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as a function of content (or, rather, features thereof). This is a gener-
alization of typical network inluence models which abstract away
the nature of information being shared. It is also a crucial general-
ization in our setting, as it allows us to directly model the balancing
act by the attacker between increasing social inluence and avoiding
detection. Second, we consider the problem of designing a collection
of heterogeneous statistical detectors which explicitly account for net-
work structure and difusion at the level of individual nodes, rather
than merely training data of past benign and malicious instances.
We formalize the overall problem faced as a Stackelberg game be-
tween a defender (manager of the social network) who deploys a
collection of heterogeneous detectors, and an attacker who opti-
mally chooses both the starting node for malicious content, and the
content itself. This results in a complex bi-level optimization prob-
lem, and we introduce a novel technical approach for solving it, irst
considering a naive model in which the defender knows the node
being attacked, which allows us to develop a projected gradient
descent approach for solving this restricted problem, and subse-
quently utilizing this to devise a heuristic algorithm for tackling the
original problem. We show that our approach ofers a dramatic im-
provement over both traditional homogeneous statistical detection
and a common adversarial classiication approach.

Related Work. A number of prior eforts have considered lim-
iting adversarial inluence on social networks. Most of these pit
two inluence maximization players against one another, with both
choosing a subset of nodes to maximize the spread of their own
inluence (blocking the inluence of the other). For example, Cerenet
et al. [7] consider the problem of blocking a łbadž campaign using
a łgoodž campaign that spreads and thereby neutralizes the łbadž
inluence. Similarly, Tsai et al. [26] study a zero-sum game between
two parties with competing interests in a networked environment,
with each party choosing a subset of nodes for initial inluence.
Vorobeychik et al. [28] considered an inluence blocking game in
which the defender chooses from a small set of security conigu-
rations for each node, while the attacker chooses an initial set of
nodes to start a malicious cascade. The main diferences between
this prior work and ours is that (a) our difusion process depends on
the malicious content in addition to network topology, (b) detection
at each node is explicitly accomplished using machine learning
techniques, rather than an abstract small set of conigurations, and
(c) we consider an attacker who, in addition to choosing the starting
point of a malicious cascade, chooses the content in part to evade
the machine learning-based detectors. The issue of using hetero-
geneous (personalized) ilters was previously studied by Laszka
et al. [19], but this work did not consider network structure or
adversarial evasion.

Our paper is also related to prior research in single-agent in-
luence maximization and adversarial learning. Kempe et al. [18]
initiated the study of inluence maximization, where the goal is to
select a set of nodes to maximize the total subset of network afected
for discrete-time difusion processes. Rodriguez et al. [16] and Du
et al. [13ś15] considered the continuous-time difusion process to
model information difusion; we extend this model. Prior adver-
sarial machine learning work, in turn, focuses on the design of a
single detector (classiier) that is robust to evasion attacks [6, 12, 20].

However, this work does not consider malicious content spreading
over a social network.

2 MODEL

We are interested in protecting a set of agents on a social network
from malicious content originating from an external source, while
allowing regular (benign) content to difuse. The social network is
represented by a graph G = (V ,E), where V is the set of vertices
(agents) and E is the set of edges. An edge between a pair of nodes
represents communication or inluence between them. For example,
an edge from i to j may mean that j can see and repost a video
or a news article shared by i . For simplicity, we assume that the
network is undirected; generalization is direct.

We suppose that each message (benign or malicious) originates
from a node on the network (which may difer for diferent mes-
sages) and then propagates to others. We utilize a inite set of
instances difusing over the network (of both malicious and benign
content) as a training dataset D. Each instance, malicious or benign,
is represented by a feature vector x ∈ Rn where n is the dimension
of the feature space. The dataset D is partitioned into D+ and D−,
where D+ corresponds to malicious and D− to benign instances.

To analyze the difusion of benign and malicious content on
social networks in the presence of an adversary, we develop formal
models of (a) the difusion process, (b) the defender who aims to
prevent the spread of malicious content while allowing benign
content difuse, (c) the attacker who attempts to maximize the
inluence of a malicious message, and (d) the game between the
attacker and defender. We present these next.

2.1 Continuous-Time Difusion

Given an undirected network with a known topology, we use a
continuous-time difusion process to model the propagation of con-
tent (malicious or benign) through the social network, extending
Rodriguez et al. [16]. In our model, difusion will depend not merely
on the network structure, but also on the nature of the item propa-
gating through the network, which we quantify by a feature vector
x as above.

Suppose that the difusion process for a single message originates
at a node s . First, x is transmitted from s to its direct neighbors. The
time taken by a propagation through an edge e is sampled from
a distribution over time, fe (t ;we ,x ), which is a function of the
edge itself and the entity x , and parametrized by we . The afected
(inluenced) neighbors of s then propagate x to their neighbors, and
so on. We assume that an afected agent remains afected through
the difusion process.

Given a sample of propagation times over all edges, the time ti
taken to afect an agent i is the length of the shortest path between s
and i , where the weights of edges are propagation times associated
with these edges. The continuous-time difusion process is supplied
with a time window T , which is used to simulate time-sensitive
natures of propagation, for example, people are generally concerned
about a news for several months but not for years. An agent is
afected if and only if its shortest path to s is less than or equal
to T . The difusion process terminates when the path from s to
every unafected agent is above T . We deine the inluence σ (s,x )
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large. Consequently, we can formulate the attacker’s optimization
problem with respect to malicious content z for a given original
feature vector x as

max
z

∑

l

kl 1
T
Alz

s .t . | |z − x | |p ≤ ϵ

1[θk (z) = 1] = 0,∀k ∈ V .

(5)

The attacker aims to make 1/γ 2 for each edge as large as possible,
which is captured by the objective function 1

T
Alz, where 1 ∈ R

Nl

is a vector with all elements equal to one. Intuitively, this means
the attacker is trying to maximize on average the parameter 1/γ 2 of
every edge at layer l . Here, [k1,k2, · · · ,kl ] is a vector of decreasing
coeicients that provides more lexibility to modeling the attacker’s
behavior: they are used to re-weight the importance of each layer.
For example, setting k1 = e0,k2 = e−1, · · · ,kl = e−l models the
attacker who tries to make malicious instances spread wider at the
earlier layers of the difusion.

We now use similar ideas to convert the upper-level optimization
problem of (4) into a more tractable form. Suppose that the node
being attacked is s (and known to the defender). Then the defender
wants the detection model at j to accurately identify both malicious
and benign contents. This is achieved by the two indicator func-
tions inside 1 and 2 in the reformulated objective function of the
defender (6):

max
Θ

α
∑

x ∈D−

∑

j

1[θ j (x ) = 0]
∑

l

kl c
T
l,j
Alx

︸                                            ︷︷                                            ︸
1

− (1 − α )
∑

x ∈D+

1[θs (z (x )) = 0]
∑

l

kl c
T
l,s
Alz (x )

︸                                                       ︷︷                                                       ︸
2

(6)

Notice that this expression includes a vector cl,j ∈ R
Nl that does

not appear in (5). cl,j is a function of Θ and x , for a given node j
which triggers difusion (which we omit below for clarity):

cl,j =



1[θl1 (x ) = 0]
1[θl2 (x ) = 0]

.

.

.

1[θlNl
(x ) = 0].



(7)

Slightly abusing notation, we let li ,i ∈ [1,2, · · · ,Nl ] denote the
ith agent in layer l . The term kl c

T
l,j
Alx in 1 can be expanded as

follows:

kl c
T
l,j
Alx

= kl
[
1[θl1 (x ) = 0], . . . ,1[θlNl

(x ) = 0]
]



w
T
l1
x

.

.

.

w
T
lNl

x


= kl

(

1[θl1 (x ) = 0]wT
l1
x + · · · + 1[θlNl

(x ) = 0]wT
lNl

x

)

,

(8)

noting again that l and Nl depend on j, the starting node of the
difusion process. From the expression (8), the defender tries to ind

Θ that minimizes the impact of false positives while maximizing
the impact of true negatives. This is because if each benign instance
x ∈ D− is correctly identiied (false-positive rates are zero and
true-negative rates are one), the summation at the second line of
expression (8) will attain its maximum possible value.

In addition to facilitating the propagation of benign contents,
the defender wants to limit the propagation of malicious contents,
which is embodied in 2 . The equations in 2 are similar to those
in 1 , except that the summation is over malicious contents D+,
and 2 is accounting for the false negatives. In this case, cl,s is a
function of z (x ), the adversarial feature vector which transforms x
into another, z.

We now re-formulate the problem (4) as a new bilevel optimiza-
tion problem (9). The upper-level problem corresponds to the de-
fender’s strategy (6), and the lower-level problem to the attacker’s
optimization problem (5). Here, s is again the node chosen by the
attacker.

min
Θ

(1 − α )
∑

x ∈D+

1[θs (x ) = 0]
∑

l

kl c
T
l,s
Alz (x )

− α
∑

x ∈D−

∑

j

1[θ j (x ) = 0]
∑

l

kl c
T
l,j
Alx

s .t : ∀x ∈ D+ : z (x ) ← argmax
z

∑

l

kl 1
T
Alz

s .t . ∀x ∈ D+ : | |z (x ) − x | |p ≤ ϵ

∀x ∈ D+ : 1[θk (z (x )) = 1] = 0,∀k ∈ V

∀x ∈ D+ : z (x ) ⪰ 0,

(9)

where the last constraint ensures that wT z (x ) ≥ 0 for all attacks
z (x ).

The inal step, inspired by [24, 25], is to convert (9) into a single-
level optimization problem via the KKT [5] conditions of the lower-
level problem. With appropriate norm constraints (e.g., l2 norm)
and a convex relaxation of the indicator functions (i.e., convex
surrogates of the indicator functions), the lower-level problem of
(9) is convex. A convex optimization problem can be equivalently
represented by its KKT conditions[8]. The single-level optimization
problem then becomes:

min
Θ

F̂d

s .t . ∀x :

∂z

(

−
∑

l

kl c
T
l,s
Alz + λд(z,x ) + µ

Th(z,Θ) − ηT z

)

= 0

λд(z,x ) = 0,λ ≥ 0

д(z,x ) ≤ 0

η ⊙ (−z) = 0,η ⪰ 0

h(z,Θ) = 0

(10)

where F̂d is the objective function of Problem (9), and λ, µ, η are
vectors of lagrangian multipliers. д(z,x ) = | |z − x | |p − ϵ ≤ 0 is the
attacker’s budget constraint.h(x ,Θ) is the set of equality constraints
1[θ j (z) = 1] = 0,∀j ∈ V . η ⊙ (−z) is the Hadamard (elementwise)
product between η and (−z) .
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3.2 Projected Gradient Descent

In this section we demonstrate how to solve the single-level opti-
mization obtained above by projected gradient descent. The key
technical challenge is that we don’t have an explicit representation
of the gradients with respect to the defender’s decision Θ, as these
are indirectly related via the optimal solution to the attacker’s opti-
mization problem. We derive these gradients based on the implicit
function of the defender’s utility with respect to Θ.

We begin by outlining the overall iterative projected gradient
descent procedure. In iteration t we update the parameters of de-
tection models by taking a projected gradient step:

Θ(t+1)
= ProjAd

(

Θ(t ) − βt∇ΘF̂d
���Θ=Θ(t )

)

(11)

where Ad is the feasible domain of Θ and βt is the learning rate.
With Θ(t+1) we solve for z (t+1) , which is the optimal attack for a
ixed Θ(t+1) . ∇ΘF̂d is the gradient of the upper-level problem.

Expanding ∇ΘF̂d using the chain rule and still using s as the
initially attacked node, we obtain

∇ΘF̂d = (1 − α ) 1 − α 2

1 =
∑

x ∈D+

[
∂1[θs (z (x )) = 0]

∂Θ

∑

l

kl c
T
l,s
Alz (x )+

1[θs (z (x )) = 0]
∂[

∑

l
kl c

T
l,s
Alz (x )]

∂Θ
︸                   ︷︷                   ︸

(a)

]

2 =
∑

x ∈D−

∑

j

[
∂1[θ j (x ) = 0]

∂Θ

∑

l

kl c
T
l,j
Alx+

1[θ j (x ) = 0]
∂[

∑

l
kl c

T
l,j
Alx]

∂Θ
︸               ︷︷               ︸

(b)

]

(12)

In both 1 and 2 we note that
∂1[θ j (x )=0]

∂Θ
is dependent on the

speciic detection models. We will give a concrete example of their
derivation in Section 3.5.

In
∑

l
kl c

T
l,s
Alz (x ) there are two terms that are functions of Θ:

cl,s and z (x ). Consequently, (a) can be expanded as:

(a) =
∑

l

kl

[
∂cl,s

∂Θl
Alz (x ) +

[
∂z (x )

∂Θl

]T
A
T
l
cl,s

]
. (13)

Note that only the detection models of those agents at layer l have

contribution to cl,s . Thus,
∂cl ,s
∂Θl

is a Jacobian matrix with dimension

Nl ×Nl , where Nl is the number of agents at layer l and Θl denotes
the detection models of those Nl agents. Since cl,s is also dependent
on the speciic detection models of agents, we defer its derivation
to Section 3.5.

∂z (x )
∂Θl

is a n × Nl Jacobian matrix and is the main diiculty

because we do not have an explicit function of the attacker’s optimal
decision z (x ) with respect to Θl . Fortunately, the constraints in (10)

implicitly deine z (x ) in terms of Θ:

f (Θ,z,λ,µ,η) =



∂z

(

−
∑

l
kl c

T
l,s
Alz + λд(z,x ) + µ

Th(z,Θ) − ηT z

)

λд(z,x )

µTh(z,Θ)

η ⊙ (−z)



(14)

Θ and the attacked malicious instance z satisfy f (Θ,z,λ,µ,η) = 0.
The Implicit Function Theorem[31] states that if f (Θ,z,λ,µ,η) is
continuous and diferentiable and the Jacobian matrix

[
∂f

∂z
|
∂f

∂λ
|
∂f

∂µ
|
∂f

∂η

]

has full rank, there is a unique implicit function I (Θ) = (z,λ,µ,η).
Moreover, the derivative of ∂I

∂Θ
is:

∂I

∂Θ
= −

[
∂f
∂z
| ∂f
∂λ
| ∂f
∂µ
| ∂f
∂η

]−1 (

∂f

∂Θ

)

. (15)

∂f
∂z

is the Jacobian matrix of f (Θ,z,λ,µ,η) with respect to z, and

so on. ∂z
∂Θ
∈ Rn×N is the irst n rows of ∂I

∂Θ
, where ∂z

∂Θl
can be

column-wise indexed by the nodes at layer l .
(b) can be similarly expanded as we had done for (a), except that

the attacker does not modify benign content, so that x ∈ D− is no
longer a function of Θ:

(b) =
∑

l

∑

j

kl

[
∂cl,j

∂Θl
Alx

]
. (16)

The full projected gradient descent approach is given by Algo-
rithm 1.

Algorithm 1 Find Defense Strategy

1: Input: agent j
2: Initialize: Θ(0) ,λ,µ,η,β0
3: for t = 1 · · ·k do

4: Θ(t+1)
= ProjAd

(

Θ(t ) − βt∇ΘF̂d
���Θ=Θ(t )

)

5: end for

6: return Θ(k+1)

3.3 Optimal Attack

So far, we had assumed that the network node being attacked is
ixed. However, the ultimate goal is to allow the attacker to choose
both the node s , and the modiication of the malicious content z. We
begin our generalization by irst allowing the attacker to optimize
these jointly.

The full attacker algorithm which results is described in Algo-
rithm 2.
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Algorithm 2 Optimal Attack Strategy

1: Input: Θ,x
2: Initialize: ret = []
3: for i = 1 · · · |V | do
4: x (i ) ← Solve (5)
5: Ûa (i ) ← Optimal objective value of (5)

6:
(

i,z (i,x ),Ûa (i )
)

appended to ret
7: end for

8: z,s ← OptimalTuple(ret)
9: return z,s

Recall that the tree structure of a propagation is dependent on
the agent being attacked, which makes the objective function of (5)
a function of the agent being attacked. Thus, for a given ixedΘ, the
attacker iterates through each agent i and solves the problem (5),
assuming the propagation starts from i , resulting in associated util-
ity Ûa (i ) and an attacked instance z (i,x ). Then i , z (i,x ), and Ûa (i )
are appended into a list of a 3-tuples (the sixth step in Algorithm
2). When the iteration completes the attacker picks the optimal
3-tuple in terms of utility (eighth step in Algorithm 2, where the
function OptimalTuple(ret) inds the optimal 3-tuple from the list
ret). The node s and the corresponding attack instance z in this
optimal 3-tuple become the optimal attack.

3.4 SSE Heuristic Algorithm

Now we take the inal step, relaxing the assumption that the at-
tacker chooses a ixed node to attack which is known to the de-
fender prior to choosing Θ. Our main observation is that ixing
s in the defender’s algorithm above allows us to ind a collection
of heterogeneous detector parameters Θ, and we can evaluate the
actual utility of the associated defense (i.e., if the attacker optimally
chooses both s and z in response) by using Algorithm 2. We use
this insight to devise a simple heuristic: iterate over all potential
nodes s that can be attacked, compute the associated defense Θ(s )
(using the optimistic deinition of defender’s utility in which s is
assumed ixed), then ind the actual optimal attack in response for
each x ∈ D+. Finally, choose the Θ(s ) which has the best actual
defender utility.

This heuristic algorithm is described in Algorithm 3. The ifth

Algorithm 3 Optimal Defense Strategy

1: Input: G = (V ,E),W ,D

2: for j = 1 · · · |V | do
3: Θj ← Apply Algorithm 1
4: ∀x ∈ D+ : (s,z (x )) ← Apply Algorithm 2
5: Ûd (j ) ← DefenderUtility(Θj , (s,z (x )))

6: end for

7: j ← argmaxj Ûd (j )
8: return Θj

step in the algorithm includes the function DefenderUtility, which
evaluates the defender’s utility Ûd (j ). Note that the input argument
s of this function is used to determine the tree structure of the
propagation started from s .

Recall that Algorithm 1 solves (10), which depends on the speciic
detection model to compute the relevant gradients. Therefore, in
what follows, we present a concrete example of how to solve (10)
where detection models are logistic regressions. Speciically, we

illustrate how to derive the two terms,
∂1[θ j (z )=0]

∂Θ
and

∂cl ,j
∂Θl

that

depend on particular details of the detection model.

3.5 Illustration: Logistic Regression

We consider the logistic regression model used for detection at
individual nodes to illustrate the ideas developed above. For a node
i , its detection model has two components: the logistic regression

1
1+e−ϕT x

, where ϕ is the weight vector of the logistic regression

and x the instance propagated to i , and a detection threshold θi
(which is the parameter the defender will optimize). An instance is
classiied as benign if 1

1+e−ϕT x
≤ θi . Thus (slightly abusing notation

as before), θi (x ) , 0 (x is classiied as malicious) if 1
1+e−ϕT x

≥ θi .

With the speciic forms of the detection models we can derive
∂1[θ j (x )=0]

∂Θ
and ∂cl

∂Θl
(omitting the node index s or j for clarity). A

technical challenge is that the indicator function 1(·) is not con-
tinuous or diferentiable, which means that it’s diicult to char-
acterize its derivative with respect to Θ. However, observe that

for logistic regression θ j (x ) = 0
(

1
1+e−ϕT x

≤ θ j
)

is equivalent to

log
( θ j
1−θ j

)

≥ ϕT x . Therefore we use log
( θ j
1−θ j

)

− ϕT x as a surro-

gate function for 1[·]. Then
∂1[θ j (x )=0]

∂Θ
is a N -dimension vector

with the jth element equal to 1
θ j−θ

2
j

. The cl vector then becomes:

cl =



log
( θl1
1−θl1

)

− ϕT x

log
( θl2
1−θl2

)

− ϕT x

.

.

.



(17)

and ∂cl
∂Θl

becomes a Nl × Nl diagonal matrix:

∂cl

∂Θl
=



1
θl1−θ

2
l1

. . .
1

θNl −θ
2
Nl



(18)

With equations (12)-(16), ∂cl
∂Θl

and
∂1[θ j (x )=0]

∂Θ
, we can now calcu-

late ∇ΘF̂d . Since the thresholds θi ∈ [0,1], the defender’s action
space is [0,1]N . When updating Θ by (11) we therefore project it
back to [0,1]N in each iteration.

4 EXPERIMENTS

In this section we experimentally evaluate our proposed approach.
We used the Spam dataset [22] from UCI machine learning reposi-
tory as the training dataset for the logistic regression model. The
Spam dataset contains 4601 emails, where each email is represented
by a 57-dimension feature vector. We divided the dataset into three
disjoint subsets: D ′ used to learn the logistic regression (tuning
the weight vectors with thresholds setting to 0.5) as well as other
models to which we compare, Dtrain used in Algorithm 3 to ind
the optimal defense strategy, and Dtest to test the performance of
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5 CONCLUSION

We address the problem of adversarial detection of malicious con-
tent spreading through social networks. Traditional approaches use
with a homogeneous detector or a personalized iltering approach.
Both ignore (and thus fail to exploit knowledge of) the network
topology, and most iltering approaches in prior literature ignore
the presence of an adversary.We present a combination of modeling
and algorithmic advances to systematically address this problem.
On the modeling side, we extend difusion modeling to allow for de-
pendence on the content propagating through the network, model
the attacker as choosing both the malicious content, and initial
target on the social network, and allow the defender to choose het-
erogeneous detectors over the network to block malicious content
while allowing benign difusion. On the algorithmic side, we solve
the resulting Stackelberg game by irst representing it as a bilevel
program, then collapsing this program into a single-level program
by exploiting the problem structure and applying KKT conditions,
and inally deriving a projected gradient descent algorithm using
explicit and implicit gradient information. Our experiments show
that our approach dramatically outperforms, homogeneous classii-
cation, adversarial learning, and heterogeneous but non-adversarial
alternatives.
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