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Abstract—The current paradigm of exclusive spectrum as-
signment and allocation is creating artificial spectrum scarcity
that has a dramatic impact on network performance and user
experience. Thus, governments, industry and academia have
endeavored to create novel spectrum management mechanisms
that allow multi-tiered access. A key component of such an
approach is deep understanding of spectrum utilization in time,
frequency and space. To address this challenge, we propose
AirVIEW, a one-pass, unsupervised spectrum characterization
approach for rapid transmitter detection with high tolerance to
noise. AirVIEW autonomously learns its parameters and employs
wavelet decomposition in order to amplify and reliably detect
transmissions at a given time instant. We show that AirVIEW
can robustly identify transmitters even when their power is
only 5dBm above the noise floor. Furthermore, we demonstrate
AirVIEW’s ability to inform next-generation Dynamic Spectrum
Access by characterizing essential transmitter properties in wide-
band spectrum measurements from 50MHz to 4.4GHz.

I. INTRODUCTION

Current spectrum management is based on exclusive alloca-

tion and assignment of radio spectrum to a given technology

and operator. As a result some popular frequency bands, such

as cellular, become over-saturated, while others, like UHF TV,

remain underutilized. This results in artificial spectrum scarcity

that leads to high cost for communication services, decreased

network performance and deteriorated user experience. At

the same time, underutilized bands provide an opportunity

for more efficient, shared spectrum access that has brought

together policymakers, industry and academia to set an agenda

for next-generation spectrum management [2].

A critical enabler of future spectrum access is deep un-

derstanding of spectrum utilization, both long-term as well

as instantaneous. This goal entails adaptive sensing in a

wide frequency range (i.e. 30MHz-6GHz [12]) followed by

autonomous characterization to extract actionable knowledge

from spectrum data and inform shared access. Our focus

is on the latter: unsupervised characterization of wide-band

spectrum scans that can pin-point the number of transmitters

and their time-frequency properties without prior knowledge of

transmitters’ behavior. Depending on the learning objectives,

spectrum characterization can be performed in the time [3] or

frequency domain [22] and should be regarded as a stream

processing task, whereby data is analyzed as it arrives. Wide-

band spectrum measurement assumes frequency-domain anal-

ysis and can be regarded at three resolutions as illustrated in

Fig. 1(left): (i) at a single spectrum sweep, (ii) at a single
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Fig. 1. (left) Illustration of a transmitter comprised of multiple transmissions;
(right) Transmitter characterization metrics.

transmission, (i.e. an active region over continuous sweeps),

and (iii) at a transmitter, defined as multiple transmissions

reconciled into a single transmitter. Fig. 1(right) summarizes

key metrics that must be produced by spectrum analysis.

Current approaches to spectrum characterization perform

detection of idle and occupied bands [20, 23, 18], however,

they do not cater to deeper functional spectrum analysis that

teases out transmitters and their temporal and frequency usage

patterns. Recent work has focused on cyclo-stationary analy-

sis [17, 9] or signature matching [15]. While such approaches

provide deeper understanding of spectrum occupancy, they are

limited to predefined transmitter types and are, thus, not well-

suited for arbitrary transmitter characterization. Other work

[25] tackles unsupervised transmitter detection, however the

approach requires batch-processing of data and, thus, cannot

be employed for stream-processing of spectrum scans.

To address these limitations we design AirVIEW, an algo-

rithm for unsupervised, wide-band, high-sensitivity spectrum

analysis. AirVIEW operates at the granularity of a single

sweep, where it employs wavelet decomposition [14] of power

spectral density (PSD) to separate transmitter edges from

the noise floor. Single-sweep frequency bands identified as

occupied, are further reconciled through a two-step procedure

that pinpoints longitudinally-active transmitters. Our wavelet

decomposition approach provides an alternative expression of

the measured PSD that presents a powerful construct for signal

analysis [11], as it (i) can be used to effectively amplify the

signal transitions while (ii) suppressing the inherent noise

in spectrum measurements. While the benefits of wavelet

decomposition in spectrum sensing have been observed be-

fore [16, 18, 24], all of these works operate on a single

spectrum sweep and are thus not able to reconcile transmit-

ters. Furthermore, none of them presents a fully-unsupervised

approach that is able to adaptively tune its parameters to the

observed spectrum dynamics and noise floor. Thus, the key

advantages of AirVIEW over existing methods are that it is (i)



robust to noise, (ii) unsupervised, and thus, able to characterize

arbitrary transmitters and (iii) rapid as it can extract actionable

spectrum information even from a single sweep.

We evaluate AirVIEW’s performance on both synthetically

generated and real-world ground truth transmissions, and

show that it can robustly detect the temporal and frequency

characteristics of transmitters even when their power is as

low as 5dBm above the noise floor. We carry out a wide-

band measurement campaign (50MHz-4.4GHz) in an urban

location in close proximity to an airport and a military airbase.

We then employ AirVIEW to analyze collected spectrum

scans and demonstrate its utility for informing next generation

Dynamic Spectrum Access (DSA) technology and spectrum

policy through rapid characterization of (i) idle and occupied

frequency bands, (ii) number of incumbents in each band,

(iii) their temporal characteristics and (iv) the predictability of

incumbents’ behavior. This paper makes several contributions:

• Novelty: We design AirVIEW, a high-sensitivity, unsuper-

vised transmitter characterization algorithm that is robust to

noise and is able to detect arbitrary transmitters.

• Scalability: Since it requires a single pass over the data,

AirVIEW scales to wide spectrum scans at high temporal

resolution, as demonstrated in our real-world evaluation.

• Accuracy: Our empirical evaluation demonstrates the ac-

curacy of AirVIEW on synthetic and real spectrum traces.

• Applicability: We demonstrate AirVIEW’s applicability

for unsupervised characterization of arbitrary transmitters on

real-world, wide-band spectrum scans (50MHz-4.4GHz).

II. RELATED WORK

Prior work on spectrum analysis can be largely subdivided

in activity detection and detailed transmitter characterization.

Activity detection is performed on a single sweep to determine

which bands are active and which are idle. Such methods,

however, do not provide further reconciliation of transmitter

activity in multi-sweep spectrum measurements. The latter has

been recently identified as an important advantage and tacked

in several works for detailed transmitter characterization that

utilize either supervised or unsupervised techniques.

Energy-based activity detection. Spectrum characterization

has been actively explored in the past, however, the literature

is limited in methods that provide detailed, robust and unsu-

pervised transmitter characterization. Traditional approaches

to spectrum characterization identify idle and occupied bands

by the use of power thresholding [21, 13, 6], edge detec-

tion [18, 20] and compressive sensing [19, 4, 10]. While

these approaches are computationally light-weight, they are

only able to determine which parts of the spectrum are idle

and which occupied, however, they are unable to attribute

longitudinally-active bands to a single transmitter’s operation.

Thus, such approaches cannot facilitate detailed transmitter

characterization for next generation spectrum management.

Furthermore, these existing techniques operate on the raw

PSD measurements, which limits their efficiency in noisy

and low SNR regimes. Our work addresses these challenges

by transforming the measured PSD signal in the wavelet

coefficient domain, which reveals the underlying transmission

structure while reducing the effect of noise. Furthermore, we

develop a two-step transmission reconciliation technique that

combines detected occupied bands into longitudinally-active

transmitters to facilitate detailed spectrum characterization.

Wavelet-based activity detection. Prior work has theoret-

ically justified wavelet analysis for spectrum activity detec-

tion [16, 18, 24]. Existing approaches, however, (i) have not

been considered for transmitter reconciliation, (ii) have not

been employed on real-world data and (iii) are not able to

autonomously tune the wavelet analysis parameters to the

measured spectrum dynamics and noise floor. This renders

them inapplicable for unsupervised detection of arbitrary trans-

mitters. In contrast, our proposed method adaptively learns the

parameters for wavelet coefficient analysis, performs robustly

on noisy, real-world signals and reconciles occupied bands

over multiple consecutive spectrum sweeps.

Supervised and unsupervised characterization. Another

related body of work is signature-based characterization which

requires prior knowledge of transmitter activity patterns for

detection [9, 15]. While such techniques enable detailed spec-

trum characterization, they suffer inherent limitations in the

number and types of transmitters they can detect, which makes

them unfeasible for wide-band characterization of arbitrary

transmitters. Our work departs from these early paradigms

by developing a robust and unsupervised technique for high-

sensitivity transmitter characterization. Prior unsupervised ap-

proaches [25] characterize scans using Rayleigh-Gaussian

mixture models, however, the method operates on batch as

opposed to streaming mode. This renders it inapplicable for

real-time transmitter detection at scale.

III. METHODOLOGY

In spectrum characterization, we differentiate between a

transmission and a transmitter (Fig. 1). We define a transmis-

sion as a single continuously-occupied time-frequency block.

A transmitter is, thus, a set of transmissions that are caused

by the activity of the same radio-emitter. Under this definition,

a broadcast transmitter will be characterized with a single

transmission, whereas a TDMA, FDMA or frequency-hopping

transmitter will be comprised of multiple transmissions. The

task of spectrum characterization can, thus, be split in two

key sub-tasks: (i) robust identification of transmissions and

(ii) efficient grouping of transmissions into a transmitter.

Thus, AirVIEW operates in three stages. As data arrives

from the spectrum sensor, AirVIEW performs single-sweep

transmission identification (§III.B). A single transmission,

however, may span multiple consecutive sweeps, thus the

second step in AirVIEW is to combine aligned single-sweep

transmissions into a multi-sweep transmission (§III.D). Finally,

AirVIEW combines similar-band transmissions into a trans-

mitter (§III.E). In what follows, we first provide the necessary

background on wavelet decomposition of spectrum scans. We

then detail our proposed approaches to detect transmissions,

and group them into transmitters.





of transmission (high power) and noise (low power). Finally,

we return the set of detected transmissions Dt.

The complexity of Algorithm 1 is O(F logF ), since the

Haar wavelet decomposition can be computed by averaging

with re-use in the hierarchy of size F and due to the need to

sort the adjacent multi-scale product differences (Step 6). The

two key parameters in our method are the threshold scaling

parameter β and the scale of analysis s, as these parameters

determine AirVIEW’s accuracy. In what follows, we describe

our unsupervised approach to optimally estimate s and β.

C. Alignment-driven parameter estimation. Our approach

exploits a natural domain regularity, namely that multi-sweep

transmissions tend to occupy the same band. Hence, the intu-

ition behind our parameter learning is: given a short interval

of sweeps, find the parameter setting for β and s that results

in maximally-aligned detected transmissions across time.

Two important challenges arise with our approach for opti-

mal selection of the parameters β and s. First, the magnitude

of values in the multiscale product will depend on the inherent

characteristics of the measured PSD (including the degree

of signal oscillations and the average transmitter power) and

the selected scale s. Thus, in order to adequately select the

top-ranked local maxima (Step 3 in Algorithm 1), we need

an adaptive and data-driven approach for selection of the

corresponding threshold scaling parameter β for AirVIEW to

be accurate for arbitrary SNRs and signal variations. Second,

low-scale products amplify the edges, but lose the location

specificity of the transmissions’ edges (e.g. π1 from Fig. 2).

High-scale products are more specific in the exact position

of edges, though more susceptible to noise (e.g. πlog|F |−1

from Fig. 2). Hence, there is a trade-off between edge position

specificity and the accuracy of transmission detection that can

be controlled by the careful selection of the product scale.

We extensively investigate the trade-offs of β and s selection

in both synthetic data with controlled SNR and in real-world

spectrum traces (§IV). Our analysis shows that an approach

that uses a fixed β and s leads to a sub-optimal detection

performance. Thus, we design an unsupervised method for

optimal selection of β and s, informed by the properties of

the underlying PSD signal and formalized as follows.

Let Di
t(f

i
s, f

i
e), i ∈ [1, |Dt|] be a single detected active band

in time t. Here, f i
s and f i

e are the start and end frequency of

this detected band and Dt is the set of all active single-sweep

bands Di
t at time t. Intuitively, a well-aligned multi-sweep

detection will result in conserved f i
s and f i

e (or as close as

possible) across consecutive sweeps. Following this intuition,

we formalize the level of alignment of transmissions detected

in consecutive sweeps as the symmetric bi-directional average

Jaccard similarity between maximally-aligned detected bands

(see Eq. (1)). Here |Dt| is the number of detected bands at

time t, Di
t ∩Dj

t−1 is the number of frequencies in which the

two bands overlap, and Di
t∪D

j
t−1 is the number of frequencies

in the union of the two bands. Intuitively, the definition of Jt
averages the best possible Jaccard similarities for every band

t with its predecessor t − 1 and vice versa. Since, individual

Jaccard similarities are constrained within [0, 1], so is Jt.

Jt =
1

2

(

1
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∑
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D

j
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t

Dj
t−1 ∪Di

t

)

, (1)

Next, for a spectrum scan comprised of T sweeps, we calculate

the overall detection alignment J as the average Jt:

J =
1

T − 1

T
∑

t=2

Jt (2)

J also varies between 0 and 1, where a maximally-aligned

detection corresponds to J = 1. We use the so-defined

detection alignment J for parameter estimation. Given a

multi-sweep spectrum scan PF
T over F frequency bins and

T spectrum sweeps, we seek (βo, so) that maximizes J :

(βo, so) = argmaxβ,s J (PF
T , β, s). Note that in the defi-

nitions of J , Jt and Dt we deliberately omitted β and s
for simplified notation, however, all bands are detected by

Algorithm 1, and thus, require the parameters as input.

Since we do not know anything about the properties of the

function J (PF
T , β, s), the simplest approach to its maximiza-

tion is to discretize the space of values of β and perform a scan

over parameter value combinations. We employ this approach

in a training phase, in which AirVIEW learns the optimal

(β, s) for a small sub-scan, and then applies this combination

for the remainder of the spectrum characterization campaign.

The complexity of parameter learning is O(BTF log2 F ),
where B is the number of discrete values β considered in

the parameter estimation, T is the number of sweeps in

the training scan, a factor of O(F logF ) is added for each

invocation of the single-sweep detection (Algorithm 1), and

finally an extra factor of logF is added for the possible

number of scales s in the scan, since the wavelet tree height is

logarithmic in F . As we demonstrate in §IV, a small number

of sweeps T and relatively coarse granularity for β (i.e. small

B) are sufficient to robustly learn β and s. In addition, our

empirical evaluation suggest that J (β, s) behaves similar to

a concave function w.r.t. both of its parameters, so a simple

hill-climbing approach can reduce the factor of O(B logF ) to

a constant without compromising quality if frequent and fast

parameter estimation is warranted in non-stationary scenarios.

Several important questions arise with our approach to unsu-

pervised parameter estimation. Is the alignment of transmitter

detection a good proxy metric for accuracy of transmitter

detection? How long do we need to sense the spectrum before

AirVIEW is able to robustly learn the optimal (β, s)? Our

evaluation (§IV) provides empirical answers to these questions.

D. Multi-sweep transmission detection. AirVIEW’s multi-

sweep transmission detection, detailed in Algorithm 2, takes

as an input a continuous stream of PSD sweeps pt(f), s,

β, and an additional temporal smoothing parameter λ. The

algorithm reports detected transmissions in contiguous sweeps

T = {(D, t)}, where D is the frequency interval of an

instantaneous transmission at time t. We begin by initializing



Algorithm 2: Multi-sweep transmission detection

Input: pt(f), s, β, λ
Output: A set of temporal transmissions T = {T = {(D, t)}}
1: Initialize temporal transmissions T = ∅
2: for Consecutive t consider PSD signal pt(f) do

3: Dt ← SingleSweep(pt(f), s, β){Alg. 1}
4: for ∀Dt ∈ Dt do

5: if Dt matches a temporal transmission T ∈ T then

6: extend T by smooth(Dt, T, λ)
7: else

8: Start a new active transmission T ← (D, t)
9: Add T to the set of active transmissions T

10: end if

11: end for

12: Report transmissions in T that were not extended in t
13: end for

the list of active transmissions (Step 1). We then process the

consecutive temporal PSD signals (Steps 2-11). For each time t
we detect all transmissions Dt ∈ Dt (Step 3) and process them

one at a time (Step 4). We match each transmission interval

D to the list of active transmissions T and if its intersection

with T is at least half the span of D we declare it a match

and add a temporally-smoothed version of D to T (Step 6).

If no match is found, we initiate a new active transmission T
and add it to the set of active transmissions T (Step 8). After

all instantaneous transmissions Dt are processed, we report

transmissions in T that were not extended in time t (Step 12)

and proceed to the next scan pt+1(f).

In order to reconcile an instantaneous transmission Dt with

its matched temporal transmission T , we consider the edges of

Dt and those of all preceding transmissions in T in function

smooth(Dt, T, λ) (Step 6). Let (fi, τi) be the left edge posi-

tions of all transmissions in T including that of Dt at time t.
We compute the time-decayed weighted average of those edge

positions as f̄ = d
∑

i wifi/
∑

i wie, where wi = e−λ|t−τ | is

exponentially time-decaying weight giving preference to more

recent instantaneous transmissions in T and λ ≥ 0 is an expo-

nential smoothing parameter. We perform similar smoothing

average f̄ ′ for the right edge. A large smoothing parameter

λ makes the contribution of past transmissions negligible and

hence preserves the detected edges of Dt without smoothing.

Alternatively, when λ = 0 all past edges in T are weighted

equally and the edge averages are unweighted means of all

past edges, while values in between result in exponentially-

decaying importance of past transmissions. Note, that we

use the independently detected edges of Dt for smoothing,

but we report the smoothed versions of the instantaneous

transmissions. As demonstrated in our experiments temporal

smoothing using small non-zero values of λ helps minimize

the “shifting” of consecutive transmissions caused by noise

and low-scale s product detection.

E. Transmitter reconciliation. As illustrated in Fig. 1,

a single longitudinally-active transmitter may be comprised

of multiple transmissions. We employ a simple approach

that combines transmissions into a transmitter based on the

transmissions’ relative frequency position. For all multi-sweep

transmissions T , we take the union of individual single-sweep

transmission intervals and group T s whose union intervals

overlap by at least 90% of their extent. Note, that this is a

simple solution that cannot handle frequency-hopping trans-

mitters and is oblivious to other transmitter properties such

as power level and transmissions inter-arrival time. Handling

such cases is important for detection of arbitrary transmitters

(i.e. frequency-hopping), however, it is beyond the scope of

this paper. We leave such extensions for future work and focus

on frequency-aligned transmitters in our evaluation.

IV. EVALUATION

In this section we evaluate the accuracy of AirVIEW in

detecting transmissions in both real and synthetic data sets

and in comparison with baseline methods.

A. Implementation, data and baseline approaches. Our

current implementation of AirVIEW is a single-core Java

program and all experiments are executed on commodity

desktop machines. Our eventual system implementation will,

however, make use of recent advances in fast parallel wavelet

decomposition for general purpose and specialized architec-

tures such as FPGA and GPUs [7]. In addition, we plan to

bring the decomposition and detection “closer to the sensor”

for on-sensor and collaborative spectrum characterization.

We evaluate AirVIEW on both synthetically-generated data,

in which we control the signal-to-noise ratio, and in a real-

world spectrum scans of TV channels, in which we have

ground truth position of transmitters. We use two baselines

for comparison. Naive is a thresholding scheme that detects

outlier local maxima in the original PSD pt(f) signal as

opposed to the multi-scale product πs. Extraction of the

transmissions is done in a similar way to AirVIEW, once

edges are detected. A second baseline Denoised follows the

general idea of lossy wavelet reconstruction by maintaining the

most important coefficients based on magnitude and scale [5].

B. Robustness to noise. One of the main challenges in wide-

band spectrum characterization is detection of transmission in

a noisy environment, where noise is introduced both due to

the environment and imperfections of the sensor. Hence, we

first focus on evaluation of AirVIEW for varying signal-to-

noise ratios (SNR). To control SNR, we synthesize realistic

spectrum scans of similar characteristics to those we capture

using sensors and vary the SNR by decreasing the mean

signal power to levels very close to that of the noise. Similar

to the noise in radio frequency signals [8] we add additive

white Gaussian noise using a normal distribution with mean

−110dBm (our “noise floor”) and variance 4.0dBm. We

randomly select regions in time and frequency in which we

inject transmissions of a desired power mixed with Gaussian

noise of the same magnitude as non-transmission regions.

Since we know the ground-truth position of instantaneous

transmission in this synthetic data, our evaluation seeks to

quantify how closely the real transmissions are recovered by

the competing techniques. Let D = {Di} be the set of detected

instantaneous transmissions at time t (t is omitted for notation

simplicity). Also, let A = {Ai} denote the set of actual ground

truth transmissions at the same time. We define a true positive
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Fig. 5. Accuracy and alignment at mean transmit power of -103dBm for
various (β, s) combinations. We vary scale from 8-9 in (a) to 6-7 in (b).
On each graph we vary β from −1 to 4 in increments of 0.2. Across all
(β, s) combinations the accuracy and alignment follow a similar trend, which
indicates that alignment is a good proxy for accuracy.

evaluation of AirVIEW’s performance. Accuracy will be low

if we fail to detect transmissions (i.e. our TPR is low) or

if we falsely detect transmissions (i.e. our FPR is high).

Before we delve in our evaluation, we note that accuracy

of transmitter detection can only be calculated if we have

ground-truth data for transmitter activity. It is thus impossible

to use accuracy for unsupervised transmitter detection (i.e.

without prior knowledge of transmitter activity). Alignment,

on another hand, does not require ground-truth and is thus

ideal for unsupervised parameter estimation. Nevertheless, it is

essential to evaluate the ability of alignment-based parameter

estimation to gain maximal accuracy. Thus, our evaluation

necessarily requires tight control over transmitter configuration

and SNR regime, and thus, uses synthetic data.

Our evaluation scans are comprised of 30 sweeps, each

of which contains 1024 PSD values. Within each 30x1024

scan, we instantiate ten randomly-positioned, non-overlapping

transmitters. Noise values in these synthetic scans were drawn

from a normal distribution with a mean of -109dBm and a

standard deviation of 2.0, whereas the transmitter values were

drawn from normal distributions with decreasing means and

standard deviation of 2.0. These cases present increasingly-

challenging, yet realistic scenarios. Specifically, all scenarios

are challenging due to the high variation of the generated

values. The last two cases are particularly challenging due to

the low power of the generated transmitters. The scenarios are

realistic, since the assigned standard deviations are informed

by real-world spectrum measurements in the UHF band.

Fig. 5 presents accuracy and alignment for our most chal-

lenging scenario with transmitter’s mean power of -103dBm

(only 6dBm above the noise floor). We experimented with

decreasing scales from 8-9 to 5-6, while varying beta from

-1 to 4 in regular increments of 0.2. In interest of space,

the figure only presents two scale combinations, however, the

trends were similar in the other results. Across all scales, we

see that accuracy and alignment follow similar trends, which

indicates that regardless of the selected (β, s) combination,

alignment is always a good proxy for accuracy. We also note

that for this particular scenario AirVIEW chooses scale 8-9

and β = 0 as optimal, since at this (β, s) combination the

detection is maximally-aligned.

We extend this analysis to multiple SNR regimes in Fig 6.

The figure shows the maximum accuracy (red continuous line)
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Fig. 6. Maximum and achieved ac-
curacy with decreasing transmitter
PSD. Alignment is a good proxy
for accuracy across all PSD regimes.
Achieved accuracy is high, persistent
and close to the max accuracy.
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Fig. 7. β at max accuracy and β at
max alignment for increasing scales.
As s grows, max accuracy and max
alignment correspond to decreasing
βs. This underlines the importance
of adaptive parameter estimation.

and accuracy of the maximally-aligned detection (dotted blue

line) for increasing mean PSD of the generated transmitters.

The max accuracy is the largest achieved accuracy over

all (β, s) combinations. The accuracy at max alignment is

the accuracy achieved with the optimal (β, s) learned by

AirVIEW’s unsupervised parameter estimation. Fig. 6 allows

several important conclusions. First, since the accuracy at

max alignment is well-coordinated with the max accuracy,

we can conclude that alignment is a good proxy for accuracy

across various SNR regimes. Second, we show that AirVIEW’s

accuracy is high, persistent and close to the maximal accuracy

with decreasing transmitter power. Third, AirVIEW is highly-

accurate even in the most challenging scenarios, where the

transmitters’ PSD is only 6dBm higher than the noise floor

and the signal variance is as large as 2.0dBm.

2) Benefits of adaptive selection of (β, s): We now demonstrate

the need for adaptive selection of parameters (β, s). Our results

are presented in Fig. 7, that plots the optimal β as the scale

increases from 4-5 to 8-9. Red continuous line presents β
at max accuracy, while blue dotted line presents β at max

alignment. As the scale increases (i.e. towards the leaves),

the optimal β decreases for both max accuracy and max

alignment. Thus, in order to maintain optimal characterization

performance, AirVIEW needs to adaptively select (β, s) for

a given spectrum sensing environment. A fixed selection of

(β, s) will result in sub-optimal accuracy.

3) Training period: Finally, we evaluate the effects of training

duration. Let PF
T be a PSD spectrum scan comprised of T

sweeps and F frequency bins in each sweep. Let Accuracyt be

the transmitter detection accuracy over the entire scan duration

T when parameter estimation was performed on a subset of

all the sweeps of size t. Here, Accuracyt is calculated as

in Eq. (5). We define stability as the ratio of Accuracyt
over AccuracyT . Intuitively, this stability measure captures

the relative difference in detection accuracy when training on

partial vs. complete spectrum scan.

We run AirVIEW on synthetic scans. Each scan is com-

prised of 120 sweeps, each containing 1024 PSD values.

Within each 120x1024 scan we injected 40 randomly-located,

non-overlapping transmitters. Each of these transmitters spans

80 frequency bins and 5 sweeps. The noise values in this scan

were drawn from a normal distribution with mean -109dBm

and standard deviation of 2.0dBm. The transmitter values were






