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Because of the wing oscillatory motion with respect to the body, the flight dynam-
ics of biological flyers as well as their man-made mimetic vehicles, flapping-wing micro-
air-vehicles (FWMAYVs), are typically represented by multi-body, nonlinear time-periodic
(NLTP) system models whose balance and stability analyses are quite challenging. In this
work, we consider a NLTP system model for a two-degree-of-freedom FWMAYV that is
confined to move along vertical rails. We combine tools from chronological calculus, geo-
metric control, and averaging to provide a mathematically rigorous analysis for the balance
of FWMAVs at hover; that is, relaxing the single-body and direct averaging assumptions
that are commonly adopted in analyzing balance and stability of FWMAVSs and insects. We
also use optimized shooting to numerically capture the resulting periodic orbit and verify
the obtained results. Finally, we provide a combined averaging-shooting approach for the
balance and stability analysis of NLTP systems that (i) unlike typical shooting methods,
does not require an initial guess; (ii) provides more accurate results than the analytical av-
eraging approaches, hence relaxing the need for intractable high-order averaged dynamics;
and (iii) allows a deeper scrutiny of the system dynamics, in contrast to numerical shooting
methods.

I. Introduction

Flapping flight is indeed a rich dynamical system whose stability analysis and control synthesis invoke
frontiers of the system dynamics and control theory. Flapping-wing micro-air-vehicles (FWMAV) are typi-
cally represented by multi-body, nonlinear, and non-autonomous dynamical system models. Moreover, these
models are multi-scale dynamical systems as the body flight dynamics and wing flapping dynamics evolve on
different time scales; for the slowest flapping insect (hawkmoth), the flapping frequency is almost 30 times
the body flight dynamics natural frequency [1].

Two main assumptions have been typically adopted in literature (e.g., [I=11]) for control design and
stability analysis of FWMAVs. The first assumption is neglecting the wing inertial effects and considering
the wing as a mere lift generator, hence, reducing the dynamics to that of a single-body problem which
is significantly easier in analysis. The second assumption is applying direct averaging to analyze balance
and stability. Thanks to the relatively large separation between the system’s two time scales, the averaging
assumption is used to convert the nonlinear time-periodic (NLTP) dynamics into a nonlinear time-invariant
(NLTT) one. As such, a periodic orbit representing an equilibrium configuration of the NLTP system reduces
to a fixed point of the averaged dynamics. This process allows analytically tractable analysis. For a detailed
literature study, the reader is referred to the review article [12] and the references therein.

As the field becomes more mature, these assumptions become refuted and should be relaxed for a proper
analysis of flapping flight dynamics. While the first assumption can be justified by the fact that the wing’s
weight is small compared to the body (typically less than 5% [13]), Taha et al. [14] showed that the wing
flapping dynamics may interact with the body flight dynamics resulting in a negative lifting mechanism.
Also, Taha et al. [15] showed that the high-frequency periodic forcing due to the wing oscillatory motion
may induce a vibrational stabilization mechanism on the body flight dynamics that is similar to that of the

Downloaded by UC IRVINE on February 5, 2017 | http://arc.aiaa.org | DOI: 10.2514/6.2017-1734

*PhD Student, Mechanical and Aerospace Engineering. Student Member ATAA.
T Assistant Professor, Henry Samueli Career Development Chair, Mechanical and Aerospace Engineering. Member ATAA.
1 of 16

American Institute of Aeronautics and Astronautics

Copyright © 2017 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.


http://crossmark.crossref.org/dialog/?doi=10.2514%2F6.2017-1734&domain=pdf&date_stamp=2017-01-05

Downloaded by UC IRVINE on February 5, 2017 | http://arc.aiaa.org | DOI: 10.2514/6.2017-1734

Stephenson-Kapitza pendulum [16-18]. That is, an unstable equilibrium may gain asymptotic stability due
to the application of a sufficiently high-amplitude, high-frequency, periodic forcing [19-21]. Therefore, in
contrast to the the common conclusion that FWMAVs and insects are unstable at hover [1-3, 5, 9-11], Taha
et al. [15] showed the possibility of natural vibrational stabilization; such stabilizing mechanisms cannot
be captured using direct averaging. This discussion motivates higher-order averaging analysis along with a
multi-body formulation of the FWMAV dynamics.

In fact, the balance (trim) and stability analyses of FWMAVs are quite challenging. Whereas it is
intuitive to think that vertical balance (trim) is achieved when the cycle-averaged lift due to flapping is
equal to the weight, this concept has been refuted by Taha et al. [15]. It has been shown that the time-
periodic aerodynamic loads interact with the system dynamics resulting in a change in the equilibrium state
of the system. This phenomenon is referred to as direct/parametric interaction by Nayfeh and Mook [22]. In
addition, it should be noted that while direct averaging may give non-trivial results, though inaccurate, for
the single-body problem (i.e., when ignoring the wing inertia), it completely fails when the wing inertia is
considered; it neglects the entire effects of flapping. Indeed, the multi-body, multi-scale, NLTP nature of the
system necessitates a mathematically rigorous analysis for trim and stability, which is the main contribution
of this effort.

In this work, we consider the NLTP dynamics of a two degree-of-freedom (DOF) FWMAV; a FWMAV
that is restrained to move along vertical rails. The objective is to relax the common two assumptions,
discussed above, and provide a mathematically rigorous analysis that results in the flapping requirements for
hovering balance. To achieve such an objective, we combine tools from chronological calculus [23], geometric
control [24], and averaging [25, 26]. We apply the nonlinear variation of constants (VOC) to decouple the
system’s two time-scales. Then, we apply first- and higher-order averaging on the resulting decoupled system.
We also use an optimized shooting technique [27] to numerically capture the resulting periodic orbit and
verify the obtained results. Finally we provide a combined averaging-shooting approach to analyze balance
and stability of NLTP systems in general. This approach has the advantage of (i) being self-contained
in the sense that, unlike typical shooting methods, it does not require an initial guess; (ii) providing a
better accuracy than the analytical averaging approach without the need to perform an infeasibly high-order
averaging; and (iii) allowing deeper scrutiny of the system dynamics than numerical shooting techniques.

II. Modeling

The dynamics of FWMAVs is es-
sentially a multi-body problem. Fig- Stro ke
ure 1 presents a schematic diagram for P, ane - 77( :
a FWMAV showing several axis-systems
needed for the study; inertial frame sub-
scripted by I, body frame subscripted by
b, stroke plane frame subscripted by s, Side View of
and wing frame subscripted by w. In this Wing Section
work, the body is constrained to move
along vertical rails, as shown in the ex-
perimental setup in Fig. 2. Therefore,
only two degrees of freedom are consid-
ered; the body vertical motion with a ve-
locity w and the wing back and forth flap-
ping angle ¢; the wing pitching dynamics Side View of
is ignored as typically done in FWMAVs the Body
when considering a constant pitching an-
gle throughout each half stroke.

Using quasi-steady aerodynamic model
that captures the dominant effects lead-
ing edge vortex and rotqtional lift con- Figure 1: Schematic diagram for a FWMAV.
tributions, Taha et al. [14] derived the
longitudinal equations of motion for the
body-wing multi-body dynamics using the principle of virtual power. Based on this model, we derive the
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following two-DOF dynamics

w(t) = g—ka [P0 w(t) =k $*(1) n
Bt) = —kay |o(0) P(t) = ka, w(t) G(t) + 7-7(1),

where g is the gravitational acceleration, Ir is the flapping moment of inertia, and 7, is the flapping control
input torque. The coefficients kq,, k1, ka,, and kg, are defined as

p Cr, TIi1 cos® a,,
kg = £&XLa 1l
1 21y
_ pCr, Iz sinoy, cosay,
kL - 21y
2
kd _ P Cr, I31 sin® am;,
2 B
k _ pCr, Iz sinogy, cosap,
s = I, ;

where p is the air density, Cr_ is the wing lift curve slope, a,, is the mean angle of attack maintained
throughout the entire stroke, m,, is the total mass of the vehicle, and I,,, are constants that depend on the
chord distribution ¢(r) of the wing: I, = 2 fOR r™c(r) dr, where R is the wing radius. The system (1) can
be written in a state-space form as

(1) w(t) 0
delt)| (1) 0
@i |w(®)| = | g b Lo ) - kgt | | 0| (2)
e] ke 9@ 20) — kaswe)] L&

which can be written abstractly as a typical nonlinear control-affine system
o(t) = Z(x(t) + Y (x(t)) 7,(0), (3)

where x(t) = [2(t) @(t) w(t) @(t)]T is the state vector.

The system (1), equivalently (2), is a NLTP system be-
cause the vehicle’s weight is balanced by periodic forcing
(e.g., Tp(t) = U coswt). The problem of determining the required
amplitude U for balance (i.e., to achieve a specific periodic orbit
corresponding to a desired equilibrium, e.g., hovering) is not triv-
ial. For example, Taha et al. [15] refuted the intuitive notion that
hovering is achieved by balancing the averaged flapping lift to the
weight. Because the inherent stability of the system (2) due to
various damping actions, any deviation from equilibrium will be
attributed to unbalance. As such, because of its simplicity and
implementation feasibility, the system (2) represents a paradigm
for periodic orbit analysis of NLTP systems.

III. Averaging Techniques

Figure 2: Experimental setup of a two
A. Averaging Theorem DOF FWMAV.

Theorem 1. Consider the NLTP system
@(t) = X (@(t), ). (4)

Assuming that X is a T-periodic vector field in ¢, the averaged dynamical system corresponding to (4) is
written as

z(t) = X (2(1)), ()
where X (Z(t)) = + fOT X (x(t), ) dr. According to the averaging theorem [28], [29]:
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o If £(0) — T(0) = O(e), then there exist b > 0 and €¢* > 0 such that x(t) — Z(t) = O(e) Vt € [0,b/€] and
Ve € [0,¢*].

e If x* is an exponentially stable equilibrium point of (5) and if ||z(0) — 2*|| < p for some p > 0, then
z(t) —Z(t) = O(e) ¥t > 0 and Ve € [0,e*]. Moreover, The system (4) has a unique, exponentially
stable, T-periodic solution @y (t) with the property ||@r(t) — x*|| < ke for some k.

Thus, the averaging approach allows converting a non-autonomous system into an autonomous system.
As such, if the equilibrium state of the NLTP system is represented by a periodic orbit *(t), it reduces to a
fixed point of the averaged dynamics. The problem of ensuring a specific periodic orbit corresponding to a
desired equilibrium configuration is significantly simplified using the averaging approach, hence allowing for
analytical results. Suppose the system is characterized by a vector of parameters P (e.g., U in our FWMAV
example) and denote this parametric dependence as follows: X (z(t),t; P). Without loss of generality, assume
that it is required to ensure a periodic orbit @*(¢) with zero-mean (e.g., hovering equilibrium). Hence, the
balance problem is stated as follows: Determine the system parameters P and the periodic orbit *(¢) such
that

Z*(t) = X (2" (t),1; P),

with * = 0. Obviously, it is not a trivial problem and often cannot be solved analytically. In contrast, the
balance problem using the averaging approach is stated as follows: Determine the system parameters P that
are necessary to ensure X (0; P) = 0. This is achieved by solving a set of algebraic equations.

One caveat we should mention before leaving this point is that the averaging theorem requires the vector
field X (x(t),t) to be smooth in all its arguments. Unfortunately, the dynamics vector field, Z, in system
(2) or equivalently (3), is not smooth in the state ¢ because of the absolute value function, |¢|. We tackle
this issue by introducing a smooth approximation for the absolute value function. For more details about
this point, the reader is referred to an earlier work by Taha et al. [14].

B. Generalized Averaging Theory

A main issue with the averaging approach is that it is valid for small enough € (i.e., for high enough frequency).
Moreover, this frequency limit (determined by €*) is not known (only its existence is guaranteed). The
generalized averaging theory (GAT) presents a remedy for this issue by providing an arbitrarily higher-order
approximation to the flow along a time-periodic vector field. Agrachev and Gamkrelidze laid the foundation
for the GAT in their seminal work [30]. Later, Sarychev [31] and Vela [32] used the concepts introduced by
Agrachev and Gamkrelidze to develop a generalization for the classical averaging theorem. Only the final
results of the GAT are stated here, and the reader is referred to Section 4 in [15] for a detailed presentation
of the GAT. Sarychev [31] introduced the notion of complete averaging to denote the following averaged
dynamics of system (4)

2(t) = eX (1) = eAr(B(1)) + EAs((1)) + EAg(@(L)) + ..., (6)
where
T
A (z(t) = %OfX(w(t),T)dT
TTrTt
A (z(t) = %J b[X(w(t),o—)dJ, X(:L'(t)ﬂf)] dt (7)
Tr t t
As(z(t) = T [Au((0). A2<m<t>>1+ﬂ[ofm(t),a)da, [{X(m(txa)da, X(w(t»t)”dt,

where the Lie bracket between two vector fields is defined as [V1(x), V()] = 68‘;2 V- 86‘:/;1 V5. Sarychev
and Vela showed that if the series (6) converges, its limit will be the logarithm of the Monodromy map (i.e.,
the nonlinear vector-valued function that maps an initial condition to the solution after the period T'). That
is, if the complete averaged dynamics (6) has an exponentially stable fixed point, then the NLTP system (4)
will have an exponentially stable periodic orbit, irrespective of the value of e.

Based on the above discussion, it is implied that if € is small enough to truncate the series after the

first term, A1, the first-order averaging theorem is recovered. If not, then one should go for higher-order
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averaging until the desired accuracy is met. However, only convergence of the series (6) representing the
complete averaged dynamics is guaranteed under some conditions [30]. Therefore, since the series (6) is
typically not asymptotic, practical computation may be an issue as one may need to perform infeasibly
high-order averaging to truncate the convergent series with a good accuracy, as stressed by Nayfeh [33].

C. Nonlinear Variation of Constants Formula (VOC)

The nonlinear variation of constants formula is a useful tool for decoupling vector fields of different magni-
tudes and/or time-scales. In particular, it is instrumental for our analysis when the concerned nonlinear sys-
tem is subjected to high-amplitude periodic forcing. In such cases, the system is not even directly amenable to
the averaging theorem. Consider a nonlinear system subjected to a high-frequency, high-amplitude, periodic
forcing in the form

#(0) = Fle() + Lg(a(t), ), @(0) =0, ®)

where 0 < € < 1. The time-varying vector field (1/€)g(x(t),t/e) is assumed to be periodic in its second
argument with period T'. The system (8) is not even amenable to direct averaging, i.e., is not in the form of
(4), because f and g are not of the same order. The VOC formula allows separation of the system (8) into
two companion systems as follows [30], [24]

w(t) = g=()t), =(0)==z(),
where F'(x(t),t) is the pullback of the vector field f along the flow ¢‘? of the time-varying vector field g.
Using the chronological calculus formulation of Agrachev and Gamkrelidze [30], Bullo [34] showed that, for
a time-invariant f and time-varying g, the pullback vector field F(x(t),t) can be written as

Sk—1

F(.’B(t),t) = f(m(t)) + 2‘7 (adg(;[;(t)7 Sk)---adg(w(t), Sl)f(;c)) dsk...dsl, (10)

02
o .

k=1

where adg f = [g, f]. Now, if the vector field g is T-periodic in ¢ with zero mean, the averaging of system
(9) yields B

z(t) =2(t), z=F(2). (11)
Hence, in this case, one can recover the averaged dynamics of the original system (8) just by applying the
averaging on the pullback vector field F(x(t),t).

D. First Order Averaging after VOC

Theorem 2. Consider a NLTP system subject to a high-frequency, high amplitude, periodic forcing (8).
Assuming that g is a T-periodic in t, zero-mean vector field and both f, g are continuously differentiable,
the averaged dynamical system corresponding to (8) is written as

z(t) = eF(Z()), (12)

where F(Z(t)) = + fOT F(x(t),7)dr, and F is the pullback of f along the flow ¢J of the time-varying vector
field g as explained in Eq. (10). Moreover [24]:

o If Z(0) = x(0), then there exist b > 0 and €* > 0 such that x(t) — Z(t) = O(e) Vt € [0,b/€] and Ve €
[0,€*].

o If &* is an exponentially stable equilibrium point of (12) and if ||x(0) — x*|| < p for some p > 0, then
z(t) — ZT(t) = O(e) ¥t > 0 and Ve € [0,*]. Moreover, there exists an €; > 0 such that Ve € [0,¢1], the
system (8) has a unique, eT-periodic, locally asymptotically stable trajectory that takes values in an
open ball of radius O(1) centered at a*.

The main difference between Theorem 1 (direct averaging) and Theorem 2 (VOC and averaging) is that
the periodic orbit is O(e) from the corresponding fixed point of the averaged dynamics in Theorem 1, while
such a distance is O(1) in Theorem 2. This is particularly useful in analyzing flapping flight including wing

5of 16

American Institute of Aeronautics and Astronautics



Downloaded by UC IRVINE on February 5, 2017 | http://arc.aiaa.org | DOI: 10.2514/6.2017-1734

dynamics where the flapping angle ¢ becomes a state variable. In this case, the small distance between the
periodic changes in o(t) and its averaged value does not match reality; i.e., flapping flight is not typically
performed with a small, O(e), amplitude of flapping motion. Therefore, the application of the VOC formula
is essential in analyzing flapping flight multi-body dynamics. It should be noted that Theorem 1 is not an
option in this case as direct averaging would yield trivial results when applied to the system (3); i.e., it would
neglect the entire effects of the flapping input vector field Y.

IV. Analysis of the NLTP dynamics of a Two-DOF FWMAV

In this section, we apply the averaging techniques introduced in the last section to the two DOF FWMAV
NLTP system (2) to obtain a NLTT version of it. Then, the hovering balance problem will be analyzed using
the obtained averaged dynamics to determine the flapping requirements for hover.

A. Assuming a Prescribed Wing Motion
Ignoring the wing flapping dynamics (i.e., the ¢-dynamics) results in the following single DOF system

w(t) =g — ka, |2l () w(t) =k $(t)*, (13)

where the flapping angle ¢ is assumed to follow a cosine wave form with an amplitude ®: ¢(t) = —® cos wt.
By applying first order averaging on the system (13) and solving for the required ® to achieve hovering, i.e.,
that makes w = 0 a fixed point for the averaged dynamics of the system (13), we obtain

[ 29
(I)tm'm = m . (14)

which has been derived before by Doman et al. [7] and others.

Figure 3 shows a time simulation for the one DOF NLTP dynamics (13) with ®.;,, determined from
(14) using the morphological parameters of the Hawkmoth insect, which are given in Appendix A. It is noted
from Fig. 3 that the system (13) indeed goes into the hovering periodic orbit (w = 0). Therefore, the first
order averaging in this case is sufficient to estimate the flapping requirements.

Vertical velocity w (m/s)
o

-0.05 i
01 4
_01 5 | | | | | | |
0 5 10 15 20 25 30 35 40
Cycles (t/T)

Figure 3: NLTP system response for the Hawkmoth dynamics (13) using Py, obtained from (14) and an
initial condition, w(0) = 0.
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B. Effect of Wing Flapping Dynamics

The input to the combined body-flight-wing-flapping-dynamics (2) is the flapping torque 7, which is written
as
T, (t) = U cos wt. (15)

Clearly, the direct application of the averaging theorem (Theorem 1) to the system (2), with 7, given by
(15), yields trivial results (i.e., no effect of flapping on the dynamics). Hence, we apply the VOC formula
before averaging to obtain the pullback vector field which accounts for the effect of the forcing vector field
on the dynamics (drift) vector filed. That is, the averaged dynamics will be determined from (11).

1. VOC Formula with First Order Averaging

Thanks to the mechanical structure of the system (2) and because the non-conservative forces (aerodynamic
loads) are quadratic in the generalized velocities (w and ¢), the integral series of the pullback vector field
(10) terminates after two terms. Hence, the pullback vector field can be written as

F(z(t),t) = Z(=())+[Y, Z]bfTLP(Sl) dsy +[Y, [Y, Z]]Oft

3

1

To(s2) To(s1) dsy dsy. (16)

OS

Then, we apply the averaging formulas as defined in (6) and (7) to obtain the first term in the averaging
series

Ay (2(1) = g = kr(t)? = kaw(t) (0] + , (17)
+arrs (—2kr — ka,w(t) sign'(9(1)))

L, ha,w()@(t) — kay [9()] 9(2)+
|+t (~2ha, sign(p(1)) — ka, p(1) sign' (£(1))) |

The first order averaged system (17) can be written in terms of the symmetric product of the control
vector field Y (x) as [34]

U2
4 w?
It should be noted that because the assumed cosine waveform for 7, satisfies fOT fot T,(0)dodt = 0, application
of the VOC and first-order averaging preserves the mechanical structure of the system as noted from the

resulting averaged pullback vector field in (17).
To achieve balance at hover, we solve A1(0) = 0. The third equation implies

x(t) = Z(x(t) + Y, [y, Z]] (2(1)). (18)

2 glZw?

R (19)

Utrim =
while the other three equations are automatically satisfied at the origin. If the torque amplitude U is written
in terms of the flapping amplitude ® as U = Ipw?®, then Eq. (19) yields the exact same result for ®;,,,
as Eq. (14). That is, first-order averaging on the single DOF system (13), ignoring the wing dynamics,
is equivalent to first-order averaging after applying the VOC on the two DOF system (2). However, while
the direct averaging approach was successful in ensuring hovering for the single DOF case, its equivalent
requirements (19) in the case of multi-body dynamics is not successful in determining the right flapping
torque amplitude for hover. Figure 4 shows the response of the NLTP system (2) to the oscillating 7, (¢)
shown in Eq. (15) with an amplitude determined from Eq. (19) using the morphological parameters of the
Hawkmoth insect, which are given in Appendix A. The insect/FWMAV dynamics goes into a stable periodic
orbit that is corresponding to a vertical descent at an average speed of 0.25 m/s. That is, the control input
amplitude obtained from Eq. (19) is not sufficient to maintain the vehicle in the hovering periodic orbit.
Hence, the VOC formula along with first order averaging cannot capture some of the interactions between
the two vector fields Y and Z; i.e., aerodynamic-dynamic interactions. Therefore, higher order averaging is
invoked in such a case to capture these interactions.
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0.05
60
0 I I I I I I I .80 I I I I I I I
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(a) w (b) ¢

Figure 4: NLTP system response for the Hawkmoth dynamics (2) using Ui obtained from (19) and an
initial condition, ¢y = [0, —20.3°, 0, 0]%.

It is interesting to mention that the correct balance requirement can be obtained with the above described
procedure but at higher frequencies; that is, as we mentioned in Theorem 2, there is a frequency limit
(signified by 1/¢*) beyond which the obtained periodic orbit for the NLTP is guaranteed to be centered at
the fixed point of the averaged system. To investigate this point more thoroughly, we double the flapping
frequency and decrease the mean angle of attack «,, accordingly (almost one fourth) to maintain a similar
flapping angle amplitude ®. In this case, the aerodynamic lift due to flapping is exactly the same. This
modification of the flapping parameters while maintaining the aerodynamic lift results in a pure dynamic
effect. We use the same formula for flapping torque amplitude, Eq. (19), obtained through applying first
order averaging after VOC. The resulting NLTP system response is shown in Fig. 5. It is noted from Fig. 5
that the average vertical velocity is almost zero (i.e., hovering balance is ensured) and the periodic orbit is
centered at the fixed point equilibrium (hovering), despite (t) oscillates with a relatively large amplitude,
thanks to Theorem 2.

0.1

S-005F

Vertical velocity w (m/s)
o
=
%
Flapping angle ¢ (deg)
o

0.1

015 I I I I I I I 80 I I I I I I I
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40

Cycles (t/T) Cycles (t/T)
(a) w (®) ¢

Figure 5: NLTP system response for the Hawkmoth dynamics (2) at higher flapping frequency (two times
the recorded one) and lower «a,,, (one-fourth the recorded one) using Uy, obtained from (19) and an initial
condition, &g = [0, —22.5°, 0, 0]T.

2. VOC Formula with Second Order Averaging

If the frequency limit, typically dictated by averaging theorems (e.g., Theorem 2), is infeasibly high (e.g.,
the Hawkmoth flapping frequency is below that limit), then the trim result (19) obtained through first order
averaging after VOC formula would not be sufficient to ensure the desired equilibrium periodic orbit, as
discussed in the previous subsection. Hence, higher order averaging along with VOC formula is required in
this case. The second term in the averaging series (6) can be obtained from the pullback vector field (16)
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using the relation given in (7)

~ L (2kpp(t) — kayw(t) sign((t)))
— T (kagw(t) + ka, [9(8)] + ka, 4(2) sign((1))

% (16]%w2k:d3kdlw(t)zsign(gb(t)) + 8ka, kL U%p(t) sign’ (¢(t)) — 8ka, kr U?p(t) sign’ (o(t))+
—1612w2kg, ka,w(t)?p(t) sign’ (4(t)) — kg, ka, U%w(t)p(t) sign’ (4(t))? + 1691 2wk, sign((t))+
—8ka, kr,U%sign(p(t)) — 16ka, kr,U?sign((t)) + 1612w?ka, kro(t) |o()| +

Ay(Z) = +32120%ka, k@ (t) |p(t)] + 3212w ka, kayw(t)p(t) — 8ka, ka, Uw(t) sign(p(t)) sign’ (o(t))+

16120k, hayw(0)p(0) [9(0)] sign’«b(t)))

U (IGgI%wgkzdS — 16k, U? — 8k, kr, U+

16wir3
+1617w? k3 w(t)? + 1617w ka, krp(t)? + 3213w?k3 p(t)? — dka,ka, Uw(t) sign’ (p(t))+
+12ka, ka, Uw(t) sign'((t)) — 1615w ka, ka,w(t)@(t)? sign’(4(t)) + 8k3, U [@(1)| sign’(4(t))+

—4k3,U%p(t)? sign’((1))? + 32Lpw?ka, ka,w(t) [4(t)] — 1617w k3, o(1)* |o(1)] sign'((1))

' (20)
Apparently, as noted from the first two elements in (20), the mechanical structure of the averaged system
is ruined after second order averaging. However, the first two equations of the balance requirements

A1(0) + A2(0) =0,

are automatically satisfied. Moreover, the third equation yields the same balance requirement, Ugpipm,, as
given in Eq. (19). That is, the second order averaging does not contribute to the balance problem. This
invokes third order averaging.

3. VOC Formula with Third Order Averaging

Applying third-order averaging, as shown in Eq. (7), on the pullback vector field (16), we obtain too lengthy
and complicated expressions for the averaged dynamics to show here. Moreover, the mechanical structure is
completely ruined. As such, a pure analytical solution becomes hard to find. Since the mechanical structure
is ruined, i.e., the first two equations in the averaged system are not trivial, trim analysis at nonzero ¢ might
be required. From the multiple solutions of the nonlinear set of algebraic equations for trim, we considered
only those complying with the physics of the problem. The most feasible solution when compared with the
numerical value resulting from Eq. (19) can be written as

2 1'2 2
Usrims,, = 1.0463 ,/QTIZW. (21)

Figure 6 shows the simulation of the NLTP dynamics (2) of the Hawkmoth using the input torque
amplitude obtained form Eq. (21). The FWMAV’s descent velocity is significantly decreased from 0.25 m/s
t0 0.02 m/s. That is, the obtained equilibrium is closer to the hovering periodic orbit where w oscillates with
a zero-mean. This implies the ability of third order averaging of more accurately capturing the aerodynamic-
dynamic interactions and determining the appropriate balance requirements. However, if more accurate trim
results are needed, higher-order averaging would be required, which may be impractical to carry out.

V. Numerical Approach

In this section, a numerical approach to capture a periodic orbit of the two-DOF reduced order model is
shown. There are two main purposes of this section; first, to validate the results obtained by the averaging
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Figure 6: NLTP system response for the Hawkmoth dynamics (2) using Ui obtained from (21) and an
initial condition, ¢y = [0, —20.3°, 0, 0]%.

approach, second, to provide a combined averaging-shooting approach for the balance and stability analysis
of NLTP systems. The sought approach is intended to (i) exploit the accuracy of numerical shooting methods
in comparison to the analytical averaging approaches, hence, relaxing the need for intractably high-order
averaging, and (ii) allow usage of the analytical tractability of averaging to scrutinize the dynamical behavior
of the system.

A. Optimized Shooting Method for Capturing a Periodic Solution

Dednam and Botha [27] provided an optimized shooting approach to capture a periodic solution of a nonlinear
system. Due to its simplicity in comparison to collocation methods, we adopt such an optimized shooting
approach in this work. Unlike common shooting methods where a set of ordinary differential equations
are solved to minimize the residual function, the Levenberg-Marquardt optimization algorithm is adopted
here. This algorithm is based on two methods: the gradient descent method and the Gauss-Newton method.
According to Gavin [35], when the parameters are far from the optimal values, the Levenberg-Marquardt
algorithm operates in a way similar to gradient-descent. However, it operates similar to Gauss-Newton
method when approaching the optimal point.

Consider the following system of equations

@(t) = f(z(t), o ), (22)

where £ € R™ and f: R" x R¥ x R>g — R", and « are the system parameters. This system corresponds to
a non-autonomous vector field. Thus, a solution x(¢) to the system (22) is periodic if there exists a constant
T > 0 such that

z(t)=x(t+1T). (23)

The optimized shooting method can be applied to any system that can be expressed in the form of (22),
and, for convenience, a dimensionless time 7 is introduced such that ¢t = 7 T. Equation (22) is then written

as
dx

E =
Thus, this new variable 7 allows the simplification of the boundary conditions in Eq. (23) so that z(r =

0) = 2(r = 1) and Eq. (24) can be integrated over one period (i.e., letting 7 run from zero to one). Now,
the residual can be written as

Tf(x(rT),a,7T). (24)

1
R=T / F(@(rT), a, 7T) dr. (25)
0
According to Dednam and Botha [27], the residual depends on the number of quantities to be optimized and
can be expressed as
R = (:Jc(l) —z(0), z(1 + A7) —x(A7),..., z(1+ (p— DAT) —x((p — 1)A7-))7 (26)
10 of 16
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where At is the integration step size and p € N. The natural number p in the residual equation is a
requirement of the Levenberg-Marquardt algorithm and has to be chosen so that the number of components
of the residual is greater than or equal to the number of quantities to be optimized. Note that the number
of components in the residual function is given by pN, where N is the dimension of the system. Thus, the
objective will be to find a point on the periodic orbit, (0), that minimizes the residual.

B. Application
1. Descent Periodic Orbit Due to First-Order Averaging with VOC

In this subsection, the optimized shooting method is applied on the NLTP system (1) using flapping torque
amplitude Uypip, from Eq. (19) due to first-order averaging and VOC. The resulting point on the periodic
solution is
w(0) 0.277 m/s
$(0) = 49.48 rad/s,

which, when given as initial condition to the numerical integrator, results in the periodic orbit shown in
Fig. 8. That is, a vertical descent periodic solution, with @ ~ 0.25 m.s~!, is captured, which is expected
based on the previous discussions and simulations shown in Fig. 4. In other words, first order averaging
after VOC formula is not sufficient to determine the exact balance requirements and consequently ensure
the desired periodic orbit. In addition, we present a simulation of the NLTP system (1) with zero initial
condition (w(0) = 0 m/s and ¢(0) = 0 rad/s) in Fig. 7, which shows the transient phase before reaching
the stable periodic orbit.

(27)

200

200
150 150 b
100 100 b
~ 50F ~ 50F 1
£ e |
S 5o S 5o 1
-100 -100 7
-150 _ = -150 q
200t ‘ | | | | 200t ‘ ‘ ‘ ‘ ‘
0 0.05 0.1 0.15 0.2 0.25 0.3 0 0.05 0.1 0.15 0.2 0.25 0.3
Vertical velocity w (m/s) Vertical velocity w (m/s)
Figure 7: System trajectories using Uirim, ., Figure 8: The corresponding periodic orbit
with zero-initial conditions. to Utrima g -

2. A Close-to-Hover Periodic Orbit Due to Third-Order Averaging with VOC

In this subsection, the optimized shooting method is applied on the NLTP system (1) using flapping torque
amplitude Uypip, from Eq. (21) due to third-order averaging and VOC. The resulting point on the periodic
solution is

w(0) 0.033188 m/s
$(0) = 50.32 rad/s,

which, when given as initial condition to the numerical integrator, results in the periodic orbit shown in Fig.
10. That is, a vertical descent periodic solution, with @ ~ 0.02 m.s™!, is captured, which is expected based
on the previous discussions and simulations shown in Fig. 6. In other words, third order averaging after
VOC formula is still not sufficient to determine the exact balance requirements and consequently ensure
the desired periodic orbit. In addition, we present a simulation of the NLTP system (1) with zero initial
condition (w(0) = 0 m/s and ¢(0) = 0 rad/s) in Fig. 9, which shows the transient phase before reaching
the stable periodic orbit.

(28)

C. Solving for Uy, Simultaneously with the Periodic Orbit

In this subsection, we use the same numerical technique (optimized shooting) to simultaneously obtain the
trim requirements to ensure a desired periodic orbit (e.g., hovering) along with capturing the periodic orbit
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itself. This is achieved by considering the parameter Uy,;,,, as a variable rather than an input to the algorithm
and adding one more equation to the optimized shooting algorithm that ensures that the found periodic orbit
is indeed the hovering one. More precisely, we require

@=0 & 2(0)=z(T) (29)

which is equivalent to requesting a periodic solution for the state z representing the vertical displacement of
the FWMAV.

Applying the optimized shooting method on the two DOF FWMAV system (1) with the additional con-
straint (29), and starting the algorithm with an initial guess for Uy,.;,, as obtained from averaging approaches
(Utrimy . OF Utrims,, ), we obtain the following results

w(0) = 0.0177 m/s (30)
$(0) = 50.3857 rad/s,
with a flapping input torque amplitude
2 12 2
Urim...., = 1.05169 4| =L FY" (31)

kr

Figure 11 shows a time simulation of the NLTP system (1) with zero-initial conditions and Uspim,,,.,. It is
noted from Fig. 11 that the system tends rapidly (after around 20 cycles) to an average vertical velocity
value which is very close to zero, i.e., a hovering periodic orbit. Fig. 12 shows a similar simulation with an
initial point on the periodic orbit as resulting from the optimized shooting method, i.e., Eq. (30).

0.2 200
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100 ,
50 ,
S 50 8
-100 - 4
150 1

.
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I I I I 201 I I I I I
5 10 15 20 25 30 35 40 -

o

o

@
T

e
T

Vertical velocity w (m/s)
o
o &
T
d(rad/s)
)
T

4

o

a
T

0.1 | | |
0

0.05 0.05 0.1 0.15 0.2 0.25 0.3
Cycles (t/T) Vertical velocity w (m/s)
Figure 11: Vertical velocity w using Figure 12: The corresponding periodic or-
Utrim,yae. for 40 cycles. bit t0 Utrim,paer -

D. Discussion

One might argue that if the optimized shooting method yields the accurate balance requirements for hov-
ering (an accurate Uy, ) then the analytical averaging techniques might not be necessary. To address this
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argument we mention here two important points. First, the optimized shooting method explained above is
not guaranteed to yield the correct results if it is started at any arbitrary initial guess. The initial guess has
to be close enough to the correct result, and this is where the proposed self-contained combined averaging-
shooting approach proves its effectiveness. Second, the work presented in this paper is a first part of an effort
that aims at analyzing not just the balance of FWMAVs but also the stability characteristics. Although
FWMAVs stability could be investigated numerically through Floquet theory after a periodic orbit is cap-
tured, but this would only yield a yes/no answer to the stability question without any insights as to why
this system has been rendered stable/unstable and what are the stabilizing/destabilizing mechanisms. On
the other hand, using the accurate balance requirements obtained from the proposed combined averaging-
shooting approach and feeding it back to the averaging procedure to obtain a linearized averaged system at
a specific equilibrium point would allow us to scrutinize the stability characteristics of the system in order
to gain insights into different stabilizing/destabilizing mechanisms (e.g., positive/negative stiffness) and to
reveal any potential unconventional stabilizing mechanism (e.g., vibrational stabilization). Finally, Fig. 13
summarizes the analysis procedure and results in this paper.

VI. Conclusions

In this paper, we considered a reduced order model for a two-degree-of-freedom flapping-wing micro-air-
vehicle (FWMAV) that is confined to move along vertical rails. We relaxed the two common assumptions
(neglecting wing inertia and performing direct-averaging) usually adopted in the balance and stability anal-
ysis of FWMAVs and insects. We noted that while direct averaging provides non-trivial results, though
inaccurate, when ignoring the wing inertial effects, it completely fails if this assumption is relaxed; it ne-
glects the entire flapping effects. To overcome this predicament, we provided a mathematically rigorous
analysis for the balance and stability of FWMAVs by combining tools from chronological calculus, geometric
control, and averaging. In particular, the balance problem (i.e., ensuring a specific periodic orbit corre-
sponding to a desired equilibrium) was investigated. The nonlinear variation of constants (VOC) formula
was found to be a necessary tool to analyze such a multi-body, multi-time-scale dynamical system. However,
we found that applying first-order averaging after the nonlinear VOC formula is not capable of capturing

FWMAV Balance Analysis

) 4 A 4
| No wing dynamics | Wing dynamics included

v

(Direct averaging may be sufﬁcienD

y A
High enough flapping frequency

Lower flapping frequencies

Y l

[ First order averaging after VOC ] Proposed Approach

formula may be sufficient

A 4 Initial Guess 4

Optimized Shooting Method VOC+Averaging
Accurate Trim
v Requirements v
Periodic Orbit | | Stability Characterization |

Figure 13: A schematic for the analysis procedure and results in this paper.
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the aerodynamic-dynamic interactions in the considered system (flapping frequency is not high enough) as
manifested by a persistent drift from the hovering periodic orbit. Applying third-order averaging after the
VOC formula (as second-order averaging does not contribute to the balance problem), we achieved a periodic
orbit that is considerably closer to the desired hovering periodic orbit. Additionally, we showed that if the
considered system has high enough frequency, applying first-order averaging after the VOC formula would
be enough to ensure the correct balance requirement.

On the other hand, an optimized shooting method was adopted to numerically capture the resulting
periodic orbits. To circumvent providing an accurate initial guess as needed by shooting methods, we
proposed combining the averaging approach with the shooting method; the result of first-order averaging
after the VOC formula is a convenient initial guess. The shooting method was then used to determine a
more accurate estimate for the hovering balance flapping requirements than those resulting from higher-
order averaging. Moreover, these requirements (flapping parameters) can then be fed to the analytically
determined higher-order averaged dynamics to scrutinize the dynamical behavior of the system for discovery
of potential unconventional stabilizing mechanisms (vibrational stabilization), which will be considered in a
future work by the authors. As such, the proposed combined averaging-shooting approach has the advantage
of (i) being self-contained in the sense that, unlike typical shooting methods, it does not require an initial
guess; (ii) providing more accurate results than the analytical averaging approaches, hence relaxing the need
for intractable high-order averaged dynamics; and (iii) allowing a deeper scrutiny of the system dynamics,
in contrast to the numerical shooting methods.

Appendix

A. Hawkmoth Morphological Parameters
The morphological parameters and the wing planform for the hawkmoth, as given in [1] and [36], are

R =51.9mm, S = 947.8mm?, ¢ = 18.3mm,
71 = 0.44, 7o = 0.525, f = 26.3Hz, ® = 60.5°,
am = 30°, mp = 1.648gm, and Ly}, = 2080mg.cm?,
where R is the semi-span of the wing, S is the area of one wing, ¢ is the mean chord, f is the flapping

frequency, ® is the flapping angle amplitude, m; is the mass of the body, and I, is the body moment of
inertia around the body y-axis. The moments of the wing chord distribution 7; and 7, are defined as

R
I :2/ rke(r) dr = 2SRF7Y.
0

As for the wing planform, the method of moments used by Ellington [30] is adopted here to obtain a chord
distribution for the insect that matches the documented first two moments 7; and 75; that is,

C(T):g(%)/\fl (1_%)‘Y717

A=y [ ]y = (1) [RYER -1,
21 1 2 1
and B = [, P71 (1 — 7))L dr.

The mass of one wing is taken as 5.7% of the body mass according to Wu et al. [13] and is assumed uniform
with an areal mass distribution m’ The inertial properties of the wing are then estimated as

m—Qmerc r)dr, y—2f m’d23()dr

2 [BEm/re(r) dr I
7Iz :IL+Iy7 and Teg = OT = %7

where

where d is the chord-normalized distance from the wing hinge line to the center of gravity line. The parameters
used in system (2) are then evaluated as

kq, = 0.0353739, kr = 0.000621676,
kaq, = 0.333915, kg, = 16.5766
and Ip = 1.37801 « 107.
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