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Abstract 

Using a Landau–de Gennes approach, we study the impact of confinement topology, 

geometry and external fields on spatial positioning of nematic topological defects 

(TDs). In quasi two-dimensional systems we demonstrate that confinement enforced 

total topological charge m>>1 decays into elementary TDs bearing charge m=1/2. 

These assemble close to the bounding substrate to enable essentially bulk-like 

uniform nematic ordering in the central part of a system. This effect is reminiscent of 

the Faraday cavity phenomenon in electrostatics. We observe that in certain 

confinement geometries, varying the order parameter correlation length size could 

trigger global rotation of an assembly of TDs. Finally, we show that an external 

electric field could be used to drag the boojum finger tip towards a confinement cell 

interior.  Assemblies of TDs could be exploited as traps for appropriate nanoparticles, 

opening several opportunities for development of functional nanodevices.   
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Introduction 

Topological defects (TDs) [1] represent an interdisciplinary research area [2] which is 

of high interest for nearly all branches of science. Due to their topological origin they 

exhibit several universal features that are independent of system’s microscopic 

details in which TDs appear. Their complete understanding might even resolve some 

of the most intriguing unanswered questions of nature. Namely, there are several 

strong indications that fields represent basic entities of nature and not fundamental 

particles [3] - which are in this case emergent phenomenon. For example, as far back 

as 1962 Skyrme [4] developed a theory in which he described hadrons as topological 

defects in the pion field. 

  

A convenient system in which to study fundamental behaviour of TDs are various 

liquid crystal (LC) phases [5]. They are relatively easily accessible to various 

experimental methods [6] due to their unique combination of optical anisotropy and 

transparency, fluid character, and mechanical softness. In addition, the diversity of 

LC phases and structures guarantees the existence of many qualitatively different TD 

structures.  

 

Several recent studies reveal that TDs in LCs could efficiently positionally control 

assemblies of appropriate nanoparticles (NPs) [7,8,9]. Note that order parameters, 

which can host defects, possess two qualitatively different components [10]: an 

amplitude (also referred to as a hydrodynamic) field, and a symmetry breaking (also 

referred to as a gauge or nonhydrodynamic) field.  If a nanoparticle’s characteristic 

size is comparable to an order parameter’s amplitude correlation length (which 

roughly estimates the core size of a defect), and if the nanoparticle does not 



sufficiently disturb the symmetry breaking field surrounding the defect’s core, then the 

defect could efficiently trap the NP due to the Defect Core Displacement (DCR) 

mechanism [11]. Namely, in this case a relatively energetically expensive defect core 

volume is (at least partially) replaced by NP’s volume, thereby reducing the overall 

energy. It has been shown that lattices of orientational (disclinations) [11,12] and 

translational (dislocations) [9] defects can readily trap such NPs. Furthermore, it was 

demonstrated that line defects could be exploited to form nanowire-type  structures 

[9,13] consisting of NPs.  

 

In this contribution we study numerically the effects of geometry and an external 

electric field on positions of nematic TDs using the Landau-de Gennes mesoscopic 

approach.   

 

Theoretical Background 

Of interest is the impact of confinement and/or an external electric field on topological 

defects in a nematic liquid crystal. We use the Landau-de Gennes approach [5]  in 

terms of the tensor order parameter Q . In its eigenframe it is expressed as 
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eigenvalues, respectively. We consider uniaxial LCs where the bulk equilibrium 

ordering is described by the uniaxial tensor  
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The unit vector 

n  points along the local uniaxial direction and is referred to as the 

nematic director, the uniaxial orientational order parameter S quantifies the extent of 

fluctuations about 

n , and I  is the unit tensor. If the LC ordering is distorted, the 



system could exhibit biaxial states. In simulations we study topological defects either 

in the Cartesian coordinate system (x,y,z) or in the cylindrical coordinate system 

( , ,r z ). Their coordinate frames are determined by the unit vectors 
  

( , , )x y ze e e  and  



  
( , , )r ze e e , respectively. We parameterize the nematic order parameter as 
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where { q1, q2, q3} are the variational parameters. 

 

A convenient metric or the degree of biaxiality is the biaxiality parameter [14,15] 
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A uniaxial state and maximal biaxiality configurations are signaled by  2 0  and  

 2 1, respectively.   

Free energy and scaling 

We write the free energy as the sum of volume and surface integrals 

     
 3 2 .c e f sF f f f d r f d r  The condensation (fc), elastic (fe) and external 

electric field (ff) free energy densities are expressed as [5,15] 
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respectively. The quantities A0, B, C are material constants, *T  is the supercooling 

temperature, L is representative characteristic elastic constant in the single elastic 



constant approximation, 

E  is an external electric field, 0  is the permittivity of free 

space, and   is the dielectric constant anisotropy. We model conditions at the LC 

confining boundaries either by [15,16]  
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or 
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where w is the surface interaction strength, 

v  is the local confinement surface 

normal, and sQ  describes surface preferred nematic ordering. The surface term given 

by Eq.(8) enforces for w>0 (w<0) degenerate tangential (homeotropic) anchoring. On 

the other hand, the contribution in Eq.(9) is minimized for  sQ Q , assuming w>0. In 

simulations we consider cases where sQ  enforces uniaxial ordering given by Eq.(1), 

where S possesses the bulk equilibrium value, and [5,17]  
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This ansatz enforces topological defect of strength m, where m is an integer multiple 
of ½.  
 
 
For numerical and presentational convenience [15], we introduce the reduced 

temperature 
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 and the bulk degree of uniaxial ordering minimizing Eq.(5) can be 
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LC material properties are reflected in various characteristic lengths describing 

responses of LC ordering to different perturbations. The relevant lengths for our study 

 are the biaxial correlation length b , the external field coherence length E , and the  

surface extrapolation length de. We define them as  
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Note that for scaling purposes we expressed the latter two distances at  **T T . 

 

To estimate their values we choose material properties of typical nematic LC. As a 

representative we took 5CB, for which [5] A0~ 60.3 10  J/(Km3), B~ 64.8 10  J/m3, 

C~ 71.6 10  J/m3, L~ 1110  J/m,  ~5 , INT ~318  K,  *
INT T ~1.1K, **

INT T ~0.18 . For 

temperatures close below TIN it follows b ~ 20  nm,  (E E ~ 610 V/m)~1μm,  

(ed w ~ 4 210 J/m )  ~1μm.     

 

We obtained nematic structures for given boundary conditions by minimizing the total 

free energy of the system. The resulting Euler-Lagrange equilibrium equations for the 

variational parameters { q1, q2, q3} are solved using the standard over-relaxation 

method, where the calculation details are given in [15].   

 
Geometry of the problem 

We consider thin plane-parallel cells of thickness h. The top and bottom plates are 

placed at z=0 and z=h, respectively.  We consider the cells either in the Cartesian 

(x,y,z) or cylindrical geometry ( , ,r z ), as illustrated in Figure 1. Accordingly we use 

two different boundary conditions, to which we refer as  Boundary  Anchoring 

Condition (BAC) [18] and  Surface  Anchoring Condition (SAC), respectively. 



 

We use BAC in the “Cartesian” cells. We assume that the cells are relatively thin and 

the nematic ordering is entirely dominated by conditions at the top “master” plate. At 

the master plate we impose a strong uniaxial boundary condition of order parameter 

s
Q  qiven by Eq.(10). The latter is either a circle of  radius 2 2R x y   or a trapezoid 

which we characterized by a distance R. It is assumed that R  is large with respect to 

the relevant nematic order correlation length. Inside the boundary we allow the 

nematic tensor frame to freely rotate in the (x,y) plane.  In these simulations the 

nematic ordering is effectively two dimensional. Hence, we neglect variations along 

the z-axis and set  ( , )Q Q x y .   

   

 

Figure 1: Geometry of cells used in simulations. (a) In the “Cartesian” cells we 

enforce at the top “master” plate uniaxial nematic structures defined by Eq.(10) and 

assume  ( , )Q Q x y . (b) In the “cylindrical” cells we impose a boojum topological 

defect at the top plate and assume  ( , )Q Q r z . 



In the SAC case we consider thicker cells and permit spatial variations along the z 

direction. For this case we perform simulations in the cylindrical coordinate system 

[20] and we impose the cylindrical symmetry (i.e.,  ( , )Q Q r z ). At the top plate we 

enforce uniaxial boundary conditions 
s

Q  qiven by Eq.(10), in which we set m=1. At 

the bottom plate we enforce homeotropic anchoring conditions using the ansatz 

Eq.(8). At the lateral boundaries we assume free boundary conditions. Such 

conditions impose a boojum topological defect at the top plate [19,20]. 

 

Note that in our simulations we mimic geometric set-ups which could be realized 

experimentally using, for instance, the atomic force microscope (AFM) scribing 

method [17]. In a typical experimental set up one confines a nematic LC within a thin 

plane-parallel cell, where at least one ("master") surface imposes anchoring 

conditions inscribed via an AFM stylus [17,18], with a planar – degenerate “slave” as 

the other surface. In Figure 2 we depict an example of a "master" substrate enforcing 

2D topological defects of strength  2m , and corresponding experimentally 

measured textures using polarized optical microscopy.  

 



 

Figure 2: Top left: Typical scribed surface topography enforcing the m=2 topological 

defect. Top right: Schematic representation showing AFM-scribed director pattern of 

four topological defects (m=2: blue circles, m=-2: gray squares), part of a larger 

square array of such defects.  Separation between nearby defects is roughly 30 μm , 

h~3 μm .   Bottom left: A darkfield microscopy image of a nematic cell whose master 

plate enforces a square array of  2m  TDs; this image shows a rare example of 

double integer defect that decomposes into a pair of half integer defects plus one 

integer defect. Bottom right: Typical polarizing microscopy pattern image of this 

defect array. The scale bars are (a) 500 nm and (b,c,d) 5 μm . 



Results and Discussion 

In the following we present results of our simulations. We consider structures using 

the “Cartesian” cells, where we study how different patterns of TDs emerge. 

Afterwards we focus on an external field defect core structure driven changes in the 

“cylindrical” cell. 

  

Faraday cavity effect 

We first study patterns emerging from the BAC boundary condition. We enforce the 

total topological charge of strength m inside the circular boundary of radius R. At the 

boundary we strongly impose the nematic ordering defined by Eq.(10). The energy-

minimized configurations are plotted in Figures 3 and Figures 4. 

 

In Figure 3 we plot equilibrium biaxiality profiles in which cores of TDs are clearly 

visible. The imposed total charges always decompose into TDs bearing elementary 

charges m0=1/2. The cores of m0=1/2 TDs are fingerprinted by a volcano-like rim 

where  2 1 [15,18] . For m=1, m=2, m=4 and m=6 the patterns possess 2, 4, 8 and 

12 TDs. The TDs tend to assemble close to the boundary. The resulting director 

orientation is plotted in Figure 4: We plot eigenvectors of Q  with the largest positive 

eigenvalue (which we set to be 


1e ), which in the uniaxial limit corresponds to the 

nematic director field. Note that nematic textures are essentially uniaxial, except 

close to the defects cores. For this reason we henceforth refer to 


1e  as the nematic 

director field.  One sees that the ordering  becomes increasingly spatially uniform in 

the central region on increasing m.  



 

Figure 3: Plots of  2(x,y)  for different imposed total topological charges using BAC: 

(a) m=1, (b) m=2, (c) m=4, (d) m=6. In all cases TDs are decomposed into 

elementary units bearing the charge 0 1/ 2m , which assemble close to the 

bounding circle. In all figures we set  / 30bR , 8   . The corresponding director 

field is depicted in Figure 4. 

 

 



 

Figure 4: 2D Plot of the Q  eigenvector with the largest positive eigenvalue,  

corresponding to the 2D biaxiality profiles  2(x,y)  plotted in Figure 3.  (a) m=1, (b) 

m=2, (c) m=4, (d) m=6.  / 30bR , 8   . 

 

This phenomenon is reminiscent of  the Faraday cavity effect in conductors. Namely, 

if one puts electric charges on a conducting body, the charges assemble at its 

surface and the resulting electric field inside the body vanishes. The Faraday-like 



behavior in our simulations is clearly visible for cases R/b >>1. In simulations we set 

 / 30bR , and for typical LCs it holds b ~ 20  nm. 

The absence of an electric field inside the conductor in the electrostatic analogue 

corresponds in our simulations to a spatially uniform nematic director in the area 

separated by a distance greater than b  from the confining boundary.  

 

Temperature induced pattern changes 

We next consider cases where we change the symmetry of the bounding surface.  

 



 

Figure 5:  2(x,y)  plots of configuration of TDs on increasing the ratio   / :bR  (a) 

  14 , (b)   17 , (c)   21, (d)   25 . In practice this could be achieved by 

decreasing temperature of the sample. The trapezoid boundary enforces the total 

topological charge  3m , which splits into six 0 1/ 2m  elementary charges. 

 

In Figure 5 and Figure 6 we show nematic configurations for trapezoid shaped 

boundary, through which we enforce m=3 using Eq.(10). In all cases the imposed 

charge decays into elementary charges m0=1/2, and the charges assemble at the 

confining boundary as discussed in the previous subsection. For this specific 

confinement symmetry we observe changes in nematic patterns on decreasing the 

ratio  / bR , where R corresponds to the bottom length of the trapezoid.  



 

Figure 6: Changes in the nematic director field on increasing the ratio / :bR   (a) 

14  , (b) 17  , (c) 21  , (d) 25  . The corresponding biaxiality profile is 

depicted in Figure 5. 

 

In practice one could vary   by changing temperature of the sample, which affects 

b . In such case a rotation of defect patterns are expected according to our 

simulations. The changes in patterns reveal that the system’s energy landscape 

substantially changes on varying  . From the perspective of TDs, the LC 



configurations reflect the interplay between mutual repulsion among like defects and 

interaction of TDs with confinement geometry. Note that for sufficiently symmetric 

confinement, the “rotation” disappears. It is also sensitive to number of TDs. 

 

External field driven boojum tip 

We next consider thicker cells and SAC boundary conditions. For sufficiently strong 

anchoring, a boojum surface defect [19,20] resides at the top surface. Its structure 

has been studied in detail in [20]. Its surrounding nematic director field resembles a 

“classical” half-hedgehog structure. On the other hand the core structure is relatively 

complex [20] and is schematically shown in Figure 7. Its core is characterized by a 

negatively uniaxial finger, surrounded by a shell exhibiting maximal biaxiality  2 1. 

The finger-tip is melted due to topological considerations. To understand this let us 

consider ideal cylindrically symmetry, which we also adopt in our simulations. The 

symmetry axis of the defect is uniaxial. Namely, in terms of the parametrization 

defined by Eq.(3) the elastic free energy density includes the term which is linearly 

proportional with   2 3 2
1 2 3(3 ) /q q q r . The singularity at r=0 can be avoided if uniaxial 

states are introduced, for which it holds that   1 2 33 0q q q .  On decreasing z from 

the top plate, the negative uniaxiality extends to the finger-tip (see Figure 8). Below 

the tip the axis is positively uniaxial. The transition from negative to positive 

uniaxiality requires melting of the nematic ordering in the intervening area. A typical 

director field spatial variation 

n ~   

  
1 sin cosr ze e e  in the radial direction and 

order parameter changes along the symmetry axis are depicted in Figure 8. In the 

case shown the finger tip (where the nematic ordering is melted) is located 

at  ( , ) (0, )fr z h , where f ~ 0.8 b . For   fz h  the director field is roughly radial 



everywhere and S(r=0,z)<0. On the other hand, for   fz h  the nematic order is 

positively uniaxial at r=0 and  
 

zn e . On increasing r the director field monotonically 

increases its departure from the z-axis.  

 

We next apply an external electric field along the z-axis and assume that the LC 

possesses a negative dielectric anisotropy (   0 ).  It this case the external field 

favors the negatively uniaxial part of the boojum. Consequently, it becomes 

elongated on increasing the field strength, as it is illustrated in Figure 9.  For this 

purpose the external field must be relatively strong, i.e., E ~b , which in a typical LC 

would correspond to E~ 810  V/m.  

 

 

Figure 7: Cross-section through a cylindrically symmetric boojum core structure. The 

biaxial shell exhibiting maximal biaxiality joins the melted finger-tip with the top plate. 

In the case shown, the anchoring strength at the top plate is finite. The negative 

uniaxial region is indicated by a dashed white line. The finger-tip is marked with a 

circle. The bar code determines values of 2 .  



 

 

Figure 8: Radial spatial variation of the director field (thin black lines,   r , 0 b ; 

 0 / 2 ), and degree of uniaxial order along the symmetry axis (thick red line, 

z ,  0 h ;   0 ( 0, )S S r z h , r=0). In the simulations we establish a strong 

anchoring condition at the top plate,  / 8bh ,   8 .  

    



 

Figure 9: Extension of the finger-tip with an increasing external field. Owing to the 

cylindrical symmetry, we plot only the right-hand part of the boojum core structure 

(see Figure 8). (a)  / 0Eh ,  (b)  / 8Eh , (c)  / 10Eh , (d)  / 12Eh .  10 bh , 

/ 100eh d ,   8 .   

 

Conclusion 

We studied numerically the impact of geometry, topology, and external field on 

patterns and position of nematic topological defects. In our phenomenological study 



we used the Landau – de Gennes approach in terms of the nematic tensor order 

parameter. We found that, in quasi 2D systems, TDs rearrange relatively close to the 

bounding line, which topologically enforces their presence. Such assemblies of TDs 

enable the formation of essentially spatially uniform orientational ordering in the 

central part of the confined nematic.  This effect is reminiscent of the Faraday cavity 

phenomenon in electrostatics. Furthermore, we demonstrated that, for certain 

confinement geometries (we chose a trapezoid), one could induce collective rotation 

of a pattern of TDs on changing the defect core size. For example, the latter could be 

varied by changing the temperature. Furthermore, we demonstrated that one could 

extend the boojum finger towards the cell interior if an external field is imposed 

approximately along its symmetry axis for LCs exhibiting negative external field 

anisotropy, 

 

These mechanism could be exploited for indirect positional manipulation [7,8,9,11,12] 

of certain NPs via positionally controlled TDs. Namely, appropriately surface 

decorated NPs could be efficiently trapped within cores of TDs due to the Defect 

Core Displacement mechanism. Therefore, by manipulating texture of TDs, one could 

control the predetermined - or reconfigure the – positions of trapped NPs, which 

could be exploited in future nano-based devices.  
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