
Locality via Partially Lifted Codes∗

S. Luna Frank-Fischer1, Venkatesan Guruswami†2, and

Mary Wootters‡3

1 Computer Science Department, Stanford University, Stanford, CA, USA

luna16@stanford.edu

2 Computer Science Department, Carnegie Mellon University, Pittsburgh, PA,

USA

venkatg@cs.cmu.edu

3 Computer Science Department, Stanford University, Stanford, CA, USA

marykw@stanford.edu

Abstract

In error-correcting codes, locality refers to several different ways of quantifying how easily a small

amount of information can be recovered from encoded data. In this work, we study a notion

of locality called the s-Disjoint-Repair-Group Property (s-DRGP). This notion can interpolate

between two very different settings in coding theory: that of Locally Correctable Codes (LCCs)

when s is large – a very strong guarantee – and Locally Recoverable Codes (LRCs) when s is

small – a relatively weaker guarantee. This motivates the study of the s-DRGP for intermediate

s, which is the focus of our paper. We construct codes in this parameter regime which have a

higher rate than previously known codes. Our construction is based on a novel variant of the

lifted codes of Guo, Kopparty and Sudan. Beyond the results on the s-DRGP, we hope that our

construction is of independent interest, and will find uses elsewhere.

1998 ACM Subject Classification E.4 Error Control Codes

Keywords and phrases Error correcting codes, locality, lifted codes

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2017.43

1 Introduction

In the theory of error correcting codes, locality refers to several different ways of quantifying

how easily a small amount of information can be recovered from encoded data. Slightly

more formally, suppose that C ⊂ ΣN is a code over an alphabet Σ; that is, C is any subset of

ΣN . Suppose that c ∈ C, and that we have query access to a noisy version c̃ of c. We are

tasked with finding ci ∈ Σ for some i ∈ [N ]. Informally, we say that the code C exhibits good

locality if we may recover ci using very few queries to c̃. Of course, the formal definition of

locality in this set-up depends on the nature of the noise, and the question is interesting for

a wide variety of noise models.

One (extremely strong) model of noise is that handled by Locally Correctable Codes

(LCCs), which have been extensively studied in theoretical computer science for over 15

years. This model is motivated by a variety of applications in theoretical computer science

and cryptography, including probabilistically checkable proofs (PCPs), derandomization,

and private information retrieval (PIR); we refer the reader to [30] for an excellent survey

∗ Full version available at https://arxiv.org/abs/1704.08627.
† Research supported in part by NSF grants CCF-1563742 and CCF-1422045.
‡ Research supported in part by NSF grants DMS-1400558 and CCF-1657049.

© S. Luna Frank-Fischer, Venkatesan Guruswami, and Mary Wootters;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2017).
Editors: Klaus Jansen, José D. P. Rolim, David Williamson, and Santosh S. Vempala; Article No. 43; pp. 43:1–43:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany



43:2 Locality via Partially Lifted Codes

on LCCs. In the LCC setting, c̃ ∈ ΣN has a constant fraction of errors: that is, we are

guaranteed that the Hamming distance between c̃ and c is no more than δN , for some small

constant δ > 0. The goal is to recover ci with high probability from Q = o(N) randomized

queries to c̃.

Another (much weaker) model of noise is that handled by Locally Recoverable Codes

(LRCs) and related notions, which have been increasingly studied recently motivated by

applications in distributed storage [14, 10, 23]. In this model, c̃ ∈ (Σ ∪ {⊥})N has a constant

number of erasures: that is, we are guaranteed that the number of ⊥ symbols in c̃ is at most

some constant e = O(1), and further that ci = c̃i whenever c̃i 6= ⊥. As before, the goal is to

recover ci using as few queries as possible to c̃. Batch codes [15, 7] and PIR codes [8, 6] are

other variants that are interesting in this parameter regime.

A key question in both of these lines of work is how to achieve these recovery guarantees

with as high a rate as possible. The rate of a code C ∈ ΣN is defined to be the ratio

log|Σ|(|C|)/N ; it captures how much information can be transmitted using such a code. In

other words, given N , we seek to find a C ⊆ ΣN with good locality properties, so that |C| is

as large as possible.

In the context of the second line of work above, recent work [28, 21, 25, 27, 1, 8] has

studied (both implicitly and explicitly) the trade-off between rate and something called the

s-Disjoint-Repair-Group-Property (s-DRGP) for small s. Informally, C has the s-DRGP

if any symbol ci can be obtained from s disjoint query sets c|S1
, c|S2

, . . . , c|Ss
for Si ⊆ [N ].

(Notice that there is no explicit bound on the size of these query sets, just that they must be

disjoint).

One observation which we will make below is that the s-DRGP provides a natural way

to interpolate between the first (LCC) setting and the second (LRC) setting above. More

precisely, while the LRC setting corresponds to small s (usually, s = O(1)), the LCC setting

is in fact equivalent to the case when s = Ω(N). This observation motivates the study of

intermediate s, which is the goal in this paper.

Contributions

Before we give a more detailed overview of previous work, we outline the main contributions

of this paper.

1. Constructions of codes with the s-DRGP for intermediate s. We give a construction

of a family of codes which have the s-DRGP for s ∼ N1/4. Our construction can achieve

a higher rate than previous constructions with the same property.

2. A general framework, based on partially lifted codes. Our codes are based on a novel

variant of the lifted codes of Guo, Kopparty and Sudan [12]. In that work, with the

goal of obtaining LCCs, the authors showed how to construct affine-invariant codes by a

“lifting" operation. In a bit more detail, their codes are multivariate polynomial codes,

whose entries are indexed by F
m
q (so N = qm). These codes have the property that, the

restriction of each codeword to every line in F
m
q is a codeword of a suitable univariate

polynomial code. (For example, a Reed-Muller code is a subset of a lift of a Reed-Solomon

code; the beautiful insight of [12] is that in fact the lifted code may be much larger.)

In our work, we introduce a version of the lifting operation where we only require that the

restriction to some lines lie in the smaller code, rather than the restriction to all lines; we

call such codes “partially lifted codes." This partial lifting operation potentially allows for

higher-rate codes, and, as we will see, it naturally gives rise to codes with the s-DRGP.

One of our main contributions is the introduction of these codes, as well as some machinery

which allows us to control their rate. We instantiate this machinery with a particular



S. L. Frank-Fischer, V. Guruswami, and M. Wootters 43:3

example, in order to obtain the construction advertised above. We can also recover

previous results in the context of this machinery.

3. Putting the study of the s-DRGP in the context of LRCs and LCCs. While the s-

DRGP has been studied before, to the best of our knowledge, it is not widely viewed as a

way to interpolate between the two settings described above. One of the goals of this

paper is to highlight this property and its potential importance to our understanding of

locality, both from the LRC/batch code/PIR code side of things, and from the LCC side.

1.1 Background and related work

As mentioned above, in this work we study the s-Disjoint-Repair-Group Property (s-DRGP).

We begin our discussion of the s-DRGP with some motivation from the LRC end of the

spectrum, from applications in distributed storage. The following model is common in

distributed storage: imagine that each server or node in a distributed storage system is

holding a single symbol of a codeword c ∈ C. Over time, nodes fail, usually one at a time,

and we wish to repair them (formally, recovering ci for some i). Moreover, when they fail,

it is clear that they have failed. This naturally gives rise to the second parameter regime

described above, where c̃ has a constant number of erasures.

Locally recoverable (or repairable) codes (LRCs) [14, 10, 23] were introduced to deal with

this setting. The guarantee of an LRC1 with locality Q is that for any i ∈ {1, . . . , n}, the i’th

symbol of the codeword can be determined from a set of at most Q other symbols. There has

been a great deal of work recently aimed at pinning down the trade-offs between rate, distance,

and the locality parameter Q in LRCs. At this point, we have constructions which have

optimal trade-offs between these parameters, as well as reasonably small alphabet sizes [26].

However, there are still many open questions; a major question is how to handle a small

number of erasures, rather than a single erasure. This may result from either multiple node

failures, or from “hot" data being overloaded with requests. There are several approaches in

the literature, but the approach relevant to this work is the study of multiple disjoint repair

groups.

I Definition 1. Given a code C ⊂ ΣN , we say that a set S ⊂ {1, . . . , N} is a repair group

for i ∈ {1, . . . , N} if i 6∈ S, and if there is some function g : Σ|S| → Σ so that g(c|S) = ci

for all c ∈ C. That is, the codeword symbols indexed by S uniquely determine the symbol

indexed by i.

I Definition 2. We say that C has the s-Disjoint-Repair-Group Property (s-DRGP) if for

every i ∈ {1, . . . , N}, there are s disjoint repair groups S
(i)
1 , . . . , S

(i)
s for i.

In the context of LRCs, the parameter s is called the availability of the code. An LRC

with availability s is not exactly the same as a code with the s-DRGP (the difference is that,

in Definition 2, there is no mention of the size Q of the repair groups), but it turns out to be

deeply related; it is also directly related to other notions of locality in distributed storage

(like batch codes), as well as in cryptography (like PIR codes). We will review some of this

work below, and we point the reader to [24] for a survey of batch codes, PIR codes, and their

connections to LRCs and the s-DRGP.

While originally motivated for small s, as we will see below, the s-DRGP is interesting

(and has already been implicitly studied) for a wide range of s, from O(1) to Ω(N). For

1 In some works, the guarantee holds for information symbols only, rather than for all codeword symbols;
we stick with all symbols here for simplicity of exposition.

APPROX/RANDOM’17



43:4 Locality via Partially Lifted Codes

s = o(N), we can hope for codes with very high rate, approaching 1; the question is how fast

we can hope for this rate to approach 1. More formally, if K = log|Σ| |C|, then the rate is

K/N , and we are interested in how the gap N − K behaves with N and s. We will refer to

the quantity N − K as the co-dimension of the code; when C is linear (that is, when Σ = F

is a finite field and C ⊆ F
N is a linear subspace), then this is indeed the co-dimension of C in

F
N . The main question we seek to address in this paper is the following.

I Question 1. For a given s and N , what is the smallest codimension N − K of any code

with the s-DGRP? In particular, how does this quantity depend on s and N?

We know a few things about Question 1, which we survey below. However, there are many

things about this question which we still do not understand. In particular, the dependence

on s is wide open, and this dependence on s is the focus of the current work. Below, we

survey the state of Question 1 both from the LRC end (when s is small) and the LCC end

(when s is large).

The s-DRGP when s is small

In [28, 21, 25, 27], the s-DRGP was explicitly considered, with a focus on small s (s = 2 is

of particular interest). In those works, some bounds on the rate and distance of codes with

the s-DRGP were derived (some of them in terms of the locality Q). However, for larger s,

these bounds degrade. More precisely, [28, 21] establish bounds on N − K in terms of Q, s,

and the distance of the code, but as s grows these are not much stronger than the Singleton

bound. The results of [25, 27] give an upper bound on the rate of a code in terms of Q and

s. One corollary is that the rate satisfies K/N ≤ (s + 1)−1/Q; if we are after high-rate codes,

this implies that we must take Q = Ω(ln(s + 1)), and this implies that the codimension

N − K must be at least Ω(N ln(s)/Q).

A similar notion to the s-DRGP was introduced in [8], with the application of Private

Information Retrieval (PIR). PIR schemes are an important primitive in cryptography, and

they have long been linked to constant-query LCCs. In [8], PIR was also shown to be related

to the s-DRGP. The work [8] introduces PIR codes, which enable PIR schemes with much

less storage overhead. It turns out that the requirement for PIR codes is very similar to the

s-DRGP.2

In the context of PIR codes [8, 6], there are constructions of s-DRGP codes with

N − K ≤ O(s
√

N). For s = 2, this is known to be tight, and there is a matching lower

bound [20]. However, it seems difficult to use this lower bound technique to prove a stronger

lower bound when s is larger (possibly growing with N).

The s-DRGP when s is large

As we saw above, when s is small then the s-DRGP is intimately related to LRCs, PIR codes

and batch codes. On the other end of the spectrum, when s is large (say, Ω(N) or Ω(N1−ε))

then it is related to LCCs.

When s = Ω(N), then the s-DRGP is in fact equivalent to a constant-query LCC (that

is, an LCC as described above, where the number of queries to c̃ is O(1)). The fact that the

Ω(N)-DRGP implies a constant-query LCC is straightforward: the correction algorithm to

recover ci is to choose a random j in {1, . . . , s} and use the repair group S
(i)
j to recover ci.

2 The only difference is that PIR codes only need to recover information symbols, but possibly with
non-systematic encoding.



S. L. Frank-Fischer, V. Guruswami, and M. Wootters 43:5

Since in expectation the size of S
(i)
j is constant, we can restrict our attention only to the

constant-sized repair groups. Then, with some constant probability none of the indices in S
(i)
j

will be corrupted, and this success probability can be amplified by independent repetitions.

The converse is also true [16, 29], and any constant-query LCC has the s-DRGP for s = Ω(n);

in fact, this connection is one of the few ways we know how to get lower bounds on LCCs.

When s is large, but not as large as Ω(N), there is still a tight relationship with LCCs. By

now we know of several high-rate ((1 − α), for any constant α) LCCs with query complexity

Q = Nε for any ε > 0 [17, 12, 13] or even Q = No(1) [18]. It is easy to see3 that any LCC

with query complexity Q has the s-DGRP for s = Ω(N/Q). Thus, these codes immediately

imply high-rate s-DRGP codes with s = Ω(N1−ε) or even larger. (See also [1]). Conversely,

the techniques of [13, 18] show how to take high-rate linear codes with the s-DGRP for

s = Ω(N1−ε) and produce high-rate LCCs with query complexity O(Nε′

) (for a different

constant ε′).

These relationships provide some bounds on the codimension N − K in terms of s: from

existing lower bounds on constant-query LCCs [29], we know that any code with the s-DGRP

and s = Ω(N) must have vanishing rate. On the other hand from high-rate LCCs, there

exist s-DGRP codes with s = Ω(N1−ε) and with high rate. However, these techniques do

not immediately given anything better than high (constant) rate, while in Question 1 we are

interested in precisely controlling the co-dimension N − K.

The s-DRGP when s is intermediate

The fact that the s-DRGP interpolates between the LRC setting for small s and the LCC

setting for large s motivates the question of the s-DGRP for intemediate s, say s = log(N) or

s = N c for c < 1/2. Our goal is to understand the answer to Question 1 for intermediate s.

We have only a few data points to answer this question. As mentioned above, the construc-

tions of [8, 6] show that there are codes with N − K ≤ s
√

N for s ≤
√

N . However, the best

general lower bounds known [20, 27] can only establish N −K ≥ max
{√

2N, N − N
(s+1)1/Q

}

.

Above, we recall that Q is a parameter bounding the size of the repair groups; in order for

the second term above (from [27]) to be o(N), we require Q � ln(s + 1); in this case, the

second bound on the codimension reads N − K ≥ Ω(N ln(s)/Q). As the size of the repair

groups Q may in general be as large as N/s, in our setting this second bound gives better

dependence on s, but worse dependence on N .

The upper bound of s
√

N is not tight, at least for large s. For s =
√

N , there are several

classical constructions which have the s-DRGP and with N − K = Θ(N log
4
(3)); for example,

this includes affine geometry codes and/or codes constructed from difference sets (see [2],

[19], or [12] – we will also recover these in Corollary 15). Notice that this is much better

than the upper bound of N − K ≤ s
√

N , which for s =
√

N would be trivial.

However, other than these codes, before this work we did not know of any constructions for

3 Indeed, suppose that C is an LCC with query complexity Q and error tolerance δ, and let s = δN/Q.
In order to obtain s disjoint repair groups for a symbol ci from the LCC guarantee, we proceed as
follows. First, we make one (randomized) set of queries to c; this gives the first repair group. Continuing
inductively, assume we have found t ≤ s disjoint repair groups already, covering a total of at most
tQ < δN symbols. To get the t + 1’st set of queries, we again choose at random as per the LCC
requirement. These queries may not be disjoint from the previous queries, but the LCC guarantee can
handle errors (and hence erasures) in up to δN positions, so it suffices to query the points which have
not been already queried, and treat the already-queried points as unavailable. We repeat this process
until t reaches s = δN/Q.

APPROX/RANDOM’17



43:6 Locality via Partially Lifted Codes

s �
√

N which beat the bounds in [8, 6] of N −K ≤ s
√

N .4 One of the main contributions of

this work is to give a construction with s = N1/4, which achieves codimension N −K = N0.714.

Notice that the bound of s
√

N would be N0.75 in this case, so this is a substantial improvement.

We remark that we do not believe that our construction is optimal, and unfortunately we

don’t have any deep insight about the constant 0.714. Rather, we stress that the point of

this work is to ( a) highlight the fact that the s
√

N bound can be beaten for s �
√

N , and

(b) highlight our techniques, which we believe may be of independent interest.

1.2 Lifted codes, and our construction

Our construction is based on the lifted codes of Guo, Kopparty and Sudan [12]. The original

motivation for lifted codes was to construct high-rate LCCs, as described above. However,

since then they have found several other uses, for example list-decoding and local-list-

decoding [11]. The codes are based on multivariate polynomials, and we describe them below.

Suppose that F ⊆ Fq[X, Y ] is a collection of bivariate polynomials over a finite field Fq of

order q. This collection naturally gives rise to a code C ⊆ F
q2

:

C =
{

〈P (x, y)〉(x,y)∈F2
q

: P ∈ F
}

. (1)

Above, we assume some fixed order on the elements of F2
q , and by 〈P (x, y)〉(x,y)∈F2

q
, we mean

the vector in F
q2

q whose entries are the evaluations of P in this prescribed order. For example,

a bivariate Reed-Muller code is formed by taking F to be the set of all polynomials of total

degree at most d.

One nice property of Reed-Muller codes is their locality. More precisely, suppose that

P (X, Y ) is a bivariate polynomial over Fq of total degree at most d. For an affine line in F
2
q,

parameterized as L(T ) = (αT + β, γT + δ), we can consider the restriction P |L of P to L,

given by

P |L(T ) := P (αT + β, γT + δ) mod T q − T,

where we think of the above as a polynomial of degree at most q − 1. It is not hard to

see that if P has total degree at most d, then P |L(T ) also has degree at most d; in other

words, it is a univariate Reed-Solomon codeword. This property – that the restriction of any

codeword to a line is itself a codeword of another code – is extremely useful, and has been

exploited in coding theory since Reed’s majority logic decoder in the 1950’s [22]. A natural

question is whether or not there exist any bivariate polynomials P (X, Y ) other than those of

total degree at most d which have this property. That is, are there polynomials which have

high degree, but whose restrictions to lines are always low-degree? In many settings (for

example, over the reals, or over prime fields) the answer is no. However, the insight of [12] is

that there are settings – high degree polynomials over small-characteristic fields – for which

the answer is yes.

This motivates the definition of lifted codes, which are multivariate polynomial evaluation

codes, all of whose restrictions to lines lie in some other base code. Guo, Kopparty and

4 We note that there have been some works in the intermediate-s parameter regime which can obtain
excellent locality Q but are not directly relevant for Question 1. In particular, the work of [21] gives

a construction of s-DRGP codes with s = Θ(K1/3−ε) and Q = Θ(K1/3) for arbitarily small constant

ε; while this work obtains a smaller Q than we will eventially obtain (our results will have Q ∼
√

N),
they are only able to establish high (constant) rate codes, and thus do not yield tight bounds on the co-
dimension. The work of [3] gives constructions of high-rate fountain codes which have s, Q = Θ(log(N)).
As these are rateless codes, again they are not directly relevant to Question 1.



S. L. Frank-Fischer, V. Guruswami, and M. Wootters 43:7

Sudan showed that, in the case above, not only do these codes exist, but in fact they may

have rate much higher than the corresponding Reed-Muller code.

Lifted codes very naturally give rise to codes with the s-DRGP. Indeed, consider the

bivariate example above, with d = q − 2. That is, C is the set of codewords arising

from evaluations of functions P that have the property that for all lines L : Fq → F
2
q,

deg(P |L) ≤ q − 2. The restrictions then lie in the parity-check code: we always have
∑

t∈Fq
P |L(t) = 0. Thus, for every coordinate of a codeword in C – which corresponds to an

evaluation point (x, y) ∈ F
2
q – there are q disjoint repair groups for this symbol, corresponding

to the q affine lines through (x, y).

However, it’s not obvious how to use these codes to obtain the s-DRGP for s �
√

N ;

increasing the number of variables causes s to grow, and this is the approach taken in [12] to

obtain high-rate LCCs. Since we are after smaller s, we take a different approach. We stick

with bivariate codes, but instead of requiring that the functions P ∈ F restrict to low-degree

polynomials on all affine lines L, we make this requirement only for some lines. This allows

us to achieve the s-DRGP (if there are s lines through each point), while still being able to

control the rate.

While special cases of this idea – notably tensor codes – have been considered before,

allowing more complicated sets of lines requires some new machinery, and we hope that this

machinery may be useful more generally. In the next section, we will set up our notation and

give an outline of this approach, after a brief review of the notation we will use throughout

the paper.

1.3 Outline

Next, in Section 2, we define partially lifted codes, and give a technical overview of our

approach. This approach consists of two parts. The first is a general framework for

understanding the dimension of partially lifted codes of a certain form, which we then discuss

more in Section 3. The second part is to instantiate this framework, which we do in Section 4.

This gives rise to the s-DRGP code with s = N1/4 described above. Due to space constraints,

we omit many details from this extended abstract, and refer the reader to the full version of

the paper [9].

2 Technical Overview

In this section, we give a high-level overview of our construction and approach. We begin

with some basic definitions and notation.

2.1 Notation and basic definitions

We study linear codes C ⊆ F
N
q of block length N over an alphabet of size q. We will always

assume that Fq has characteristic 2, and write q = 2`. (We note that this is not strictly

necessary for our techniques to apply – the important thing is only that the field is of

relatively small characteristic – but it simplifies the analysis, and so we work in this special

case).

The specific codes C that we consider are polynomial evaluation codes. Formally, let F be

a collection of m-variate polynomials over Fq. Letting N = qm, we may identify F with a

code C ⊆ F
N
q as in (1); we assume that there is some fixed ordering on the elements of Fm

q to

make this well-defined. For a polynomial P ∈ Fq[X1, . . . , Xm], we write its corresponding

APPROX/RANDOM’17



43:8 Locality via Partially Lifted Codes

codeword as

eval(P ) = 〈P (x1, . . . , xm)〉(x1,...,xm)∈Fm
q

∈ C.

We will only focus on m = 1, 2, as we consider the restriction of bivariate polynomial codes

to lines, which results in univariate polynomial codes. Formally, a (parameterization of an)

affine line is a map L : Fq → F
2
q, of the form L(T ) = (αT + β, γT + δ) for α, β, γ, δ ∈ Fq. We

say that two parameterizations L, L′ are equivalent if the result in the same line as a set:

{L(t) : t ∈ Fq} = {L′(t) : t ∈ Fq} . We denote the restriction of a polynomial P ∈ Fq[X, Y ]

to L by P |L:

I Definition 3. For a line L : Fq → F
2
q with L(T ) = (L1(T ), L2(T )), and a polynomial

P : F2
q → Fq, we define the restriction of P on L, denoted P |L : Fq → Fq, to be the unique

polynomial of degree at most q − 1 so that P |L(T ) = P (L1(T ), L2(T )).

We note that the definition above makes sense, because all functions f : Fq → Fq can be

written as polynomials of degree at most q − 1 over Fq; in this case, we have P |L(T ) =

P (L1(T ), L2(T )) mod (T q − T ).

I Remark 1. Throughout this paper, all polynomials will be considered mod T q −T , although

we will frequently drop this notation for ease of reading.

Finally, we’ll need some tools for reasoning about integers and their binary expansions.

I Definition 4. Let m < q be a positive integer. If m =
∑`−1

i=0 mi2
i, where mi ∈ {0, 1}, then

we let B(m) = {i ∈ {0, ..., ` − 1} | mi = 1}. That is, B(m) is the set of indices where the

binary expansion of m has a 1.

I Definition 5. For any two integers m, n < q, we say that m lies in the 2-shadow of n,

denoted m ≤2 n, if B(m) ⊆ B(n). Equivalently, letting m =
∑`−1

i=0 mi2
i and n =

∑`−1
i=0 ni2

i,

we write m ≤2 n if for all i ∈ {0, ..., ` − 1}, whenever mi = 1 then also ni = 1.

The reason that we are interested in 2-shadows is because of Lucas’ Theorem.

I Theorem 6 (Lucas’ Theorem). For any m, n ∈ Z,
(

m
n

)

≡ 0 mod 2 exactly when m 6≤2 n.

Finally, for integers a, b, s, we will say a ≡s b if a is equal to b modulo s. For a positive

integer n, we use [n] to denote the set [n] = {0, . . . , n − 1}.

2.2 Partially lifted codes

With the preliminaries out of the way, we proceed with a description of our construction and

techniques. As alluded to above, our codes will be bivariate polynomial codes, which are

“partial lifts" of parity check codes.

I Definition 7. Let F0 ⊆ Fq[T ] be a collection of univariate polynomials, and let L be a

collection of parameterizations of affine lines L : Fq → F
2
q. We define the partial lift of F0

with respect to L to be the set

F = {P ∈ Fq[X, Y ] : ∀P ∈ F , ∀L ∈ L, P |L ∈ F0} .

We make a few remarks about Definition 7 before proceeding.



S. L. Frank-Fischer, V. Guruswami, and M. Wootters 43:9

I Remark 2 (Equivalent lines). We remark that the definition above allows L to be a collection

of parameterizations of lines. A priori, it is possible that equivalent parameterizations may

behave very differently with respect to F0, and it is also possible to include several equivalent

parameterizations in L. In this work, F0 will always be affine-invariant (in particular, it will

just be the set of polynomials of degree strictly less than q − 1), and so if L and L′ equivalent,

then P |L ∈ F0 if and only if P |L′ ∈ F0. Thus, these issues won’t be important for this work.

I Remark 3 (Why only bivariate lifts?). This definition works just as well for m-variate partial

lifts, and we hope that further study will explore this direction. However, as all of our results

are for bivariate codes, we will stick to the bivariate case to avoid having to introduce another

parameter.

Let F0 := {P ∈ Fq[X], deg(P ) < q − 1}. Then it is not hard to see that the code

C0 = {eval(P ) : P ∈ F0} is just the parity-check code, C0 =
{

c ∈ F
q
q :

∑q
i=1 ci = 0

}

. Indeed,

for any d < q − 1, we have
∑

x∈Fq
xd = 0.

We will construct codes with the s-DRGP by considering codes that are partial lifts of F0.

We first observe that such codes, with an appropriate set of lines L, will have the s-DRGP.

Indeed, suppose we wish to recover a particular symbol, given by P (x, y) for (x, y) ∈ F
2
q.

Let L(1), . . . , L(s) ∈ L be s distinct (non-equivalent) lines that pass through (x, y); say they

are parameterized so that L(j)(0) = (x, y). Then the s disjoint repair groups are the sets

indices corresponding to Sj := {L(j)(t) : t ∈ Fq \ {0}}. For any P in the partial lift of F0,

we have P |L(0) =
∑

t∈Fq\{0} P |L(t), which means that P (x, y) =
∑

(a,b)∈Sj
P (a, b). That is,

P (x, y) can be recovered from the coordinates of eval(P ) indexed by Sj , as desired. Finally

we observe that the Sj are all disjoint, as the lines are all distinct, and intersect only at

(x, y). We summarize the above discussion in the following observation.

I Observation 8. Suppose that F0 = {P ∈ Fq[T ] : deg(P ) < q − 1}, and let L be any

collection of parameterizations of affine lines so that every point in F
2
q is contained in at

least s non-equivalent elements of L. Let F be the bivariate partial lift of F0 with respect to

L. Then the code C ⊆ F
q2

q corresponding to F is a linear code with the s-DRGP.

To save on notation later, we say that a polynomial P : F2
q → Fq restricts nicely on a

line L : Fq → F
2
q if P |L has degree strictly less than q − 1. Thus, to define our construction,

we have to define the collection L of lines used in Definition 7. We will actually develop

a framework that can handle a family of such collections, but for intuition in this section,

let us just consider lines L(T ) = (T, αT + β) where α lives in a multiplicative subgroup Gs

of F∗
q of size s, and β ∈ Fq. That is, we are essentially restricting the slope of the lines to

lie in a multiplicative subgroup. It is not hard to see that every point (x, y) ∈ F
2
q has s

non-equivalent lines in L that pass through it.

Following Observation 8, the resulting code will immediately have the s-DRGP. The only

question is, what is the rate of this code? Equivalently, we want to know:

I Question 2. How many polynomials P ∈ Fq[X, Y ] have deg(P |L) < q − 1 for all L ∈ L,

where L is as described above?

In [12], Guo, Kopparty and Sudan develop some machinery for answering this question when

L is the set of all affine lines. What they show in that work is that in fact the (fully) lifted

code is affine-invariant, and is equal to the span of the monomials P (X, Y ) = XaY b so that

deg(P |L) < q − 1 for all affine lines L. We might first hope that this is the case for partial

lifts – but then upon reflection we would immediately retract this hope, because it turns out

that we do not get any more monomials this way: Theorem 13 establishes that if a monomial

restricts nicely on even one line of the form (T, αT + β) (for nonzero α, β), then in fact it

APPROX/RANDOM’17



43:10 Locality via Partially Lifted Codes

restricts nicely on all such lines. In fact, the partial lift is not in general affine-invariant,

and this is precisely where we are able to make progress. More precisely, there may be

polynomials P (X, Y ) of the form

P (X, Y ) = Xa1Y b1 + Xa2Y b2 (2)

which are contained in the partial lift F , but so that Xa1Y b1 , Xa2Y b2 6∈ F . This gives us

many more polynomials to use in a basis for F than just the relevant monomials, and allows

us to construct families F of larger dimension.

I Remark 4 (Breaking affine invariance). We emphasize that breaking affine-invariance is

a key departure from [12]. In some sense, it is not surprising that we are able to make

progress by doing this: the assumption of affine-invariance is one way to prove lower bounds

on locality [4, 5]. This is also where our techniques diverge from those of [12]. Because

of their characterization of affine-invariant codes, that work focused on understanding the

dimension of the relevant set of monomials. This is not sufficient for us, and so to get a

handle on the dimension of our constructions, we must study more complicated polynomials.

This may seem daunting, but we show – perhaps surprisingly – that one can make a great

deal of progress by considering only the additional “more complicated" polynomials of the

form (2), which are arguably the simplest of the “more complicated" polynomials.

In order to obtain a lower bound on the dimension of F , our strategy get a handle on the

dimension of the space of these binomials (2). If we can show that there are many linearly

independent such binomials, then the answer to Question 2 must be “lots."

Following this strategy, we examine binomials of the form (2), and we ask, for which

a1, b1, a2, b2 and which L(T ) = (T, αT + β) does P (X, Y ) restrict nicely? Our main tool is

Lucas’s Theorem (Theorem 6), which was also used in [12]. To see why this is useful, consider

the restriction of a monomial P (X, Y ) = XaY b to a line L(T ) = (T, αT + β). We obtain

P |L(T ) = T a (αT + β)
b

=
∑

i≤b

(

b

i

)

αiβb−iT a+i.

Above, the binomial coefficient
(

b
j

)

is shorthand for the sum of 1 with itself
(

b
j

)

times. Thus,

in a field of characteristic 2, this is either equal to 1 or equal to 0; Lucas’s theorem tells us

which it is. This means that our question reduces to asking, when does the coefficient of

T q−1 vanish? The above gives us an expression for this coefficient, and allows us to compute

an answer, in terms of the binary expansions of a and b.

So far, this is precisely the approach of [12]. From here, we turn to the binomials of

the form (2). When do these restrict nicely? As above, we may compute the coefficient

of the T q−1 term and examine it. Fortunately, when the set of lines L is chosen as above,

the number of linearly independent binomials that restrict nicely ends up having a nice

expression, in terms of the number of non-empty equivalence classes of a particular relation

defined by the binary expansion of the numbers 1, . . . , q − 1; this is our main technical

theorem (Theorem 12, which is proved in Section 3.2).

The approach of Section 3.2 holds for more general families than the L described above;

instead of taking α in a multiplicative subgroup of F
∗
q , we may alternately restrict β, or

restrict both. However, numerical calculations indicated that the choice above (where α is in

a multiplicative subgroup of order s) is a good one, so for our construction we make this

choice and we focus on that for our formal analysis in Section 4.

In order to get our final construction and obtain the results advertised above, it suffices

to count these equivalence classes. For the result advertised in the introduction, we choose



S. L. Frank-Fischer, V. Guruswami, and M. Wootters 43:11

the order of the multiplicative subgroup to be s = 2`/2 − 1 =
√

q − 1. Then, we use an

inductive argument in Section 4 to count the resulting equivalence classes, obtaining the

bounds advertised above. More precisely, we obtain the following theorem.

I Theorem 9. Suppose that q = 2` for even `, and let N = q2 − 1. There is a linear code C
over Fq of length N and dimension

K ≥ N − O(N .714)

which has the s-DRGP for s =
√

q − 2 = (N + 1)1/4 − 1.

I Remark 5 (Puncturing at the origin). We note that the statement of the theorem differs

slightly from the informal description above; in our analysis, we will puncture the origin, and

ignore lines that go through the origin; that is, our codes will have length q2 − 1, rather than

q2, and the number of lines through every point will be s − 1, rather than s, as it makes the

calculations somewhat easier and does not substantially change the results.

2.3 Discussion and open questions

Before we dive into the technical details in Section 3, we close the front matter with some

discussion of open questions left by our work and our approach. We view the study of the

s-DRGP for intermediate s to be an important step in understanding locality in general, since

the s-DRGP nicely interpolates between the two extremes of LRCs and LCCs. When s = 2,

we completely understand the answer to Question 1. However, by the time s reaches Ω(N),

this becomes a question about the best rate of constant-query LCCs, which is a notoriously

hard open problem. It is our hope that by better understanding the s-DRGP, we can make

progress on these very difficult questions.

The main question left by our work is Question 1, which we do not answer. What is the

correct dependence on s in the codimension of codes with the s-DRGP? We have shown

that it is not s
√

N , even for s �
√

N . However, we have no reason to believe that our

construction is optimal.

Our work also raises questions about partially lifted codes. These do not seem to have

been studied before. The most immediate question arising from our work is to improve

or generalize our approach; in particular, is our analysis tight? Our approach proceeds by

counting the binomials of the form (2). This is in principle lossy, but empirical simulations

suggest that at least in the setting of Theorem 9, this approach is basically tight. Are there

situations in which this is not tight? Or can we prove that it is tight in any situation? Finally,

are there other uses of partially lifted codes? As with lifted codes, we hope that these prove

useful in a variety of settings.

3 Framework

As discussed in the previous section, the proof of Theorem 9 is based on the partially lifted

codes of Definition 7. In this section, we lay out the partially lifted codes we consider, as well

as the basic tools we need to analyize them. As before, we say that a polynomial P : F2
q → Fq

restricts nicely to a line L : Fq → F
2
q if P |L has degree strictly less than q − 1. We will

consider partial lifts of the parity-check code with respect to a collection of affine lines L;

reasoning about the rate of this code will amount to reasoning about the polynomials which

restrict nicely to lines in L. To ease the computations, we will form our family L out of lines

that have a simple parameterization:

APPROX/RANDOM’17



43:12 Locality via Partially Lifted Codes

I Definition 10. We say a line L : F → F
2 is simple if it can be written in the form

L(T ) = (T, αT + β), with α, β 6= 0.

Notice that this rules out lines through the origin. At the end of the day, we will pucture our

code at the origin to achieve our final result. Note also that no two simple parameterizations

of lines are equivalent to each other (that is, they form distinct lines as sets), so as we go

forward, we may apply Observation 8 without worry of the repair groups coinciding.

We consider a family of constructions, indexed by parameters s and t, so that s, t | q − 1.

This family will be the partial lift with respect to the following set of simple lines.

I Definition 11. Let s, t | q − 1, and let Gs, Gt ⊆ F
∗
q be multiplicative subgroups of F∗

q of

orders s and t, respectively. That is, Gs =
{

x ∈ F
∗
q : xs = 1

}

and Gt =
{

x ∈ F
∗
q : xt = 1

}

.

Then we define Ls,t to be the family of simple lines

Ls,t = {L(T ) = (T, αT + β) : α ∈ Gs, β ∈ Gt} .

For the rest of the paper, we will study the following construction, for various choices of

s and t.

I Construction 1. Let Ls,t be as in Definition 11 for s, t | q − 1, and let F0 be the set of

univariate polynomials of degree strictly less than q − 1. Define Fs,t to be the partial lift of

F0 with respect to Ls,t.

Our main theorem, which we will prove in the rest of this section, is a characterization of

the dimension of Fs,t as in Construction 1. (We recall the definition of ≤2 from Definition 5

above).

I Theorem 12. Suppose that s, t | q − 1. For nonnegative integers i < s, j < t, define

e(s, t) = |{(i, j) : i < s, and j < t,

so that there is some m, n ∈ [q]2 with m ≡s i, n ≡t j, and n ≤2 m
}∣

∣ .

Then the dimension of Fs,t ⊆ Fq[X, Y ] is at least

dim(Fs,t) ≥ q2 − e(s, t).

Theorem 12 may seem rather mysterious. The expression e(s, t) comes up in counting the

number of binomials of the form (2) the restrict nicely on lines in Ls,t. We omit the full

proof of Theorem 12 in this extended abstract, but we will sketch the outline in Section 3.2.

The reason that Theorem 12 is useful is that for some s and t, it turns out to be possible

to get a very tight handle on e(s, t), which leads to the quantitative result in Thorem 9. For

now, we focus on proving Theorem 12. Our starting point is the work of [12]; we summarize

the relevant points below in Section 3.1.

3.1 Basic Setup: Lucas’ Theorem and Monomials

In [12], Guo, Kopparty and Sudan give a characterization of lifted codes. In our setting,

their work shows that when the set L is the set of all affine lines, then the lifted code F is

affine invariant and in fact is equal to the span of the monomials which restrict nicely. In

the case where the number of variables is large, or the base code F0 is more complicated

than a parity-check code, [12] provides some bounds, but it seems quite difficult to get a

tight characterization of these monomials. However, for bivariate lifts of the parity-check



S. L. Frank-Fischer, V. Guruswami, and M. Wootters 43:13

code, it is actually possible to completely understand the situation, and this was essentially

done in [12]. We review their approach here.

First, we use Lucas’ Theorem (Theorem 6) to characterize which monomials XaY b restrict

nicely to simple lines. Theorem 13 follows from the analysis in [12]; we refer the reader to

the full version of this paper [9] for a direct proof.

I Theorem 13. Suppose a + b < 2(q − 1) and let P (X, Y ) = XaY b. Then for all simple

lines L(T ) = (T, αT + β), P |L has degree < q − 1 if and only if q − 1 − a 6≤2 b. Further, if

q − 1 − a ≤2 b, then P |L is a degree q − 1 polynomial with leading coefficient α−aβb+a

Theorem 13 implies that whether a monomial P (X, Y ) = XaY b restricts nicely to a

simple line L is independent of the choice of L. Thus it makes sense to consider this a

property of the monomial itself.

I Definition 14. We say that a monomial P (X, Y ) = XaY b with 0 ≤ a, b ≤ q − 1 is good if

it restricts nicely on all simple lines.

I Remark 6 (The special case of Xq−1Y q−1). In Theorem 13, we required a + b < 2(q − 1),

which does not cover the monomial P∗(X, Y ) = Xq−1Y q−1. However, in Definition 14, we

allow a = b = q − 1, and in fact according to this definition P∗(X, Y ) is good; we will treat it

that way in this work, even though it would not be considered good in the analysis of [12].

(In their language, P∗ does not live in the lift of the degree set {0, . . . , q − 2}).

Theorem 13 implies (see [9]) that there are q2 − 3` + 1 good monomials. This allows us

to recover the codes of Theorem 1.2 in [12] up to the technicalities about simple lines vs. all

lines. Following Observation 8, these codes have the s-DRGP for s = q − 1; indeed, there

are q − 1 simple lines through every non-zero point of F2
q. The dimension of these codes

is at least the number of monomials that they contain (indeed, all monomials are linearly

independent), which by the above is at least q2 − 3` + 1 = (N + 1) − (N + 1)log
4
(3) + 1.

I Corollary 15 (Implicit in [12]). There are codes linear C over Fq of length N = q2 − 1 with

dimension K ≥ N + 2 − (N + 1)log
4
(3) which have the s-DRGP for s = q − 1 =

√
N + 1 − 1.

We note that this recovers the results of one of the classical constructions of the s-DRGP

for s =
√

N mentioned in the introduction (and this is not an accident: these codes are

in fact the same as affine geometry codes). In the next section, we show how to use the

relaxation to partial lifts in order to create codes with the s-DRGP for s �
√

N .

3.2 Partially lifted codes

In this section we extend the analysis above to partial lifts. The work of [12] characterizes the

polynomials which restrict nicely on all lines L : Fq → F
2
q: they show that this is exactly the

span of the good monomials (except the special monomial P∗ of Remark 6, which restricts

to degree lower than q − 1 only on simple lines). However, since our goal is to obtain codes

with the s-DRGP for s �
√

N , increasing the dimension while decreasing s, we would like to

allow for more polynomials.

Thus, as in Definition 7, we will consider polynomials which restrict nicely only on some

particular subset L of simple lines. We would like to find a subset L such that the space of

polynomials which restrict nicely on all lines in L has large degree. Additionally, we would

like to guarantee the s-DRGP by ensuring that, for every point (x, y), there are many lines

in L that pass through (x, y). Relaxing requirements in this manner will allow us to get

codes with good rate and locality trade-offs.

APPROX/RANDOM’17



43:14 Locality via Partially Lifted Codes

Theorem 13 shows that if a monomial restricts nicely on one simple line, it will restrict

nicely on all simple lines. This means that in order to find a larger space of polynomials, we

cannot only consider monomials. Towards this end, we will consider binomials of the form

P (X, Y ) = Xa1Y b1 + Xa2Y b2 . (3)

That is, we will look only at binomials with both coefficients equal to 1.

We note that this ability to extend beyond monomials is possible crucially because our

partially lifted codes are not affine-invariant. While affine-invariance allowed [12] to get a

beautiful characterization of (fully) lifted codes, it also greatly restricts the flexibility of these

codes. By breaking affine-invariance, we also break some of the rigidity of these constructions.

This is in some sense not surprising: affine invariance is often exploited in order to prove

lower bounds on locality [4, 5].

3.2.1 Which binomials play nice with which lines?

We would like to characterize which binomials of the form (3) restrict nicely on which lines.

Unlike the case with monomials, now this will depend on the line as well as on the binomial.

When both individual terms in the binomial are good monomials, the binomial will certainly

restrict nicely. However, if this is not the case, then the binomial could still restrict nicely, if

the contributions to the leading coefficient of P |L from the two terms cancel with each other.

Using Theorem 13, we may write down these contributions and characterize when the cancel;

we omit the details due to space constraints, but (see [9]) this approach can establish the

following Corollary.

I Corollary 16. Let s and t divide q − 1, and let Gs = {x ∈ Fq : xs = 1} and Gt = {x ∈
Fq : xt = 1}. Let

Ls,t = {(T, αT + β) : α ∈ Gs, β ∈ Gt}

as in Definition 11. Suppose that P (X, Y ) = Xa1Y b1 + Xa2Y b2 is a binomial so that neither

term is good. Suppose that a1 ≡ a2 mod s and a1 + b1 ≡ a2 + b2 mod t. Then for all

L ∈ Ls,t, P restricts nicely to L.

Thus, a choice of s and t dividing q − 1 produces a code by using Ls,t in Construction 1.

Each choice of s and t produces a different code, and by varying s and t we can vary the

parameters of this code. This is the general framework for our construction, but we still

must explore the dimension and the number of disjoint repair groups produced by different

choices of s and t.

3.2.2 Dimension

Given some choice of s and t, we would like to understand dimension of the space of

polynomials Fs,t which restrict nicely on all lines in Ls,t. We will lower bound this dimension

by building a linearly independent set S ⊆ Fs,t comprised of monomials and binomials. In

order to construct S and understand its size, we will need some more notation.

Let i < s and j < t be nonnegative integers. Define

Ei,j = {(m, n) ∈ [q]2 : m ≡s i, n ≡t j, n ≤2 m}.

Thus, the term e(s, t) from Theorem 12 is the number of (i, j) so that Ei,j is not empty. It

turns out, that Ei,j is (up to a ±1 term that we are careful about in the full version) in



S. L. Frank-Fischer, V. Guruswami, and M. Wootters 43:15

bijection with the set M̂i,j =
{

XaY b not good : a ≡s i, b + a ≡t j
}

. Notice that the sum

of two monomials in M̂i,j meets the hypotheses of Corollary 16.

This observation is at the heart of the proof of Theorem 12. In slightly more detail,

we want to establish a lower bound on the dimension of polynomials which restrict nicely;

to do this we will exhibit a large linearly independent set of such polynomials. We will

start with all of the good monomials, and add to them a collection of binomials that satisfy

Corollary 16. We can do this as follows. First, from each M̂i,j , we fix one monomial, call it

Xa∗

Y b∗

. Then, we include into our large linearly independent set all the binomails of the

form Xa∗

Y b∗

+ XaY b for XaY b ∈ M̂i,j \ Xa∗

Y b∗

. Doing this for all i, j results in a collection

of linearly independent binomials of size at least (ignoring some details about ±1 terms)

∑

|Ei,j 6=0

(|Ei,j − 1) − 1 =





∑

|Ei,j |6=0

|Ei,j | − 1



 − e(s, t).

However, the first term, which is equal to
∑

i,j |Ei,j | − 1, is exactly the number of not-good

monomials. So our count of good monomials, plus these binomials that restrict nicely, is

precisely equal to the number of all monomials, minus e(s, t). This establishes Theorem 12;

we refer the reader to [9] for more details.

This theorem does give us a lower bound on the dimension of the code, but the expression

depends on e(s, t). We would like to know that e(s, t) is not too big. It is easy to see

that e(s, t) ≤ st, because there are only st choices for (i, j). Moreover, we know that

e(s, t) ≤ q2 −g = 3` −1, the total number of not-good monomials. As we will see in Section 4,

this first bound e(s, t) ≤ st is nontrivial, and can in fact recover the result of N − K = s
√

N

of [8]. However, the point of all this work is that in fact we will be able to choose s and t so

that we can get a much tighter bound on e(s, t), establishing Theorem 9.

4 Instantiations

Finally, we choose t and s. One of the simplest choices we can make within our framework is to

set t = q−1, while s|q−1 is any divisor. That is, we consider all simple lines L(T ) = (T, αT +β)

where β may vary over all of F∗
q , and where α ∈ Gs lives in a multiplicative subgroup of

F
∗
q . One reason that this choice is convenient is that it is easy to understand the number of

disjoint repair groups: there are s − 1 lines of Ls,q−1 through any nonzero point.

Thus, Theorem 12, along with the observation of the previous section that e(s, q − 1) ≤
s(q − 1) trivially, immediately implies DRGP codes that match the results of [8], with

dimension K ≥ N − O(s
√

N). However, by choosing s carefully we can actually get a tighter

bound on e(s, t):

I Theorem 17. Let q = 2` be an even power of 2. Then

e(
√

q − 1, q − 1) = O
(

(5 +
√

5)`/2
)

.

Theorem 9 follows straightforwardly from Theorem 17 and Theorem 12. We omit the proof

of Theorem 17 here, and refer the reader to the full version [9] for details.

5 Conclusion

We have studied the s-DRGP for intermediate values of s. As s grows, the study of the

s-DRGP interpolates between the study of LRCs and LCCs, and our hope is that by

APPROX/RANDOM’17



43:16 Locality via Partially Lifted Codes

understanding intermediate s, we will improve our understanding on either end of this

spectrum. Using a new construction that we term a “partially lifted code," we showed

how to obtain codes of length N with the s-DRGP for s = Θ(N1/4), that have dimension

K ≥ N − N .714. This is an improvement over previous results of N − N3/4 in this parameter

regime. We stress that the main point of interest of this result is not the exponent 0.714,

which we do not believe is tight for Question 1; rather, we think that our results are interesting

because (a) they show that one can in fact beat N − O(s
√

N) for s = N1/4 �
√

N , and

(b) they highlight the class of partially lifted codes, which we hope will be of independent

interest.

Acknowledgements. We thank Alex Vardy and Eitan Yaakobi for helpful exchanges. We

also thank the anonymous reviewers for suggestions which improved the paper.

References

1 Hilal Asi and Eitan Yaakobi. Nearly optimal constructions of PIR and batch codes. CoRR,

abs/1701.07206, 2017. URL: http://arxiv.org/abs/1701.07206.

2 E. F. Assmus and J. D. Key. Polynomial codes and finite geometries. Handbook of coding

theory, 2(part 2):1269–1343, 1998.

3 Megasthenis Asteris and Alexandros G. Dimakis. Repairable fountain codes. IEEE Journal

on Selected Areas in Communications, 32(5):1037–1047, 2014.

4 Eli Ben-Sasson and Madhu Sudan. Limits on the rate of locally testable affine-invariant

codes. In Approximation, Randomization, and Combinatorial Optimization. Algorithms

and Techniques, pages 412–423. Springer, 2011.

5 Arnab Bhattacharyya and Sivakanth Gopi. Lower bounds for constant query affine-invariant

LCCs and LTCs. In Proceedings of the 31st Conference on Computational Complexity,

volume 50 of Leibniz International Proceedings in Informatics (LIPIcs), pages 12:1–12:17.

Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2016. doi:10.4230/LIPIcs.CCC.2016.

12.

6 S. Blackburn and T. Etzion. PIR Array Codes with Optimal PIR Rate. CoRR,

abs/1607.00235, 2016. URL: http://arxiv.org/abs/1607.00235.

7 Alexandros G Dimakis, Anna Gál, Ankit Singh Rawat, and Zhao Song. Batch codes through

dense graphs without short cycles. arXiv preprint arXiv:1410.2920, 2014.

8 Arman Fazeli, Alexander Vardy, and Eitan Yaakobi. Codes for distributed PIR with low

storage overhead. In 2015 IEEE International Symposium on Information Theory (ISIT),

pages 2852–2856. IEEE, 2015.

9 S Luna Frank-Fischer, Venkatesan Guruswami, and Mary Wootters. Locality via partially

lifted codes. arXiv preprint arXiv:1704.08627, 2017.

10 Parikshit Gopalan, Cheng Huang, Huseyin Simitci, and Sergey Yekhanin. On the locality

of codeword symbols. IEEE Transactions on Information Theory, 58(11):6925–6934, 2012.

11 Alan Guo and Swastik Kopparty. List-decoding algorithms for lifted codes. CoRR,

abs/1412.0305, 2014. URL: http://arxiv.org/abs/1412.0305.

12 Alan Guo, Swastik Kopparty, and Madhu Sudan. New affine-invariant codes from lifting. In

Proceedings of the 4th conference on Innovations in Theoretical Computer Science, ITCS’13,

pages 529–540, New York, NY, USA, 2013. ACM. URL: http://arxiv.org/abs/1208.

5413, arXiv:1208.5413, doi:10.1145/2422436.2422494.

13 Brett Hemenway, Rafail Ostrovsky, and Mary Wootters. Local Correctability of Expander

Codes. In ICALP, LNCS. Springer, April 2013. arXiv:1304.8129.



S. L. Frank-Fischer, V. Guruswami, and M. Wootters 43:17

14 Cheng Huang, Minghua Chen, and Jin Li. Pyramid codes: Flexible schemes to trade space

for access efficiency in reliable data storage systems. ACM Transactions on Storage (TOS),

9(1):3, 2013.

15 Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Batch codes and their

applications. In Proceedings of the thirty-sixth annual ACM symposium on Theory of com-

puting, pages 262–271. ACM, 2004.

16 Jonathan Katz and Luca Trevisan. On the efficiency of local decoding procedures for error-

correcting codes. In STOC’00: Proceedings of the 32nd Annual Symposium on the Theory

of Computing, pages 80–86, 2000.

17 S. Kopparty, S. Saraf, and S. Yekhanin. High-rate codes with sublinear-time decoding. In

Proceedings of the 43rd annual ACM symposium on Theory of computing, pages 167–176.

ACM, 2011.

18 Swastik Kopparty, Or Meir, Noga Ron-Zewi, and Shubhangi Saraf. High-rate locally-

correctable and locally-testable codes with sub-polynomial query complexity. In Proceed-

ings of the 48th Annual ACM SIGACT Symposium on Theory of Computing, pages 202–215.

ACM, 2016.

19 Shu Lin and Daniel J Costello. Error control coding. Pearson Education India, 2004.

20 Sankeerth Rao and Alexander Vardy. Lower bound on the redundancy of PIR codes. CoRR,

abs/1605.01869, 2016. URL: http://arxiv.org/abs/1605.01869.

21 Ankit Singh Rawat, Dimitris S. Papailiopoulos, Alexandros G. Dimakis, and Sriram Vish-

wanath. Locality and availability in distributed storage. In 2014 IEEE International

Symposium on Information Theory, pages 681–685. IEEE, 2014.

22 I. Reed. A class of multiple-error-correcting codes and the decoding scheme. Information

Theory, Transactions of the IRE Professional Group on, 4(4):38–49, September 1954.

23 Maheswaran Sathiamoorthy, Megasthenis Asteris, Dimitris Papailiopoulos, Alexandros G

Dimakis, Ramkumar Vadali, Scott Chen, and Dhruba Borthakur. Xoring elephants: Novel

erasure codes for big data. In Proceedings of the VLDB Endowment, volume 6, pages

325–336. VLDB Endowment, 2013.

24 Vitaly Skachek. Batch and PIR codes and their connections to locally-repairable codes.

CoRR, abs/1611.09914, 2016. URL: http://arxiv.org/abs/1611.09914.

25 Itzhak Tamo and Alexander Barg. Bounds on locally recoverable codes with multiple

recovering sets. In 2014 IEEE International Symposium on Information Theory, pages

691–695. IEEE, 2014.

26 Itzhak Tamo and Alexander Barg. A family of optimal locally recoverable codes. IEEE

Transactions on Information Theory, 60(8):4661–4676, 2014.

27 Itzhak Tamo, Alexander Barg, and Alexey Frolov. Bounds on the parameters of locally

recoverable codes. IEEE Transactions on Information Theory, 62(6):3070–3083, 2016.

28 Anyu Wang and Zhifang Zhang. Repair locality with multiple erasure tolerance. IEEE

Transactions on Information Theory, 60(11):6979–6987, 2014.

29 David P. Woodruff. A Quadratic Lower Bound for Three-Query Linear Locally Decodable

Codes over Any Field, pages 766–779. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

30 Sergey Yekhanin. Locally Decodable Codes. Foundations and Trends in Theoretical Com-

puter Science, 2010.

APPROX/RANDOM’17


	Introduction
	Background and related work
	Lifted codes, and our construction
	Outline

	Technical Overview
	Notation and basic definitions
	Partially lifted codes
	Discussion and open questions

	Framework
	Basic Setup: Lucas' Theorem and Monomials
	Partially lifted codes
	Which binomials play nice with which lines?
	Dimension


	Instantiations
	Conclusion

