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Abstract  

Computational protein design has been successful in modeling fixed backbone proteins in a single 

conformation. However, when modeling large ensembles of flexible proteins, current methods in 

protein design have been insufficient. Large barriers in the energy landscape are difficult to traverse 

while redesigning a protein sequence, and as a result current design methods only sample a fraction 

of available sequence space. We propose a new computational approach that combines traditional 

structure-based modeling using the ROSETTA software suite with machine learning and integer linear 

programming to overcome limitations in the ROSETTA sampling methods. We demonstrate the 

effectiveness of this method, which we call BROAD, by benchmarking the performance on increasing 

predicted breadth of anti-HIV antibodies. We use this novel method to increase predicted breadth of 

naturally-occurring antibody VRC23 against a panel of 180 divergent HIV viral strains and achieve 

100% predicted binding against the panel. In addition, we compare the performance of this method to 

state-of-the-art multistate design in ROSETTA and show that we can outperform the existing method 

significantly. We further demonstrate that sequences recovered by this method recover known 

binding motifs of broadly neutralizing anti-HIV antibodies. Finally, our approach is general and can be 

extended easily to other protein systems. 

 

Author Summary 

In this article, we report a new approach for protein design, which combines traditional structural 

modeling with machine learning and integer programming. Using this method, we are able to design 

antibodies that are predicted to bind large panels of antigenically diverse HIV variants. The 

combination of methods from these fields allows us to surpass protein design limitations that have 

been seen up to this point. 
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Introduction 

Computational design has been used successfully by protein engineers for many years to alter the 

physicochemical properties of proteins [1,2]. In the simplest case, protein design involves optimizing 

the amino acid sequence of a protein to accommodate a desired 3-D conformation. This approach 

has been extended to related tasks such as protein-protein interface design, de novo design of 

protein binding molecules, design of self-assembling protein nano-cages, etc. [3-6]. Each of these 

examples involves the straightforward application of design methodologies to a single, static protein 

conformation. However, there is a need to extend protein design to apply to several conformations 

simultaneously. These approaches, referred to as multistate design (MSD), can be used to modulate 

protein specificity, model protein flexibility, and engineer proteins to undergo conformational changes 

[7-13]. Several methods have been developed to enable computationally expensive multistate design 

[14,15]. However, these methods all suffer from large energetic barriers that limit sampling in 

sequence space, resulting in sub-optimal designs [14]. In addition, these methods are severely limited 

in scale by the size and number of states that can be included. To address these limitations, we have 

developed a method that integrates structural modeling with integer linear programming to enable a 

fast global search through large ensembles of target states. 

 

Results 

Experimental workflow 

Our design algorithm, which we call BROAD (BReadth Optimization for Antibody Design) 

incorporates ROSETTA-based structural modeling with integer linear programming to more easily 

traverse boundaries in the energy function (Figure 1). The experimental workflow involves generating 

a large training set of randomly mutated proteins, fitting a linear model (described below) to predict 
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binding, and using integer linear programming to find an optimal antibody sequence balancing 

stability and binding with respect to a collection of target virus epitopes.  

 

We applied this method to the 

problem of designing broadly 

binding anti-HIV antibodies. 

We modeled anti-HIV antibody 

VRC23 [16] against a set of 

180 diverse viral proteins, 

creating antibody variants that 

were mutated randomly in the 

paratope region. The viral 

panel used was derived from 

Chuang G-Y, et al [17]. Based on known binding patterns of VRC23 we calculated the predicted 

binding energy that corresponds to observable binding, and searched antibody space using integer 

linear programming to optimize stability of the unbound antibody while achieving predicted 100% 

binding breadth to the 180 target viral proteins. We then used a non-linear Support Vector Machine 

classifier, trained on the entire dataset produced by ROSETTA, to identify top sequences.  Finally, we 

entered the top scoring sequences back into ROSETTA structural modeling to measure the predicted 

breadth of antibody variants. 

 

Sequence-based Linear Classification and Regression Models to Predict Binding and Stability 

Our end goal is to design broadly binding and stable antibodies by searching the sequence space, 

i.e., to optimize the amino acids at each binding position of the antibody. The key challenge for this 

 

Figure 1: Experimental workflow of the BROAD design method. 
The method uses ROSETTA structural modeling to generate a 
large set of mutated antibodies, support vector machines (SVM) 
to predict ROSETTA energy from amino acid sequence, and 
integer linear programming to optimize breadth of binding across 
a set of viral proteins. 
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approach is that an exhaustive search in the combinatorial sequence space is intractable. To address 

this issue, we first propose to learn sequence-based linear classification and regression models to 

predict binding and stability from data. Building on these models, we formulate an integer program to 

accomplish global search in the antibody sequence space.  

 

To generate our training set, we determined three contiguous stretches on the antibody that are in 

contact with the viral protein. These positions were determined to be residues 46-62, spanning FR2-

CDR2-FR3; residues 71-74 in FR3; and residues 98-100b in CDR3 (Figure S1). We then created 

randomly mutated antibody variants, modeled their binding poses using ROSETTA, and used this data 

to train a binding classifier to predict ROSETTA score and binding energy from amino acid composition.  

 

The binding classifier is based on the assumption that the amino acids at the binding positions of the 

antibody interact with those on the binding positions of the virus. In particular, this model assumes 

that binding between an antibody and a viral protein is determined by two factors: a) the individual 

amino acids in each binding position of the antibody and the virus respectively and b) the effects of 

the pairwise amino acid interactions between the antibody and the virus respectively. To capture 

these, we construct a sequence-based binary feature vector from the input antibody and virus pair, 

which explicitly represents the individual and pairwise amino acid contributions. Let the input 

antibody-virus pair represented as vectors of amino acids, be denoted by (�, �). Let �(�, �) denote the 

ROSETTA predicted binding energy for (�, �) and let Φ(�, �) denote the binary binding decision. We 

chose a threshold � such that Φ(�, �) = 	+1 if �(�, �) ≤ � (i.e., �	��� � bind) and Φ(�, �) = 	−1 

otherwise. For evaluation of our approach, we choose the value of θ based on experimental 

neutralization data. This data is available as the experimental neutralization IC50 (in units of μg/ml) of 

VRC23 with the 180 virus sequences in the panel [17]. Lower values represent better neutralization 
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potency and values that have ‘>50’ concentration represent a virus that is not neutralized by VRC23. 

Accordingly, VRC23 has a neutralization breadth of 63.5% on this panel. We set θ = -28.5 such that 

the VRC23 breadth of binding computed on the ROSETTA generated data (sequences and the 

corresponding ROSETTA binding scores) is consistent with the above experimental neutralization data. 

 

We learn the classifier Φ(�, �)	as a linear Support Vector Machine (SVM) [18] using the binary feature 

set comprised of actual antibody and virus sequences along the corresponding binding sites, as well 

as all pairwise interactions of antibody and virus amino acids. The SVM classifier uses the ROSETTA 

binding energy as the ground truth, and allows more efficient sampling by approximating the ROSETTA 

score function by sequence alone. To optimize the L2 regularization parameter of the SVM, we 

performed 10-fold cross-validation on the full dataset, using 80% of the data for training and 20% for 

testing.  Smaller parameter	values enforce higher regularization and higher values lead to overfitting. 

The average prediction accuracy is shown in Figure 2a for different values of the L2 regularization 

parameter. We also plot the prediction error on the two classes: binders (+1) and non-binders (-1). 

The prediction accuracy is 67% on the test set using the optimized parameter (a random predictor 

would be at 50%). We observe that even if the prediction accuracy is relatively low, it provides 

reasonable signal within the subsequent breadth optimization step (discussed in the results section). 

Since the final decision is determined by solving the breadth optimizing integer linear program, our 

approach does not rely on a highly accurate classification model. In previous research [19], a similar 

model was introduced to predict ∆� values for interaction between PDZ domains and peptide ligands. 

The result was a 0.69 correlation coefficient in 10-fold cross validation. This model can also be 

interpreted to identify the important binding position pairs that contribute significantly to the final 

prediction. We plot this interaction strength for each pairwise interaction in Figure 2c (please refer to 

the methods section for details).  
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Next, we learned a linear regression model to predict the thermodynamic stability, using only the 

antibody amino acids as features. The prediction of thermodynamic stability is necessary to ensure 

that our designed antibodies can be expressed stably. To simplify the approach, we predicted the 

stability of the antibody-virus complex as a function of the antibody sequence only (note that we do 

not make this assumption during evaluation). Specifically, we constructed a binary feature vector 

restricted to amino acids in the antibody binding positions. Let �(�, �) denote the ROSETTA stability for 

the pair (�, �). We learn a linear model Ψ(�) to predict �(�, �) for an antibody � (i.e., independent of 

the virus). To measure the accuracy of prediction, we computed the correlation coefficient between 

the true scores and the predicted scores. Interestingly, our assumption that stability scores are only 

weakly dependent 

on the virus 

protein sequence 

is borne out: we 

found a correlation 

of 0.85 between 

the predicted and 

actual stability 

energy score on the test set (Figure 2b).  

 

Algorithm 

Given the classification and regression model learned from data, we formulate an integer linear 

program (ILP) to optimize the amino acids in the antibody sequence space to achieve both breadth 

and stability. The variables are the amino acids in the antibody binding positions. The objective 

function optimizes the predicted stability score (i.e., minimizes Ψ(�)). The constraints represent the 

Figure 2: Training results for the linear classification: (a) 10-fold cross 
validation results. (b) Correlation between predicted score and ROSETTA 
energy score in linear regression. (c) Interaction strength of each pairwise 
interaction between antibody and virus binding positions are also shown. 
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condition that the designed antibody should bind to all the viruses in the panel, using binding 

predictions from Φ(�, �).1 This algorithm is outlined in Figure S2. 

 

Armed with these tools, we used the following protocol to generate a collection of candidate 

antibodies to be evaluated using ROSETTA.  First, we took a random subsample of the full training 

data corresponding to 100 out of the 180 virus sequences.  Using only this subsample, we trained the 

binding and stability models, Φ(�, �) and Ψ(�) respectively.  We then solved the ILP described above 

to compute a stable, broadly-binding antibody sequence, considering only the 100 out of 180 selected 

virus sequences (that is, we only constrain the ILP to bind to these 100 virus proteins, rather than the 

full set of 180).  We repeated this procedure 50 times, to obtain 50 candidate antibody sequences. To 

validate these optimized antibody candidates, we predicted binding and stability scores using a model 

trained on all the data. In case of stability prediction, we used a linear model as described above 

(since the model is reasonably accurate). For binding prediction however, we trained a non-linear 

(radial basis function kernel) SVM for improved prediction accuracy. Each of the 50 candidate 

antibodies were scored using these models trained on all data, in terms of predicted binding breadth 

and stability, and 10 best candidates were then chosen for ROSETTA evaluation using the full panel of 

180 virus proteins. This procedure is outlined in Figure S3. 

 

Redesign of VRC23 improves predicted breadth 

                                                        

1 We found that this problem was always feasible: there always existed some antibody sequence that could bind 

to all viral proteins based on our learned binding model. More generally, we can impose a minimal binding 

breadth criterion. 
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After generating redesigned 

antibody sequences with 

predicted increases in breadth, 

we threaded these sequences 

onto the VRC23-gp120 

complexes and subjected them 

to structural modeling to 

measure the change in 

predicted breadth. We refined 

the complexes using the 

ROSETTA relax protocol – to test 

the accuracy of the ROSETTA 

relaxed models, we compared 

the relaxed models to solved 

structures of gp120 viral 

variants and computed the root 

mean squared deviation (RMSD) over Cα atoms on gp120. We observed that the relax protocol 

recapitulates the gp120 conformations with an average RMSD of 2.2 Å, whereas the pairwise RMSD 

between gp120 conformations, representing the intrinsic flexibility of these molecules, is 1.8 Å (Table 

S1). Considering that we substituted only residues at the binding site of the gp120 variants, and not 

the entire gp120 sequence, we consider that the variant gp120 conformations are recapitulated with 

sufficient accuracy for this experiment. As a control, we generated sequences using structure-based 

multistate design with the RECON method [14]. The RECON method uses ROSETTA design combined 

with coordination between differing states to generate an antibody sequence with increased affinity 

 

Figure 3: Redesign of VRC23 using integer linear programming 
increases predicted breadth over HIV viral strains. A. Predicted 
breadth of 10 redesigned antibodies generated either by 
BROAD or multistate design. Bars show mean and standard 
deviation of 10 sequences. Dotted line shows the predicted 
breadth of the native VRC23 antibody. B. Sequence logos of 
designed antibodies generated by BROAD or multistate design. 
Amino acids are colored based on chemical properties. The 
native VRC23 sequence is shown below. 
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for all target states. Using RECON to redesign antibody-antigen complexes has been benchmarked 

and been shown to generate germline-like, broadly binding antibodies [14]. We compared the 10 

sequences created by BROAD to 10 sequences generated by RECON multistate design to compare 

the change in breadth to alternate approaches. We found that the BROAD method resulted in a 

significant increase in predicted breadth over the RECON multistate design method (Figure 3a). The 

BROAD-designed 

antibodies were able to 

achieve predicted 

breadth ranging from 

86.1 – 100% of viruses, 

whereas multistate 

designed antibodies 

reached a predicted 

breadth of 62.8 – 85.6% 

of viruses. Notably, 

both methods were able to increase predicted breadth from the starting value of 53.3% for wild-type 

VRC23. This finding suggests that the wild-type VRC23 sequence is sub-optimal for breadth, which is 

supported by the observation that other known broadly neutralizing antibodies bind in a similar mode 

to VRC23 but with breadths exceeding 85% [20-23]. In addition, we observed that the BROAD 

method samples sequence space that is not sampled in multistate design (Figure 3b). We 

hypothesize that the BROAD method is able to cross energetic barriers that restrict sampling in 

traditional structure-based design methods, and is thereby able to generate antibodies with greater 

predicted breadth and lower energy. To support this hypothesis we analyzed the difference in score 

and binding energy for antibodies designed by BROAD and multistate design over the panel of viral 

 

Figure 4: Score comparison of redesigned antibodies. The ROSETTA 
score (A) and binding energy (DDG) (B) are shown for ten redesigned 
antibodies made either by BROAD or multistate design, paired with 180 
viruses. Bar plots shown mean and standard deviation. Shown on the Y 
axis is difference between score/DDG between the redesigned antibody 
and wild-type. 
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proteins (Figure 4). BROAD was consistently able to generate lower energy antibody-antigen 

complexes, with a marked decrease in binding energy. This finding supports the hypothesis that 

BROAD is able to search sequences that are unavailable to multistate design, and that these new 

sequences have favorable score and binding energy. 

 

Designed residues recapitulate known binding motifs  

A frequent problem in computational 

protein design is false positives – that 

is, sequences that are predicted to be 

favorable according to the score 

function, but are unable to recapitulate 

that activity in vitro. The ROSETTA score 

function uses many approximations of 

energetic terms to enable faster 

simulations, and these approximations 

can introduce inaccuracies [24,25]. To 

reduce the possibility that the 

redesigned VRC23 variants are scored 

favorably due to inaccuracies in the 

score function, we compared the designed residues introduced by BROAD to structural motifs of 

known broadly neutralizing antibodies (Figure 5). In several cases, the residues in troduced by 

BROAD mimicked a known interaction of an existing antibody. For example, position 61 was mutated 

from proline in VRC23 to arginine (Figure 5, top left). The broadly neutralizing antibody VRC01 has 

an arginine that occupies similar space to the designed arginine [20]. This phenomenon can be 

 
Figure 5: BROAD design recapitulates structural motifs 
of known broadly neutralizing antibodies. Residues that 
were mutated from the native VRC23 sequence were 
compared to known antibodies. Proteins shown are 
VRC23 (PDB ID: 4j6r); VRC01 (3ngb); VRC-CH31 
(4lsp); 3BNC117 (4jpv); and NIH45-46 (3u7y). 
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observed for several different broadly neutralizing antibodies, such as VRC-CH31, 3BNC117, and 

NIH45-46, all of which target the CD4 binding site, but at slightly different orientations [20-22,26]. We 

observed several examples of this type of recapitulation. Mutation Q62R on VRC23 placed an 

arginine residue to fill space that is occupied by a tyrosine on VRC-CH31 (Figure 5, top right) - this 

mutation fills a void at the interface to improve antibody-antigen packing. Mutation L73Y places an 

aromatic group overlapping with the position of a tyrosine in antibody 3BNC117, which also improves 

packing with the antigen (Figure 5, bottom left). Lastly, the D102E mutant on the CDRH3 places a 

carboxylic acid group in the same position as a glutamic acid on NIH45-46, improving electrostatic 

interactions with the antigen (Figure 5, bottom right). This observation is remarkable due to the fact 

that the antibody loops occupy different space, but redesigned residues are able to mimic the 

interactions of the broadly neutralizing antibody side chains. In addition, it is worthwhile to note that 

out of these four mutants that recapitulate known broad motifs, three were unobserved in the 

sequences sampled by multistate design (Figure 3b). 

 

As an additional comparison, we identified 

1,041 sibling sequences of known broadly 

neutralizing antibody VRC01, that were 

isolated in a previous study [27]. These 

siblings presumably represent the 

sequence space accessible to VRC01, and 

are a good test case to compare how well 

our design algorithms are capturing natural 

sequence variation in a broad HIV 

antibody. Since these sequences have 

 

Figure 6: Sequences from BROAD design 
recapitulate sequences observed in the lineage of 
broadly neutralizing antibody VRC01. For BROAD and 
MSD sequences a percentage similarity to the VRC01 
lineage was computed (similarity shown in 
parenthesis). Blue boxes highlight positions where 
BROAD samples an amino acid that is present in the 
VRC01 lineage but was not sampled by MSD. The 
VRC23 native sequence is shown below. 
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CDRH3 loops of different lengths we were not able to include the portion of the binding site 

corresponding to the CDRH3 loop – however we compared the rest of the binding site to the 

sequences seen in the VRC01 lineage (Figure 6). We observe that at several positions, BROAD 

samples sequences that are present in the VRC01 lineage but absent from MSD-sampled sequences 

(Figure 6, blue boxes). For example, at the third position in the binding site isoleucine is sampled at a 

high frequency in BROAD and VRC01 lineage sequences, but is never sampled by MSD (Figure 6). 

We highlight a total of five positions where BROAD is outperforming MSD in sampling sequences that 

are seen in the VRC01 lineage. To quantify the sequence similarity we computed a sum of squared 

difference between the two matrices and normalized the values to 100% [14,28]. According to this 

metric the sequences sampled by BROAD are 79.5% similar to those from the VRC01 lineage, 

whereas those sampled by MSD are only 76.3% similar. We conclude that BROAD more accurately 

recapitulates motifs known in broadly neutralizing antibodies. 
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Discussion 

Summary of results 

In this paper we describe the development of a new protein design method that we call BROAD. This 

method uses structural modeling with ROSETTA combined with integer linear programming 

optimization techniques to rapidly search through sequence space for broadly binding antibodies. We 

validated this method using the broadly neutralizing anti-HIV antibody VRC23. We were able to 

generate VRC23 variants with a predicted breadth of 100% over the simulated viral panel, compared 

to a predicted 53% breadth for the wild type antibody. This outcome represents a substantial step 

forward in protein design, and our methodologies can be used to address a wide variety of protein 

design problems in which traditional structural models are insufficient. 

 

Backbone optimization in protein design 

A distinct advantage of the BROAD method is the ability to truly incorporate backbone movement into 

protein design. Many protein design methods have been developed that incorporate backbone 

ensembles to some degree [11,14,29,30] – however, this work typically involves either pre-generating 

large backbone ensembles, many of which may be redundant, or introducing backbone movement 

iteratively after steps of sequence design. In our approach, since we are relaxing the backbone of all 

mutants before fitting the sequence-based predictor, we were able to design sequences that may be 

slightly sub-optimal on the starting backbone coordinates, but can be highly favorable when a slight 

backbone relaxation is applied. This approach allows us to search sequence space that is not 

accessible to other methods, which are highly constrained to the initial backbone coordinates. We 

observed that the BROAD-generated sequences are not sampled by ROSETTA design using the 

RECON method, and indeed are more favorable according to the ROSETTA energy function. 
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Therefore, we conclude that we are searching a “blind spot” in the sequence space that is missed by 

traditional design. 

 

Application to HIV immunology 

This approach to research could be of great utility to the field of HIV immunology. A longstanding goal 

of the field is discovering broadly neutralizing antibodies as the basis of a rational structure-based 

vaccine strategy [31-33]. Much work has gone into redesigning existing antibodies to increase their 

breadth and potency [3,21]. However, HIV is known for its variability, and with this variability comes a 

difficulty in generating a single antibody with potent neutralization against all possible variants. The 

BROAD method addresses this problem by enabling rapid redesign of known antibodies against viral 

panels of arbitrary size. This technology can be used in the future as part of the antibody discovery 

and characterization process, by rapidly searching sequence space for variants for greater breadth. In 

addition, protein design also has been used on the reverse side of the vaccination problem, namely, 

to design a vaccine with high affinity for antibodies of interest [34-36]. We can foresee the application 

of the BROAD method to this problem as well, by optimizing immunogens for recognition of germline 

precursors of known broadly neutralizing antibodies. 
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Materials and Methods  

 

Structural modeling 

The VRC23-gp120 complex used for modeling was from the Protein DataBank (PDB ID: 4j6r). The 

structure was downloaded from the PDB (www.rcsb.org) and processed manually to remove water 

and non-protein residues. The CH1 and CL1 domains of the antibody structure were removed from 

the structure manually, and the structure was renumbered starting from residue 1. To select binding 

sites on the antibody and virus, we applied a distance cutoff of 4 Å from the opposing protein chain, 

where any residue with a heavy atom within 4 Å of a heavy atom on the opposing protein was 

considered to be at the binding site. Distance calculations were done using PyMol visualization 

software [37]. We expanded this binding site to several neighboring residues to include contiguous 

stretches of at least four residues to constitute a binding site. A total of 27 residues on the antibody 

were included in the binding site. We similarly determined a viral binding site to use for structural 

modeling. This site included 5 contiguous stretches that were determined to be in contact with VRC23 

(32 positions total). These positions were 276-282; 365-371; 425-430; 455-462; and 473-476 (HXB2 

numbering). To model gp120 variants, we performed a multiple sequence alignment using ClustalW 

[38] of the variant sequences with the gp120 in the crystal structure (Q23.17), and substituted the 

corresponding amino acids at the binding site using ROSETTA side chain optimization [24].  

 

Training set 

To generate a training set of structural models, we made random antibody substitutions in the 

previously defined binding site. Each antibody variant had five randomly selected amino acid 

mutations. Viral variants were taken from a set of 180 known HIV gp120 sequences [17]. We chose 

random combinations of antibody variants and viruses, as well as the native antibody sequence with 



 17 

all 180 viruses, for a total of 2200 antibody-virus pairs to serve as the training set. All antibody-virus 

pairs were subjected to an energy minimization via the ROSETTA relax protocol, which involves 

iterative rounds of side chain repacking and backbone minimization with an increasing repulsive force  

[39]. 50 models of each antibody-virus pair were generated by ROSETTA relax, and the lowest scoring 

model was used for further evaluation. The talaris2013 score function was used for all ROSETTA 

simulations.  

 

Linear classification and regression.  

Our data-driven sequence-based model to learn amino acid contributions to binding and stability is 

similar to the graphical model approach proposed in [19]. Let �6 and �7 denote the number of binding 

positions on the antibody and the virus respectively. Let � = 9�;, �<…���@ be a set of discrete 

variables representing the amino acids in the binding positions of the antibody. Each �A takes values 

in the set of � = 20 amino acids. Similarly, let � = 9�;, �< …	���@ represent the variables for the virus-

binding positions. The inputs for binding prediction are the antibody sequence � = 9�;, �<…�IJ@	and 

virus sequence � = 9�;, �<…�IL@	where �A and �M are the amino acid values for the variables �A	and 

�M. Amino acid contributions to binding can be modeled as a bipartite graph in which nodes for � and 

� represent the amino acids and the edges Ω ⊆ �	 × � represent the pairwise amino acid interactions. 

Each node �A and �M has associated weight vector �A and �M ∈ 	ℝU . The edge (�, �)	between nodes �A 
and �M has an associated weight matrix �AM ∈ ℝU	×U to represent the position specific contribution to 

binding for each amino acid pair, where �Z[\] is the ��th entry of matrix �AM . Consequently, given � 

and �, the binding score varies as the sum of individual amino acids and pairwise interaction effects. 

Given this setting, � and � are predicted to bind, i.e., Φ(�, �) = 	+1	(�(�, �) ≤ �),	if  

``�AM�AM +	``�AM�AM +``` ` �Z\�Z[\]	�[] + � ≤ 0	U
]c;

U
\c;

IL
[c;

IJ
Zc;

U
Mc;

IL
Ac;

U
Mc;

IJ
Ac; 																																		 (1) 
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where � is the intercept term and �AM and �AM are binary indicator variables that take the value 1 if 

amino acid � is present at position � (∑ �AM = 1, ∑ �AMMM = 1	∀	�). The  �Z[\] term represents �Z[(�,�). 
These weights can be learned efficiently using a linear support vector machine (SVM) classifier. The 

feature vector �	consists of �6 × 	� binary antibody features, �7 	× 	�	binary virus features and 

�6 ×	�7 	× 	�	 × �	binary pairwise interaction features corresponding to �, � and �	respectively. 

Given a set of � training instance-label pairs (��, �A), � = 1…�, �A = {+1, −1},	a L2-regularized linear 

SVM generates a weight vector � by solving the following unconstrained optimization: min� ;<�q�+
�∑ (max(1 − �A�q�A , 0))<,uAc;  where � > 0 is the L2 regularization parameter. Smaller �	values enforce 

higher regularization. The second term is the squared hinge loss function. The decision function is 

given by sign (�q�). We used the LIBLINEAR SVM implementation [40] to learn the classifier. Finally, 

the weights �, �	and Q	are retrieved from the combined weight vector �.  

On each training set of the viruses, we trained this classifier and saved the weights and the intercepts 

for future use in optimization. In our example, �6 = 27	and �7 = 32. To tune the regularization 

parameter � of SVM, we performed 10-fold cross-validation on the full dataset, using 80% of the data 

for training and 20% for testing.  The average prediction accuracy is shown in Figure 2 for different 

values of the L2 regularization parameter �. As expected, higher �	values lead to overfitting. We 

simultaneously plot the prediction error on the two classes: binders (+1) and non-binders (-1). We 

chose � = 0.001 for our experiments based on the bias-variance trade-off (corresponding to 33% test 

error).  

The above model can be interpreted to identify the important binding positions on the antibody and 

the virus side, i.e., the pairs that contribute significantly to the final prediction. Specifically, we denote 
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the Euclidean norm of the coefficient matrix of interactions �AM , for each position pair as the strength 

of interaction between those positions. We plot this interaction strength for each pairwise interaction 

in Figure 2c.  

 

The linear regression model Ψ(�) predicts the stability scores as a function of the antibody sequence 

features:  

Ψ(�) =``�AMz �AM + �z																		(2)U
Mc;

IJ
Ac;  

where �z ∈ 	ℝU  is the weight vector in regression and cz is the intercept. Given a set of � training 

instance-score pairs (�A , �A)	� = 1…�, (�A = �(�A , �A),	so there are multiple scores for the same antibody 

feature vector), the regression objective with l1 (sparse) regularization is given by: min�| ;<u (∥ (�z)q�A +
�z − �A ∥<)< + � ∥ �z ∥;, where the first term is the least squares penalty, � is the regularization 

parameter and ∥ �z ∥; is the l1-norm of the weight vector. We used the Lasso implementation in scikit-

learn [41] to learn this model. To measure the effectiveness of the prediction, we computed the 

correlation coefficient between the ROSETTA calculated stability scores (in ROSETTA energy units, or 

REU) and the scores predicted by regression. We performed a 10-fold cross validation experiment 

similar to linear classification, with 80% of the data for training and 20% for testing. Based on this 

parameter tuning, we chose � = 0.01 with an average correlation of 0.85 between predicted and 

actual stability energy score. Again, for each training set of viruses, we learn this model and save the 

weights and the intercept for the optimization in the next step.  

Breadth maximization integer program 

We leverage the weights in the binding and stability prediction models Φ(�, �)	and Ψ(�)	to formulate 
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an ILP for optimization in the antibody sequence space. The objective is to minimize stability score. 

The constraints enforce the condition that the designed antibody should bind to each virus sequence 

in the training set. Finally, we add the constraint that the binary variables at each antibody binding 

position should sum to 1, i.e., each position admits one amino acid. The ILP is given by the following:  

minimize			``(�Z\z )�Z\U
\c;

IJ
Zc;  

subject	to	 

``�`` �\]Z[U
]c;

IL
[c; �[]� + �Z\	� �Z\U

\c; +``�AM�AM�U
Mc; + � ≤ 	−�IL

Ac; 	,									∀	� ∈ 1, … , �IJ
Zc;  

`�Z\U
\c; = 1,													∀�, 	�Z\ ∈ {0,1} 
where � = 0.0001 (which constrains that the antibody binds to all virus variants in the dataset, with a 

slight margin to ensure that binding is strictly below the 0 threshold). We used CPLEX version 12.51 

to solve the above ILP.  We solve this optimization problem for each binding and stability model 

learned for data obtained from randomly chosen 100 virus variants (from the dataset in which all 180 

are represented).  

Non-linear classification for binding prediction 

Our final step is to take 50 antibodies generated using the integer program above from 50 random 

subsets of data, and choose the top 10 candidates to evaluate with ROSETTA.  This decision is based 

on a non-linear model of binding learned on the full dataset which includes all 180 viral variants, 

combined with a full-dataset linear model of stability.  The top 10 most stable antibodies from all 
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which are predicted to have 100% binding breadth are then chosen for evaluation.  The linear model 

of stability is identical to what we had described above.   

 

For the non-linear model of binding we use a kernel support vector machine with the radial basis 

function (RBF) kernel.  This model uses the same feature set as the linear model. The kernel function 

enables learning in a high-dimensional, implicit feature space without explicitly computing the 

coordinates of the data in that space. The RBF kernel of two feature vectors � and �′ is defined as: 

 

�(�, ��) = exp�− ∥ � − �� ∥<2�< �, 
where ∥ � − �� ∥< is the squared Euclidean distance between the two feature vectors, and � is a free 

tunable parameter. Consequently, we have two free parameters to tune: the regularization parameter 

�, and the RBF kernel parameter �. Similar to the earlier set-up, we used 80% data for training and 

20% for testing in a 10-fold cross validation experiment to tune these. We performed a grid-search 

over all pairwise combinations of � and � values in 10-2 to 102. The LIBSVM implementation in scikit-

learn was used to train the RBF SVM. We chose the model with � = 0.01 and � = 1 corresponding to 

the prediction accuracy of 68%.  

All learning and ILP experiments were performed on a 2.4GHz hyper threaded 8-core Ubuntu Linux 

machine with 16 GB RAM.  

 

RECON multistate design 

VRC23 was placed in complex with all 180 viruses and designed via RECON multistate design to 

increase predicted breadth across the panel. Models of viral variants were created as previously 

described, by substituting amino acids at the binding site. All VRC23-gp120 pairs were refined by 
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ROSETTA relax with constraints to the starting coordinates to prevent the backbone from making 

substantial movements. Constraints were placed on all Cα atoms with a standard deviation of 0.5 Å. 

All residues at the binding site of VRC23 were included in design, for a total of 27 residues. The 

RECON protocol was run in parallel over 180 processors (manuscript describing parallelization in 

preparation), with four rounds of design and a ramping convergence constraint [14]. The binding sites 

on both the antibody and gp120 chain was subjected to backrub movements between rounds of 

design to increase sequence diversity [42]. A total of 100 designs were generated. Sequences 

generated by both BROAD and RECON methods were visualized using the WebLogo tool [43]. 

 

Sequence validation 

To compare sequences generated by BROAD optimization and RECON multistate design, we 

threaded the optimized antibody sequences over the unprocessed VRC23-gp120 complexes, and 

subjected these complexes to ROSETTA relax to determine the score and binding energy of optimized 

antibodies vs. wild-type. 50 models were generated for each complex, and the lowest scoring model 

was used for evaluation. To compare native and optimized VRC23 sequences, we compared the total 

energy of the VRC23-gp120 complex as well as the binding energy (DDG), defined below: 

 

DDG = Ecomplex – (EAb + EAg) 

 

where EAb and EAg are the energies of the antibody and antigen alone, respectively. Structures of 

modeled VRC23-gp120 complexes were visualized using Chimera software [44].  

 

Comparison to VRC01 lineage sequences 

VRC01 lineage sequences were derived from a previous study [27]. The 1,041 curated heavy chain 
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sequences we used in this analysis are available in GenBank with accession numbers KP840719–

KP841751. To compare sequence profiles we used a modified Sandelin-Wasserman similarity score, 

as described in [14,28]. Briefly, this score was calculated by computing the sum of squared difference 

for each amino acid frequency at each position, which was then subtracted from two and normalized 

to yield a percent similarity for each position and summed over all designed positions to give an 

overall similarity score. 
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Figure legends: 

Figure 1: Experimental workflow of the BROAD design method. The method uses ROSETTA structural 

modeling to generate a large set of mutated antibodies, support vector machines (SVM) to predict 

ROSETTA energy from amino acid sequence, and integer linear programming to optimize breadth of 

binding across a set of viral proteins. 

Figure 2: Training results for the linear classification: (a) 10-fold cross validation results. (b) 

Correlation between predicted score and ROSETTA energy score in linear regression. (c) Interaction 

strength of each pairwise interaction between antibody and virus binding positions are also shown. 

Figure 3: Redesign of VRC23 using integer linear programming increases predicted breadth over HIV 

viral strains. A. Predicted breadth of 10 redesigned antibodies generated either by BROAD or 

multistate design. Bars show mean and standard deviation of 10 sequences. Dotted line shows the 

predicted breadth of the native VRC23 antibody. B. Sequence logos of designed antibodies 

generated by BROAD or multistate design. Amino acids are colored based on chemical properties. 

The native VRC23 sequence is shown below. 

Figure 4: Score comparison of redesigned antibodies. The ROSETTA score (A) and binding energy 

(DDG) (B) are shown for ten redesigned antibodies made either by BROAD or multistate design, 

paired with 180 viruses. Bar plots shown mean and standard deviation. Shown on the Y axis is 

difference between score/DDG between the redesigned antibody and wild-type. 

Figure 5: BROAD design recapitulates structural motifs of known broadly neutralizing antibodies. 

Residues that were mutated from the native VRC23 sequence were compared to known antibodies. 

Proteins shown are VRC23 (PDB ID: 4j6r); VRC01 (3ngb); VRC-CH31 (4lsp); 3BNC117 (4jpv); and 

NIH45-46 (3u7y). 
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Figure 6: Sequences from BROAD design recapitulate sequences observed in the lineage of broadly 

neutralizing antibody VRC01. For BROAD and MSD sequences a percentage similarity to the VRC01 

lineage was computed (similarity shown in parenthesis). Blue boxes highlight positions where 

BROAD samples an amino acid that is present in the VRC01 lineage but was not sampled by MSD. 

The VRC23 native sequence is shown below. 
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