldRange sampling is applied to create different
sampled datasets of the original graph and the community
detection algorithm is applied.

A. Citeseer Dataset

The Citeseer dataset [30] represents the citation network

among research papers from different research domains. This
network categorizes 3,312 papers into six domains and the
interaction is represented by 4,782 edges.
These papers are classified into one of the following
six classes: Agent based System, Artificial Intelligence,
Database, Information Retrieval, Machine Learning, and
Human Computer Interaction.

Five different sampling algorithms 1) Random Sampling,
2) SampleHold, 3) Range with Accelerator, 4) RangeWith-
SampleHold, and 5) ForestFire are used to generate mul-
tiple sampled graphs for each algorithm. All the relevant
parameters such as p, q, R, o are varied in data generation
scripts to create different size graphs. Resultant sampled
graphs are used as an input to the FSM application using
the GraMi [15]. GraMi [15] is a framework for frequent
subgraph mining in a single large graph that uses MIS.
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Figure 2. Citeseer Dataset Sampling Results

As expected, a high value of p generates an aggressively
sampled graph with more than 70% edges of the original
graph. Whereas a low value of p yields a graph with size
dependent on the g value.

Subsequently we also experimented with different values
for the p and g and we observe that the graph sampling is
more sensitive to p than ¢. For a given p, the rate of decrease
in the correctness is proportional to the decrease in the value
of g. For a given g, the number of identified frequent patterns
decreases sharply as p decreases. As shown in Figure 2
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we observe that application specific SampleHold sampling
performs better than general purpose Random Sampling.
Also for any sampled graph size, the SampleHoldRange
sampling approach performs better than SampleHold for the
accuracy metric. SampleHoldRange can also be configured
using different parameters such as p, q, R, .
In addition to the accuracy metric shown above, run-time
is also recorded for the Citeseer dataset in Figure 3. At the
initial decrease in the sampling percentage of a sparse graph,
the run-time decreases sharply similar to the sharp decrease
in the accuracy shown in Figure 2. Gradually the run-
time plot flattens as the sampled graph size decreases. The
RangeWithSampleHold and SampleHold algorithms attain
better results than any other sampling algorithm. Analysis
stability is confirmed by multiple iterations of the experiment
reaffirming the expected trends as shown in Figure 4.
Quality of result is another important performance metric
while selecting a sampling algorithm. We analyzed the
quality as an information theoretic measure that represents
the loss of interesting patterns in the sampled graph. We
are interested to discover how the sampling approaches
perform in preserving larger size patterns. It is easy to
retain smaller-size patterns as we reduce the sample size,
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Figure 5. Citeseer Dataset Quality Results

but larger size patterns are the first ones to disappear. There
is no strong conclusion that any of the mentioned algorithms
retain larger size patterns. Although RangeAccelerator and
RangeSampleHold do a slightly better job. For the existing
algorithms, the larger size patterns disappear very early in
the sampling process whereas for the suggested algorithms
they do show up even for smaller size graphs and disappear
gradually as shown in Figure 5.

We now turn to the Community Detection task and eval-
uate impact of the different sampling methods on this task.
RangeWithSampleHold sampling algorithm is also used to
generate sampled graphs in edge list format. Multiple such
graphs are used to generate communities using the Louvain
method. Louvain is an iterative method and it generates
communities at the end of each iteration. These iterations
are called "Levels” where Level I represents each vertex in
its individual community. In every subsequent iteration, each
vertex is either re-assigned to a neighbor community or kept
in its original community.

Pairwise comparison of the community IDs of neighboring
vertices is used to quantify the sampling effect on the quality
of the community detection. A one-pass algorithm iterates
over all the vertices sequentially and the quality is defined
as a fraction of preserved community pairs.

For all the pairs of vertices v,, and v,1, the quality @ is
defined over all such pairs as: Q = (s + s’)/N where

o s = # of instances the vertex pair shares a community
in the sampled graph if they share a community in the



original graph

e s° = # of instances the vertex pair does not share a
community in the sampled graph if they do share a
community in the original graph

« N =# of total vertex pairs
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Figure 6. Community Detection Quality using RangeWithSampleHold

Normalize Accuracy is used as the performance metric. It is
calculated as a ratio of the number of discovered communi-
ties to the total number of communities in the original graph
at a given level. Figure 6 shows that community detection
algorithms show a linear reduction in the accuracy with
sample size. The number of communities formed by lesser
numbers of vertices is less sensitive to the input graph size.

B. Power Grid Topology Dataset

Another dataset used in out experimentation is an undi-

rected, unweighted network representing the topology of the
Western States Power Grid of the United States. Data was
compiled by D. Watts and S. Strogatz and made available
on the web [31]. The same algorithms are executed against
the power grid data using GraMi. Results in Figure 7 show
that there is a sharp decline in the accuracy even for a
small amount of sampling. Although for any given sampling
size the RangeWithSampleHold algorithm produces slightly
better results.The run-time analysis of the FSM application
for the Powergrid dataset in Figure 8 also confirms similar
trends as observed in Figure 3.
The majority of real-world graph datasets are found to be
sparse in nature such as the above mentioned two datasets.
In absence of a perfect sampling algorithm a sudden drop
in the frequent subgraphs is observed as more and more
edges are excluded from the sampled graph. Empirical re-
sults show that RangeWithSampleHold performs better than
various other sampling algorithms. For a given sample size,
it identifies more frequent patterns. The following subsection
shows that the RangeWithSampleHold algorithm can also be
applied to dense graphs.
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C. Internet peer-to-peer network

The Gnutella peer-to-peer network from August 5, 2002
[32] is a dense graph which is a sequence of snapshots of
the Gnutella peer-to-peer file sharing network from August
2002. Nodes represent hosts in the Gnutella network topol-
ogy and edges represent connections between the Gnutella
hosts. This graph contains 8846 nodes and 31839 edges
with an average degree close to ten. RangeWithSampleHold
algorithm is used to create multiple sampled graphs. NOUS
[19] is used to identify frequent patterns as a function
of sampled graph size. To observe the impact of graph
density on sampling performance, the original dense graph
is inflated further by adding random edges to the graph. All
such induced graphs are also mined by NOUS to identify
frequent sub-graphs. The experiment is repeated at different
support values. Figure 9 shows the performance trends for
the Gnutella p2p graph with average degree as 50. Different
support values used are 250, 2000, and 4500. Corresponding
trends are labeled as S250p50, 5200550, and S4500p50,
respectively. Similarly Figure 10 shows the performance
trends for the original Gnutella p2p network of average
degree 10. Different support values are 50,100,150,and 200.



Corresponding trends are labeled as $50,.5100, 5150, and
S5200.
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Figure 9. Modified P2P Dense Network Dataset Sampling Results

For a given dense graph the performance trends can be
categorized in different zones. These trends have a boundary
where the sample graph size is either closer to original
graph size or an empty graph. As shown in Figures 9 and
10, it can be interpreted as three such zones. In Figure 9,
plots S2505.550 and S2000p .55 show that the effective cor-
rectness of the mining operations exhibit very little change
when the sampled graph size is either closer to original
graph size or an empty graph. For a given appropriate
support value the correctness does not degrade as the sample
size is reduced because the exclusion of many edges does
not force a frequent pattern to be an infrequent one. Here
an appropriate support value is a dataset-specific integer
number that produces many interesting patterns. For a very
low support value, this behavior extends to an even lower
range of sampled dataset size. For a higher support value, a
sudden drop is expected because every excluded edge may
force a specific frequent pattern to become infrequent.

The rate of decrease in the resulting quality of a graph
mining operation also depends on the support value. Graph
mining at a higher support value is more sensitive to the
sampling size. Whereas the lower support values have an
advantage of using space-efficient samples without compro-
mising the result quality as shown in plot S250 50 of Figure
9 and plot S50 of Figure 10. Intuitively, efficient sampling
algorithms such as RangeWithSampleHold are more useful
at higher support values where it is important to not miss
frequent patterns as show in Figure 10. As stated earlier, the
number of frequent patterns is an approximate performance
metric. The total number of frequent sub-graphs found
varies even in the original graph as we increase the support
threshold. To show the relative trends at different support
values, Figures 9 and 10 normalize the number of frequent
patterns found in the sampled graph by dividing it by the
maximum number of patterns found in the original graph.
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D. Microsoft Academic Graph (MAG)

The Microsoft Academic Graph [28] is a heterogeneous
graph containing scientific publication records, citation re-
lationships between those publications, as well as authors,
institutions, journals, conferences, and fields of study. We
constructed a graph of all the papers published in VLDB,
SIGKDD, and CIKM conference in the year 2010. It is a
dense graph of 10K nodes and 40K edges. We picked the
best performing degree based sampling algorithm Range-
SampleHold and swap different graph metrics with degree
distribution of the graph used in line 4 of the algorithm
RangeWithSampleHold. Results shows that diversity and
triangle based sampling perform better than the degree based
sampling consistently as shown in Figure 11. Triangle based
sampling is also found to be more sensitive towards star
shape patterns than multi-hop patterns.
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E. Predictive Modeling for Expected Correctness

Experiments above corroborate the expected trend that
the application specific sampling methods perform better
than general purpose methods. It is also evident that for
the FSM application, the dense graphs can be sampled



more aggressively than a sparse graph. To generalize the
observations it is important to identify a multi-dimensional
function that can predict the expected correctness of the
output. For the FSM application a predictive model H is
defined as a set of functions over Graph Size, Density, and
Support.

Definition 4: For the FSM application a predictive model
H is defined as H = f(N, D, S) where:

N : Size of the Graph

D : Graph Density

S : min_support

Empirical results suggest that a logistic function best fits the
observations. As shown in Figure 12 the logistic function of
the form:

f(@) = a/(14be”"") (1)

best fits the empirical results. Coefficients of the logistic
function also exhibit a trend over A/, D, S. Sampling a dense
graph shows a slow rate of decrease in the correctness, and
this leads to higher values of a, b, and lower values of c.
In preliminary results all the coefficients show a linearly
decreasing trend as the graph density decreases. Future work
will attempt to find different functions to predict values of
a,b, and c.

V. CONCLUSIONS

Graph Mining is a complex and challenging topic given
the huge volume of available structured data. Many do-
mains deal with high volume, high velocity, heterogeneous
data. These domains can benefit from the extra knowledge
about the underlying graph mining algorithm and its data
requirements. This research provides extra knowledge that
is useful for domain-users to make intelligent trade-offs
about scalability and accuracy. This research shows that
for some dense graphs it is possible to reduce problem
size by 20%-30% without incurring more than 5% loss
in accuracy. This guidance is valuable when combinatorial
complexities of graph mining operations make it difficult
to perform the analysis at scale. The graph properties also
influence the sampled output and they can be factored into
the trade-off function. This research finds a logistic function
best represents the trend and is valuable for the users in
deciding how to interpret their results and how to extrapolate
improvements in results if problem size is increased.
Future work will use graph metrics to develop a machine
learning model to predict optimal sample size. We will
use billion scale stochastic Kronecker Graphs [1] for the
training. We will also improve upon existing sampling
algorithms.
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