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Flapping flight dynamics constitutes a multi-body, nonlinear, time-varying system. The
two major simplifying assumptions in the analysis of flapping flight stability are neglecting
the wing inertial effects and averaging the dynamics over the flapping cycle. The challenges
resulting from relaxing these assumptions naturally invoke the geometric control theory
as an appropriate analysis tool. In this work, a reduced-order model (extracted from
the full model derived in the first part of this work) for the longitudinal flapping flight
dynamics near hover is considered and represented in a geometric control framework. Then,
combining tools from geometric control theory and averaging, the full dynamic stability as
well as balance analyses of hovering insects are performed.

I. Introduction

The flight dynamics of flapping-wing micro-air-vehicles (FWMAVs) constitutes a nonlinear, time-varying,
multi-body dynamical system. It is also a multi-scale dynamical system because of the associated two time
scales; the time scale of the fast flapping motion and the associated aerodynamic loads, and the relatively slow
time scale of the body motion. The interaction between the periodic aerodynamic loads and the body motion
may induce some interesting stabilizing mechanisms [1, 2]. All of these interesting dynamical behaviors and
challenges led to a recent flurry in the research on the flight dynamics of FWMAVs.

Two major assumptions are usually adopted in the flight dynamic analysis of FWMAVs [3]. These include
neglecting the wing inertial effects and averaging the dynamics over the flapping cycle. The second major
assumption (averaging the dynamics over the flapping cycle) has been refuted in the work of Taha et al. [1, 2]
for hovering insects with a relatively small flapping frequency (e.g., hawkmoth and cranefly). They showed
that in spite of the deceptive large ratio of the flapping frequency to the natural frequency of the body
motion (30 for the hawkmoth and 50 for the cranefly), there is a strong interaction between the system’s
two time scales that considerably affects the flight stability. This interaction is essentially neglected when
direct averaging is used. Thus, Taha et al. stressed the use of higher-order techniques for proper assessment
of the flight stability of these insects/FWMAVs.

Considering the above two challenges (multi-body and time-varying dynamics), geometric control theory
is naturally invoked as an appropriate analysis tool; the use of time-periodic inputs to generate motion
in underactuated mechanical systems is a well-established concept in the arena of geometric control and
averaging theory [4]. Bullo [5] considered the vibrational control of mechanical control systems by combining
tools from geometric control theory and averaging. By following a similar formulation, we naturally include
the wing inertial effects and the multi-body nature of FWMAVs in the analysis of their dynamics and stability.
Another advantage is that higher-order averaging can be naturally performed within such a framework.
Moreover, the special structure of the mechanical system along with the geometric control framework together
allow for a more accurate averaging procedures (e.g., applying the variation of constants formula before
averaging).

In this work, a reduced-order, three degrees-of-freedom, model (extracted from the full model derived in
the first part of this work [6]) for the longitudinal flight dynamics of FWMAVs near hover is considered.
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The nonlinear, multi-body, time-varying mechanical equations are derived and represented in a geometric
control framework. The combined geometric control and averaging tools are then used to derive a first-
order averaged system. The stability analysis yields the first-order averaged system unstable at hover. A
higher-order averaging is then used and the second-order averaged system is proven stable at hover.

II. Reduced-order Flight Dynamic Model

In this section, a reduced-order flight dynamic model is derived from the full model considered in the
first part of this work [6]. In this reduced order model we consider two degrees of freedom (DOF) for the
body; the body vertical motion z and the pitching angle θ, and one DOF for the wing; the flapping angle ϕ.
The wing pitching angle η is assumed to have a piecewise constant variation as follows

η(t) =

αm, ϕ̇ > 0

π − αm, ϕ̇ < 0
,

where αm is the mean angle of attack over the up/down stroke. As such we have sin η = sinαm and
cos η = cosαm sign(ϕ̇). The reduced-order model can then be written as

M (q; sign(ϕ̇)) q̈ + f c(q, q̇) = faero + g τφ, (1)

whereM is the inertia matrix, f c represents Coriolis and centripetal effects, faero represents the aerodynamic
loads, g is the input vector field, and τφ is the input torque. For the considered three-degrees-of-freedom
model, M, f c, faero and g are written as (at xh = 0)

M =

( mv M12 M13

M21 M22 M23

0 0 Iyb

)
, (2)

where
M12 = −rcg cosϕ sin θ − c̄d̂ cosαm sign(ϕ̇) sinϕ sin θ

M13 = c̄d̂ cosαm cos θ cosϕ sign(ϕ̇)− c̄d̂ sinαm sin θ − rcg cos θ sinϕ

M21 = −mwrcg cosϕ sin θ − c̄d̂ mw cosαm sign(ϕ̇) sinϕ sin θ

M22 = − 1
2Ixw

cos2 αm − 1
2Izw sin2 αm + IF

2 +
Ixw+Izw

2

M23 = 1
2 (Izw − Ixw) sign(ϕ̇) sin 2αm sinϕ

f c =



−θ̇2

(
c̄d̂ sinαm cos θ + c̄d̂ cosαm sin θ sign(ϕ̇) cosϕ− rcg sin θ sinϕ

)
+

−2θ̇ϕ̇

(
c̄d̂ cosαm cos θ sign(ϕ̇) sinϕ+ rcg cos θ cosϕ

)
+

+ϕ̇2

(
rcg sin θ sinϕ− c̄d̂ cosαm sin θ sign(ϕ̇) cosϕ

)
− gmv

−θ̇w
(
c̄d̂ mw cosαm cos θ sign(ϕ̇) sinϕ+mwrcg cos θ cosϕ

)
+

+wϕ̇

(
mwrcg sin θ sinϕ− c̄d̂ mw cosαm sin θ sign(ϕ̇) cosϕ

)
+

+θ̇2

(
1
2 cos2 αm(Izw − Ixw) sinϕ cosϕ+ 1

2 sin2 αm(Ixw − Izw) sinϕ cosϕ+

+ 1
2 (−Ixw

− Izw) sinϕ cosϕ+ 1
2Iyw sin 2ϕ

)

0



(3)
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faero =


−Fx (sinαm cos θ + cosαm sin θ sign(ϕ̇) cosϕ)− Fz (sinαm sin θ cosϕ− cosαm cos θ sign(ϕ̇))

sinαmMx − cosαmMz sign(ϕ̇)

− cosαmMx sign(ϕ̇) sinϕ+My cosϕ− sinαmMz sinϕ


(4)

g =


0

1

0

 , (5)

where Fx, Fz, Mx, My, and Mz are the aerodynamic forces and moments represented in the wing frame as
explained in the first part of this work, IF is the flapping moment of inertia defined as IF = Ixw

sin2 αm +

Izw cos2 αm, c̄ is the mean aerodynamic chord of the wing, and d̂ and rcg are the distances from the wing
reference point to the wing center of mass along xw and yw respectively.

In order for this model to be in a form that is amenable to geometric control analysis, we write it in a
standard nonlinear control-affine system form. As such, system (1) can be written as

ẋ = Z(x) + Y (x) τϕ(t), (6)

where the state vector x is [q q̇]T = [z ϕ θ w ϕ̇ θ̇]T , T denotes transpose, and the vector fields
Z(x) and Y (x) are written as

Z(x) =

 q̇

M−1(faero − f c)

 , Y (x) =

 0

M−1g

 ,
The input torque applied on the wings is assumed to be periodic of a cosine wave form with frequency ω
and amplitude U

τϕ(t) = U cosωt. (7)

III. Geometric Control and Averaging Tools

A. Averaging Theorem

Theorem 1. Consider the NLTP system

ẋ(t) = εX(x(t), t). (8)

Assuming that X is a T -periodic vector field in t, the averaged dynamical system corresponding to (8) is
written as

ẋ = εX(x), (9)

where X(x) = 1
T

∫ T
0
X(x, τ) dτ . According to the averaging theorem [8], [9]:

• If x(0)−x(0) = O(ε), then there exist b ∈ R>0 and ε∗ ∈ R>0 such that x(t)−x(t) = O(ε) ∀t ∈ [0, b/ε]
and ∀ε ∈ [0,ε∗].

• If the origin x = 0 is an exponentially stable equilibrium point of (9) and if x(0)− x(0) = O(ε), then
there exists an ε∗ such that x(t)− x(t) = O(ε) ∀t > 0 and ∀ε ∈ [0,ε∗]. Moreover, The system (8) has
a unique, exponentially stable, T -periodic solution xT (t) with the property ‖xT (t)‖ ≤ kε for some k.

Thus, the averaging approach allows converting a non-autonomous system into an autonomous system.
As such, if the equilibrium state of the NLTP system is represented by a periodic orbit x∗(t), it reduces to a
fixed point of the averaged dynamics. The problem of ensuring a specific periodic orbit corresponding to a
desired equilibrium configuration is significantly simplified using the averaging approach, hence allowing for
analytical results. Suppose the system is characterized by a vector of parameters P (e.g., U in our three DOF
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FWMAV example) and denote this parametric dependence as follows: X(x, t;P ). Without loss of generality,
assume that it is required to ensure a periodic orbit x∗(t) with zero-mean (e.g., hovering equilibrium in our
three DOF FWMAV example). Hence, the balance problem is stated as follows: Determine the system
parameters P and the periodic orbit x∗(t) such that

ẋ∗(t) = X(x∗(t), t;P ),

with x∗ = 0. Obviously, it is not a trivial problem and often cannot be solved analytically. In contrast, the
balance problem using the averaging approach is stated as follows: Determine the system parameters P that
are necessary to ensure X(0;P ) = 0. This is achieved by solving a set of algebraic equations.

One caveat we should mention before leaving this point is that the averaging theorem requires the vector
field X(x(t), t) to be smooth in all its arguments. Unfortunately, the dynamics vector field, Z, in system (6)
is not smooth in the state ϕ̇ because of the absolute value function, |ϕ̇|. We tackle this issue by introducing
a smooth approximation for the absolute value function. For more details about this point, the reader is
referred to an earlier work by Taha et al. [10].

B. Generalized Averaging Theory

A main issue with the averaging approach is that it is valid for small enough ε (i.e., for high enough frequency).
Moreover, this frequency limit (determined by ε∗) is not known (only its existence is guaranteed). The
generalized averaging theory (GAT) presents a remedy for this issue by providing an arbitrarily higher-order
approximation to the flow along a time-periodic vector field. Agrachev and Gamkrelidze laid the foundation
for the GAT in their seminal work [11]. Later, Sarychev [12] and Vela [13] used the concepts introduced by
Agrachev and Gamkrelidze to develop a generalization for the classical averaging theorem. Only the final
results of the GAT are stated here, and the reader is referred to Section 4 in [2] for a detailed presentation
of the GAT. Sarychev [12] introduced the notion of complete averaging to denote the following averaged
dynamics of system (8)

˙̄x = εX̄ = εΛ1(x̄) + ε2Λ2(x̄) + ε3Λ3(x̄) + ..., (10)

where

Λ1(x̄) = 1
T

T∫
0

X(x, t)dt

Λ2(x̄) = 1
2T

T∫
0

[
t∫

0

X(x, σ)dσ, X(x, t)

]
dt

Λ3(x̄) = T
2 [Λ1(x̄), Λ2(x̄)] + 1

3T

T∫
0

[
t∫

0

X(x, σ)dσ,

[
t∫

0

X(x, σ)dσ, ,X(x, t)

]]
dt,

(11)

where the Lie bracket between two vector fields is defined as [V 1(x),V 2(x)] = ∂V 2

∂x V 1− ∂V 1

∂x V 2. Sarychev
and Vela showed that if the series (10) converges, its limit will be the logarithm of the Monodromy map (i.e.,
the nonlinear vector-valued function that maps an initial condition to the solution after the period T ). That
is, if the complete averaged dynamics (10) has an exponentially stable fixed point, then the NLTP system
(8) will have an exponentially stable periodic orbit, irrespective of ε.

C. Variation of Constants Formula (VOC)

Variation of constants formula is quite useful when the concerned nonlinear system is subjected to high-
amplitude periodic forcing. In such cases, the system is not even directly amenable to the averaging theorem.
Consider a nonlinear system subjected to a high-frequency, high-amplitude, periodic forcing in the form

ẋ = f(x) +
1

ε
g(x,

t

ε
), x(0) = x0, (12)

where 0 < ε � 1. The time-varying vector field g(x, t/ε) is assumed to be periodic in its second argument
with period T . The system (12) is not even amenable to direct averaging, i.e., is not in the form of (8),
because f and g are not of the same order. The VOC formula allows separation of the system (12) into two
companion systems as follows [11], [14]

ż = F (z, t), z(0) = x0

ẋ = g(x, t), x(0) = z(t),
(13)
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where F (x, t) is the pullback of f along the flow φ
g
t of the time-varying vector field g. Using the chronological

calculus formulation of Agrachev and Gamkrelidze [11], Bullo [15] showed that, for a time-invariant f and
time-varying g, the pullback vector field F (x, t) can be written as

F (x, t) = f(x) +
∞∑
k=1

t∫
0

...
sk−1∫

0

(
adg(Sk,x)...adg(S1,x)f(x)

)
dsk...ds1, (14)

where adgf = [g,f ]. Now, if the vector field g is T-periodic in t with zero mean, the averaging of system
(13) yields

x̄(t) = z̄(t), ˙̄z = F̄ (z̄). (15)

Hence, in this case, one can recover the averaged dynamics of the original system (12) just by applying the
averaging on the pullback vector field F (x, t).

D. First Order Averaging after VOC

Theorem 2. Consider a NLTP system subject to a high-frequency, high amplitude, periodic forcing (12).
Assuming that g is a T -periodic in t, zero-mean, vector field and both f and g are continuously differentiable,
the averaged dynamical system corresponding to (12) is written as

ẋ = εF (x), (16)

where F (x) = 1
T

∫ T
0
F (x, τ) dτ , and F is the pullback of f along the flow φ

g
t of the time-varying vector field

g as explained in Eq. (14). Moreover [14]:

• If x(0) = x(0), then there exist b ∈ R>0 and ε∗ ∈ R>0 such that x(t) − x(t) = O(ε) ∀t ∈ [0, b/ε] and
∀ε ∈ [0,ε∗].

• If x∗ is an exponentially stable equilibrium point of (16) and if ‖x(0)− x∗‖ < ρ for some ρ ∈ R>0,
then x(t) − x(t) = O(ε) ∀t > 0 and ∀ε ∈ [0,ε∗]. Moreover, there exists an ε1 ∈ R>0 such that ∀ε ∈
[0,ε1], the system (12) has a unique, εT -periodic, locally asymptotically stable trajectory that takes
values in an open ball of radius O(1) centered at x∗.

IV. Averaging of the Three-DOF Time-varying Dynamics

Clearly, the direct application of the averaging theorem to the system (6), with τϕ given by (7), yields
trivial results (i.e., no effect of flapping on the dynamics). Hence, we apply the VOC formula before averaging
to obtain the pullback vector field which accounts for the effect of the forcing vector field on the dynamics
(drift) vector filed. That is, the averaged dynamics will be determined from (15). Thanks to the mechanical
structure of the system (6) and because the non-conservative forces (aerodynamic loads) are quadratic in
the generalized velocities (w, ϕ̇, and θ̇), the integral series of the pullback vector field (14) terminates after
two terms. Hence, the pullback vector field of the system (6) can be written as

F (x, t) = Z(x) + [Y , Z]

t∫
0

τϕ(s1) ds1 + [Y , [Y , Z]]

t∫
0

s1∫
0

τϕ(s2) τϕ(s1) ds2 ds1. (17)

A. VOC Formula with First Order Averaging

In order to obtain the first term, Λ1(x̄), in the averaging series; i.e., a first-order averaged system, we apply
the definition of Λ1(x̄) as shown in Eq. (11) on the pullback vector field (17). Since the control input torque
is represented as a cosine-wave form, the coefficient of the first Lie bracket in (17), [Y , Z], vanishes after
the first order averaging. Hence, the first-order averaged system is written as

˙̄x = Λ1(x̄) = Z(x̄) +
U2

4 ω2
[Y , [Y , Z]] (x̄), (18)

where the Lie bracket [Y , [Y , Z]] is called the symmetric product of the control vector field Y . It should be
noted that the symmetric product preserves the mechanical structure of the system, hence the mechanical
structure is preserved under the VOC formula with first order averaging.
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In order to achieve balance at hovering, we solve for the appropriate control input torque amplitude,
Utrim that ensures Λ1(x̄) = 0. As such, we obtain

Utrim =

√
2 gI2

Fω
2

kL
, (19)

where kL is a constant that depends on the vehicle parameters

kL =
ρ CLαI21 sinαm cosαm

2 mv
.

It should be noted that for trim and stability analysis we adopted a smooth approximation for the sign
function; sign(ϕ̇) ≈ h(ϕ̇) = (2/π) tan−1(n ϕ̇). We set an appropriate value of n such that, in 1% of the ϕ̇
range around the origin, the approximate function h(ϕ̇) reaches 99% of the true value (±1).

The stability of the averaged system can be scrutinized by evaluating the Jacobian of the averaged
dynamics at the trim condition which can be written as

A = D Λ1(0) =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 A44 0 0

0 0 A53 0 A55 0

0 A62 A63 0 A65 A66


, (20)

where

A44 = g cosαm
I21 sinαm

(
−23

2 I11 + 46 mw c̄d̂
Iyb

(
3
4I12 − k I11

))
A53 = −2 g mvmwrcg

A55 = −ρ CLα sin2 αm I21/IF

A62 = 2 g mvI31/(IybI21)

A63 =
−2 g mwrcg
IybI21 sinαm

(
3
4I12 − k I11

)
A65 = −69 g mv

IybI21 cosαm

(
3
4I22 − k I21

)
A66 = −23 g mvπ

8 IybI21CLα cosαm

(
4 k I12 − 4 k2I11 − 3

4I13

)
It should be noted that the elements A63 and A66 represent the pitch stiffness and damping respectively.
Hence, they are of particular interest as the unstable behavior signifies mainly in the body pitching motion.

If we consider the Hawkmoth parameters given in Appendix A, we find that the pitch stiffness A63 =
−133.99, hence a positive pitch stiffness. It should be noted that this pitch stiffness stems purely from an
inertial root; i.e.,

lim
mw→0

A63 = 0.

It is interesting to investigate the main contributors to this pitch stiffness. Since the averaged dynamics is
written in terms of two vector fields; the dynamics vector field and the symmetric product, or we shall call
it the control vector field, as explained in Eq. (18), thus this Jacobian matrix A can be seen as an addition
of two matrices Ad and Ac and the effect emanating from each source can shown separately. Doing so, we
find that Ad63 = 0, hence the pitch stiffness comes solely from the control effect. This also implies that
the high-frequency-high-amplitude periodic forcing applied on the wing has a stabilizing effect on the body
pitching motion. It is also interesting to observe the variation of the pitch stiffness, A63, with the mean angle
of attack over the up/down stroke αm. Figure 1 shows the variation of the pitch stiffness of the averaged
system, A63, as the mean angle of attack varies from zero to 90◦.

The pitch damping, A66, for the Hawkmoth is found to be A66 = −607.5, hence a positive pitch damping.
It should be noted that the pitch damping emanates from inertial as well as aerodynamic sources. Following
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thesameanalysisweperformedforthepitchstiffness,wefindthatAd66=0,hencethepitchdampingalso
comessolelyfromthecontroleffect. Thisalsoimpliesthestabilizingpitchdampingeffectinducedbythe
high-frequency-high-amplitudeperiodicforcingappliedonthewings. Figure2showsthevariationofthe
pitchdampingoftheaveragedsystem,A66,asthemeanangleofattackvariesfromzeroto90

◦
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Figure1:Pitchstiffnessvariationwiththe
meanangleofattack.

Figure2:Pitchdampingvariationwiththe
meanangleofattack.

Thestabilityoftheconsideredtime-periodicsystem(1),orequivalently(6),canbeassessedbyinvesti-
gatingtheeigenvaluesofthelinearizedaveragedsystem(20)whicharefoundtobe

−6419.27,−554.009,−204.819,141.508,0.232108

Clearlytheaveragedsystemisunstablesincetherearetwoeigenvaluesintherighthalf-plane.However,since
ithasbeenshownbeforethatthehigher-orderaveraginganalysismightyielddifferentstabilityresultsfor
theFWMAVs[2],itisexpectedthatapplyinghigher-orderaveragingafterVOCformulaforthemulti-body
formulationconsideredheremightalsoyielddifferentresults.Thisinvokesincludingmoretermsfromthe
averagingseriesdefinedinEq.(10)whichisconsideredinthenextsubsection.

B. VOCFormulawithSecondOrderAveraging

ThesecondtermintheaveragingseriesΛ2(̄x)canbeobtainedfromthepullbackvectorfield(17)asexplained
inEq.(11),anditcanbewrittenas(undercosinewaveform)

Λ2(̄x)=
−U

ω2
[Z,[Y,Z]](̄x)+

U3

4ω4
[[Y,Z],[Y,[Y,Z]]](̄x), (21)

Hence,thesecond-orderaverageddynamicscanbewrittenas

˙̄x=Λ1(̄x)+Λ2(̄x)=Z(̄x)+
U2

4ω2
[Y,[Y,Z]](̄x)+

−U

ω2
[Z,[Y,Z]](̄x)+

U3

4ω4
[[Y,Z],[Y,[Y,Z]]](̄x).

(22)
Unfortunately,thesecond-orderaverageddynamics(22)doeshaveLiebracketsthatruinthemechanical
structureofthesystem.Hence,thetrimanalysisismoreinvolvedsincethefirstthreeequationsin(22)are
nottrivialanymore;i.e.,theremightbeanequilibriumatnon-zeroϕ̇. Duetothesystemcomplexity,in
particular,theexistenceofthesignfunction,wecouldnotbeabletoperformthetrimanalysisatnon-zero
ϕ̇.Ifazero-averagestatevectorisconsideredforthetrimanalysis,solvingfortheappropriatecontrolinput
torqueamplitude,Utrim,yieldsthesameresultasthatofthefirst-orderaveraginggivenin(19).Hence,the
second-orderaveragingdoesnotaddnewinformationtothebalanceproblem.
Toassessthestabilityofthesecond-orderaverageddynamics,weinvestigateitslinearizationasfollows

A2nd=D(Λ1+Λ2)(0)=













0 0 A2nd13 1 A2nd15 0

0 0 0 A2nd24 1 0

0 0 0 A2nd34 0 1

0 A2nd42 A2nd43 A2nd44 A2nd45 A2nd46
0 0 A2nd53 A2nd54 A2nd55 0

0 A2nd62 A2nd63 A2nd64 A2nd65 A2nd66













, (23)
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where

A2nd13 =

√
g
kL

IFmvω

(√
2 ρ CLα sin2 αmI21 mwrcg − 23√

2
mwc̄d̂ sinαm

gIF
kL

)
A2nd15 = 2

√
2kLg
ω

A2nd24 = 1
IF ω ρ CLα sinαm cosαmI21

√
2g
kL

A2nd34 = 1
Iybω

ρ CLα cosαm
(

3
4I12 − k I11

)√
2g
kL

A2nd44 = A44

A2nd53 = A53

A2nd55 = A55

A2nd62 = A62

A2nd63 = A63

A2nd65 = A65

A2nd66 = A66

The rest of the derivatives have too lengthy expressions. Thus, we show here the limits as mw goes to zero

limmw→0A2nd42 = −1
mbIybω

√
2 ( g

kL
)3/2 πρ2CLα sinαm cosαmI31

(
k I112 −

I12
8

)
limmw→0A2nd43 = 69

√
2

4 mbIFω
( g
kL

)3/2ρ2 C2
Lα

sin4 αmI
2
21

limmw→0A2nd45 =
ρCLα

√
g
kL√

2 mbIybω

(
−23 cos2 αm g I11 + 69πρ sinαm

g
kL

(
3
4I22 − kI21

) (
k I112 −

I12
8

))
limmw→0A2nd46 = 1

4
√

2 IF Iyb

√
g
kL
πρ2 CLα sin2 αmI21

(
kI11 − I12

4

) (
−4Iyb + 23g IFkL

)
+

− 23
4
√

2 m2
bω

( g
kL

)3/2 πρ2 CLα cos2 αmI11

(
kI11 − I12

4

)
A2nd54 and A2nd64 have too lengthy expressions even after taking the limits as mw goes to zero. Thus, we
just mention the signs of these derivatives here; A2nd54 has a positive value and A2nd64 has a negative value.
It is interesting to notice that the pitch stiffness and damping represented by A2nd63 and A2nd66 respectively,
among other derivatives, did not change after including the second term in the averaging series. Equation
(24) shows the first and second order averaged systems Jacobians for the Hawkmoth case. The stability of
the second-order averaged system (22) can be assessed by investigating the eigenvalues of the linearization
(23) which are found to be (for the Hawkmoth case)

−3217.85± 7253.1 i, − 500.733,−99.68, − 0.24

It is noted that all the eigenvalues lie in the left half-plane. According to Lyapunov’s first method [16], the
nonlinear averaged system (22) is concluded locally asymptotically stable. Figure 3 shows the eigenvalues of
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the first and second-order linearized averaged systems together on the s-plane.

A1st =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 −6419.27 0 0

0 0 −616.406 0 −9.57 0

0 6046.32 −133.992 0 −26053.9 −607.518



A2nd =



0 0 0.024 1 0.0013 0

0 0 0 17.82 1 0

0 0 0 3.87 0 1

0 −648.258 1544.16 −6419.27 −3.2116 15.087

0 0 −616.406 78611.3 −9.57 0

0 6046.32 −133.992 −4.15273 ∗ 106 −26053.9 −607.518



(24)

-7000 -6000 -5000 -4000 -3000 -2000 -1000 0 1000
Real axis

-8000

-6000

-4000

-2000

0

2000

4000

6000

8000

Im
ag

in
ar

y 
ax

is

1st order averaging
2nd order averaging

Figure 3: Eigenvalues of the first and second-order averaged linearized systems with
the Hawkmoth parameters.

V. Conclusion

The longitudinal fight dynamics of flapping-wing micro-air-vehicles (FWMAVs)/insects is considered. A
reduced-order, three-DOF, multi-body model extracted from the full five-DOF dynamics is considered. In
order to rigorously and analytically analyze the balance problem and assess the longitudinal flight stability
near hover, while including the wing inertial effects, the geometric control theory and averaging are combined.
Applying VOC formula before averaging yielded an unstable averaged system. As a vibrational stabilization
effect is anticipated, we applied second-order averaging after VOC formula. The resulting second-order
averaged system has been proven stable, hence a stable time-periodic dynamics.
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Appendix

A. Hawkmoth Morphological Parameters

The morphological parameters and the wing planform for the hawkmoth, as given in [17] and [18], are

R = 51.9mm, S = 947.8mm2, c = 18.3mm,

r̂1 = 0.44, r̂2 = 0.525, f = 26.3Hz, Φ = 60.5◦,

αm = 30◦, mb = 1.648gm, and Iyb = 2080mg.cm2,

where R is the semi-span of the wing, S is the area of one wing, c is the mean chord, f is the flapping
frequency, Φ is the flapping angle amplitude, mb is the mass of the body, and Iyb is the body moment of
inertia around the body y-axis. The moments of the wing chord distribution r̂1 and r̂2 are defined as

Ik1 = 2

∫ R

0

rkc(r) dr = 2SRkr̂kk .

As for the wing planform, the method of moments used by Ellington [18] is adopted here to obtain a chord
distribution for the insect that matches the documented first two moments r̂1 and r̂2; that is,

c(r) =
c

β

( r
R

)λ−1 (
1− r

R

)γ−1

,

where

λ = r̂1

[
r̂1(1−r̂1)
r̂22−r̂21

− 1
]
, γ = (1− r̂1)

[
r̂1(1−r̂1)
r̂22−r̂21

− 1
]
,

and β =
∫ 1

0
r̂λ−1(1− r̂)γ−1 dr̂.

The mass of one wing is taken as 5.7% of the body mass according to Wu et al. [19] and is assumed uniform
with an areal mass distribution m′ The inertial properties of the wing are then estimated as

Ix = 2
∫ R

0
m′r2c(r) dr , Iy = 2

∫ R
0
m′d̂2c3(r) dr

, Iz = Ix + Iy, and rcg =
2
∫R
0
m′rc(r) dr

mw
= I11

2S ,

where d̂ is the chord-normalized distance from the wing hinge line to the center of gravity line.
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