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Aerodynamic-Dynamic Interactions and Multi-Body
Formulation of Flapping Wing Dynamics: Part II -
Trim and Stability Analysis
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Flapping flight dynamics constitutes a multi-body, nonlinear, time-varying system. The
two major simplifying assumptions in the analysis of flapping flight stability are neglecting
the wing inertial effects and averaging the dynamics over the flapping cycle. The challenges
resulting from relaxing these assumptions naturally invoke the geometric control theory
as an appropriate analysis tool. In this work, a reduced-order model (extracted from
the full model derived in the first part of this work) for the longitudinal flapping flight
dynamics near hover is considered and represented in a geometric control framework. Then,
combining tools from geometric control theory and averaging, the full dynamic stability as
well as balance analyses of hovering insects are performed.

I. Introduction

The flight dynamics of flapping-wing micro-air-vehicles (FWMAVSs) constitutes a nonlinear, time-varying,
multi-body dynamical system. It is also a multi-scale dynamical system because of the associated two time
scales; the time scale of the fast flapping motion and the associated aerodynamic loads, and the relatively slow
time scale of the body motion. The interaction between the periodic aerodynamic loads and the body motion
may induce some interesting stabilizing mechanisms [1, 2]. All of these interesting dynamical behaviors and
challenges led to a recent flurry in the research on the flight dynamics of FWMAVs.

Two major assumptions are usually adopted in the flight dynamic analysis of FWMAVSs [3]. These include
neglecting the wing inertial effects and averaging the dynamics over the flapping cycle. The second major
assumption (averaging the dynamics over the flapping cycle) has been refuted in the work of Taha et al. [1, 2]
for hovering insects with a relatively small flapping frequency (e.g., hawkmoth and cranefly). They showed
that in spite of the deceptive large ratio of the flapping frequency to the natural frequency of the body
motion (30 for the hawkmoth and 50 for the cranefly), there is a strong interaction between the system’s
two time scales that considerably affects the flight stability. This interaction is essentially neglected when
direct averaging is used. Thus, Taha et al. stressed the use of higher-order techniques for proper assessment
of the flight stability of these insects/FWMAVs.

Considering the above two challenges (multi-body and time-varying dynamics), geometric control theory
is naturally invoked as an appropriate analysis tool; the use of time-periodic inputs to generate motion
in underactuated mechanical systems is a well-established concept in the arena of geometric control and
averaging theory [4]. Bullo [5] considered the vibrational control of mechanical control systems by combining
tools from geometric control theory and averaging. By following a similar formulation, we naturally include
the wing inertial effects and the multi-body nature of FWMAVs in the analysis of their dynamics and stability.
Another advantage is that higher-order averaging can be naturally performed within such a framework.
Moreover, the special structure of the mechanical system along with the geometric control framework together
allow for a more accurate averaging procedures (e.g., applying the variation of constants formula before
averaging).

In this work, a reduced-order, three degrees-of-freedom, model (extracted from the full model derived in
the first part of this work [6]) for the longitudinal flight dynamics of FWMAVs near hover is considered.

*PhD Student, Mechanical and Aerospace Engineering. Student Member ATAA.
T Assistant Professor, Henry Samueli Career Development Chair, Mechanical and Aerospace Engineering. Member AIAA.

1of 11

a‘ﬁﬁ?se%%?‘n Institute of Aeronautics and Astronautics

Check for

ATAA 2017-1275


http://crossmark.crossref.org/dialog/?doi=10.2514%2F6.2017-1275&domain=pdf&date_stamp=2017-01-05

Downloaded by UNIVERSITY OF CALIFORNIA IRVINE on October 19, 2017 | http://arc.aiaa.org | DOI: 10.2514/6.2017-1275

The nonlinear, multi-body, time-varying mechanical equations are derived and represented in a geometric
control framework. The combined geometric control and averaging tools are then used to derive a first-
order averaged system. The stability analysis yields the first-order averaged system unstable at hover. A
higher-order averaging is then used and the second-order averaged system is proven stable at hover.

II. Reduced-order Flight Dynamic Model

In this section, a reduced-order flight dynamic model is derived from the full model considered in the
first part of this work [6]. In this reduced order model we consider two degrees of freedom (DOF) for the
body; the body vertical motion z and the pitching angle 6, and one DOF for the wing; the flapping angle .
The wing pitching angle n is assumed to have a piecewise constant variation as follows

Qs >0
n(t) = . )
T—CQm, ¢©<0

where «,, is the mean angle of attack over the up/down stroke. As such we have sinn = sina, and
COS 1) = COS (i, sign(y). The reduced-order model can then be written as

M (g; sign(®)) G+ fe(0,9) = Facro T 9 7o, (1)

where M is the inertia matrix, f, represents Coriolis and centripetal effects, f,.., represents the aerodynamic
loads, g is the input vector field, and 74 is the input torque. For the considered three-degrees-of-freedom
model, M, f., f.cro and g are written as (at xy = 0)

my Mz Mz
M= < Mo Moz Mas )» (2)
o 0 I,
where A
Mis = —rggcospsingd — édcos a,y, sign(y)sin ¢ sin d
Mz = éd cos Q€08 6 cos p sign(¢) — éd sin Oy, 8in 6 — 14 cos fsin
Mo = —myregcospsing — éd iy, oS i, sign(¢) sin p sin 0
Mo = —3iI, cos’ay, — 3L, sin®a, + &£ + 71“”“”;1”
Moy = (L, — I,) sign(¢) sin 2a,, sin ¢

—6? <5(f Sin ayy, cos 0 4 ed cos oy, sin 6 sign(¢) cos ¢ — T¢g Sin @ sin gp) +
—20¢ (Ed COS iy, €08 8 sign () sin ¢ + rq cos 6 cos gp) +

+¢? (rcg sin 0'sin ¢ — &d cos oy, sin 0 sign(¢) cos ga) — gmy,

—fw (cd My COS Oty €08 B sign () sin ¢ + My, req cos b cos p |+
+w <mwrcg sinf'sin ¢ — &d My cos oy, sin 0 sign(¢) cos ¢ |+
+62 (é cos? ap (L, — I, ) singpcos o + 3 sin® ap, (I, — L,,) sin g cos p+

+3 (=1, — L) sinpcosp + 11, sin2¢p
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—F, (sin ayy, cos 8 + cos a;y, sin @ sign(¢) cos ) — F, (sin a;y, sin 0 cos ¢ — cos ay, cos 0 sign(¢))
Facro = sin oy, My — cos ap, M, sign(¢)

— €08 (M, sign () sin ¢ + M, cos ¢ — sin o, M, sin ¢

(4)

g= 1], (5)

where F, F,, My, M,, and M, are the aerodynamic forces and moments represented in the wing frame as
explained in the first part of this work, I is the flapping moment of inertia defined as Ir = I, sin? ayy, +
I, cos? ayy, € is the mean aerodynamic chord of the wing, and d and Tcg are the distances from the wing
reference point to the wing center of mass along xy, and y,, respectively.

In order for this model to be in a form that is amenable to geometric control analysis, we write it in a
standard nonlinear control-affine system form. As such, system (1) can be written as

@ =Z(x)+Y(z) (1), (6)

where the state vector z is [q g7 =z ¢ 6 w ¢ Q]T, T denotes transpose, and the vector fields

Z(x) and Y (x) are written as

q 0
Z(:B) = ) Y(:B) = )
Mfl(faero _fc) Milg

The input torque applied on the wings is assumed to be periodic of a cosine wave form with frequency w
and amplitude U
To(t) = U coswt. (7)

III. Geometric Control and Averaging Tools

A. Averaging Theorem
Theorem 1. Consider the NLTP system

() = eX (z(t), 1). (8)

Assuming that X is a T-periodic vector field in ¢, the averaged dynamical system corresponding to (8) is
written as ' o
T =eX (), (9)

fT X (x,7)dr. According to the averaging theorem [8], [9]:

where X (%) = 7 [,

T
o If £(0) — = (0) = O(e), then there exist b € Rs and €* € Ry such that z(t) —Z(t) = O(e) Vt € [0,b/€]
and Ve € [0,e].

e If the origin T = 0 is an exponentially stable equilibrium point of (9) and if x(0) — Z(0) = O(e), then
there exists an €* such that () — Z(t) = O(e) Vt > 0 and Ve € [0,e*]. Moreover, The system (8) has
a unique, exponentially stable, T-periodic solution xr(t) with the property ||z (¢)| < ke for some k.

Thus, the averaging approach allows converting a non-autonomous system into an autonomous system.
As such, if the equilibrium state of the NLTP system is represented by a periodic orbit x*(¢), it reduces to a
fixed point of the averaged dynamics. The problem of ensuring a specific periodic orbit corresponding to a
desired equilibrium configuration is significantly simplified using the averaging approach, hence allowing for
analytical results. Suppose the system is characterized by a vector of parameters P (e.g., U in our three DOF
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FWMAYV example) and denote this parametric dependence as follows: X (x,t; P). Without loss of generality,
assume that it is required to ensure a periodic orbit x*(t) with zero-mean (e.g., hovering equilibrium in our
three DOF FWMAV example). Hence, the balance problem is stated as follows: Determine the system
parameters P and the periodic orbit «* () such that

x*(t) = X (x*(t), ; P),

with z* = 0. Obviously, it is not a trivial problem and often cannot be solved analytically. In contrast, the
balance problem using the averaging approach is stated as follows: Determine the system parameters P that
are necessary to ensure X (0; P) = 0. This is achieved by solving a set of algebraic equations.

One caveat we should mention before leaving this point is that the averaging theorem requires the vector
field X (x(t),t) to be smooth in all its arguments. Unfortunately, the dynamics vector field, Z, in system (6)
is not smooth in the state ¢ because of the absolute value function, |¢|. We tackle this issue by introducing
a smooth approximation for the absolute value function. For more details about this point, the reader is
referred to an earlier work by Taha et al. [L0].

B. Generalized Averaging Theory

A main issue with the averaging approach is that it is valid for small enough € (i.e., for high enough frequency).
Moreover, this frequency limit (determined by €*) is not known (only its existence is guaranteed). The
generalized averaging theory (GAT) presents a remedy for this issue by providing an arbitrarily higher-order
approximation to the flow along a time-periodic vector field. Agrachev and Gamkrelidze laid the foundation
for the GAT in their seminal work [11]. Later, Sarychev [12] and Vela [13] used the concepts introduced by
Agrachev and Gamkrelidze to develop a generalization for the classical averaging theorem. Only the final
results of the GAT are stated here, and the reader is referred to Section 4 in [2] for a detailed presentation
of the GAT. Sarychev [12] introduced the notion of complete averaging to denote the following averaged
dynamics of system (8)

T =X =eAi(Z) + EA(Z) + EAs(Z) + .., (10)
where
T
A(z) = + [ X(wm, t)dt
“r e
A(Z) = 5 [|[X(z, 0)do, X(a, t)] dt (11)
o Lo
Tr¢ ¢
Az(z) = % [A1(Z), Az(Z)] + 31Tf[f X (z, o)do, {fX(a:,a)da,,X(:L', t)”dt,
0 Lo 0
where the Lie bracket between two vector fields is defined as [V'1(z), Va(z)] = 68‘;2 Vi- 88‘;1 V5. Sarychev

and Vela showed that if the series (10) converges, its limit will be the logarithm of the Monodromy map (i.e.,
the nonlinear vector-valued function that maps an initial condition to the solution after the period T'). That
is, if the complete averaged dynamics (10) has an exponentially stable fixed point, then the NLTP system
(8) will have an exponentially stable periodic orbit, irrespective of e.

C. Variation of Constants Formula (VOCQ)

Variation of constants formula is quite useful when the concerned nonlinear system is subjected to high-
amplitude periodic forcing. In such cases, the system is not even directly amenable to the averaging theorem.
Consider a nonlinear system subjected to a high-frequency, high-amplitude, periodic forcing in the form

b= @)+ gl D), a(0)=a, (12)

where 0 < € < 1. The time-varying vector field g(x,t/¢) is assumed to be periodic in its second argument
with period T. The system (12) is not even amenable to direct averaging, i.e., is not in the form of (8),
because f and g are not of the same order. The VOC formula allows separation of the system (12) into two
companion systems as follows [11], [14]

2 = F(z,t), z(0) = xg (13)
z = g(zt), «(0)==z@1),
4 of 11

American Institute of Aeronautics and Astronautics



Downloaded by UNIVERSITY OF CALIFORNIA IRVINE on October 19, 2017 | http://arc.aiaa.org | DOI: 10.2514/6.2017-1275

where F'(x,t) is the pullback of f along the flow (b'tq of the time-varying vector field g. Using the chronological
calculus formulation of Agrachev and Gamkrelidze [11], Bullo [15] showed that, for a time-invariant f and
time-varying g, the pullback vector field F(x,t) can be written as

S

>

—1

F(xz,t) = f(x)+ i (adg(skym)...adg(slya;)_f(w)) dsy,...ds1, (14)

O%w

)

where adg f = [g, f]. Now, if the vector field g is T-periodic in ¢ with zero mean, the averaging of system
(13) yields B

z(t) = 2(t), z=F(z). (15)
Hence, in this case, one can recover the averaged dynamics of the original system (12) just by applying the
averaging on the pullback vector field F(x,t).

D. First Order Averaging after VOC

Theorem 2. Consider a NLTP system subject to a high-frequency, high amplitude, periodic forcing (12).
Assuming that g is a T-periodic in ¢, zero-mean, vector field and both f and g are continuously differentiable,
the averaged dynamical system corresponding to (12) is written as

# = F(T), (16)

where F (T =7 fo (z,7)dr, and F is the pullback of f along the flow d)g of the time-varying vector field
g as explamed in Eq. (14). Moreover [14]:

o If Z(0) = x(0), then there exist b € Ryg and €* € Ry such that x(t) — Z(t) = O(e) Vt € [0,b/€] and
Ve € [0,e*].

e If x* is an exponentially stable equilibrium point of (16) and if ||x(0) — *|| < p for some p € Ry,
then z(t) — Z(t) = O(e) ¥t > 0 and Ve € [0,e*]. Moreover, there exists an €; € Rsq such that Ve €
[0,€1], the system (12) has a unique, eT-periodic, locally asymptotically stable trajectory that takes
values in an open ball of radius O(1) centered at x*.

IV. Averaging of the Three-DOF Time-varying Dynamics

Clearly, the direct application of the averaging theorem to the system (6), with 7, given by (7), yields
trivial results (i.e., no effect of flapping on the dynamics). Hence, we apply the VOC formula before averaging
to obtain the pullback vector field which accounts for the effect of the forcing vector field on the dynamics
(drift) vector filed. That is, the averaged dynamics will be determined from (15). Thanks to the mechanical
structure of the system (6) and because the non-conservative forces (aerodynamic loads) are quadratic in
the generalized velocities (w, ¢, and 0), the integral series of the pullback vector field (14) terminates after
two terms. Hence, the pullback vector field of the system (6) can be written as

t s1

¢
F(x,t)=Z(x /Tcp )ds1 + Y //Tw 52) Ty(s1) dsa ds;. (17)
0 0

A. VOC Formula with First Order Averaging

In order to obtain the first term, A (&), in the averaging series; i.e., a first-order averaged system, we apply
the definition of A;(Z) as shown in Eq. (11) on the pullback vector field (17). Since the control input torque
is represented as a cosine-wave form, the coefficient of the first Lie bracket in (17), [Y', Z], vanishes after
the first order averaging. Hence, the first-order averaged system is written as

U2
4 w?
where the Lie bracket [Y, [Y, Z]] is called the symmetric product of the control vector field Y. It should be

noted that the symmetric product preserves the mechanical structure of the system, hence the mechanical
structure is preserved under the VOC formula with first order averaging.

x= Al(j) = Z(:E) + [Y, [Y7 Z]] (z), (18)
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In order to achieve balance at hovering, we solve for the appropriate control input torque amplitude,
Utrim that ensures A;(Z) = 0. As such, we obtain

2 glZw?

Utv‘im =
kr

(19)

where ky, is a constant that depends on the vehicle parameters

i p Cr, Is1 sin oy, cos ap,
L= .

2 my

It should be noted that for trim and stability analysis we adopted a smooth approximation for the sign
function; sign(¢) ~ h(¢) = (2/7)tan"1(n ¢). We set an appropriate value of n such that, in 1% of the ¢
range around the origin, the approximate function h(y) reaches 99% of the true value (£1).

The stability of the averaged system can be scrutinized by evaluating the Jacobian of the averaged
dynamics at the trim condition which can be written as

o o o 1 0o 0]
0 0 0 0 1 0
1
A=D A (0)= 00000 : (20)
0 0 0 Ay 0 0
0 0 As3 0 Ass O
10 A2 Asz 0 Apgs  Ags)
where
1G]
A53 = =2 g MyMwTeg
A55 = —pCLaSinzOzm Igl/IF
Aga = 2 gmylsi/(Iy, 1)
Ais = popgee (Yhe —k In)
As = T ooy (o2 — k 1)
A = 5T 1nCh twan (4K Lo =4 KLy — $s)

It should be noted that the elements Ags and Agg represent the pitch stiffness and damping respectively.
Hence, they are of particular interest as the unstable behavior signifies mainly in the body pitching motion.
If we consider the Hawkmoth parameters given in Appendix A, we find that the pitch stiffness Ags =
—133.99, hence a positive pitch stiffness. It should be noted that this pitch stiffness stems purely from an
inertial root; i.e.,
lim A63 =0.
My —0

It is interesting to investigate the main contributors to this pitch stiffness. Since the averaged dynamics is
written in terms of two vector fields; the dynamics vector field and the symmetric product, or we shall call
it the control vector field, as explained in Eq. (18), thus this Jacobian matrix A can be seen as an addition
of two matrices Ay and A, and the effect emanating from each source can shown separately. Doing so, we
find that Ag4,, = 0, hence the pitch stiffness comes solely from the control effect. This also implies that
the high-frequency-high-amplitude periodic forcing applied on the wing has a stabilizing effect on the body
pitching motion. It is also interesting to observe the variation of the pitch stiffness, Ag3, with the mean angle
of attack over the up/down stroke a,,. Figure 1 shows the variation of the pitch stiffness of the averaged
system, Agsz, as the mean angle of attack varies from zero to 90°.

The pitch damping, Agg, for the Hawkmoth is found to be Agg = —607.5, hence a positive pitch damping.
It should be noted that the pitch damping emanates from inertial as well as aerodynamic sources. Following
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the same analysis we performed for the pitch stiffness, we find that Ag,, = 0, hence the pitch damping also
comes solely from the control effect. This also implies the stabilizing pitch damping effect induced by the
high-frequency-high-amplitude periodic forcing applied on the wings. Figure 2 shows the variation of the
pitch damping of the averaged system, Agg, as the mean angle of attack varies from zero to 90°.

or

© w
< -200 g 2000 AN
w =
g £ -4000
£ —400 E \
z S -6000
8 -s00 8 \
T Z -8000 |

-800 -10000

0 20 100 0 20 100

40 €0 80 40 60 80
Mean angle of attack o (deg) Mean angle of attack o (deg)

Figure 2: Pitch damping variation with the
mean angle of attack.

Figure 1: Pitch stiffness variation with the
mean angle of attack.

The stability of the considered time-periodic system (1), or equivalently (6), can be assessed by investi-
gating the eigenvalues of the linearized averaged system (20) which are found to be

—6419.27, — 554.009, —204.819, 141.508, 0.232108

Clearly the averaged system is unstable since there are two eigenvalues in the right half-plane. However, since
it has been shown before that the higher-order averaging analysis might yield different stability results for
the FWMAVs [2], it is expected that applying higher-order averaging after VOC formula for the multi-body
formulation considered here might also yield different results. This invokes including more terms from the
averaging series defined in Eq. (10) which is considered in the next subsection.

B. VOC Formula with Second Order Averaging

The second term in the averaging series A3(Z) can be obtained from the pullback vector field (17) as explained
in Eq. (11), and it can be written as (under cosine wave form)

U L, ~
Hence, the second-order averaged dynamics can be written as
- _ _ _ U? . U _ U3 _
i = Ai(@)+Ao(@) = Z@) 5 5 IV, [V, Z] @)+ 5 (2, [V, Z]| @)+ [V, ZLIY, [V, Z]]@).

(22)
Unfortunately, the second-order averaged dynamics (22) does have Lie brackets that ruin the mechanical
structure of the system. Hence, the trim analysis is more involved since the first three equations in (22) are
not trivial anymore; i.e., there might be an equilibrium at non-zero ¢. Due to the system complexity, in
particular, the existence of the sign function, we could not be able to perform the trim analysis at non-zero
¢. If a zero-average state vector is considered for the trim analysis, solving for the appropriate control input
torque amplitude, Utpim, yields the same result as that of the first-order averaging given in (19). Hence, the
second-order averaging does not add new information to the balance problem.

To assess the stability of the second-order averaged dynamics, we investigate its linearization as follows

0 0 A‘anlg 1 AZﬂdls 0

0 0 0 A'Zﬂ.dzq, 1 0

0 0 0 A 0 1

Agna =D (A; +A5)(0) = e (23)

0 Aondy, A2ndys Aondy  Asndys  Aondyg

0 0 A2ﬂd53 A‘Zﬂd54 AZﬂds.s 0

.0 A?’ndcz A'Zﬂdsa A'Zﬂ-dm Az”‘dﬁ-‘. AZ“dGG_
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where

Azndry = I;/w%w (\/5 p Cr, sin® ap Iy myreg — %mwédsin Qm %)
Appay, = 2L

Azndyy = IFI = p CL, sinay, cos a, I g—f
Aondy, = Iyiw p CL, cosam (31a —k I11) /72
AQnd44 = A44

A2’ﬂd53 = As3

AQnd55 = Ass

Asndg, = As2

AQ’ﬂdG?, = Ags

AQndaz’) = Ags

A2nd66 = A66

The rest of the derivatives have too lengthy expressions. Thus, we show here the limits as my, goes to zero

limmwﬁo A2nd42 = mb_lylbw\/i (%)3/2 7TP2CLQ Sin @y, €O8 Qp L31 (kth B 1172)
i o Agng, = %<%)3/2p2 C3. sin® o, I3,
. pCL, P 3
limp,, 0 A2nd,; = Wﬂ <—23 cos® am g Ty +697psin am & (3122 — ki) (k4 — 1182))
b
limmwﬁo A2nd46 = m\/%ﬂ'pz CLQ Sin2 amle (k-[ll - I}Tz) <_4be + 239;%:) +
_ ﬁ(%)3/2 7'('p2 CLQ COS2 am—lll (klll - I}Tz)

Aoy, and Agyg,, have too lengthy expressions even after taking the limits as my, goes to zero. Thus, we
just mention the signs of these derivatives here; Ag,q4,, has a positive value and Asgyq4,, has a negative value.
It is interesting to notice that the pitch stiffness and damping represented by Agyqg., and Agy,q., respectively,
among other derivatives, did not change after including the second term in the averaging series. Equation
(24) shows the first and second order averaged systems Jacobians for the Hawkmoth case. The stability of
the second-order averaged system (22) can be assessed by investigating the eigenvalues of the linearization
(23) which are found to be (for the Hawkmoth case)

—3217.85 £7253.1 4, —500.733,—-99.68, —0.24

It is noted that all the eigenvalues lie in the left half-plane. According to Lyapunov’s first method [16], the
nonlinear averaged system (22) is concluded locally asymptotically stable. Figure 3 shows the eigenvalues of

8of 11

American Institute of Aeronautics and Astronautics



Downloaded by UNIVERSITY OF CALIFORNIA IRVINE on October 19, 2017 | http://arc.aiaa.org | DOI: 10.2514/6.2017-1275

the first and second-order linearized averaged systems together on the s-plane.

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
Alst -
0 0 0 —6419.27 0 0
0 0 —616.406 0 —9.57 0
_0 6046.32 —133.992 0 —26053.9 —607.518_ (24)
[0 0 0.024 1 0.0013 0 |
0 0 0 17.82 1 0
0 0 0 3.87 0 1
A2nd =
0 —648.258 1544.16 —6419.27 —3.2116 15.087
0 0 —616.406 78611.3 —9.57 0
_O 6046.32 —133.992 —4.15273 % 10° —26053.9 —607.518_
8000 I I I x I O 1st order averaging
6000 - % 2nd order averaging |
4000 - _
2
é 2000 .
f
© or o o Ox$O -
£
S
§ -2000
-4000 - .
-6000 [ .
X
'8000 1 1 1 1 1 1
-7000 -6000 -5000 -4000 -3000 -2000 -1000 0 1000

Real axis

Figure 3: Eigenvalues of the first and second-order averaged linearized systems with
the Hawkmoth parameters.

V. Conclusion

The longitudinal fight dynamics of flapping-wing micro-air-vehicles (FWMAVs) /insects is considered. A
reduced-order, three-DOF, multi-body model extracted from the full five-DOF dynamics is considered. In
order to rigorously and analytically analyze the balance problem and assess the longitudinal flight stability
near hover, while including the wing inertial effects, the geometric control theory and averaging are combined.
Applying VOC formula before averaging yielded an unstable averaged system. As a vibrational stabilization
effect is anticipated, we applied second-order averaging after VOC formula. The resulting second-order
averaged system has been proven stable, hence a stable time-periodic dynamics.
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Appendix
A. Hawkmoth Morphological Parameters

The morphological parameters and the wing planform for the hawkmoth, as given in [17] and [18], are

R =51.9mm, S = 947.8mm?, ¢ = 18.3mm,
1= 0.4, 75 — 0.525, f = 26.3Hz, ® — 60.5°,
am = 30°, mp = 1.648gm, and Ly}, = 2080mg.cm?,

where R is the semi-span of the wing, S is the area of one wing, ¢ is the mean chord, f is the flapping
frequency, ® is the flapping angle amplitude, my is the mass of the body, and I,; is the body moment of
inertia around the body y-axis. The moments of the wing chord distribution 7; and 7, are defined as

R
Iy = 2/ rke(r) dr = 2SRF#Y.
0

As for the wing planform, the method of moments used by Ellington [18] is adopted here to obtain a chord
distribution for the insect that matches the documented first two moments 7 and 75; that is,

05 GT0R)

where A A A A
A=y [ ]y = (1) [BYER -1,
21 1 2 1
and = [; P11 —7) L dr.
The mass of one wing is taken as 5.7% of the body mass according to Wu et al. [19] and is assumed uniform

with an areal mass distribution m’ The inertial properties of the wing are then estimated as

I, = ZfOR m'r?c(r)dr, I, = 2fOR m'd2c3(r) dr

2fR m/re(r) dr I
A, =1, + 1, and reg = =" P = 32,

where d is the chord-normalized distance from the wing hinge line to the center of gravity line.
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