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Abstract—The current paradigm of exclusive spectrum as-
signment and allocation is creating artificial spectrum scarcity
that has a dramatic impact on network performance and user
experience. Thus, governments, industry and academia have
endeavored to create novel spectrum management mechanisms
that allow multi-tiered access. A key component of such an
approach is deep understanding of spectrum utilization in time,
frequency and space. To address this challenge, we propose
AirVIEW, a one-pass, unsupervised spectrum characterization
approach for rapid transmitter detection with high tolerance to
noise. AirVIEW autonomously learns its parameters and employs
wavelet decomposition in order to amplify and reliably detect
transmissions at a given time instant. We show that AirVIEW
can robustly identify transmitters even when their power is
only SdBm above the noise floor. Furthermore, we demonstrate
AirVIEW’s ability to inform next-generation Dynamic Spectrum
Access by characterizing essential transmitter properties in wide-
band spectrum measurements from SOMHz to 4.4GHz.

I. INTRODUCTION

Current spectrum management is based on exclusive alloca-
tion and assignment of radio spectrum to a given technology
and operator. As a result some popular frequency bands, such
as cellular, become over-saturated, while others, like UHF TV,
remain underutilized. This results in artificial spectrum scarcity
that leads to high cost for communication services, decreased
network performance and deteriorated user experience. At
the same time, underutilized bands provide an opportunity
for more efficient, shared spectrum access that has brought
together policymakers, industry and academia to set an agenda
for next-generation spectrum management [2].

A critical enabler of future spectrum access is deep un-
derstanding of spectrum utilization, both long-term as well
as instantaneous. This goal entails adaptive sensing in a
wide frequency range (i.e. 30MHz-6GHz [12]) followed by
autonomous characterization to extract actionable knowledge
from spectrum data and inform shared access. Our focus
is on the latter: unsupervised characterization of wide-band
spectrum scans that can pin-point the number of transmitters
and their time-frequency properties without prior knowledge of
transmitters’ behavior. Depending on the learning objectives,
spectrum characterization can be performed in the time [3] or
frequency domain [22] and should be regarded as a stream
processing task, whereby data is analyzed as it arrives. Wide-
band spectrum measurement assumes frequency-domain anal-
ysis and can be regarded at three resolutions as illustrated in
Fig. 1(left): (i) at a single spectrum sweep, (ii) at a single
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Fig. 1. (left) Illustration of a transmitter comprised of multiple transmissions;
(right) Transmitter characterization metrics.

transmission, (i.e. an active region over continuous sweeps),
and (iii) at a transmitter, defined as multiple transmissions
reconciled into a single transmitter. Fig. 1(right) summarizes
key metrics that must be produced by spectrum analysis.

Current approaches to spectrum characterization perform
detection of idle and occupied bands [20, 23, 18], however,
they do not cater to deeper functional spectrum analysis that
teases out transmitters and their temporal and frequency usage
patterns. Recent work has focused on cyclo-stationary analy-
sis [17, 9] or signature matching [15]. While such approaches
provide deeper understanding of spectrum occupancy, they are
limited to predefined transmitter types and are, thus, not well-
suited for arbitrary transmitter characterization. Other work
[25] tackles unsupervised transmitter detection, however the
approach requires batch-processing of data and, thus, cannot
be employed for stream-processing of spectrum scans.

To address these limitations we design AirVIEW, an algo-
rithm for unsupervised, wide-band, high-sensitivity spectrum
analysis. AirVIEW operates at the granularity of a single
sweep, where it employs wavelet decomposition [14] of power
spectral density (PSD) to separate transmitter edges from
the noise floor. Single-sweep frequency bands identified as
occupied, are further reconciled through a two-step procedure
that pinpoints longitudinally-active transmitters. Our wavelet
decomposition approach provides an alternative expression of
the measured PSD that presents a powerful construct for signal
analysis [11], as it (i) can be used to effectively amplify the
signal transitions while (ii) suppressing the inherent noise
in spectrum measurements. While the benefits of wavelet
decomposition in spectrum sensing have been observed be-
fore [16, 18, 24], all of these works operate on a single
spectrum sweep and are thus not able to reconcile transmit-
ters. Furthermore, none of them presents a fully-unsupervised
approach that is able to adaptively tune its parameters to the
observed spectrum dynamics and noise floor. Thus, the key
advantages of AirVIEW over existing methods are that it is (i)



robust to noise, (i) unsupervised, and thus, able to characterize
arbitrary transmitters and (iii) rapid as it can extract actionable
spectrum information even from a single sweep.

We evaluate AirVIEW’s performance on both synthetically
generated and real-world ground truth transmissions, and
show that it can robustly detect the temporal and frequency
characteristics of transmitters even when their power is as
low as 5dBm above the noise floor. We carry out a wide-
band measurement campaign (50MHz-4.4GHz) in an urban
location in close proximity to an airport and a military airbase.
We then employ AirVIEW to analyze collected spectrum
scans and demonstrate its utility for informing next generation
Dynamic Spectrum Access (DSA) technology and spectrum
policy through rapid characterization of (i) idle and occupied
frequency bands, (ii) number of incumbents in each band,
(iii) their temporal characteristics and (iv) the predictability of
incumbents’ behavior. This paper makes several contributions:

o Novelty: We design AirVIEW, a high-sensitivity, unsuper-
vised transmitter characterization algorithm that is robust to
noise and is able to detect arbitrary transmitters.

« Scalability: Since it requires a single pass over the data,
AirVIEW scales to wide spectrum scans at high temporal
resolution, as demonstrated in our real-world evaluation.

e Accuracy: Our empirical evaluation demonstrates the ac-
curacy of AirVIEW on synthetic and real spectrum traces.

o Applicability: We demonstrate AirVIEW’s applicability
for unsupervised characterization of arbitrary transmitters on
real-world, wide-band spectrum scans (5 0MHz-4.4GHz).

II. RELATED WORK

Prior work on spectrum analysis can be largely subdivided
in activity detection and detailed transmitter characterization.
Activity detection is performed on a single sweep to determine
which bands are active and which are idle. Such methods,
however, do not provide further reconciliation of transmitter
activity in multi-sweep spectrum measurements. The latter has
been recently identified as an important advantage and tacked
in several works for detailed transmitter characterization that
utilize either supervised or unsupervised techniques.
Energy-based activity detection. Spectrum characterization
has been actively explored in the past, however, the literature
is limited in methods that provide detailed, robust and unsu-
pervised transmitter characterization. Traditional approaches
to spectrum characterization identify idle and occupied bands
by the use of power thresholding [21, 13, 6], edge detec-
tion [18, 20] and compressive sensing [19, 4, 10]. While
these approaches are computationally light-weight, they are
only able to determine which parts of the spectrum are idle
and which occupied, however, they are unable to attribute
longitudinally-active bands to a single transmitter’s operation.
Thus, such approaches cannot facilitate detailed transmitter
characterization for next generation spectrum management.
Furthermore, these existing techniques operate on the raw
PSD measurements, which limits their efficiency in noisy
and low SNR regimes. Our work addresses these challenges
by transforming the measured PSD signal in the wavelet

coefficient domain, which reveals the underlying transmission
structure while reducing the effect of noise. Furthermore, we
develop a two-step transmission reconciliation technique that
combines detected occupied bands into longitudinally-active
transmitters to facilitate detailed spectrum characterization.
Wavelet-based activity detection. Prior work has theoret-
ically justified wavelet analysis for spectrum activity detec-
tion [16, 18, 24]. Existing approaches, however, (i) have not
been considered for transmitter reconciliation, (ii) have not
been employed on real-world data and (iii) are not able to
autonomously tune the wavelet analysis parameters to the
measured spectrum dynamics and noise floor. This renders
them inapplicable for unsupervised detection of arbitrary trans-
mitters. In contrast, our proposed method adaptively learns the
parameters for wavelet coefficient analysis, performs robustly
on noisy, real-world signals and reconciles occupied bands
over multiple consecutive spectrum sweeps.

Supervised and unsupervised characterization. Another
related body of work is signature-based characterization which
requires prior knowledge of transmitter activity patterns for
detection [9, 15]. While such techniques enable detailed spec-
trum characterization, they suffer inherent limitations in the
number and types of transmitters they can detect, which makes
them unfeasible for wide-band characterization of arbitrary
transmitters. Our work departs from these early paradigms
by developing a robust and unsupervised technique for high-
sensitivity transmitter characterization. Prior unsupervised ap-
proaches [25] characterize scans using Rayleigh-Gaussian
mixture models, however, the method operates on batch as
opposed to streaming mode. This renders it inapplicable for
real-time transmitter detection at scale.

III. METHODOLOGY

In spectrum characterization, we differentiate between a
transmission and a transmitter (Fig. 1). We define a transmis-
sion as a single continuously-occupied time-frequency block.
A transmitter is, thus, a set of transmissions that are caused
by the activity of the same radio-emitter. Under this definition,
a broadcast transmitter will be characterized with a single
transmission, whereas a TDMA, FDMA or frequency-hopping
transmitter will be comprised of multiple transmissions. The
task of spectrum characterization can, thus, be split in two
key sub-tasks: (i) robust identification of transmissions and
(ii) efficient grouping of transmissions into a transmitter.
Thus, AirVIEW operates in three stages. As data arrives
from the spectrum sensor, AirVIEW performs single-sweep
transmission identification (§III.B). A single transmission,
however, may span multiple consecutive sweeps, thus the
second step in AirVIEW is to combine aligned single-sweep
transmissions into a multi-sweep transmission (§II1.D). Finally,
AirVIEW combines similar-band transmissions into a trans-
mitter (§IILE). In what follows, we first provide the necessary
background on wavelet decomposition of spectrum scans. We
then detail our proposed approaches to detect transmissions,
and group them into transmitters.
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Fig. 2. Wavelet decomposition with key features employed by AirVIEW.

A. Preliminaries. Let p,(f) be the PSD over discrete
frequencies f € F at time t, also referred to as a single-
time sweep or simply a sweep. Given a wavelet basis, the
one-dimensional wavelet decomposition is a function W :
RIFI — RIF| that maps pi(f) to a set of real wavelet
coefficients w; of the same dimensionality. The coefficients
can logically be thought of as a binary-tree hierarchy of
increasing scales s € [0, [log|F|]] (Fig. 2), where the 0-
th scale corresponds to the root of the hierarchy and the
maximum scale corresponds to the hierarchy’s leaves. Thus,
wy(s, j), are the coefficients at a given scale s of the tree,
where j is the index of the coefficient at that scale. For the
analysis in this paper we use the Haar function, as the wavelet
basis, where the mother wavelet is a “square-shaped” function
that is piece-wise constant [11]. Our basis choice is informed
by the underlying shape of power spectrum measurements
characterized with sharp, vertical changes between active and
idle frequencies. To construct the Haar wavelet decomposition,
one computes a sequence of averages across scales according
to the mother wavelet (details in [11]). The decomposition
W is lossless as the original signal p;(f) can be exactly
reconstructed by a reverse reconstruction function W ! using
the wavelet coefficients w;. A lossy reconstruction of the
original signal can also be obtained by only considering some
of the wavelet coefficients [5]. Low-scale coefficients (close to
the root) capture more drastic changes of the underlying signal,
whereas high-scale coefficients (close to the leaves) capture
finer changes (i.e. jitter due to noise). Thus, a lossy signal
reconstruction based on low-scale coefficients will produce a
coarse representation of the signal.

The multi-scale product 74 at level s is defined as 73 =
(W=t (wy(s,-), W (wi(s + 1,-))) , where the right-hand
side denotes the element-wise product of the signal recon-
structions W~ (wy(s,-)) using only coefficients at level s
and s 4+ 1. Such multi-scale products have been shown to
“elucidate” edges of transmissions while suppressing the effect
of noise [18, 16, 24]. A set of products and their corresponding
scales in the wavelet tree are presented in Fig. 2. Local maxima
in low-scale products (e.g. m;) clearly delineate frequency
regions in which an abrupt power change occurs, however
they lack “spatial” resolution in that they cannot pinpoint the
exact frequencies at which a transmission starts. Conversely,
high-scale products are less coarse, albeit more susceptible to
noise. The medium scale product 7; in the figure offers a good
trade-off between robustness to noise, and frequency resolution
and is a good candidate for precise detection of transmission
edges. Intuitively, our detection algorithm identifies the most

Algorithm 1: Single-sweep transmission detection

Input: pe(f), s, B

Output: A set of transmission intervals Dy = {[f;, f!]}

: Compute W (p:(f))

: Compute ws(f) and 7s(f) = |7s(i) — ws(2 — 1)|,i € F

: Detect X8 = {x;}: local maxima of 7s(f) exceeding 7+ = ut + Bo¢

: Compute the average power py(r;) of frequency regions R8 = {r;}
between local maxima X

B W =

5: Dy =10

6: for Vr; in descending power pt(r;) do

7: if Neighbors N (r;) of 7; not in detected D; then
8: Dt = Dt U T

9: end if

10: end for

11: RETURN D,

significant local maxima in the multi-scale product of a
carefully-selected coefficient scale to determine the start and
end frequencies of transmitter activity captured in a single
sweep. The scale and threshold for local maxima’s significance
are adaptively determined in an unsupervised manner (§I11.C).

B. Single-sweep transmission detection. Algorithm 1
presents our single-sweep transmission detection. The method
takes as an input the measured PSD signal p,(f), the product
scale for detection s and a threshold scaling parameter (.
AIrVIEW adaptively learns s and S in a pre-processing step
detailed in §III.C. Our algorithm first computes the wavelet
decomposition W (p,(f)) (Step 1) and the multi-scale product
7ms(f) at scale s (Step 2). We note that depending on the
selected scale, the sign of the product value corresponding
to a transmitter edge might be positive or negative. Since our
edge detection is concerned only with the magnitude but not
the sign of the product, we perform local maxima analysis on
the absolute pairwise difference between consecutive product
values 7s(f) = |ms(i) — ms(4 — 1)|,4 € F. Next (Step 3),
we consider all local maxima x; of the pairwise differences
and keep only the [-outlier ones, i.e. those whose pairwise
differences exceed the absolute threshold 7, of the current
sweep t, calculated as v = u; + PBoy. Here y; and o4 are
the mean and standard deviation of the pairwise difference
of the multiscale products 7s(f) at scale s for sweep t. 8
is a threshold-scaling parameter that determines how many
standard deviations from the mean should pairwise differences
be in order to be ranked as a outlier local maxima.

The positions of outlier local maxima X” partition the
frequency domain into non-overlapping frequency regions
R? = {r;} (e.g. the local maxima in m; from Fig. 2 par-
tition the scan in three regions 7g,7; and r2). We compute
the average power p;(r;) from the original PSD signal for
all regions r; in R® (Step 4) and consider the regions by
decreasing average power (Steps 5-10). First, we initiate the
set of detected regions D, (Step 5). Then, for each region r;,
we check if any of its immediate preceding and succeeding
regions, termed neighbors N(r;), are already in the set of
output transmissions D;. If the neighbors are not in D, then
we include r; in Dy, else we proceed to the next region by
decreasing average power. This sequence of steps is based on
the premise that we have successfully detected transmission
edges as outlier local maxima and that they will outline regions



of transmission (high power) and noise (low power). Finally,
we return the set of detected transmissions D;.

The complexity of Algorithm 1 is O(F'log F'), since the
Haar wavelet decomposition can be computed by averaging
with re-use in the hierarchy of size F' and due to the need to
sort the adjacent multi-scale product differences (Step 6). The
two key parameters in our method are the threshold scaling
parameter 3 and the scale of analysis s, as these parameters
determine AirVIEW’s accuracy. In what follows, we describe
our unsupervised approach to optimally estimate s and .

C. Alignment-driven parameter estimation. Our approach
exploits a natural domain regularity, namely that multi-sweep
transmissions tend to occupy the same band. Hence, the intu-
ition behind our parameter learning is: given a short interval
of sweeps, find the parameter setting for 3 and s that results
in maximally-aligned detected transmissions across time.

Two important challenges arise with our approach for opti-
mal selection of the parameters S and s. First, the magnitude
of values in the multiscale product will depend on the inherent
characteristics of the measured PSD (including the degree
of signal oscillations and the average transmitter power) and
the selected scale s. Thus, in order to adequately select the
top-ranked local maxima (Step 3 in Algorithm 1), we need
an adaptive and data-driven approach for selection of the
corresponding threshold scaling parameter /3 for AirVIEW to
be accurate for arbitrary SNRs and signal variations. Second,
low-scale products amplify the edges, but lose the location
specificity of the transmissions’ edges (e.g. m; from Fig. 2).
High-scale products are more specific in the exact position
of edges, though more susceptible to noise (e.g. moq|F|—1
from Fig. 2). Hence, there is a trade-off between edge position
specificity and the accuracy of transmission detection that can
be controlled by the careful selection of the product scale.
We extensively investigate the trade-offs of 5 and s selection
in both synthetic data with controlled SNR and in real-world
spectrum traces (§IV). Our analysis shows that an approach
that uses a fixed 8 and s leads to a sub-optimal detection
performance. Thus, we design an unsupervised method for
optimal selection of 5 and s, informed by the properties of
the underlying PSD signal and formalized as follows.

Let Di(fL, fi),i € [1,|D;|] be a single detected active band
in time t. Here, f! and f! are the start and end frequency of
this detected band and D is the set of all active single-sweep
bands D! at time t. Intuitively, a well-aligned multi-sweep
detection will result in conserved f! and f! (or as close as
possible) across consecutive sweeps. Following this intuition,
we formalize the level of alignment of transmissions detected
in consecutive sweeps as the symmetric bi-directional average
Jaccard similarity between maximally-aligned detected bands
(see Eq. (1)). Here |D| is the number of detected bands at
time ¢, Dz N Dg_l is the number of frequencies in which the
two bands overlap, and D{UD?_| is the number of frequencies
in the union of the two bands. Intuitively, the definition of J;
averages the best possible Jaccard similarities for every band
t with its predecessor ¢ — 1 and vice versa. Since, individual

Jaccard similarities are constrained within [0, 1], so is J;.

1{ 1 Din D’
Ji=3 (D > max
2\IPil oo, piepes DiUD]
1 D], NDj
—|— max ————— 1
[Di—q| Z DicD, DLI U Dy )
Di_1€ t—1

Next, for a spectrum scan comprised of 7" sweeps, we calculate
the overall detection alignment J as the average J;:

1
= — 2

J =5 t:ZZ Ji 2)

J also varies between 0 and 1, where a maximally-aligned
detection corresponds to J = 1. We use the so-defined

detection alignment J for parameter estimation. Given a
multi-sweep spectrum scan Pf over F frequency bins and
T spectrum sweeps, we seek (B,,5s,) that maximizes J:
(Bo, 80) = argmaxg s J(PL,3,s). Note that in the defi-
nitions of 7, J; and D; we deliberately omitted 8 and s
for simplified notation, however, all bands are detected by
Algorithm 1, and thus, require the parameters as input.
Since we do not know anything about the properties of the
function J (P:,E , B, s), the simplest approach to its maximiza-
tion is to discretize the space of values of 5 and perform a scan
over parameter value combinations. We employ this approach
in a training phase, in which AirVIEW learns the optimal
(8, s) for a small sub-scan, and then applies this combination
for the remainder of the spectrum characterization campaign.
The complexity of parameter learning is O(BTF log? F ),
where B is the number of discrete values (3 considered in
the parameter estimation, 7" is the number of sweeps in
the training scan, a factor of O(F'log F') is added for each
invocation of the single-sweep detection (Algorithm 1), and
finally an extra factor of log F' is added for the possible
number of scales s in the scan, since the wavelet tree height is
logarithmic in F. As we demonstrate in §IV, a small number
of sweeps T and relatively coarse granularity for 3 (i.e. small
B) are sufficient to robustly learn 8 and s. In addition, our
empirical evaluation suggest that 7 (f3, s) behaves similar to
a concave function w.r.t. both of its parameters, so a simple
hill-climbing approach can reduce the factor of O(B log F') to
a constant without compromising quality if frequent and fast
parameter estimation is warranted in non-stationary scenarios.
Several important questions arise with our approach to unsu-
pervised parameter estimation. Is the alignment of transmitter
detection a good proxy metric for accuracy of transmitter
detection? How long do we need to sense the spectrum before
AirVIEW is able to robustly learn the optimal (f,s)? Our
evaluation (§IV) provides empirical answers to these questions.
D. Multi-sweep transmission detection. AirVIEW’s multi-
sweep transmission detection, detailed in Algorithm 2, takes
as an input a continuous stream of PSD sweeps p:(f), s,
B, and an additional temporal smoothing parameter A. The
algorithm reports detected transmissions in contiguous sweeps
T = {(D,t)}, where D is the frequency interval of an
instantaneous transmission at time t. We begin by initializing



Algorithm 2: Multi-sweep transmission detection

Input: p¢(f). s, B, A

Output: A set of temporal transmissions 7 = {T' = {(D, t)}}
1: Initialize temporal transmissions 7 = ()

2: for Consecutive ¢ consider PSD signal p¢(f) do

3: Dy < SingleSweep(p:(f), s, B){Alg. 1}

4 for VD; € Dy do

5 if D; matches a temporal transmission 7" € T then
6: extend T by smooth(Dy, T, \)

7 else

8: Start a new active transmission 1" <— (D, t)

9: Add T to the set of active transmissions 7

10: end if

11:  end for

12: Report transmissions in 7 that were not extended in ¢
13: end for

the list of active transmissions (Step 1). We then process the
consecutive temporal PSD signals (Steps 2-11). For each time ¢
we detect all transmissions D; € D; (Step 3) and process them
one at a time (Step 4). We match each transmission interval
D to the list of active transmissions 7 and if its intersection
with T is at least half the span of D we declare it a match
and add a temporally-smoothed version of D to T (Step 6).
If no match is found, we initiate a new active transmission 7
and add it to the set of active transmissions 7~ (Step 8). After
all instantaneous transmissions D, are processed, we report
transmissions in 7 that were not extended in time ¢ (Step 12)
and proceed to the next scan pyy1(f).

In order to reconcile an instantaneous transmission D; with
its matched temporal transmission 7', we consider the edges of
D, and those of all preceding transmissions in 7" in function
smooth(Dy, T, \) (Step 6). Let (f;,7;) be the left edge posi-
tions of all transmissions in 7" including that of D; at time t.
We compute the time-decayed weighted average of those edge
positions as f = [, wifi/ >, w;], where w; = e~ MNt=7l js
exponentially time-decaying weight giving preference to more
recent instantaneous transmissions in 7" and A > 0 is an expo-
nential smoothing parameter. We perform similar smoothing
average f’ for the right edge. A large smoothing parameter
A makes the contribution of past transmissions negligible and
hence preserves the detected edges of D, without smoothing.
Alternatively, when A = 0 all past edges in 7" are weighted
equally and the edge averages are unweighted means of all
past edges, while values in between result in exponentially-
decaying importance of past transmissions. Note, that we
use the independently detected edges of D; for smoothing,
but we report the smoothed versions of the instantaneous
transmissions. As demonstrated in our experiments temporal
smoothing using small non-zero values of A helps minimize
the “shifting” of consecutive transmissions caused by noise
and low-scale s product detection.

E. Transmitter reconciliation. As illustrated in Fig. 1,
a single longitudinally-active transmitter may be comprised
of multiple transmissions. We employ a simple approach
that combines transmissions into a transmitter based on the
transmissions’ relative frequency position. For all multi-sweep
transmissions 7', we take the union of individual single-sweep
transmission intervals and group 7's whose union intervals

overlap by at least 90% of their extent. Note, that this is a
simple solution that cannot handle frequency-hopping trans-
mitters and is oblivious to other transmitter properties such
as power level and transmissions inter-arrival time. Handling
such cases is important for detection of arbitrary transmitters
(i.e. frequency-hopping), however, it is beyond the scope of
this paper. We leave such extensions for future work and focus
on frequency-aligned transmitters in our evaluation.

I1V. EVALUATION

In this section we evaluate the accuracy of AirVIEW in
detecting transmissions in both real and synthetic data sets
and in comparison with baseline methods.

A. Implementation, data and baseline approaches. Our
current implementation of AirVIEW is a single-core Java
program and all experiments are executed on commodity
desktop machines. Our eventual system implementation will,
however, make use of recent advances in fast parallel wavelet
decomposition for general purpose and specialized architec-
tures such as FPGA and GPUs [7]. In addition, we plan to
bring the decomposition and detection “closer to the sensor”
for on-sensor and collaborative spectrum characterization.

We evaluate AirVIEW on both synthetically-generated data,
in which we control the signal-to-noise ratio, and in a real-
world spectrum scans of TV channels, in which we have
ground truth position of transmitters. We use two baselines
for comparison. Naive is a thresholding scheme that detects
outlier local maxima in the original PSD p:(f) signal as
opposed to the multi-scale product ms. Extraction of the
transmissions is done in a similar way to AirVIEW, once
edges are detected. A second baseline Denoised follows the
general idea of lossy wavelet reconstruction by maintaining the
most important coefficients based on magnitude and scale [5].

B. Robustness to noise. One of the main challenges in wide-
band spectrum characterization is detection of transmission in
a noisy environment, where noise is introduced both due to
the environment and imperfections of the sensor. Hence, we
first focus on evaluation of AirVIEW for varying signal-to-
noise ratios (SNR). To control SNR, we synthesize realistic
spectrum scans of similar characteristics to those we capture
using sensors and vary the SNR by decreasing the mean
signal power to levels very close to that of the noise. Similar
to the noise in radio frequency signals [8] we add additive
white Gaussian noise using a normal distribution with mean
—110dBm (our “noise floor”) and variance 4.0dBm. We
randomly select regions in time and frequency in which we
inject transmissions of a desired power mixed with Gaussian
noise of the same magnitude as non-transmission regions.

Since we know the ground-truth position of instantaneous
transmission in this synthetic data, our evaluation seeks to
quantify how closely the real transmissions are recovered by
the competing techniques. Let D = {D;} be the set of detected
instantaneous transmissions at time ¢ (¢ is omitted for notation
simplicity). Also, let A = {A;} denote the set of actual ground
truth transmissions at the same time. We define a true positive



True Positive Rate
0.0 04 0.8

1“.“
o —

-97
Signal Mean
(a) TPR for varying SNR, dBm

False Positive Rate
0.0 04 0.8

-85 -91 -103 -109

-97
Signal Mean
(b) FPR for varying SNR, dBm

Fig. 3. (a) TPR and (b) FPR of two instantiations of AirVIEW (s = 4/3 = 2
and s = 4/ = 4) and the competing techniques Naive and Denoised at
varying signal levels with noise floor fixed at -110dBm.

rate (TPR) measure based on how well we “cover” actual
transmissions A; by detected transmissions D;, as follows:
ﬁ s Aﬁ?' .

AeAd v
where |4; N D;| denotes the length of the intersection interval
common to A; and D;. Intuitively, TPR will be 1 if all
actual transmissions are completely “covered” by detected
transmissions. We also want to measure the rate of false
detection. The false positive rate is similarly defined as:
1 | Di| — | D N A
FPR= 1) 2 w5,

An ideal method will have a TPR of 1 and FPR of 0.

Fig. 3 presents the performance of AirVIEW on synthetic
data with varying SNR. We compare the TPR and FPR of
two variations of AirVIEW (s = 4, =2 and 4), Naive and
Denoised. At higher SNR (-85dBm, -88dBm, -91dBm), Naive
and Denoised are able to detect transmitters with high accu-
racy. However, as the signal approaches the noise floor, their
performance deteriorates quickly resulting in rapid increase
of FPR and decrease in TPR. AirVIEW’s TPR and FPR, on
the other hand, remain robust to noise for very low signal to
noise ratios (Figs. 3(a), 3(b)). It is important to note that the
slightly lower TPR of AirVIEW in high SNR cases is due
to its lack of specificity of edge position for low scales s,
which triggers AirVIEW to designate as active slightly larger
requency ranges than the actual ones. As a result AirVIEW is
more conservative in placing the edges compares to Naive and
Denoised. Overall, AirVIEW exhibits satisfactory performance
with high SNRs and significantly outperforms its counterparts
Naive and Denoised when the signal to noise ratio is low.

C. Effect of the scale s and threshold (. Beyond the
robustness to noise we also study 7'PR and F'PR for varying
8 and s. Fig. 4 summarizes the TPR and FPR achieved by
AirVIEW when detecting transmissions in both synthetic and
real-world PSD data. In synthetic data (Fig. 4(a), 4(b)), there
is a clear trend of reaching perfect TPR and FPR when using
relatively low scales (s = 2,4) and 8 > 2 for s = 2 and
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Fig. 4. (a),(b): Average accuracy of detection in synthetic data using various
parameter setting combinations of s and 8. Over 1000 runs, 2 transmitters
with mean power of —88 were randomly placed in the data and detection
was applied using 4 different scales. (c),(d): Similar evaluation in real-world
sensed TV band spectrum for constantly transmitting stations of known bands.
B > 3 for s = 4. Higher scales are more affected by noise
and thus do not exhibit as favorable TPR vs. FPR trends
for any 5. We collect our real-world groundtruth data over
25MHz in the UHF TV bands. This scan contains two active
broadcasts, each of which we annotate as a single transmission
with smooth edges in frequency. Our results in Fig. 4(c) and
4(d), indicate that, similar to the synthetic data, lower scales
(s = 2,4) and slightly lower thresholds § < 2 achieve the
optimal TPR vs. FPR regime. Of note is that our real-world
benchmark achieves slightly worse TPR and FPR as compared
to synthetic data. This behavior can be attributed to the noisy
nature of the sensed transmitters that causes some single-time
scans to be detected as idle due to fading. At the same time,
these scans were annotated as occupied.

D. Alignment-driven parameter estimation. Our results

from Fig. 4 show that AirVIEW’s performance is dependent on
6 and s. Thus, we design a data-driven approach to parameter
estimation, which we presented in §III.C. Some key questions
arise with our approach. First, we use the detection alignment
J as a criteria to select the optimal (3, s). In this section we
justify this choice by demonstrating that detection alignment is
a good proxy metric for detection accuracy. Second, we show
that, indeed maximal detection accuracy occurs at different 3
as s increases, which empirically demonstrates the need and
benefits of adaptive parameter selection. Third, we quantify
the amount of spectrum sweeps necessary for AirVIEW to
robustly learn the optimal (£, s).
1) Detection alignment is a good proxy for accuracy: We
use two metrics in the following evaluation: alignment and
accuracy. Our definition of alignment is as in Eq. (2). We
define accuracy as:
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Intuitively, our definition of accuracy encapsulates both

TPR and FPR, making it an appropriate metric for overall
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Fig. 5. Accuracy and alignment at mean transmit power of -103dBm for
various (3, s) combinations. We vary scale from 8-9 in (a) to 6-7 in (b).
On each graph we vary 8 from —1 to 4 in increments of 0.2. Across all
(B, s) combinations the accuracy and alignment follow a similar trend, which
indicates that alignment is a good proxy for accuracy.

evaluation of AirVIEW’s performance. Accuracy will be low
if we fail to detect transmissions (i.e. our TPR is low) or
if we falsely detect transmissions (i.e. our FPR is high).
Before we delve in our evaluation, we note that accuracy
of transmitter detection can only be calculated if we have
ground-truth data for transmitter activity. It is thus impossible
to use accuracy for unsupervised transmitter detection (i.e.
without prior knowledge of transmitter activity). Alignment,
on another hand, does not require ground-truth and is thus
ideal for unsupervised parameter estimation. Nevertheless, it is
essential to evaluate the ability of alignment-based parameter
estimation to gain maximal accuracy. Thus, our evaluation
necessarily requires tight control over transmitter configuration
and SNR regime, and thus, uses synthetic data.

Our evaluation scans are comprised of 30 sweeps, each
of which contains 1024 PSD values. Within each 30x1024
scan, we instantiate ten randomly-positioned, non-overlapping
transmitters. Noise values in these synthetic scans were drawn
from a normal distribution with a mean of -109dBm and a
standard deviation of 2.0, whereas the transmitter values were
drawn from normal distributions with decreasing means and
standard deviation of 2.0. These cases present increasingly-
challenging, yet realistic scenarios. Specifically, all scenarios
are challenging due to the high variation of the generated
values. The last two cases are particularly challenging due to
the low power of the generated transmitters. The scenarios are
realistic, since the assigned standard deviations are informed
by real-world spectrum measurements in the UHF band.

Fig. 5 presents accuracy and alignment for our most chal-
lenging scenario with transmitter’s mean power of -103dBm
(only 6dBm above the noise floor). We experimented with
decreasing scales from 8-9 to 5-6, while varying beta from
-1 to 4 in regular increments of 0.2. In interest of space,
the figure only presents two scale combinations, however, the
trends were similar in the other results. Across all scales, we
see that accuracy and alignment follow similar trends, which
indicates that regardless of the selected (3, s) combination,
alignment is always a good proxy for accuracy. We also note
that for this particular scenario AirVIEW chooses scale 8-9
and 8 = 0 as optimal, since at this (3, s) combination the
detection is maximally-aligned.

We extend this analysis to multiple SNR regimes in Fig 6.
The figure shows the maximum accuracy (red continuous line)

100
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43 at max accuracy s,
A3 at max alignment

-&Max accuracy
A= Accuracy at max alignment

0
-79 -85 -91 -97 -103 4-5 5-6 6-7 7-8 8-9
Transmitter mean PSD, dBm Scale

Fig. 6. Maximum and achieved ac-
curacy with decreasing transmitter
PSD. Alignment is a good proxy
for accuracy across all PSD regimes.
Achieved accuracy is high, persistent
and close to the max accuracy.

Fig. 7. B at max accuracy and 3 at
max alignment for increasing scales.
As s grows, max accuracy and max
alignment correspond to decreasing
[Bs. This underlines the importance
of adaptive parameter estimation.
and accuracy of the maximally-aligned detection (dotted blue
line) for increasing mean PSD of the generated transmitters.
The max accuracy is the largest achieved accuracy over
all (8, s) combinations. The accuracy at max alignment is
the accuracy achieved with the optimal (3, s) learned by
AirVIEW’s unsupervised parameter estimation. Fig. 6 allows
several important conclusions. First, since the accuracy at
max alignment is well-coordinated with the max accuracy,
we can conclude that alignment is a good proxy for accuracy
across various SNR regimes. Second, we show that AirVIEW’s
accuracy is high, persistent and close to the maximal accuracy
with decreasing transmitter power. Third, AirVIEW is highly-
accurate even in the most challenging scenarios, where the
transmitters’ PSD is only 6dBm higher than the noise floor
and the signal variance is as large as 2.0dBm.

2) Benefits of adaptive selection of (3, s): We now demonstrate
the need for adaptive selection of parameters (3, s). Our results
are presented in Fig. 7, that plots the optimal /3 as the scale
increases from 4-5 to 8-9. Red continuous line presents [
at max accuracy, while blue dotted line presents § at max
alignment. As the scale increases (i.e. towards the leaves),
the optimal /3 decreases for both max accuracy and max
alignment. Thus, in order to maintain optimal characterization
performance, AirVIEW needs to adaptively select (3,s) for
a given spectrum sensing environment. A fixed selection of
(8, s) will result in sub-optimal accuracy.

3) Training period: Finally, we evaluate the effects of training
duration. Let PL be a PSD spectrum scan comprised of T
sweeps and F frequency bins in each sweep. Let Accuracy; be
the transmitter detection accuracy over the entire scan duration
T when parameter estimation was performed on a subset of
all the sweeps of size t. Here, Accuracy, is calculated as
in Eq. (5). We define stability as the ratio of Accuracy;
over Accuracyr. Intuitively, this stability measure captures
the relative difference in detection accuracy when training on
partial vs. complete spectrum scan.

We run AirVIEW on synthetic scans. Each scan is com-
prised of 120 sweeps, each containing 1024 PSD values.
Within each 120x1024 scan we injected 40 randomly-located,
non-overlapping transmitters. Each of these transmitters spans
80 frequency bins and 5 sweeps. The noise values in this scan
were drawn from a normal distribution with mean -109dBm
and standard deviation of 2.0dBm. The transmitter values were
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Fig. 8. Parameter estima- Fig. 9. Effect of smoothing on transmitter
tion with increasing num- detection: (left) no smoothing (A = c0), and
ber of training sweeps. (right) max smoothing (A = 0.0).

drawn from a distribution with mean -85dBm. Fig. 8 presents
average and standard deviation of stability across 100 runs
for an increasing number of training sweeps. AirVIEW learns
the optimal (8,s) with as few as 40 training sweeps. Any
additional training further stabilizes the parameter estimation
as indicated by the decrease of standard deviation.

E. Detection in time. In Section II.LD we introduced a
method to “smooth” the detected edges of individual trans-
missions accounting for the “fuzzy” nature of transmissions
over time caused by noise in measurements. We qualitatively
present the effect of smoothing in a synthetic transmitter in
Fig. 9. To generate this data, we first choose a starting location
and bandwidth for the transmission and introduce “drift”
patterns in the transmission location in the frequency domain.
In each instantaneous transmission, we randomize the position
of the edges from a fixed model position according to a normal
distribution. To introduce drift, we bias the random offsets in
a positive or negative direction for fixed windows of time.
Without any smoothing (Fig. 9(left), A = oo) the transmissions
shift frequently and disagree due to the drift. As we decrease A
(more pronounced smoothing) the instantaneous transmissions
start to agree over time (Fig. 9(right)). It is worth noting that
this scenario presents a particularly challenging instance and
real-world scans require moderate levels of smoothing.

V. WIDE-BAND SPECTRUM ANALYSIS WITH AIRVIEW

Measurement and analysis. We collect a wide-band spec-
trum trace from 50M Hz to 4.4GHz in an urban area in
close proximity to an airport and a military airbase. Our
measurement platform consists of two USRP N210s; one with
WBX daughterboard (50M H z —2.2G H z) and one with SBX
daughterboard (400M Hz — 4.4G Hz). The two USRPs were
connected through a splitter to a single multi-polarized, wide-
band antenna that operates in the range of 30M Hz to 6GH z.
We used a quad-core Lenovo laptop with 16GB of RAM
running Linux as a host for our software defined radio setup.
We implemented a spectrum scanner on top of Gnuradio and
configured it to sweep the target spectrum in 25M Hz steps
with dwell time of 6 seconds. At each step, the scanner ran
with a sample rate of 25M sps and calculated the PSD with
FFT size of 1024. This measurement campaign produced a
total of 134G'B of data, where each 25M H~z chunk was
swept 140, 000 times. We run AirVIEW on the above spectrum
trace with s = 6 and § = 3 and A = 0.5. Our transmitter
reconciliation sets the minimum frequency overlap to 90%.

Wide-band characterization with AirVIEW. Our analysis
shows that 74% of all bands were idle. For the active 26% of

the spectrum, we show the number of detected transmitters per
25M H z band in Fig. 10(left). 26% of all the bands have at
least one transmitter. AirVIEW also finds 157 transmitters in
the bands 225 M Hz — 328 M Hz and 335M Hz — 400M H z,
allocated for federal/military use [1]. We find a large number
of transmitters, 122, in the amateur radio bands (420M H z —
450 M H z). Finally, AirVIEW robustly identifies TV transmit-
ters, whereby with two exceptions, it finds between 1 and
4 transmitters in a 25M Hz chunk. In two of the bands,
547T.5MHz — 572.5M Hz and 659.5M Hz — 684.5M Hz we
observe 14 and 12 transmitters, respectively, which is due to
the noisy nature of the measured TV channels triggering the
imperfections in our transmitter reconciliation technique.

We also demonstrate AirVIEW’s utility for wide-band
analysis of temporal transmitter characteristics. We measure
the transmitters’ active time, cycle and gap, where cycle is
defined as the time between the beginnings of consecutive
transmissions and the gap, as the time between the end of
one transmission and the beginning of the next. These metrics
allow us to quantify the fraction of time a band is available
for secondary access, and whether the temporal behavior of
primary users is predictable. Fig. 10 (middle, right) present
average (black) and standard deviation (green envelope) of
cycle and gap of detected transmitters. Each value is averaged
over all transmitters in a 25M Hz chunk. In terms of active
time (not shown in interest of space), broadcasts, such as
TV, are active either for the entire 6 seconds or appear as 3-
second transmissions, due to intermittent deterioration in the
scanned signal. Furthermore, they exhibit no variance in the
cycle or gap. Other bands such as some federal/military bands
(225MHz — 328M Hz and 335M Hz — 400M Hz) and the
amateur radio band (420M H z—450M H z) have smaller active
times, however, their cycle size and gaps vary drastically and
will, thus, be hard to predict. For example, the federal/military
bands have a typical active time of less than a second and a
large gap of 1 —2 seconds between consecutive transmissions.
However the variance of the cycle and gap are as high as 0.31
and 0.25, which makes the DSA opportunity hard to predict.

Discussion. AirVIEW enables wide-band unsupervised
spectrum analysis and can thus play an essential role in DSA
technology, spectrum policy and spectrum enforcement. In
support of DSA technology, AirVIEW can answer what is
the secondary access opportunity across various frequency
bands. In support of spectrum policy, AirVIEW can answer
how efficiently is spectrum utilized by mapping the number
of transmitters in a wide frequency range along with the size
and predictability of their active time. Spectrum enforcement
engines can leverage AirVIEW’s single-pass detection to pin-
point transmitter patterns that deviate from the expected or the
historically-observed patterns in a particular frequency range
and alert spectrum enforcement authorities.

VI. DISCUSSION AND CONCLUSION

Real-world spectrum sensing and automated analysis have
emerged as key challenges towards opportunistic access. Spec-
trum scans, however, are plagued with high signal variation,
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Fig. 10. Wide-band spectrum analysis with AirVIEW. (left) Transmitter count indicates that 74% of all bands are unused. (mid.) Cycle and (right) gap
analysis shows that some intermittently-occupied bands have predictable incumbent patterns while in others the incumbent activity is very unpredictable.

which makes automated analysis extremely challenging. This
reality is further aggravated when transmitters are sensed
with low power level. To address these challenges and enable
robust and rapid detection of low-power transmitters in noisy
spectrum scans, we design AirVIEW. AirVIEW is the first
mechanism for unsupervised transmitter characterization that
enables a single-pass transmitter detection with high sensitivity
to low-power signals. We explored key trade-offs in parameter
selection and demonstrated AirVIEW’s ability to robustly de-
tect synthetic and ground-truth transmitters. We also employed
AirVIEW to create a map of spectrum use and characterize
the DSA opportunity over a wide range of frequencies.
AirVIEW presents a significant departure from existing
spectrum characterization and activity detection techniques
across several criteria. First, by its operation on an alterna-
tive (wavelet-based) representation of raw spectrum scans,
AirVIEW is able to combat the adversary effects of low-
power and high-variability signals that has been a historic
challenge in classical techniques. Second, classical spectrum
characterization and activity detection methods operate in
the raw PSD domain and are, thus, sensitive to a changing
noise floor. AirVIEW overcomes this limitation by adopting
a data-driven approach to parameter estimation that allows
adaptive parameter tuning in the face of a changing noise
floor to maintain high detection accuracy. Third, AirVIEW
employs post-processing techniques that robustly reconcile
single-sweep into multi-sweep transmissions for holistic spec-
trum characterization. Last but not least, this capability is
achieved in a fully-unsupervised fashion that does not require
prior knowledge of spectrum properties or extensive training.
While AirVIEW achieves robust transmission detection,
there are several open problems that shape a compelling future
research agenda. Most notably, the current implementation of
AirVIEW features a simple heuristic to group transmissions
into transmitters that is only informed by the size and overlap
of transmissions in frequency. This approach fails to detect
frequency-hopping incumbents and is oblivious to transmis-
sions’ power level and co-occurrence. A more robust technique
is necessary for a single-pass arbitrary transmitter detection.
In light of these important future directions, AirVIEW
lays the foundations for next generation DSA technology and
spectrum policy. We enable robust, single-pass detection in
wide-band spectrum measurements that is able to answer thus-
far open questions related to number of incumbents and the
opportunity they grant for secondary spectrum access.
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