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Abstract

Using a Landau—de Gennes approach, we study the impact of confinement topology,
geometry and external fields on spatial positioning of nematic topological defects
(TDs). In quasi two-dimensional systems we demonstrate that confinement enforced
total topological charge m>>1 decays into elementary TDs bearing charge m=1/2.
These assemble close to the bounding substrate to enable essentially bulk-like
uniform nematic ordering in the central part of a system. This effect is reminiscent of
the Faraday cavity phenomenon in electrostatics. We observe that in certain
confinement geometries, varying the order parameter correlation length size could
trigger global rotation of an assembly of TDs. Finally, we show that an external
electric field could be used to drag the boojum finger tip towards a confinement cell
interior. Assemblies of TDs could be exploited as traps for appropriate nanoparticles,

opening several opportunities for development of functional nanodevices.
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Introduction

Topological defects (TDs) [1] represent an interdisciplinary research area [2] which is
of high interest for nearly all branches of science. Due to their topological origin they
exhibit several universal features that are independent of system’s microscopic
details in which TDs appear. Their complete understanding might even resolve some
of the most intriguing unanswered questions of nature. Namely, there are several
strong indications that fields represent basic entities of nature and not fundamental
particles [3] - which are in this case emergent phenomenon. For example, as far back
as 1962 Skyrme [4] developed a theory in which he described hadrons as topological

defects in the pion field.

A convenient system in which to study fundamental behaviour of TDs are various
liquid crystal (LC) phases [5]. They are relatively easily accessible to various
experimental methods [6] due to their unique combination of optical anisotropy and
transparency, fluid character, and mechanical softness. In addition, the diversity of
LC phases and structures guarantees the existence of many qualitatively different TD

structures.

Several recent studies reveal that TDs in LCs could efficiently positionally control
assemblies of appropriate nanoparticles (NPs) [7,8,9]. Note that order parameters,
which can host defects, possess two qualitatively different components [10]: an
amplitude (also referred to as a hydrodynamic) field, and a symmetry breaking (also
referred to as a gauge or nonhydrodynamic) field. If a nanoparticle’s characteristic
size is comparable to an order parameter’'s amplitude correlation length (which

roughly estimates the core size of a defect), and if the nanoparticle does not



sufficiently disturb the symmetry breaking field surrounding the defect’s core, then the
defect could efficiently trap the NP due to the Defect Core Displacement (DCR)
mechanism [11]. Namely, in this case a relatively energetically expensive defect core
volume is (at least partially) replaced by NP’s volume, thereby reducing the overall
energy. It has been shown that lattices of orientational (disclinations) [11,12] and
translational (dislocations) [9] defects can readily trap such NPs. Furthermore, it was
demonstrated that line defects could be exploited to form nanowire-type structures

[9,13] consisting of NPs.

In this contribution we study numerically the effects of geometry and an external
electric field on positions of nematic TDs using the Landau-de Gennes mesoscopic

approach.

Theoretical Background

Of interest is the impact of confinement and/or an external electric field on topological
defects in a nematic liquid crystal. We use the Landau-de Gennes approach [5] in

terms of the tensor order parameter Q. In its eigenframe it is expressed as
3 — —

Q= leie, ®e,, where €, and 4 correspond to corresponding eigenvectors and
i=1

eigenvalues, respectively. We consider uniaxial LCs where the bulk equilibrium

ordering is described by the uniaxial tensor
-1
Q:S(n(@n—g[], (1)

The unit vector n points along the local uniaxial direction and is referred to as the
nematic director, the uniaxial orientational order parameter S quantifies the extent of

fluctuations about 1, and |/ is the unit tensor. If the LC ordering is distorted, the



system could exhibit biaxial states. In simulations we study topological defects either
in the Cartesian coordinate system (x,y,z) or in the cylindrical coordinate system

(r,,z). Their coordinate frames are determined by the unit vectors (¢€,.€,,€,) and
(€,.€,.€,), respectively. We parameterize the nematic order parameter as
Q=(q,+q,)e,®€,+(q;-q,)é, ®€,+q,(6,0€,+€,®¢€,)-2q,6,Q6,, (2)
Q=(q,+q,)6, ®€,+(q;-q,)6,®6,+0q,(6, ®6,+6,®6,)-2q,6, ®E,, (3)

where { g1, g2, g3} are the variational parameters.

A convenient metric or the degree of biaxiality is the biaxiality parameter [14,15]
6(trQ3 )2

B2 =1-————-€[01]. 4)
Q")

A uniaxial state and maximal biaxiality configurations are signaled by $? =0 and

£% =1, respectively.

Free energy and scaling

We write the free energy as the sum of volume and surface integrals

F = _m(fc +f,+1,)dr + H f.d*r. The condensation (f;), elastic (f;) and external

electric field (f;) free energy densities are expressed as [5,15]

CA(T-T) B C 2
==y @ (1) ®
L 2
f,=——|VQ, 6
. =—5IvQ (6)
f. = —%gOAgE-QE, (7

respectively. The quantities Ay, B, C are material constants, T~ is the supercooling

temperature, L is representative characteristic elastic constant in the single elastic



constant approximation, E is an external electric field, &, is the permittivity of free

space, and A¢ is the dielectric constant anisotropy. We model conditions at the LC

confining boundaries either by [15,16]

f :%\7-9\7, (8)
or
f, =%”(Q—Qs)2’ ©)

where w is the surface interaction strength, v is the local confinement surface

normal, and Q, describes surface preferred nematic ordering. The surface term given

by Eq.(8) enforces for w>0 (w<0) degenerate tangential (homeotropic) anchoring. On

the other hand, the contribution in Eq.(9) is minimized for Q = Q,, assuming w>0. In
simulations we consider cases where Q, enforces uniaxial ordering given by Eq.(1),

where S possesses the bulk equilibrium value, and [5,17]

— - — . -1
n=e.cosfd+e, singd, O=mtan (y/x). (10)

This ansatz enforces topological defect of strength m, where m is an integer multiple
of V.

For numerical and presentational convenience [15], we introduce the reduced

244(T-T) T-T
B’ T°-T

temperature 7 = —, where T" is the nematic superheating

temperature. In this scaling the bulk phase transition temperature Ty corresponds to

*

Ty = ;’N:; :g, and the bulk degree of uniaxial ordering minimizing Eq.(5) can be

expressed as S, (r<7,)=S,(1+v1-7), S,=S,(T")=B/(4C).



LC material properties are reflected in various characteristic lengths describing
responses of LC ordering to different perturbations. The relevant lengths for our study

are the biaxial correlation length ¢, , the external field coherence length &, and the

surface extrapolation length d.. We define them as

4LC LS,
S = e = |22 g =S, Iw. 11
s \/52(\/1—“1) o & |Ae|E? ’ a

Note that for scaling purposes we expressed the latter two distances at T =T .

To estimate their values we choose material properties of typical nematic LC. As a
representative we took 5CB, for which [5] Ag~0.310° J/(Km?®), B~4.810° J/m?,
C~1.610" J/m® L~10"" J/m, A¢~5, T,,~318 K, T,, -T'~1.1K, T -T,,~0.18 . For
temperatures close below Ty it follows & ~20 nm, &.(E~10° V/m)~1um,

d, (w~10"J/m?) ~1pm.

We obtained nematic structures for given boundary conditions by minimizing the total
free energy of the system. The resulting Euler-Lagrange equilibrium equations for the
variational parameters { g1, g2, g3} are solved using the standard over-relaxation

method, where the calculation details are given in [15].

Geometry of the problem

We consider thin plane-parallel cells of thickness h. The top and bottom plates are
placed at z=0 and z=h, respectively. We consider the cells either in the Cartesian
(x,y,z) or cylindrical geometry (r,p,z), as illustrated in Figure 1. Accordingly we use
two different boundary conditions, to which we refer as Boundary Anchoring

Condition (BAC) [18] and Surface Anchoring Condition (SAC), respectively.



We use BAC in the “Cartesian” cells. We assume that the cells are relatively thin and
the nematic ordering is entirely dominated by conditions at the top “master” plate. At

the master plate we impose a strong uniaxial boundary condition of order parameter
O qiven by Eq.(10). The latter is either a circle of radius R =+/x"+ )" or a trapezoid

which we characterized by a distance R. It is assumed that R is large with respect to
the relevant nematic order correlation length. Inside the boundary we allow the
nematic tensor frame to freely rotate in the (x,y) plane. In these simulations the
nematic ordering is effectively two dimensional. Hence, we neglect variations along

the z-axis and setQ =Q(x,y).

(@) (b)

\
1]
R S S | [ Y
L]
v 4

|_,L.l J_.._LJ_J "l

AN
I
||IIIII|1"_.

Y

Figure 1: Geometry of cells used in simulations. (a) In the “Cartesian” cells we
enforce at the top “master” plate uniaxial nematic structures defined by Eq.(10) and

assume Q=Q(x,y). (b) In the “cylindrical” cells we impose a boojum topological

defect at the top plate and assume Q = Q(r,z).



In the SAC case we consider thicker cells and permit spatial variations along the z
direction. For this case we perform simulations in the cylindrical coordinate system

[20] and we impose the cylindrical symmetry (i.e., Q = Q(r,z)). At the top plate we
enforce uniaxial boundary conditions O qiven by Eq.(10), in which we set m=1. At

the bottom plate we enforce homeotropic anchoring conditions using the ansatz
Eq.(8). At the lateral boundaries we assume free boundary conditions. Such

conditions impose a boojum topological defect at the top plate [19,20].

Note that in our simulations we mimic geometric set-ups which could be realized
experimentally using, for instance, the atomic force microscope (AFM) scribing
method [17]. In a typical experimental set up one confines a nematic LC within a thin
plane-parallel cell, where at least one ("master") surface imposes anchoring
conditions inscribed via an AFM stylus [17,18], with a planar — degenerate “slave” as
the other surface. In Figure 2 we depict an example of a "master" substrate enforcing
2D topological defects of strength m =+2, and corresponding experimentally

measured textures using polarized optical microscopy.



Figure 2: Top left: Typical scribed surface topography enforcing the m=2 topological
defect. Top right: Schematic representation showing AFM-scribed director pattern of
four topological defects (m=2: blue circles, m=-2: gray squares), part of a larger

square array of such defects. Separation between nearby defects is roughly 30 um,
h~3 um. Bottom left: A darkfield microscopy image of a nematic cell whose master

plate enforces a square array of m=+2 TDs; this image shows a rare example of
double integer defect that decomposes into a pair of half integer defects plus one
integer defect. Bottom right: Typical polarizing microscopy pattern image of this

defect array. The scale bars are (a) 500 nm and (b,c,d) 5 pm.



Results and Discussion

In the following we present results of our simulations. We consider structures using
the “Cartesian” cells, where we study how different patterns of TDs emerge.
Afterwards we focus on an external field defect core structure driven changes in the

“cylindrical” cell.

Faraday cavity effect

We first study patterns emerging from the BAC boundary condition. We enforce the
total topological charge of strength m inside the circular boundary of radius R. At the
boundary we strongly impose the nematic ordering defined by Eq.(10). The energy-

minimized configurations are plotted in Figures 3 and Figures 4.

In Figure 3 we plot equilibrium biaxiality profiles in which cores of TDs are clearly
visible. The imposed total charges always decompose into TDs bearing elementary
charges my=1/2. The cores of my=1/2 TDs are fingerprinted by a volcano-like rim
where %=1 [15,18] . For m=1, m=2, m=4 and m=6 the patterns possess 2, 4, 8 and
12 TDs. The TDs tend to assemble close to the boundary. The resulting director

orientation is plotted in Figure 4: We plot eigenvectors of Q with the largest positive
eigenvalue (which we set to be €, ), which in the uniaxial limit corresponds to the

nematic director field. Note that nematic textures are essentially uniaxial, except

close to the defects cores. For this reason we henceforth refer to e, as the nematic

director field. One sees that the ordering becomes increasingly spatially uniform in

the central region on increasing m.



Figure 3: Plots of 4%(x,y) for different imposed total topological charges using BAC:

(a) m=1, (b) m=2, (c) m=4, (d) m=6. In all cases TDs are decomposed into

elementary units bearing the charge m, =1/2, which assemble close to the
bounding circle. In all figures we set R/ £, = 30,7 =-8. The corresponding director

field is depicted in Figure 4.
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Figure 4: 2D Plot of the Q eigenvector with the largest positive eigenvalue,

1, (b)

corresponding to the 2D biaxiality profiles 4%(x,y) plotted in Figure 3. (a) m

=30,r=-8.

) m=4, (d) m=6. R/ &,

=2, (c

m

This phenomenon is reminiscent of the Faraday cavity effect in conductors. Namely,

if one puts electric charges on a conducting body, the charges assemble at its

surface and the resulting electric field inside the body vanishes. The Faraday-like



behavior in our simulations is clearly visible for cases R/, >>1. In simulations we set
R /¢, =30, and for typical LCs it holds & ~20 nm.

The absence of an electric field inside the conductor in the electrostatic analogue
corresponds in our simulations to a spatially uniform nematic director in the area

separated by a distance greater than &, from the confining boundary.

Temperature induced pattern changes

We next consider cases where we change the symmetry of the bounding surface.
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Figure 5: 5%(x,y) plots of configuration of TDs on increasing the ratio n =R / &, : (a)
n=14, (b) =17, (c) n=21, (d) n=25. In practice this could be achieved by

decreasing temperature of the sample. The trapezoid boundary enforces the total

topological charge m = 3, which splits into six m, =1/2 elementary charges.

In Figure 5 and Figure 6 we show nematic configurations for trapezoid shaped
boundary, through which we enforce m=3 using Eq.(10). In all cases the imposed
charge decays into elementary charges my=1/2, and the charges assemble at the
confining boundary as discussed in the previous subsection. For this specific
confinement symmetry we observe changes in nematic patterns on decreasing the

ration =R/ &, , where R corresponds to the bottom length of the trapezoid.
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Figure 6: Changes in the nematic director field on increasing the ratio n=R /¢, : (a)

n=14, (b) n=17, (c) n =21, (d) n=25. The corresponding biaxiality profile is

depicted in Figure 5.

In practice one could vary 7 by changing temperature of the sample, which affects

&, . In such case a rotation of defect patterns are expected according to our

simulations. The changes in patterns reveal that the system’s energy landscape

substantially changes on varying r. From the perspective of TDs, the LC



configurations reflect the interplay between mutual repulsion among like defects and
interaction of TDs with confinement geometry. Note that for sufficiently symmetric

confinement, the “rotation” disappears. It is also sensitive to number of TDs.

External field driven boojum tip

We next consider thicker cells and SAC boundary conditions. For sufficiently strong
anchoring, a boojum surface defect [19,20] resides at the top surface. Its structure
has been studied in detail in [20]. Its surrounding nematic director field resembles a
“classical” half-hedgehog structure. On the other hand the core structure is relatively
complex [20] and is schematically shown in Figure 7. Its core is characterized by a

negatively uniaxial finger, surrounded by a shell exhibiting maximal biaxiality 5% =1.

The finger-tip is melted due to topological considerations. To understand this let us
consider ideal cylindrically symmetry, which we also adopt in our simulations. The
symmetry axis of the defect is uniaxial. Namely, in terms of the parametrization

defined by Eq.(3) the elastic free energy density includes the term which is linearly

proportional with ((3q1 +q,) + q;'j) / r?. The singularity at r=0 can be avoided if uniaxial

states are introduced, for which it holds that 3q, +q, =q, =0. On decreasing z from

the top plate, the negative uniaxiality extends to the finger-tip (see Figure 8). Below
the tip the axis is positively uniaxial. The transition from negative to positive

uniaxiality requires melting of the nematic ordering in the intervening area. A typical

director field spatial variation n~e, =¢,sind +¢€,cos@ in the radial direction and

order parameter changes along the symmetry axis are depicted in Figure 8. In the

case shown the finger tip (where the nematic ordering is melted) is located

at(r,z)=(0,h-¢;), where & ~0.8&,. For z> h-¢, the director field is roughly radial



everywhere and S(r=0,z)<0. On the other hand, for z < h—¢, the nematic order is
positively uniaxial at =0 and n =e,. On increasing r the director field monotonically

increases its departure from the z-axis.

We next apply an external electric field along the z-axis and assume that the LC
possesses a negative dielectric anisotropy (As <0). It this case the external field
favors the negatively uniaxial part of the boojum. Consequently, it becomes
elongated on increasing the field strength, as it is illustrated in Figure 9. For this

purpose the external field must be relatively strong, i.e., & ~¢&,, which in a typical LC

would correspond to E~10° V/m.

. 32
)
0.8
0.6
0.4
0.2
0

Figure 7: Cross-section through a cylindrically symmetric boojum core structure. The

biaxial shell exhibiting maximal biaxiality joins the melted finger-tip with the top plate.
In the case shown, the anchoring strength at the top plate is finite. The negative

uniaxial region is indicated by a dashed white line. The finger-tip is marked with a

circle. The bar code determines values of 3°.
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6,=n12), and degree of uniaxial order along the symmetry axis (thick red line,

z=p, py=h; S;=|S(r=0,z=h), r=0). In the simulations we establish a strong

anchoring condition at the top plate, h/¢&, =8, r=-8.
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Figure 9: Extension of the finger-tip with an increasing external field. Owing to the
cylindrical symmetry, we plot only the right-hand part of the boojum core structure
(see Figure 8). (a) h/&.=0, (b) h/&. =8, (c) h/&- =10, (d) h/ & =12. h=10¢&,,

hid, =100, r=-8.

Conclusion

We studied numerically the impact of geometry, topology, and external field on

patterns and position of nematic topological defects. In our phenomenological study



we used the Landau — de Gennes approach in terms of the nematic tensor order
parameter. We found that, in quasi 2D systems, TDs rearrange relatively close to the
bounding line, which topologically enforces their presence. Such assemblies of TDs
enable the formation of essentially spatially uniform orientational ordering in the
central part of the confined nematic. This effect is reminiscent of the Faraday cavity
phenomenon in electrostatics. Furthermore, we demonstrated that, for certain
confinement geometries (we chose a trapezoid), one could induce collective rotation
of a pattern of TDs on changing the defect core size. For example, the latter could be
varied by changing the temperature. Furthermore, we demonstrated that one could
extend the boojum finger towards the cell interior if an external field is imposed
approximately along its symmetry axis for LCs exhibiting negative external field

anisotropy,

These mechanism could be exploited for indirect positional manipulation [7,8,9,11,12]
of certain NPs via positionally controlled TDs. Namely, appropriately surface
decorated NPs could be efficiently trapped within cores of TDs due to the Defect
Core Displacement mechanism. Therefore, by manipulating texture of TDs, one could
control the predetermined - or reconfigure the — positions of trapped NPs, which

could be exploited in future nano-based devices.
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