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Aerodynamic-Dynamic Interactions and Multi-Body
Formulation of Flapping Wing Dynamics:
Part I - Modeling

Ahmed M. Hassan* and Haithem E. Taha'
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Flapping flight dynamics constitutes a multi-body, nonlinear, time-varying system. The
two major simplifying assumptions in the analysis of flapping flight stability are neglecting
the wing inertial effects and averaging the dynamics over the flapping cycle. Relaxing the
first assumption invokes a multi-body formulation of the equations of motion. In this work,
the full, multi-body, equations of motion governing the longitudinal flapping flight dynamics
near hover are considered. The aerodynamic loads are represented through a relatively
simple analytical model that accounts for the dominant contributions; e.g., leading edge
vortex and rotational effects. The dynamic and aerodynamic models are coupled together
to account for mutual interactions.

I. Introduction

The flight dynamics of flapping-wing micro-air-vehicles (FWMAVs) constitutes a nonlinear, time-varying,
multi-body dynamical system. It is also a multi-scale dynamical system because of the associated two time
scales; the time scale of the fast flapping motion and the associated aerodynamic loads, and the relatively slow
time scale of the body motion. The interaction between the periodic aerodynamic loads and the body motion
may induce some interesting stabilizing mechanisms [1, 2]. All of these interesting dynamical behaviors and
challenges led to a recent flurry in the research on the flight dynamics of FWMAVs.

Two major assumptions are usually adopted in the flight dynamic analysis of FWMAVSs [3]. These include
neglecting the wing inertial effects and averaging the dynamics over the flapping cycle. The first assumption
may be justifiable because the mass of the wing is quite small when compared to that of the body (less
than 5% [28]). Moreover, adopting this assumption removes the multi-body nature of the problem and
yields equations of motion of exactly the same form as those governing the flight dynamics of conventional
aircraft. As such, most of the previous work on dynamics and control of flapping flight have neglected the
wing inertial effects [1—12]. Sun et al. [13] derived the full dynamic equations of flapping flight and showed
the specific terms that are omitted by neglecting the wing inertial effects. They simulated the reduced
system, quantified these eliminated terms, and showed that these terms are of a small magnitude and, hence,
justified such an assumption. On the other hand, few attempts have aimed at investigating the effects of wing
inertia. Orlowski and Girard [14] showed that neglecting the wing mass may be problematic in dynamics
and control studies as it may lead to different dynamical behaviors. Also, Bolender [15] concluded that for
proper development of control laws for FWMAVSs, the wing mass should be included. Weihua and Cesnik
[16] studied the dynamic stability of flexible FWMAVs including the wing inertial effects. They found that
increasing the wing inertia leads to destabilizing effects in both of the longitudinal and lateral dynamics.
For more details about the inertial effects of the wing motion on the dynamics of flapping flight, the reader
is referred to the review article by Taha et al. [3] and the references therein.

In this work, the full, multi-body, equations of motion governing the longitudinal flight dynamics of
FWMAVs near hover are considered. A relatively simple, analytical aerodynamic model that accounts for
the dominant contributions (e.g., leading edge vortex and rotational effects) is adopted. Combining these two
models, the nonlinear, multi-body, time-varying mechanical equations are derived. The derived equations
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will then be used for trim and stability analysis of hovering FWMAVs/insects in the second part of this
work.

II. Wing Kinematics

Four reference frames are required to study the flight dynamics of a rigid-wing FWMAV: an inertial ref-
erence frame {zi, yr, 21}, a body-fixed reference frame {zp, yn, 2p }, a stroke plane reference frame {zs, ys, 25},
and a wing-fixed reference frame {zy, yw, 2w } for each of the flight vehicle’s wings. Because only longitudinal
flight is considered in this work, symmetric wing motions are assumed.

By convention, the zy-axis points for-
ward defining the vehicle’s longitudinal St!‘o}( o -
axis, the y,,-axis points to starboard, and P, ane NG
the zp-axis completes the right-handed .. B =
frame. The conventional yaw-pitch-roll
(v-6-¢) Euler angle sequence, tradition-
ally used with fixed-wing aircraft [17], is Side View of
adopted here to describe the body’s iner- Wing Section
tial orientation. Because only longitudi-
nal flight is considered, however, only the
body’s pitch angle 6 is required.

The stroke-plane is inclined to the
horizontal plane with a stroke plane an-
gle 8. That is, the stroke plane refer-
ence frame is obtained from the inertial Side View of
frame through a rotation by an angle 8 the Body
about the yj-axis. The wing-fixed frame
is defined such that it is aligned with
the stroke plane frame at zero wing kine-
matic angles. The wing motion is typi-
cally dest.zrlbed usme thret? EUlBI angles: Figure 1. A schematic diagram for a FWMAYV hovering in a general
the flapping angle ¢ (describing back and g jentation.
forth motion along the stroke plane), the
plunging angle 9 (describing out of stroke plane motion), and the pitching angle 5 (describing rotation of
the wing about a chord line). Consistent with observations of biological flyers [18, 19], the wing motion is
restricted such that the plunging angle 1 remains zero. Figure 1 shows a schematic diagram for a FWMAV.

m——

III. Equations of Motion

Since the two wings move symmetrically, the equations of motion are defined in terms of five generalized
coordinates: g =[x, z, 8, ¢, 1]T, where = and z are the inertial coordinates of the body center of mass
along the xj and 21 axes, respectively. In the following subsections, the principle of virtual power [20] is used
to derive the equations of motion

ov; : .
Z [mi(: + Pe;) — fil - %"‘[hi"‘mipcg x b — M|
J

8&}5
dq;

=0, (1)

i=b,w

where j = {1,...,5}, m; is the mass of the i*" rigid body, v; is the inertial velocity vector of its reference
point (the reference points of the body and wing frames are the body’s center of gravity and the hinge root,
respectively), pe; is the vector pointing from the reference point of the i*" rigid body to its center of gravity,
w; and h; are the angular velocity vector of the i*" rigid body with respect to the inertial frame and the
corresponding angular momentum vector, respectively, and f; and M; are the external force and moment
vectors applied on the i*! rigid body at its reference point.
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A. Body

The linear velocity of the reference point of the body axis system (the body’s center of gravity) and the
corresponding angular velocity are written as

v, = Ti1 + 2k and Wp :93b :éj[,

where i, j, and k are unit vectors along the x, y, and 2 directions in the axis-system indicated by the
subscript. Thus

dvy, . Ovy 8& B vy dvy,

P50 g ok 5T =0 5 =0
(‘)wb N (‘)wb o 8wb . 8(.0]3 _ (‘)wb o
5z -0 Bz 0 T o =0 5 <0

and
i’b - I'!.‘[ + :Z:k[.

The angular momentum vector of the body about the body center of gravity and its inertial derivative are
given by ) ) .
hb = beﬁj[, h;b = beﬁj[.

The aerodynamic contribution of the body is neglected and, hence, the body exhibits gravitational forces
only with no moments. Thus, the body force in the inertial frame is written as

fg:) = [01 01 mbg]T'

B. Wing

The linear velocity of the reference point of the wing frame (the hinge root) and its angular velocity are
written as ) ) )
Uy = (& — znfsin@)ir + (2 — znfcos Ok,  wy =05, — @ks + 0]y

Thus
vy . Ovy Ovy . Ovy Ovy
E =11 Fro k1 89 = .L'h(Slﬂai.I + cosﬁkl] a(p =0 an =0
Owy Owy _o Owy . Owy _ Owy .
or . 9z 9§ N g v Tan v
and

Dy = [ — zn0sin 0 — £,6? cos O]y + |5 — zn0 cos 0 + 1,67 sin O] k;.

The rotation matrices from the the stroke plane frame to the wing frame are

cosp —sing 0 cosp 0 —sinp
Ry,=| sing cosg O , Ry = 0 1 0 )
0 0 1 sinnp 0 cosp
and
Rys = R;R,.

The wing angular velocity vector in the wing frame is

Wi 0 0 q':rsinn—é}cosnsin(p
wi =1 wy | =Rus 0 Tl | = fcosp+7
w3 — 0 —@pcosn — Qsinnsin(p
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The position vector pointing from the hinge root to the wing center of gravity is pey, = —diw +7c¢J, Where
d and 1.4 are the distances between the wing root hinge point and the wing center of gravity along the
negative ry-axis and the yy-axis, respectively. Thus, the inertial acceleration is obtained as

p1 d(wj + w3) — Teg(ws — wiws)
P = po | = —d(is+wiws) — reg(w? +w?)
P3 d(wy — wiw3) + Teg(w1 + waws)

Assuming the wing reference frame is fixed in the wing principal axes, the inertial time derivative of the
angular momentum vector represented in the wing frame is written as

. (w) ?:11 JEI—:l:ﬁ';-’l + (Iz - Iy)w‘zw.‘}
h’w = hg = th.Jy + (I:: - JEI—2:)‘-‘-"'1{-‘-"'3
h3 T, + (Iy — Ix)wlwg

The wing is subject to aerodynamic and gravitational forces. Noting that the yp-components of the
aerodynamic force on each wing are equal and opposite, the force vector applied on the wing is written as

(w) (D

Fy 0
fa=1 0 - 0 ,
F, My g

where F;, and F, are the aerodynamic loads in the zy and zy directions, respectively. The moment vector
comprises three contributions: aerodynamic, gravitational, and the control torque. The aerodynamic con-
tribution M., is determined by integrating the radial distributions of the forces F, and F, over the wing.
That is, Maw = Mgiw + Myj,, + M kg, where

R R R
M, = 2/ F.(r)rdr, M, = 2/ F(r)dae(r)dr, and M, = —2/ F,(r)rdr,
0 0 0

where F(r) and F(r) are the two-dimensional aerodynamic loads on an airfoil that is at distance r from the
wing root and dg.(r) is the distance between the hinge line and the quarter-chord line at each airfoil section
along zy direction. It should be noted that M, and M, will not contribute to the body dynamics because
they cancel out due to symmetry of both wings. However, they will contribute to the wing dynamics.
Clearly, the actuating torques have to overcome these hinge moments. The gravitational contribution is
written as Mg, = (—diw + TegJy) X mwgks. The last contribution (the control torque) is written as
Mcy = —71yks + Tjy, where 7, and 7, are the actuating torque in the flapping and pitching directions,
respectively.

Constructing all the required terms to apply the principle of virtual power (1), the equations of motion
are obtained as

My (pl (cos B cosmcos g — sin Bsinn) + p3(cos Ssinrcos g + sin B cosn) + P2 cos [ sin p+

—  zpfsinf — 02 cos 9) + myt = Fy(cos B cosncosp — sin Bsinn) 4+ F;(cos Bsinmcos ¢ + sin 5 cosn)
(2)

— My (gi'l(sinﬁcosqoosgo + cos Bsinn) + pa(sin Bsinncos ¢ — cos B cosn) + pa sin B sin -+
+ zpfcosf — 62 sinﬁ) + my(w — g) = —F4(sin B cosncos ¢ + cos Bsinn)+ (3)

— F.(sinBsinncosy — cos S cosn)
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My [—Ih (8 d(cos 3 cosncosf cosp + sin 5 cos i sin f cos ¢ — sin Ssinncosf + cos S sinnsin 6)+

6 1og sin g cos(8 — ) + 62 (—rcg sin psin(B — ) + d cos 7 cos psin(B — 0) + dsin g cos(8 — 9)))+
U (—sin B regsin + dsin B cosncos  + dcos Bsinn) +
w (—cos B rcgsin(p—i—dcosﬁcosncosgo—dsi_nﬁsinn)]—i—

1,0 + znmy, [pg sin B sinn cos f cos ¢ + g1 (cosmcos psin(B — f) + sinncos(f — 7))
P (cos Bsinnsin f cos ¢ — cos B cosncos ) — sin B cosnsinfl) 4 pa sin @ sin(S — 0) + gcos 0+

o0 — isin @ — wcosf| — hgsingsing — hy cosnsin g + hy cosp =

Tpcosp — F, Ih(sinﬁ(cosnsinﬂ — sinrcos @ cos @) —I—cosﬁ(sinnsinl?cosq::—l—cosncosﬂ))—l—

Fyxp(cosncospsin(B — 6) +sinncos(f — 0)) — My cosnsing + My cosp — M, sinnsing
(4)

Teg Th mwcosqo(écosﬂsi_nﬁ — @sinf cos B — 262 cosfcos B — 2 62 sinl?sin,@)—i—
Teg Ty cosqo(t},cosﬁ—i—u ésinﬁ —w sinfB+w écosﬁ)+
d Ty mwoosnsin(p(écosﬁsinﬁ —@sinfcos B —2 6% cosfcos B — 2 62 sinﬂsinﬁ)—l—

dmwoosnsin(p(ﬂcosﬁ—l—u fsin 8 — i sin B+ w écosﬁ) + hysinng — hgcosy =
T + Mygsinn — M cosn
(5)

d zp my (ésinnoosﬁoosgosinﬁ — @sinnsin f cos p cos B — 0 cos 1 cos f cos f — @ cos 77 sin O sin S+
2 62 sin 7 cos f cos @ cos B — 2 62 sinnsin § cos psin B — 2 62 cosncosBsin B + 2 62 cosnsi_nﬁcosﬁ)—l—
d my (u sin7cos pcos B+ 1 cosnsinB + u @ sinncospsin B — u  cosncos B — sincos @sin B 1w+
W coscos B+ w B sinrcos pcos B+ w éoosnsin,@) + hy =175+ My,

(6)

where my, = my, + My

IV. Aerodynamic Model

We use an aerodynamic model similar to that developed in an earlier work [21, 22], which is based on
[23-25]. However, the derivation here is clearer, more rigorous, and more general. This model accounts for
the dominant contributions (i.e., leading edge vortex and rotational contributions) using a quasi-steady, strip
theory formulation.

A two-dimensional airfoil undergoing a translational motion with velocity components V, and V, in the
wing frame and a rotational pitching motion w, is subjected to the following forces [23-25]

F, = mpcAzV,w, 7)
F! = —ipagcV?sina — mpcAzVowy '
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where ¢ is the chord length, Az is the distance between the pitching axis (hinge line) and the three-quarter
chord point, ag is the two-dimensional lift curve slope that will be replaced by the three-dimensional lift
curve slope when integrating over the whole wing, a is the angle of attack that is given by o = tan™! l‘:::,
and V2 =V2+ V2

Using the kinematics described above, the velocity of a wing section that is a distance r from the wing
root is written as

VO (r) = [Rus][Rplvly) +w(? x iy, (8)

where the rotation matrix Rg is written as

cosfB 0 —sinf
Rg = 0 1 0
sin 0 cosf

We use the following approximation for V2 sina in order to be represented in terms of the state variables

stina:V2£:|V|Vz:(|V|Vz) +§:M Ax;, (9)
Vi 0o = 9T lae—o
where zis are the body state variables; u, w, and 6. As such, we obtain
Visina = r2sinng¢|@|+u (2 T cos Bsinn cos ¢ || + rsin S cosn |50|)+
+ w (rcosﬁcosn|gb| -2 rsin,Ssi.nncosgohbl)-l—
(10)

_|_

A (—rcosnsi.nnp—i—? zp sin Bsinncosf cosp — 2 x cos Bsinn sin f cos p+
— zpcosfcosncosf — sinﬁcosnsinﬁ).

The Aerodynamic model, accounting for the nonlinear dependence of the non-autonomous aerodynamic
loads on the aerodynamic state variables (u,w, g), can be written as follows

%X(m,t) Xo(t) Xu(t) Xu(t) Xg(t) Xou(t)
e Z(x,1) Zo(t) Zu(t)  Zuw(t) Zy(t) u Zni(t)
=Lz, t) | = Lo(t) |+ | Lu(t) Lu(t) Lyt w |+ | Lul) |, (11)
+M(z,1) Mo(t) My(t) My(t) My(t) 6 M (t)
+N(z,t) No(t) Nu(t) Nuw(t) Ng(t) Nul(t)

where X(.), Z(.), £(.), M(.), and N(.) are the forces and moments in the wing frame. It should be noted that
in this model, we assume a general stroke plane angle 3 , and a general variation in the wing pitch angle 7.
As such, we obtain the following forces and moments derivatives
Xu = pm (kf]] - %1—12) SiIl?} ?}Lp 3 Z{) = —%p CLQIN Si]:l?} Lplﬁp| — pm (kf]] - %1—12) cosmn T;.'(p
Lo =—3p Cr Isisinn ¢|p| — pr (k21 — 3Io2) cosn i
Mu = %(—%p OL“IQ'Z Siﬂ'!}' (.p |£p|—p7l’ (kf]g — %1—13) COBT,' ?}Lp) —k ZO 3 N{) = —pﬂ' (kfz] — %1—22) Si]:l?} T;.'(p
Xu = pr (kIoy — 11o2) (cos Bsinn cos ¢ + sin B cosn) 1
X = —pm (kIoy — 1o2) (sin Bsinncos o — cos Beosn) 7
Xy = pr(kliy — Ii2) sinncosg ¢ — pqr(zh (kIo1 — $o2) (cosmcos (B — ) — sinncos psin (B — 0)) +

+ cospsing (kfn — %1—12))1}'
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Xu = prcosgpf (kIoy — ifog) (u (cos Bsinncos ¢ + sin B cosn) + w (cos S cosn — sin B sin 7 cos (p))—l—

— pqr(zh cos ¢ (klpy — %102) (cosmcos (B — @) — sinncos psin (8 — 6)) + cosnsinp (kl1; — %1—12))8‘2

Zy = —1pCr I11(2cosBsinncosy +sinBcosn)|¢| — pr (klor — $1o2) (cos B cosncosp — sin Bsinn) 7
Zy = pr(kloy — %1—02) (sin Bcosmcos g + cos Bsinn) 7 — 3p Cr_I11(cos Bcosn — 2sin Bsinncos @) ||
Zy = 3pCpIycosnsing ||+

+ pCrIi1|¢] (Ih sin Bsin 7 cos f cos ¢ + % cos B(2zy sinnsin f cos ¢ + T cosn cos )+

+ LzpsinBcosysin 9) + pm zp cosncos psin(B — 6) ($Ioz — klor) 1+

+ pm zpsinncos(B — 6) (3Ioz — klo1) 7 — prsinnsing (kl1y — 3112) 17— prcosncosp (kI1y — 1112) ¢
Zy = —pmcospb (KIoy — ifog) (u (cos Bcosmcosyp —sin Bsinn) + w (sin S cosncos g —|—c05,85i11n))—|—

+ 62 (27rpa:h cos ¢ (3102 — klo1) (cosmcos psin(B — 6) + sinncos(B — 6)) +

— 2mpsinnsingcosy (kI — %1—12))

L, = —%pCp I (2cosBsinncosy+sinBcosn)|¢| — pr (kly — $112) (cos B cosncosp — sin Bsinn) 7
Ly, = pr(kly— %Im) (sin B cosmecosy + cos Bsinn) 1 — %p Cr 121 (cos fcosn — 2sin Bsinncos ) |¢]
Ly = ipCr.Isicosnysing |¢|+p Cr Do |¢| (:Eh sin 3 sin 7 cos f cos g+

+ 3 cosB(2zpsinnsinf cos g + zp cosncos ) + Sy sinﬁcosnsinﬁ) +
+  przy (32 — k) 5 (oosncos«psin(ﬁ — ) +sinncos(f — 9))—1—

— pr (kI — %1—22) (sinnsintp 1) — COST) COS (p)
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+ +

—pm cosg (kI — iflg) (cos B cosncos p — sin Bsing) 6 u+
pm cos (kI — %1—12) (sin B cos 7 cos ¢ 4 cos Bsinn) 6 w+

62 (2p7r:ch cos ¢ (3112 — kl11) (cosmcos psin(8 — ) + sinncos(B8 — 6)) +

2pm sinnsin g cos ¢ (kla; — %Izz))

%(—%p Cr.I12(2cos Bsinncos ¢ + sin Bcosn) |¢| — pr (kIoz — $os) (cos B cosncos ¢ — sin Bsinn) n)—l—
kZ

u

%(pﬂ' (kIoz — 1os) (sin B cosncos ¢ + cos Bsinn) 1) — 1 p Cp_I12(cos B cosn — 2sin Bsinn cos ) |(p|)—|—
k Z,

%(%p Cr Iaacosysing ||+ p Cr, 12 || [a:h sin 3 sin 7 cos f cos p+
1 cos B(2zy sinnsin 6 cos ¢ + z cosncos ) + Sy sin B cos nsinﬂ] +

pray cost cos psin(B — 0) ($los — kloz) 7 + przy sinncos(8 — 6) (3os — kloz) 1+
prsinnsing (kla — 3I13) 7 — preosneosp (kIiy — 1hs) ¢ | — k Zg

2 —pm (kIoz — 11os) cos 9[u (cos Bcosmcosp —sin Bsinn) — w (sin S cosncos p + cosﬁsinn)]—i—
62 |2pmzy (3103 — klpz) cos ¢ (cosmcospsin(B — ) + sinncos(B — 6))+

2pm (kflg — %113) sinnsin(pcos«p]) —k Zn
—pm (kI — %1—12) (cos Bsinncosw + sin Bcosn) 7

pr (kIi1 — $I12) (sin Bsinncos ¢ — cos Bcosn) 7
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Ny, = pﬂT(Ih (kI — if]g) (cosmcos (B — 6) — sinncos psin (8 — 6)) + cosnsinp (kla; — %1—22)) 7+

—  pr (kIz — Iz2) sinmcosg ¢

Nn = —pm (kI — 3112) cos 9(u (cos Bsinm cos g 4 sin 3 cosn) + w (cos B cosn — sin S sinn cos (p))—i—

+ pm §? (Ih cos ¢ (kI; — $112) (cosmcos (B — 6) — sinncos psin (B — 6)) + cosnsin (klo; — %1—22)),

where k = ¢,(1 —zor), ¢r is the root chord, ., is the position of the hinge point along z,, normalized by the
root chord, and zy, is the distance from the vehicle center of mass to the root of the wing hinge line (i.e., the
intersection of the hinge line with the x,-axis). Also, p is the air density, Cf_ is the three-dimensional lift

curve slope of the wing, ¢(r) is the spanwise chord distribution, R is the wing radius, I, = 2 fOR r™e™(r) dr.

V. Aerodynamic-Dynamic Interaction

As explained in Sec. IIT and Sec. IV, the aerodynamic loads generated by the wing oscillatory motion
are represented as a function of the wing variables; ¢ and 7, as well as the body variables; u, w, and 6, in
addition to the stroke plane angle 8. As such, the interaction between the body motion and the generated
aerodynamic loads by the wing can be revealed. This interaction is explained in Fig. V. This allows for
a more accurate trim and stability analysis. More precisely; the intuitive notion of achieving averaged lift
over the flapping cycle equals to the vehicle weight is sufficient to achieve balance at hover has been refuted
by Taha et al. [26] by revealing a negative lifting mechanism emanating from an aerodynamic-dynamic
interaction source. As such, using the above developed model for a rigorous trim and stability analysis
allows for a better scrutiny of the complex behavior of such a system which is considered in the second part
of this work.

N(t) and D)

Wing Motion

Input Torques Top & TIL__

Y

Coupled Wing-Body

Wing speed, AoA & Pitching Vel Aerodynamic Loads
> —y

+ Aerodynamic Model >
Vg,V ;and Wy F,Fz .and Moments Dynamics

A J

Body Motion
u ), W) and 8t

Figure 2. A schematic diagram for the aerodynamic-dynamic interaction in a FWMAV.

VI. Simulation

In this section, an open-loop time simulation is performed for the full flight dynamic model. The control
input torques are assumed to be sinusoidal as follows

7, = U, coswt

T, = U, sinwt

where U, and U, are the flapping and pitching torques’ amplitudes respectively. In this simulation, the
Hawkmoth morphological parameters, given in Appendix A, are adopted with zero-stroke plane angle, i.e.,
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Figure 3. Full flight dynamic model simulation using the Hawkmoth parameters over three flapping cycles.

B = 0. Figure 3 shows a time simulation for the full flight dynamic model developed earlier and using
the Hawkmoth morphological parameters. It is noted from the simulation that the open-loop dynamics is
unstable especially the body pitching and wing pitching modes. The flight stability of a reduced-order model
is scrutinized in the second part of this work.

VII. Conclusion

The longitudinal flight dynamics of flapping-wing micro-air-vehicles (FWMAVs)/insects is considered.
The equations of motion of the multi-body problem including the wing inertial effects are derived. A simple,
analytical aerodynamic model that captures the dominant contributions (leading edge vortex and rotational
contributions) is adopted. In the second part of this effort, The flight dynamic model is then represented in a
mechanical control framework in order to rigorously analyze the balance problem and assess the longitudinal
flight stability near hover.
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Appendix

A. Hawkmoth Morphological Parameters
The morphological parameters and the wing planform for the Hawkmoth, as given in [13] and [27], are
R =51.9mm, S = 947.8mm?, € = 18.3mm,

71 = 0.44, 79 = 0.525, f = 26.3Hz, & = 60.5°,
am = 30°, mp = 1.648gm, and Iy}, = 2080mg.cm?,

where R is the semi-span of the wing, S is the area of one wing, € is the mean chord, f is the flapping
frequency, ® is the flapping angle amplitude, m; is the mass of the body, and I is the body moment of
inertia around the body y-axis. The moments of the wing chord distribution 7#; and 73 are defined as

R
Iy = 2/ r®e(r) dr = 2SR*¥.
0

As for the wing planform, the method of moments used by Ellington [27] is adopted here to obtain a chord
distribution for the insect that matches the documented first two moments #; and 75; that is,

R LR

A= 'Fl I:Tﬂl"(ﬂl_‘le) - 1] y Y= (1 - 711) I:ﬁ;"“(gl__:fl) - 1] ’

T2—T1

and B = [} #1(1— 7)) dr.

where

The mass of one wing is taken as 5.7% of the body mass according to Wu et al. [2%] and is assumed uniform
with an areal mass distribution m’ The inertial properties of the wing are then estimated as

I, =2 fDR m'r?e(r)dr , I, = 2fDR m'd2c3(r) dr

2_[& m're(r) dr I
:Iz:I::‘i‘Iy: and Tcg:DT:%:

where d is the chord-normalized distance from the wing hinge line to the center of gravity line.
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