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Abstract—A wide variety of mechanisms, such as alert triggers
and auditing routines, have been developed to notify administra-
tors about types of suspicious activities in the daily use of large
databases of personal and sensitive information. However, such
mechanisms are limited in that: 1) the volume of such alerts
is often substantially greater than the capabilities of resource-
constrained organizations and 2) strategic attackers may disguise
their actions or carefully choose which records they touch,
thus evading auditing routines. To address these problems, we
introduce a novel approach to database auditing that explicitly
accounts for adversarial behavior by 1) prioritizing the order
in which types of alerts are investigated and 2) providing an
upper bound on how much resource to allocate for auditing
each alert type. We model the interaction between a database
auditor and potential attackers as a Stackelberg game in which
the auditor chooses an auditing policy and attackers choose which
records in a database to target. We further introduce an efficient
approach that combines linear programming, column generation,
and heuristic search to derive an auditing policy, in the form
of a mixed strategy. We assess the performance of the policy
selection method using a publicly available credit card application
dataset, the results of which indicate that our method produces
high-quality database audit policies, significantly outperforming
baselines that are not based in a game theoretic framing.

I. INTRODUCTION

Modern computing and storage technology has made it

possible to create ad hoc database systems with the ability

to collect, store, and process extremely detailed information

about the daily activities of individuals [1]. These systems hold

great value for society, but accordingly face challenges to secu-

rity and eventually, personal privacy. Their sensitive property

attracts malicious attackers who can gain value through various

ways, such as stealing sensitive information, commandeering

computational resources, committing financial fraud, and sim-

ply shutting the system down [2]. While complex access con-

trol systems have been developed for database management, it

has been recognized that in practice no database systems will

be impervious to attack [3]. As such, prospective technical

protections need to be complemented by retrospective auditing

mechanisms [4]. Though never preventing attacks in their own

right, auditing allows for the discovery of breaches that can

be followed up on before they escalate to full blown exploits

by adversaries originating from beyond, as well as within, an

organization.

In general, auditing relies on the performance of a threat

detection and misuse tracking (TDMT) module, which raises

real-time alerts based on the actions committed to a system for

further investigation. Practically, the alert types are specifically

predefined by the administrator officials in ad hoc applications.

Through deploying TDMTs, however, security and privacy

have not been sufficiently guaranteed, the main reason of

which, lies on their nature of generating a large number of

alerts, whereas the number of actual violations tends to be

quite small. Therefore, in lieu of an efficient audit function-

ality in the database systems, TDMTs are not optimized for

detecting suspicious behavior.

Given the overwhelming volume of alerts in comparison to

available auditing resource and the need to catch attackers, the

core query function invoked by an administrator must consider

resource constraints. And, given such constraints, we must de-

termine which alerts should be recommended for investigation.

To solve this problem, we introduce a game theoretic model,

in which an auditor chooses a randomized auditing policy,

while potential violators choose their victims or to refrain

from malicious behavior after observing the auditing policy.

Specifically, our model restricts the space of audit policies to

consider two dimensions: 1) how to prioritize alert categories

and 2) how much resource to allocate to each category. We

propose a series of algorithmic methods for solving it. In

addition, we develop a novel search method for computing

the amount of investigation resource for each category. We

perform an evaluation with a real dataset pertaining to credit

card eligibility decisions, the results of which demonstrate

the effectiveness of our approach over various alternative

techniques.

II. GAME THEORETIC MODEL OF ALERT PRIORITIZATION

By defining alert types, each suspicious event can be marked

into the corresponding audit bin. A crucial consideration is

how to prioritize alerts, choosing a subset from a vast pool

of possibilities that can be audited given a specified auditing

budget. The problem is complicated by the fact that intelligent



adversaries—that is, would-be violators of organizational ac-

cess policies—would react to an auditing policy by changing

their behavior to balance the gains from violations, and the

likelihood, and consequences, of detection. We describe a

game model between an auditor and multiple attackers.

A. System Model

Let E be the set of potential adversaries, some of whom

could be violators of privacy policies, and V be the set of

potential victims. We define events, as well as attacks, by

a tuple 〈e, v〉. A subset of these events will trigger alerts.

Let T be the set of alert types assigned to different kinds

of suspicious behavior. We assume each event 〈e, v〉 maps to

at most one alert type t ∈ T (with probability P t
ev). Typically,

both categorization of alerts and corresponding mapping be-

tween events and types is given (e.g. through predefined rules).

Let Ct be the cost (e.g., time) of auditing a single alert of

type t and let B be the total budget allocated for auditing.

Normal events resulting in alerts arrive based on a distribution

reflecting a typical workflow of the organization. We assume

this distribution is known, represented by Ft(n), which is the

probability that at most n alerts of type t are generated. If we

make the reasonable assumption that attacks are rare events

and that the alert logs are tamper-proof by applying certain

technique, then this distribution can be obtained from historical

alert logs.1

B. Game Model

We model the interaction between the auditor and potential

violators as a Stackelberg game, in which the auditor chooses

a possibly randomized auditing policy, which is observed by

the prospective violators completely, who in response choose

the nature of the attack. Both decisions are made before the

alerts produced through normal workflow are generated.

In general, a specific pure strategy of the defender (auditor)

is a mapping from an arbitrary realization of alert counts of

all types to a subset of alerts that are to be inspected, abiding

by a constraint on the total amount of budget B allocated

for auditing alerts. We let pure strategies involve an ordering

ooo = (o1, o2, . . . , o|T |) (∀i, j ∈ Z
+ and i, j ∈ [1, |T |],

if i 6= j, then oi 6= oj) over alert types, where the sub-

script indicates the position in the ordering, and a vector of

thresholds b = (b1, . . . , b|T |), with bt being the maximum

budget available for auditing alerts in category t. Let O be

the set of feasible orderings. We interpret a threshold bt as

the maximum budget allocated to t; thus, the most alerts of

type t that can be inspected is bbt/Ctc. The auditor is allowed

to choose a randomized policy over alert orderings, with pooo
being the probability that ordering ooo over alert types is chosen,

whereas the thresholds b are deterministic and independent of

the chosen alert priorities.

Each adversary e ∈ E may target any potential victim v ∈
V. The adversary is assumed to target at most one victim.

In addition, we assume that any given potential adversary is

1The probability that adversaries manipulate the distribution in the sensitive
practices to fool the audit model is almost zero.

actually unlikely to consider attacking. We formalize it by

introducing a probability pe that an attack by e is considered

at all (i.e., e does not even consider attacking with probability

1− pe).

Suppose we fix a prioritization ooo and thresholds b. Let o(t)
be the position of alert type t in ooo and oi be the alert type in

position i in the order. Let Bt(ooo,b,Z) be the budget remaining

to inspect alerts of type t if the order is ooo, the defender uses

alert type thresholds b, and the vector of realizations of benign

alert type counts is Z = {Z1, . . . , Z|T |}. Then we have

Bt(ooo,b,Z) =

max
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If the total budget that is eaten by inspecting alerts prior

to t is larger than B, Bt(ooo,b,Z) returns 0, and no alerts of

type t will be inspected. Next, we can compute the number of

alerts of type t that are audited as

nt(ooo,b,Z) = min {Bt(ooo,b,Z), bbt/Ctc , Zt} .

Then, the probability that an alert of type t generated through

an attack is detected is approximately

Pal(ooo,b, t) ≈ EZ

[

nt(ooo,b,Z)

Zt

]

. (1)

We can further approximate this probability by sampling from

the joint distribution over alert type counts Z.

The adversary does not directly choose alert types, but rather

the victim. Thus, the probability of detecting an attack 〈e, v〉
under audit order ooo and audit thresholds b is then

Pat(ooo,b, 〈e, v〉) =
∑

t

P t
evPal(ooo,b, t). (2)

Let M(〈e, v〉) denote the penalty of the adversary when

captured by the auditor, R(〈e, v〉) denote the benefit if the

adversary is not audited, and K(〈e, v〉) the cost of an attack.

The utility of the adversary e is then

Ua(ooo,b, 〈e, v〉) = Pat(ooo,b, 〈e, v〉) ·M(〈e, v〉)

+ (1− Pat(ooo,b, 〈e, v〉)) ·R(〈e, v〉)−K(〈e, v〉).
(3)

By assuming the game is zero-sum, the auditor’s goal is to

find a randomized strategy pooo and type-specific thresholds b

to minimize the expected utility of the adversary:

min
pooo,b

∑

e∈E

∑

ooo∈OOO

pooo max
v

Ua(ooo,b, 〈e, v〉). (4)

We call this optimization challenge the optimal auditing prob-

lem (OAP). The optimal auditing policy can be computed using

the following mathematical program, which directly extends

the standard linear programming formulation for computing

mixed-strategy Nash equilibria:

minb,pooo,u
∑

e∈E
peue

s.t. ∀ 〈e, v〉 , ue ≥
∑

ooo∈OOO poooUa(ooo,b, 〈e, v〉)
∑

ooo∈OOO pooo = 1,
∀ooo ∈ OOO, 0 ≤ pooo ≤ 1.

(5)



Indeed, if we fix the decision variables b, the formulation

becomes a linear program. Nevertheless, since the set of all

possible alert prioritizations is exponential, even this linear

program has exponentially many variables. Furthermore, in-

troducing decision variables b makes it non-linear and non-

convex.

III. SOLVING THE ALERT PRIORITIZATION GAME

The two main challenges for solving the OAP are: 1) an

exponential set of possible orderings of alert types, and 2)

a combinatorial space of possible choices for the threshold

vectors b. In this section, we develop a column generation

approach for the linear program induced when we fix a

threshold vector b. We then propose a search algorithm to

compute the auditing thresholds.2

A. Column Generation Greedy Search

Since the number of constraints is small compared with

the exponential number of variables, only a limited number of

variables will be non-zero. Borrowing the basic idea of column

generation, we propose a method we refer to as Column

Generation Greedy Search (CGGS), in which we iteratively

solve a linear program with a small subset of variables, and

then add new variables with a negative reduced cost.

Specifically, we begin with a small subset of alert prioritiza-

tions QQQ ⊆ OOO and solve the linear program induced after fixing

b in Equation 5, restricted to columns in QQQ. Next, we check if

there exists a column (ordering over types) that improves upon

the current best solution. By minimizing the reduced costs, we

generate one new column in each iteration and add it to the

subset of columns QQQ in the master problem. This process is

repeated until we can prove that the minimum reduced cost

is non-negative. At this point, we have solved the original

(unrestricted) linear program in a suboptimal manner.

B. Iterative Shrink Heuristic Method

We now develop a heuristic procedure, which we call the

Iterative Shrink Heuristic Method (ISHM), to find subop-

timal alert type thresholds. First, it should be recognized

that
∑

t bt ≥ B; otherwise, it would clearly waste auditing

resources. Though no explicit upper bound on the thresholds,

given the distribution of the number of alerts Zt for an alert

type t, we can obtain an approximate upper bound on bt,
where Ft(bt/Ct) ≈ 1. Consequently, searching for a good

solution can begin with a vector of audit thresholds, such

that for each bt, Ft(bt/Ct) ≈ 1. Leveraging this intuition,

we iteratively shrink the values of a good subset of audit

thresholds according to a certain step size ε3.

In each atomic searching action, ISHM first makes a subset

of thresholds bt strategically shrink. Next, it checks if this

results in an improved solution. We introduce a variable lh,

which indicates the level (or the size) of the given subset of

b, and ε ∈ (0, 1), which controls the step size.

2The pseudocode for the two algorithms can be find at XXXXX.
3”Good” in this context means that shrinking thresholds within the subset

improves the value of the objective function.

TABLE I: Description of the defined alert types.

ID Alert type Description Mean Std

1 No checking account, Any purpose 370.04 15.81
2 Checking < 0, New car, Education 82.42 7.87
3 Checking > 0, Unskilled, Education 5.13 2.08
4 Checking > 0, Unskilled, Appliance 28.21 5.25
5 Checking > 0, Critical account, Business 8.31 2.96

By assigning lh = 1, we begin with shrinking each of the

audit thresholds. If the best value for the objective function

in the candidate subsets at lh = 1 after shrinking shows an

improvement, then the shrink is accepted and the shrinking

coefficient is made smaller. When no coefficient leads to

improvement, we increase lh by one, which induces tests of

threshold combinations at the same shrinking ratio. Once an

improvement occurs, the search course resets based on the

current b. The search terminates once lh > |T |.

IV. MODEL EVALUATION

A. Data Overview

The adopted dataset for model evaluation is the Statlog

(German Credit Data) dataset available from the UCI Machine

Learning Repository. It contains 1000 credit card applications

with 20 attributes describing the status of the applicants

pertaining to their credit risk. Before issuing a credit card,

banks would determine if it could be fraudulent. In face

of a large number of applications, it requires retrospective

audits to determine whether specific ones should be canceled.

Leveraging the provided features, we define five alert types,

which are triggered by the specific combinations of attribute

values and the purpose of application, as depicted by Table I.

The eight selected purposes of application are the ”victims”

in our audit model. In the description field, italicized words

represent the purpose of the application, while the other words

represent feature values.

We used the five alert types to label applications, excluding

any that fail to receive a label. Among these, we randomly

selected 100 applicants who may choose to ”attack” one of

the eight purposes of applications, for a total of 800 possible

events.

B. Comparison with Baseline Alternatives

The performance of the proposed audit model was inves-

tigated by comparing with several natural alternative audit

strategies as baselines. The first alternative, Audit with random

orders of alert types, is to randomize the audit order over

alert types. Though random, this strategy mimics the reality

of random reporting. In this case, we adopt the thresholds

out of the proposed model with ε = 0.1 to investigate

the performance. The second alternative, Audit with random

thresholds, is to randomize the audit thresholds. For this policy,

we assume that 1) the auditor’s choice satisfies
∑

i bi ≥ B and

2) the auditor has the ability to find the optimal audit order

after deciding upon the thresholds. The third alternative, Audit

based on benefit, is a naive greedy audit strategy, where the

auditor prioritizes alert types according to their utility loss. In



this case, the auditor investigates as many alerts of a certain

type as possible before moving on to the next type in the order.

The following performance comparisons are assessed over

a broad range of auditing budgets. For our model, we present

the values of the objective function with three different in-

stances of the step size ε in ISHM: [0.1, 0.2, 0.3]. Figures 1

summarize the performance of the proposed audit model and

three alternative audit strategies for the dataset. As expected, as

the budget increases, the auditor sustains a decreasing average

loss. It can be seen that the proposed audit model significantly

outperforms the alternative baselines. Specifically, as the au-

diting budget increases, the auditor’s loss trends towards, and

becomes, 0 in our approach. This means that the attackers are

completely deterred. For the alternatives Audit with random

thresholds outperforms other strategies. And, the strategy that

greedily audits alert types (in order of loss) tends to perform

quite poorly.

 10  30  50  70  90  110  130  150  170  190  210  230  250

 Budget

 0

 500

 1000

 1500

 L
o

s
s

 o
f 

th
e

 a
u

d
it

o
r

Proposed model with 0 = 0.1

Proposed model with 0 = 0.2

Proposed model with 0 = 0.3

Audit with random thresholds

Audit with random orders of alert types

Audit based on benefit

Fig. 1: Loss of the auditor in the proposed and alternatives

audit model in the dataset.

V. RELATED WORK

The development of computational methods for raising and

subsequently managing alerts in database systems is an active

area of research. Generally speaking, there are two main cat-

egories by which alerts are generated in a TDMT: 1) machine

learning methods [5]–[7], and 2) rule-based approaches [8]–

[11]. While these methods trigger alerts for investigators, they

result in a significant number of false positives and they fail to

consider the situation that smart attackers may circumvent the

prioritization and aggregation mechanisms. Naturally, game-

theoretical approaches provide some novel points of view

[12], [13]. Laszka et al. proposed a framework for alert

prioritization, which adopted an exhaustive auditing strategy

across alert types of a given order [14], which is limited in

practice. Recently, the problem of assigning alerts to security

analysts has been introduced [15], with a follow-up effort

casting it within a game theoretic framework [16]; however,

it is assumed that the number of alerts is fixed, which is not

the case in practice.

VI. DISCUSSION AND CONCLUSIONS

TDMTs are usually deployed in database systems to address

a variety of attacks; however, an overwhelming alert volume

is far beyond the capability of auditors with limited resources.

Our research illustrates that policy compliance auditing can

be improved by prioritizing which alerts to focus on via a

game theoretic framework, allowing auditing policies to make

best use of limited auditing resources while simultaneously

accounting for strategic behavior of potential policy violators.

As such, the proposed model and the effective heuristics we

offer in this study fill a major gap in the field.
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