
Skövde University Studies in Informatics 2017:1

Imed Hammouda, Björn Lundell, Greg Madey and Megan Squire (Eds.)

Proceedings of the Doctoral Consortium at the 13th
International Conference on Open Source Systems

Buenos Aires, Argentina, 22 May 2017

Hammouda, I., Lundell, B., Madey, G. and Squire, M. (Eds.) Proceedings of the
Doctoral Consortium at the 13th International Conference on Open Source
Systems, Skövde University Studies in Informatics 2017:1, ISSN 1653-2325,
ISBN 978-91-983667-1-6, University of Skövde, Skövde, Sweden.

Copyright of the papers contained in this proceedings remains with the
respective authors.

Skövde University Studies in Informatics 2017:1
ISSN 1653-2325
ISBN 978-91-983667-1-6

www.his.se

Proceedings of the Doctoral Consortium at the 13th
International Conference on Open Source Systems, 2017

Edited by:

Imed Hammouda
Chalmers and University of Gothenburg, Sweden

Björn Lundell
University of Skövde, Sweden

Greg Madey
University of Notre Dame, USA

Megan Squire
Elon University, USA

Preface

The last two decades have witnessed a tremendous growth in the interest and diffusion of
Free/Libre and Open Source Software (FLOSS) technologies, which has transformed the way
organizations and individuals create, acquire and distribute software and software-based
services. The Open Source Systems conference as its premier publication venue has reached
its thirteenth edition this year.

To facilitate new researchers with an arena to present and receive feedback on their research,
the Open Source Systems conference has had a Doctoral Consortium for several years. The
principle objective of the consortium is to provide doctoral students the opportunity to present
their research at various stages of production – from early drafts of their research design to
near completion of their dissertation – in a forum where they can receive constructive
feedback from a community of interested scholars and other students as they work to finish
their degree. This volume contains the six papers, each of which was reviewed by members of
the program committee. After the reviews, authors were given the opportunity to revise their
papers based on the input they received from the reviewers and participants who provided
feedback during the event.

This volume contains the revised versions of the papers, which were presented and discussed
at the Doctoral Consortium at the Thirteenth International Conference on Open Source
Systems, in Buenos Aires, Argentina in May 2017.

We wish to thank the reviewers and members of the Program Committee of the Doctoral
Consortium who have provided valuable feedback on the papers. We also thank all Ph.D.
students and senior researchers for their participation. Finally, we are grateful for the financial
support (award number 1639136) provided by the U.S. National Science Foundation (NSF).

Imed Hammouda
Björn Lundell

Greg Madey
Megan Squire

Program Committee

Kevin Crowston Syracuse University, USA
Imed Hammouda Chalmers & University of Gothenburg, Sweden
Juho Lindman Chalmers & University of Gothenburg, Sweden
Björn Lundell University of Skövde, Sweden
Greg Madey University of Notre Dame, USA
Megan Squire Elon University, USA

Table of Contents

Longitudinal Statistical Analysis of Open Source Software Development Forks
Author & presented by: Amirhosein Azarbakht

1

Efficient Bug Triage in Issue Tracking Systems .
Authors: Anjali Goyal and Neetu Sardana
Presented by: Anjali Goyal

15

Propagation of Requirements Engineering Knowledge in Open Source Software
Development: Causes and Effects – A Distributed Cognitive Perspective
Authors: Deepa Gopal and Kalle Lyytinen
Presented by: Deepa Gopal

25

Supporting Open Source Communities to Foster Code Contributions through
Community Code Engagements .
Author & presented by: Jefferson O. Silva

37

On OSS Foundation Community Services .
Author & presented by: Remo Eckert

51

Analysis and Prediction of Log Statement in Open Source Java Projects
Authors: Sangeeta Lal, Neetu Sardana and Ashish Sureka
Presented by: Sangeeta Lal

65

Longitudinal Statistical Analysis of Open
Source Software Development Forks

Amirhosein “Emerson” Azarbakht

Oregon State University
School of Electrical Engineering & Computer Science

4099 Kelley Engineering Center, Corvallis OR 97331, USA
azarbaam@oregonstate.edu

http://eecs.oregonstate.edu/people/azarbakht

Abstract. Social interactions are a ubiquitous part of our lives, and the
creation of online social communities has been a natural extension of this
phenomena. Free and Open Source Software (FOSS) development efforts
are prime examples of how communities can be leveraged in software
development, where groups are formed around communities of interest,
and depend on continued interest and involvement.
Forking in FOSS, either as an non-friendly split or a friendly divide,
affects the community. Such effects have been studied, shedding light
on how forking happens. However, most existing research on forking is
post-hoc. In this study, we focus on the seldom-studied run-up to forking
events. We propose using statistical modeling of longitudinal social col-
laboration graphs of software developers to study the evolution and social
dynamics of FOSS communities. We aim to identify measures for in-
fluence and the shift of influence, measures associated with unhealthy
group dynamics, for example a simmering conflict, in addition to early
indicators of major events in the lifespan of a community.
We use an actor-oriented approach to statistically model the changes
a FOSS community goes through in the run-up to a fork. The model
represents the tie formation, breakage, and maintenance. It uses several
(more than two, up to 10) snapshots of the network as observed data
to estimate the influence of several statistical effects on formation of
the observed networks. Exact calculation of the model is not trivial, so,
instead we simulate the changes and estimate the model using a Markov
Chain Monte Carlo approach.
When we find a well-fitting model, we can test our hypothesis about
model parameters, the contributing effects using T-tests and Multi-
variate Analysis of Variance Between Multiple Groups (Multivariate
ANOVA). Our method enables us to make meaningful statements about
whether the network dynamics depends on particular parameters/effects
with a p-value, indicating the statistical significance level.
This approach may help predict formation of unhealthy dynamics, which
is the first step toward a model that gives the community a heads-up
when they can still take action to ensure the sustainability of the project.

1

2 Amirhosein “Emerson” Azarbakht

1 Introduction

Social networks are a ubiquitous part of our social lives, and the creation of on-
line social communities has been a natural extension of this phenomena. Social
media plays an important role in software engineering, as software developers
use them to communicate, learn, collaborate and coordinate with others [56].
Free and Open Source Software (FOSS) development efforts are prime examples
of how community can be leveraged in software development, where groups are
formed around communities of interest, and depend on continued interest and
involvement to stay alive [39].

Community splits in free and open source software development are referred
to as forks, and are relatively common. Robles et al. [47] define forking as “when
a part of a development community (or a third party not related to the project)
starts a completely independent line of development based on the source code
basis of the project.”

Although the bulk of collaboration and communication in FOSS communi-
ties occurs online and is publicly accessible for researchers, there are still many
open questions about the social dynamics in FOSS communities. Projects may
go through a metamorphosis when faced with an influx of new developers or the
involvement of an outside organization. Conflicts between developers’ divergent
visions about the future of the project may lead to forking of the project and
dilution of the community. Forking, either as an acrimonious split when there is
a conflict, or as a friendly divide when new features are experimentally added,
affect the community [10].

Previous research on forking ranges from the study by Robles et al. [47]
that identified 220 significant FOSS projects that have forked over the past 30
years, and compiled a comprehensive list of the dates and reasons for forking
(listed in Table 1, and depicted by frequency in Figure 1), to the study by
Baishakhi et al. [8] on post-forking porting of new features or bug fixes from
peer projects. It encompasses works of Nyman on developers’ opinions about
forking [41], developers motivations for performing forks [36], the necessity of
code forking as tool for sustainability [40], and Syeed’s work on sociotechnical
dependencies in the BSD projects family [57].

Most existing research on forking, however, is post-hoc. It looks at the fork-
ing events in retrospect and tries to find the outcome of the fork; what happened
after the fork happened; what was the cause of forking, and such. The run-up
to the forking events are seldom studied. This leaves several questions unan-
swered: Was it a long-term trend? Was the community polarized, before forking
happened? Was there a shift of influence? Did the center of gravity of the com-
munity change? What was the tipping point? Was it predictable? Is it ever
predictable? We are missing that context.

Additionally, studies of FOSS communities tend to suffer from an important
limitation. They treat community as a static structure rather than a dynamic
process. Longitudinal studies on open source forking are rare. To better un-
derstand and measure the evolution, social dynamics of forked FOSS projects,

2

Longitudinal Statistical Analysis of OSS Forks 3

and integral components to understanding their evolution and direction, we
need new and better tools. Before making such new tools, we need to gain a
better understanding of the context. With this knowledge and these tools, we
could help projects reflect on their actions, and help community leaders make
informed decisions about possible changes or interventions. It will also help
potential sponsors make informed decisions when investing in a project, and
throughout their involvement to ensure a sustainable engagement.

Identification is the first step to rectify an undesirable dynamic before the
damage is done. A community that does not manage growing pains may end
up stagnating or dissolving. Managing growing pains is especially important in
the case of FOSS projects, where near half the project contributors are volun-
teers [21]. Identification of recipes for success or stagnation, sustainability or
fragmentation may lead to a set of best practices and pitfalls.

I propose to use temporal social network analysis to study the evolution
and social dynamics of FOSS communities. Specifically, we propose using a
longitudinal exponential family random graph statistical model to investigate
the driving forces in formation and dissolution of communities. Additionally,
to complement the statistical study, we propose doing a qualitative interview
study for validating the findings. With these techniques we aim to identify better
measures for influence, shifts of influence, measures associated with unhealthy
group dynamics, for example a simmering conflict, in addition to early indicators
of major events in the lifespan of a community. One set of dynamics we are
especially interested in, are those that lead FOSS projects to fork.

Table 1: The main reasons for forking as classified by Robles and Gonzalez-
Barahona [47]

Reason for forking Example forks

Technical (Addition of functionality) Amarok & Clementine Player

More community-driven development Asterisk & Callweaver

Differences among developer team Kamailio & OpenSIPS

Discontinuation of the original project Apache web server

Commercial strategy forks LibreOffice & OpenOffice.org

Experimental GCC & EGCS

Legal issues X.Org & XFree

2 Related Work

The free and open source software development communities have been stud-
ied extensively. Researchers have studied the social structure and dynamics of
team communications [11][23][27][28][35], identifying knowledge brokers and as-
sociated activities [53], project sustainability [35][40], forking [39], requirement

3

4 Amirhosein “Emerson” Azarbakht

Table 2: The frequency of main reasons for forking as classified by Robles and
Gonzalez-Barahona [47]

Reason Frequency

Technical 60 (27.3%)

Discontinuation of the original project 44 (20.0%)

More community-driven development 29 (13.2%)

Legal issues 24 (10.9%)

Commercial strategy forks 20 (9.1%)

Differences among developer team 16 (7.3%)

Experimental 5 (2.3%)

Not Found 22 (10.0%)

satisfation [18], their topology [11], their demographic diversity [31], gender dif-
ferences in the process of joining them [30], and the role of age and the core
team in their communities [2][3][?][7][17][59]. Most of these studies have tended
to look at community as a static structure rather than a dynamic process [16].
This makes it hard to determine cause and effect, or the exact impact of social
changes.

Post-forking porting of new features or bug fixes from peer projects happens
among forked projects [8]. A case study of the BSD family (i.e., FreeBSD,
OpenBSD, and NetBSD, which evolved from the same code base) found that
10-15% of lines in BSD release patches consist of ported edits, and on average
26-58% of active developers take part in porting per release. Additionally, They
found that over 50% of ported changes propagate to other projects within three
releases [8]. This shows the amount of redundant work developers need to do
to synchronize and keep up with development in parallel projects.

Visual exploration of the collaboration networks in FOSS communities was
the focus of a study that aimed to observe how key events in the mobile-device
industry affected the WebKit collaboration network over its lifetime. [58] They
found that coopetition (both competition and collaboration) exists in the open
source community; moreover, they observed that the “firms that played a more
central role in the WebKit project such as Google, Apple and Samsung were by
2013 the leaders of the mobile-devices industry. Whereas more peripheral firms
such as RIM and Nokia lost market-share” [58].

The study of communities has grown in popularity in part thanks to ad-
vances in social network analysis. From the earliest works by Zachary [60] to
the more recent works of Leskovec et al. [32][33], there is a growing body of
quantitative research on online communities. The earliest works on commu-
nities was done with a focus on information diffusion in a community [60].
The study by Zachary investigated the fission of a community; the process of
communities splitting into two or more parts. They found that fission could be
predicted by applying the Ford-Fulkerson min-cut algorithm [20] on the group’s
communication graph; “the unequal flow of sentiments across the ties” and dis-

4

Longitudinal Statistical Analysis of OSS Forks 5

criminatory sharing of information lead to subcommunities with more internal
stability than the community as a whole.[60]

The dynamic behavior of a network and identifying key events was the aim
of a study by Asur et al [1]. They studied three DBLP co-authorship networks
and defined the evolution of these networks as following one of these paths: a)
Continue, b) k-Merge, c) k-Split, d) Form, or e) Dissolve. They defined four
possible transformation events for individual members: 1) Appear, 2) Disap-
pear, 3) Join, and 4) Leave. They compared groups extracted from consecutive
snapshots, based on the size and overlap of every pair of groups. Then, they
labeled groups with events, and used these identified events [1].

Table 3: The behavioral measures used by Asur et al. [1]

Metrics Meaning

Stability Tendency of a node to have interactions with the same nodes
over time

Sociability Tendency of a node to have different interactions

Influence Number of followers a node has on a network and how its ac-
tions are copied and/or followed by other nodes. (e.g., when
it joins/leaves a conversation, many other nodes join/leave
the conversation, too)

Popularity Number of nodes in a cluster (how crowded a sub-community
is)

The communication patterns of free and open source software developers in
a bug repository were examined by Howison et al. [27]. They calculated out-
degree centrality as their metric. Out-degree centrality measures the proportion
of times a node contacted other nodes (outgoing) over how many times it was
contacted by other nodes (incoming). They calculated this centrality over time
“in 90-day windows, moving the window forward 30 days at a time.” They found
that “while change at the center of FOSS projects is relatively uncommon,”
participation across the community is highly skewed, following a power-law
distribution, where many participants appear for a short period of time, and
a very small number of participants are at the center for long periods. Our
proposed approach is similar to theirs in how we form collaboration graphs.
Our approach is different in terms of our project selection criteria, the metrics
we examine, and our research questions.

The tension between diversity and homogeneity in a community was studied
by Kunegis et al. [31]. They defined five network statistics, listed in Table 4,
used to examine the evolution of large-scale networks over time. They found that
except for the diameter, all other measures of diversity shrunk as the networks
matured over their lifespan. Kunegis et al. [31] argued that one possible reason
could be that the community structure consolidates as projects mature.

5

6 Amirhosein “Emerson” Azarbakht

Table 4: The measures of diversity used by Kunegis et al. [31]

Network property Network is diverse
when

Diversity Measures

Paths between nodes Paths are long Effective diameter

Degrees of nodes Degrees are equal Gini coefficient of the de-
gree distribution

Communities Communities have similar
sizes

Fractional rank of the ad-
jacency matrix

Random walks Random walks have high
probability of return

Weighted spectral distri-
bution

Control of nodes Nodes are hard to control Number of driver nodes

Community dynamics was the focus of a more recent study by Hannemann
and Klamma [24] on three open source bioinformatics communities. They mea-
sured ”age” of users, as starting from their first activity and found survival
rates and two indicators for significant changes in the core of the community.
They identified a survival rate pattern of 20-40-90%, meaning that only 20%
of the newcomers survived after their first year, 40% of the survivors survived
through the second year, and 90% of the remaining ones, survived over the next
years. As for the change in the core, they suggested that a falling maximum be-
tweenness in combination with an increasing network diameter as an indicator
for a significant change in the core, e.g., retirement of a central person in the
community. Our initial network-specific study built on their findings, and the
evolution of betweenness centralities and network diameters for the projects in
our study are explained in the following sections.

3 Research Goals

Social interactions reflect the changes the community goes through, and so, it
can be used to describe the context surrounding a forking event. Social inter-
actions in FOSS can happen, for example, in the form of mailing list email
correspondence, bug report issue follow-ups, and source code co-authoring.

We consider the following three of the seven main reasons for forking [47]
to be socially related: (1) Personal differences among developer team, (2) The
need for more community-driven development, and (3) Technical differences for
addition of functionality.

By socially-related, we mean, the forking categories that should have left
traces in the developers’ interactions data. Such traces may be identified using
longitudinal modeling of the interactions, without digging into the contents of
the communications. These three reasons are (1) Personal differences among
developer team, (2) The need for more community-driven development, and (3)
Technical differences for addition of functionality.

6

Longitudinal Statistical Analysis of OSS Forks 7

Table 5: The socially-related reasons for forking

Reason Frequency

Differences among developer team 16 (7.3%)

More community-driven development 29 (13.2%)

Technical 60 (27.3%)

As an example of how these traces of forking can be identified, if a fork
occurred because of a desire for “more community-driven development”, we
should see interaction patterns in the collaboration data showing a strongly-
connected core that is hard to penetrate for the rest of the community (i.e. the
power stayed in the hands of the same people throughout, as developers joined
and left.)

In this study, we plan to analyze, quantify and visualize how the community
is structured, how it evolves, and the degree to which community involvement
changes over time.

Specifically, our overall research objective is to identify these traces/social
patterns associated with different types of undesirable forking?

In the following and in section 3, we will discuss our research objectives and
research questions in depth.

Do forks leave traces in the collaboration artifacts of open source projects in
the period leading up to the fork?
To study the properties of possible social patterns, we need to verify their exis-
tence. More specifically, we need to check whether the possible social patterns
are manifested in the the collaboration artifacts of open source projects, e.g.,
mailing list data, issue tracking systems data, source code data. This is going to
be accomplished by statistical modeling of developer interactions as explained
in more detail in section 4.

Do different types of forks leave different types of traces?
If forks leave traces in the collaboration artifacts, do forks exhibit different so-
cial patterns? Are there patterns that exemplify these categories? For example,
is there a prototypical “personal differences” fork collaboration pattern? If so,
do different forking reasons have distinctly different social patterns associated
with them? Is a project labeled as a “technical differences” fork only a “tech-
nical differences” fork? Or, alternatively, can they be a mix of several reason
categories?

We are going to investigate this by statistical modeling of the interaction
graphs, as illustrated in Figure 1.

What are the key indicators that let us distinguish between different types of
forks?
What quantitative measure(s) can be used as an early warning sign of an in-
flection point (fork)? Are there metrics that can be used to monitor the odds

7

8 Amirhosein “Emerson” Azarbakht

of change, (e.g. forking-related patterns), ahead of time? This will be accom-
plished by statistical modeling of developer interactions as explained in more
detail in section 4.

To validate what our quantitative approach finds, and to account and check
for possible confounding factors, we will interview and survey people from the
studied forked projects. We will also analyze the sentiments in the content of
the messages send and received by the top contributors of the project in the
month leading to the forking events will be analyzed.

4 Methodology

Figure 1 shows the overview of our methodology.
Detecting change patterns, requires gathering relevant data, cleaning it, and

analyzing it. In the following subsections, we describe the proposed process in
detail.

4.1 Data Collection

4.1.1 Data Sources The data sources to collect are a) developer mailing lists,
where developers’ interact by sending and receiving emails, and b) Source-code
repository contribution logs, where developers interact by modifying the code.
The sociograms were formed based on interactions among developers in any of
the preceding data sources.

For the purpose of our study, we gathered data for 13 projects, in three
categories of forking, plus a control group. The time period for which data was
collected is one year leading to when the decision to break-up (fork) happened.
This should capture the social context of the run-up to the forking event.

4.1.2 Data Cleaning and Wrangling Mailing list data was cleaned such
that the sender and receiver email ID case-sensitivity differences would be taken
into account. The Source Code repository version control logs were used to
capture the source code activity levels of the developers who had contributed
more than a few commits. The set of the developers who had both mailing list
activity and source code repository activity formed the basis of the socio-grams
we used in our analysis.

4.2 Sociogram Formation for Statistical Modeling

Social connections and non-connections can be represented as graphs, in which
the nodes represent actors (developers) and the edges represent the interac-
tion(s) between actors or lack thereof. Such graphs can be a snapshot of a
network – a static sociogram – or a changing network, also called a dynamic

8

Longitudinal Statistical Analysis of OSS Forks 9

Data Collection
Mailing Lists
Bug Tracking Repositories
Codebase

Data Cleaning and Wrangling
12 equioespaced directed graphs
for each project

Morkov Chain Monte Carlo Estimation
Rate of Change
Parameter Estimates with p-value and
s.e.

Statistical Model
Test of Goodness of Fit
Relative Importance of Effects

Multi-Parameter T-test and MANOVA
Project Comparison
Multivariate Analysis of Variance be-
tween Multiple Groups, with p-value

Results
Reresented Collaboration with Longitudinal Change
Modeled change and Rate of change statistically
Expressed underlying properties/values of commu-
nity Behavior as model effects and their significance
and relative importance
Good starting point for gaining an understanding of
longitudinal change of underlying properties of an
open source project community

Raw Data

12 Directed Graph representation of each project’s collaborations

Model parameter estimates

A well-fitting statistical model (i.e. weighted sum of effects) for each project

Between group and cross-group comparison results of significance with p-values

Fig. 1: The methodology in a glance

sociogram. In this phase, we process interactions data to form a communication
sociogram of the community.

Two types of analysis can be done on sociograms: Either a cross-sectional
study, in which only one snapshot of the network is looked at and analyzed;
or a longitudinal study, in which several consecutive snapshots of the network
are looked at and studied. We are interested in patterns in the run-up to forks,
therefore, unlike most existing research on forking, we did a longitudinal study.

We formed 10 equispaced consecutive time-window snapshots of the socio-
grams for the community, using the mailing list interaction data and the source

9

10 Amirhosein “Emerson” Azarbakht

code repository commit activity data. These socio-grams were used to find a
well-fitting statistical model that would explain how they changed from time-
window t1 through time-window t10.

4.3 Validation

4.3.1 Qualitative Study: Interviews and Survey To validate what our
quantitative approach finds, and to account and check for possible confounding
factors, we need to compare it to what people remember of the situation. This
validation check requires interviewing and surveying people from the studied
forked projects. Semi-structured interviews need to be conducted, with as many
developers from the forked projects, till the interviewers reach a point of satu-
ration (i.e., when no new information is gained by doing more interviews), as
possible. These semi-structured interviews will be recorded, transcribed, and
coded according to the statistical model’s covariates, to find overlapping and
common patterns.

4.3.2 Sentiment Analysis To complement the study, the content of the mes-
sages send and received by the top contributors of the project in the month
leading to the forking events will be analyzed. This data will be used as one of
the developers’ individual attributes in our statistical modeling.

4.3.3 Cross-Validation To test and validate our quantitative findings, we
will model projects with “unknown” (or treated as “unknown”) forking history
using the same longitudinal modeling method.

The new model can then be compared to the “known” models in each forking
category, using the ANOVA test. This comparison can provide new insights as
to which category of forking reasons is the likely reason for forking or not-
forking of the “unknown” projects. In this way, we may extrapolate about new
projects’ collaboration patterns.

References

1. Asur, S., S. Parthasarathy, and D. Ucar, (2009), “An event-based framework
for characterizing the evolutionary behavior of interaction graphs,” ACM Trans.
Knowledge Discovery Data. 3, 4, Article 16, (November 2009), 36 pages. 2009.

2. Azarbakht, A. and C. Jensen, “Drawing the Big Picture: Temporal Visualization
of Dynamic Collaboration Graphs of OSS Software Forks,” Proc. 10th Int’l. Conf.
Open Source Systems, 2014.

3. Azarbakht, A. and C. Jensen, “Temporal Visualization of Dynamic Collaboration
Graphs of OSS Software Forks,” Proc. Int’l. Network for Social Network Analysis
(INSNA) Sunbelt XXXIV Conf., 2014.

4. Azarbakht, A., “Drawing the Big Picture: Analyzing FLOSS Collaboration with
Temporal Social Network Analysis,” Proc. 9th Int’l. Symp. Open Collaboration,
ACM, 2013.

10

Longitudinal Statistical Analysis of OSS Forks 11

5. Azarbakht, A. and C. Jensen, “Analyzing FOSS Collaboration & Social Dynamics
with Temporal Social Networks,” Proc. 9th Int’l. Conf. Open Source Systems
Doct. Cons., 2013.

6. Azarbakht, A., “Temporal Visualization of Collaborative Software Development
in FOSS Forks,” Proc. IEEE Symp. Visual Languages and Human-Centric Com-
puting, 2014.

7. Azarbakht, E.A. and C. Jensen, “Longitudinal Analysis of the Run-up to a De-
cision to Break-up (Fork) in a Community,” Proc. 13th IFIP International Con-
ference on Open Source Systems. Springer, Cham, 2017.

8. Baishakhi R., C. Wiley, and M. Kim, “REPERTOIRE: a cross-system porting
analysis tool for forked software projects,” Proc. ACM SIGSOFT 20th Int’l.
Symp. Foundations of Software Engineering, ACM, 2012.

9. Bastian, M., S. Heymann, and M. Jacomy, “Gephi: an open source software for
exploring and manipulating networks,” Int’l AAAI Conf. on Weblogs and Social
Media, 2009.

10. Bezrukova, K,, C. S. Spell, J. L. Perry, “Violent Splits Or Healthy Divides? Coping
With Injustice Through Faultlines,” Personnel Psychology, Vol 63, Issue 3. 2010.

11. Bird, C., D. Pattison, R. D’Souza, V. Filkov, and P. Devanbu, “Latent social
structure in open source projects,” Proc. 16th ACM SIGSOFT Int’l. Symposium
on Foundations of software engineering, ACM, 2008.

12. Brandes, U. “A Faster Algorithm for Betweenness Centrality”, Journal of Math-
ematical Sociology 25(2):163-177, 2001.

13. Chakrabarti, D., and C. Faloutsos. “Graph mining: Laws, generators, and algo-
rithms,” ACM Computing Surveys, 38, 1, Article 2, 2006.

14. Chen, C. and Liu, Lon-Mu, “Joint Estimation of Model Parameters and Outlier
Effects in Time Series,” Journal of the American Statistical Association, 88,
284–297. 1993.

15. Coleman, J.S. “Introduction to Mathematical Sociology,” New York etc.: The Free
Press of Glencoe. 1964.

16. Crowston, K., K. Wei, J. Howison, and A. Wiggins. “Free/Libre open-source soft-
ware development: What we know and what we do not know,” ACM Computing
Surveys, 44, 2, Article 7, 2012.

17. Davidson, J, R. Naik, A. Mannan, A. Azarbakht, C. Jensen, “On older adults
in free/open source software: reflections of contributors and community leaders,”
Proc. IEEE Symp. Visual Languages and Human-Centric Computing, 2014.

18. Ernst, N., S. Easterbrook, and J. Mylopoulos, “Code forking in open-source soft-
ware: a requirements perspective,” arXiv preprint arXiv:1004.2889, 2010.

19. Feuerriegel S. and N. Proellochs. “SentimentAnalysis:
Dictionary-based sentiment analysis”, R package version 1.1-0.
https://github.com/sfeuerriegel/SentimentAnalysis. 2016.

20. Ford, L. R. and D. R. Folkerson, “A simple algorithm for finding maximal net-
work flows and an application to the Hitchcock problem,” Canadian Journal of
Mathematics, vol. 9, pp. 210-218, 1957.

21. Forrest, D., C. Jensen, N. Mohan, and J. Davidson, “Exploring the Role of Outside
Organizations in Free/ Open Source Software Projects,” Proc. 8th Int’l. Conf.
Open Source Systems, 2012.

22. Fruchterman, T. M. J. and E. M. Reingold, “Graph drawing by force-directed
placement,” Softw: Pract. Exper., vol. 21, no. 11, pp. 1129-1164, 1991.

11

12 Amirhosein “Emerson” Azarbakht

23. Guzzi, A., A. Bacchelli, M. Lanza, M. Pinzger, and A. van Deursen. “Commu-
nication in open source software development mailing lists,” Proc. 10th Conf. on
Mining Software Repositories, IEEE Press, 2013.

24. Hannemann, A and , R. Klamma “Community Dynamics in Open Source Soft-
ware Projects: Aging and Social Reshaping,” Proc. Int. Conf. on Open Source
Systems, 2013.

25. Heider, F. The Psychology of Interpersonal Relations. John Wiley & Sons. 1958.
26. Howison, J. and K. Crowston. “The perils and pitfalls of mining SourceForge,”

Proc. Int’l. Workshop on Mining Software Repositories, 2004.
27. Howison, J., K. Inoue, and K. Crowston, “Social dynamics of free and open source

team communications,” Proc. Int’l. Conf. Open Source Systems, 2006.
28. Howison, J., M. Conklin, and K. Crowston, “FLOSSmole: A collaborative repos-

itory for FLOSS research data and analyses,” Int’l. Journal of Information Tech-
nology and Web Engineering, 1(3), 17-26. 2006.

29. Krivitsky, P. N., and M. S. Handcock. “A separable model for dynamic networks,”
Journal of the Royal Statistical Society: Series B (Statistical Methodology) 76,
no. 1: 29-46. 2014.

30. Kuechler, V., C. Gilbertson, and C. Jensen, “Gender Differences in Early Free
and Open Source Software Joining Process,” Open Source Systems: Long-Term
Sustainability, 2012.

31. Kunegis, J., S. Sizov, F. Schwagereit, and D. Fay, “Diversity dynamics in online
networks,” Proc. 23rd ACM Conf. on Hypertext and Social Media, 2012.

32. Leskovec, J., Kleinberg, J., and Faloutsos, C.: “Graphs over time: densification
laws, shrinking diameters and possible explanations,” Proc. SIGKDD Int’l. Conf.
Knowledge Discovery and data Mining, 2005.

33. Leskovec, J., K. J. Lang, A. Dasgupta, and M.W. Mahoney, “Statistical properties
of community structure in large social and information networks,” Proc. 17th
Int’l. Conf. World Wide Web, ACM, 2008.

34. Lopez-de-Lacalle, J. “tsoutliers: Detection of Outliers in Time Series”, R package
version 0.6-5. https://CRAN.R-project.org/package=tsoutliers, 2016.

35. Nakakoji, K., Y. Yamamoto, Y. Nishinaka, K. Kishida, and Y. Ye. “Evolution pat-
terns of open-source software systems and communities,” Proc. Int’l. Workshop
Principles of Software Evolution, ACM, 2002.

36. Mikkonen, T., L. Nyman, “To Fork or Not to Fork: Fork Motivations in Source-
Forge Projects,” Int’l. J. Open Source Softw. Process. 3, 3. July, 2011.

37. Noack, A., “Energy models for graph clustering,” J. Graph Algorithms Appl., vol.
11, no. 2, pp. 453-480, 2007.

38. Nowak, M. A. “Five rules for the evolution of cooperation,” Science 314, No. 5805:
1560-1563. 2006.

39. Nyman, L. , “Understanding code forking in open source software,” Proc. 7th
Int’l. Conf. Open Source Systems Doct. Cons., 2011.

40. Nyman, L., T. Mikkonen, J. Lindman, and M. Fougère, “Forking: the invisible
hand of sustainability in open source software,” Proc. SOS 2011: Towards Sus-
tainable Open Source, 2011.

41. Nyman, L., “Hackers on Forking,” Proc. Int’l. Symp. on Open Collaboration,
2014.

42. Oh, W., Jeon, S., “Membership Dynamics and Network Stability in the Open-
Source Community: The Ising Perspective” Proc. 25th Int’l. Conf. Information
Systems. 2004.

12

Longitudinal Statistical Analysis of OSS Forks 13

43. Page, B, B. Sergey, R. Motwani and T. Winograd, “The PageRank Citation
Ranking: Bringing Order to the Web,” Technical Report, Stanford InfoLab, 1999.

44. Proellochs, Feuerriegel and Neumann: “Generating Domain-Specific Dictionaries
Using Bayesian Learning”, Proceedings of the 23rd European Conference on
Information Systems (ECIS 2015), Muenster, Germany, 2015.

45. R Core Team. “R: A language and environment for statistical computing. R
Foundation for Statistical Computing”, Vienna, Austria. URL https://www.R-
project.org/. 2016.

46. Robins, G., P. Pattison, Y. Kalish, and D. Lusher. “An introduction to exponential
random graph (p*) models for social networks,” Social networks 29, no. 2: 173-
191. 2007.

47. Robles, G. and J. M. Gonzalez-Barahona, “A comprehensive study of software
forks: Dates, reasons and outcomes,” Proc. 8th Int’l. Conf. Open Source Systems,
2012.

48. Rocchini, C. (Nov. 27 2012), Wikimedia Commons, Available:
http://en.wikipedia.org/wiki/File:Centrality.svg, 2012.

49. Singer, L., F. Figueira Filho, B. Cleary, C. Treude, M. Storey, and K. Schnei-
der. “Mutual assessment in the social programmer ecosystem: an empirical in-
vestigation of developer profile aggregators,” Proc. Conf. Computer supported
cooperative work, ACM, 2013.

50. Snijders, T. AB. “Markov chain Monte Carlo estimation of exponential random
graph models,” Journal of Social Structure 3, no. 2: 1-40. 2002.

51. Snijders, Tom AB. “Models for longitudinal network data,” Models and methods
in social network analysis 1: 215-247. 2005.

52. Snijders, Tom AB., GG Van de Bunt, CEG Steglich, “Introduction to stochastic
actor-based models for network dynamics,” Social networks 32 (1), 44-60. 2010.

53. Sowe, S., L. Stamelos, and L. Angelis, “Identifying knowledge brokers that yield
software engineering knowledge in OSS projects,” Information and Software Tech-
nology, vol. 48, pp. 1025-1033, Nov 2006.

54. Spence, M. “Job market signaling,” Quarterly Journal of Economics, 87: 355-374.
1973.

55. Steglich, C., T. AB Snijders, and M. Pearson. “Dynamic networks and behavior:
Separating selection from influence,” Sociological methodology 40, no. 1: 329-393.
2010.

56. Storey, M., L. Singer, B. Cleary, F. Figueira Filho, and A. Zagalsky, “The (R)
Evolution of social media in software engineering,” Proc. Future of Software En-
gineering, ACM, 2014.

57. Syeed, M. M., “Socio-Technical Dependencies in Forked OSS Projects: Evidence
from the BSD Family,” Journal of Software 9.11 (2014): 2895-2909. 2014.

58. Teixeira, J., and T. Lin, “Collaboration in the open-source arena: the webkit case,”
Proc. 52nd ACM conf. Computers and people research (SIGSIM-CPR ’14). ACM,
2014.

59. Torres, M. R. M., S. L. Toral, M. Perales, and F. Barrero, “Analysis of the Core
Team Role in Open Source Communities,” Int. Conf. on Complex, Intelligent and
Software Intensive Systems, IEEE, 2011.

60. Zachary, W., “An information flow model for conflict and fission in small groups,”
Journal of Anthropological Research, vol. 33, no. 4, pp. 452-473, 1977.

13

14

Efficient Bug Triage in Issue Tracking Systems

Anjali Goyal1, Neetu Sardana2

Jaypee Institute of Information Technology, Noida, U.P., India.
1anjaligoyal19@yahoo.in, 2neetu.sardana@jiit.ac.in

Abstract. Bug triaging is the process of designating a suitable developer for bug
report who could make source code changes in order to fix the bug. Appropriate
bug report assignment is important as it lowers the tossing path length and hence
reduces the overall time and efforts involved in bug resolving. In this research
work, our objective is to design a proficient recommendation framework for ef-
ficient bug triaging. In the literature, varied bug report assignment techniques
exist. Research is still in progress to discover the most suitable bug report assign-
ment technique. In this work, we first investigate the most appropriate bug tri-
aging technique for suitable developer assignment. Recent studies have empha-
sized that time based decay is efficient in bug triaging. It is due to the fact that
‘knowledge decays over time’. Thus, we propose and evaluate a novel time based
model for bug report assignment. It has also been observed in literature that all
the bug parameters used for bug report assignment has been given equal weight-
age whereas in the real scenario bug parameters can play role with varying im-
portance. Hence, we propose a novel bug assignment approach, W8Prioritizer,
based on parameter prioritization. We further extend our study for triaging of
Non-reproducible (NR) bugs. Whenever the developer faces any issue in repro-
ducing a bug report, he/she marks the bug report as NR. However, certain portion
of these bugs gets reproduced and eventually fixed later. To predict the fixability
of bug reports marked as NR, we propose a prediction model, NRFixer. We plan
to work on bug report assignment for fixable NR bugs. Overall our initial results
are encouraging and shows the possibility of making a robust recommender sys-
tem for efficient bug report assignment for both reproducible (R) and NR bugs.

Keywords. Bug triaging, Bug report assignment, Recommender systems, Mining
software repositories.

1 Introduction

Software bugs are inevitable and bug triaging is a difficult and time consuming task.
Bugs are the programming error that causes significant performance degradation. They
induce poor user experience and low system throughput. Large software projects use
bug tracking repositories (or issue tracking systems) to collect, organize and keep track
of all the reported bugs. The users, developers and testers all report the bugs they en-
counter to the bug repositories where these bugs are further analyzed by bug triager to
verify the existence of bug. One of the main challenges bug triager faces is to select the

15

most competent developer for bug report. The choice of developer is often based on his
past activities (or interest areas). Various bug triaging techniques exist in literature.
Previous studies show that optimizing bug triaging is a non-trivial activity and bug tri-
ager often faces difficulty in it. Hence, bug triaging techniques that can help the triager
in making strategic decision can be beneficial.

In this research, we first perform a systematic literature review of existing bug tri-
aging techniques to gauge the current trends in bug report assignment. In addition, we
perform in-depth study to analyze the effect of popular bug triaging techniques on the
efficiency of bug report assignment. Moreover, it has been found that existing bug tri-
aging approaches use different parameters for developer assignment. Certain ap-
proaches use textual parameters while others use bug meta-field parameters. We per-
form a study to identify the best parameters among meta-fields, textual contents and
amalgamation of meta-fields and textual contents. One of the important factors that
plays an integral role in developer selection is recency (or time of usage). This is due
to the fact that accuracy of developer knowledge is statistically correlated with time.
Recent studies have also emphasized that time based decay is efficient in bug triaging
[1-3]. The existing studies have used bug textual features with time decay for bug as-
signment. Since bug meta-fields are found to be most suitable parameters from the
study, we proposed a novel bug meta-field oriented time decay based model [4] for bug
report assignment.

Past studies propose varied bug report assignment approaches considering all input
parameters on same platform. Hence, currently there is no bug triaging approach that
gives bug parameters varying priorities. In real time scenario, bug parameters can play
a role with varying importance in decision making. Hence, we use phenomenon of pa-
rameter prioritization in bug triaging. Analytic hierarchy process (AHP) is a technique
for decision making that involves parameter prioritization. We propose an AHP based
bug triaging technique, W8Prioritizer, to optimize the efficiency of bug report assign-
ment technique.

Further, we foster a bug assignment model for a special category of bugs known as
NR bugs. Ideally, a bug report should provide enough knowledge for developers to
reproduce and fix the issue. However, reproducing some bugs is difficult. When the
developer’s all efforts to reproduce the bug fails, he or she marks the bug as NR. Some
NR bugs are reopened in future and are marked as fixed. The fixation of NR marked
bugs prompts a question on the creativity, productivity and quality of developers who
previously marked the bug reports as NR. A prediction model to evaluate the probabil-
ity of fixation of NR bug can be beneficial as this will save time utilized on those NR
bugs whose probability of fixation is negligible [5]. Thereafter, a bug triaging technique
for fixable NR bugs can be useful for solving the NR bug.

The main contributions of this research will be development of a proficient recom-
mendation system for bug report assignment. We illustrate bug triaging through several
quantitative and qualitative models. In essence, these models apply time decay and pa-
rameter prioritization for bug report assignment process. We further use these models
to accomplish appropriate developer recommendation for NR bugs. Our intuition is that
before developer selection for NR bugs if there exists a prediction model that could

16

Fig. 1. Major components of bug triaging studied in this work

evaluate the fixability of NR bugs then it will be advantageous for both bug triagers
and developers. With the usage of such model, software developers can easily dedicate
their valuable time and efforts only on those bugs that have excessive probability of
getting fixed and are observed as fixable by the proposed mechanism. Figure 1 shows
the four major components related to bug triaging studied in this work.

2 Related Work

Several researchers have proposed different bug assignment approaches to semi or fully
automate the bug triaging process. Various approaches considered bug report assign-
ment as a text classification problem [6-8]. Using supervised learning, Cubranic et al.
[6] classified 30% of bug reports correctly. Naguib et al. [9] proposed an information
retrieval (IR) based technique for developer recommendation. An activity profile is
generated for each developer based on the activities performed by him in the past. The
profile generated is the indication of knowledge and expertise of the developers. The
final ranking of developers corresponding to a new bug report is done according to
profile generated for the users. The approach is tested on three software projects,
Eclipse, UNICASE and ATLAS Reconstruction and can obtain the average hit ratio of
88% for top-10 recommendation list. Similarly, various other studies also use IR based
techniques [1-3]. Bhattacharya et al. [10] proposed the technique of using tossing
graphs for bug report assignment. They integrated the concept of using tossing graphs
with machine learning techniques. They concluded naïve bayes to be the best classifier
for bug report assignment. Hosseini et al. [11] proposed an auction based mechanism
for developer selection in which whenever any new bug report arrives, the bug triager
auctions it off and collects all the requests from different developers.

Certain recent studies utilized association rule mining [12], optimization tech-
niques such as genetic algorithms [13] for bug report assignment. All these techniques
consider different features with same priority to make the decision but often a decision

Bug
Triaging

17

Fig. 2. Illustration of five step study to obtain efficient bug triaging.

is based on multiple criteria bearing different weights (or priorities) among each other.
Panagiotou et al. [14] proposed STARDOM (Software Developer competency profiler)
which builds an activity profile of developers working on a project in bug repository.
They computed fluency, contribution, effectiveness and recency as their features. Fur-
ther, AHP is used to prioritize the features and make the developer recommendations

In context to NR bugs, Joorabchi et al. [15] presented an empirical survey of NR
bugs. They reported that 17% of all the reported bugs are marked as NR. Out of these,
3% are later fixed and 45% gets fixed implicitly. They also found that compared with
other bugs, NR bugs remain open for three months longer. Shihab et al. [16] studied
the nature of bugs that gets reopened. Although reopening a bug increases maintenance
costs and leads to unnecessary rework by busy developers but they may get fixed as
well. They build a decision tree using various factors that aims to predict reopened
bugs. Though the factors that best indicate reopened bug vary based on the project, the
keywords generated from the comment text was found to be the most important factor
that impacts bug reopening. Guo et al. [17] performed an empirical study to characterize
the factors that affect which bugs get fixed. They found that people who have been
successful in getting their bugs fixed in the past are more likely to get their bugs fixed
in future. Garcia et al. [18] further analyzed the prediction of blocking bugs. They used
fourteen meta-field factors to build the prediction model which achieved an F-measure
of 15-42% for predicting whether a bug would be blocking bug or not.

3 Research Questions

We explore the following main research objectives (RO) in this work:
RO1: Perform in-depth study of bug triaging techniques.
RO2: Build a time-based model for bug triaging.
RO3: Build bug triaging model based on parameter prioritization.
RO4: Analyze and build a prediction model for NR bugs.

The comprehensive view of the entire research work is presented in figure 2.

18

Fig. 3. Classification of bug assignment approaches.

4 Proposed Solutions and Results

In the initial part of this research, we focused on investigating the effect of different
factors such as time decay and parameter prioritization on bug report assignment. Be-
sides these tasks, we develop a prediction model for NR bugs to find the possibility that
a bug report, currently marked as NR, will get fixed in future or not.

4.1 RO1: Analysis of Existing Bug Triaging Techniques

In the last two decades, researchers have addressed the problem of bug report assign-
ment exhaustively. Cubranic et al. [6] proposed one of the few initial semi-automatic
bug assignment approach. They considered the triaging as a text classification problem.
Since then various approaches have been proposed by different researchers and practi-
tioners. These approaches could be broadly classified into activity based and location
based techniques. We started our initial investigation related to bug report assignment
by analyzing the available techniques in the literature. We performed a systematic lit-
erature survey of papers published in repute journals and conferences between the years
2004 to 2016 [19]. We identified subcategories under activity and location based tech-
niques as the result of exhaustive survey. The sub categories are machine learning, in-
formation retrieval, statistical approaches, fuzzy sets, auction based approaches, social
network and tossing graph based approaches. Figure 3 shows the classification of bug
assignment techniques. From the systematic survey, it has been found that machine
learning and information retrieval based approaches are most popular in literature. Fur-
ther, a trend analysis of the popular techniques shows that current trend is taking a shift
from machine learning based approaches to information retrieval-based approaches.
We performed a comparative study to investigate the reason behind this shift [20].

19

 Results: For experimental evaluation, we consider the bug reports of Mozilla,
Eclipse, Gnome and OpenOffice projects in Bugzilla repository. We consider bug id,
component, severity, priority, operating system and assigned-to fields of the bug re-
ports. We collected a total of 59,448 bug reports with fixed resolution. For machine
learning techniques, we use Naïve Bayes, J48, Random tree and Bayes Net algorithms.
In context to IR based technique, we consider expertise calculation using term fre-
quency technique. We create a term - author – matrix for all the unique terms and de-
velopers in the training dataset. All the values in the various meta-fields of bug report
are considered as terms and all the unique developers are considered as authors. Each
entry in the matrix represents the frequency of term with respect to a particular devel-
oper. The frequency represents the expertise of developer with respect to a term based
on the work done by the developer in the past. Comparing the results of machine learn-
ing and information retrieval based techniques, we found that information retrieval
based techniques outperforms machine learning based algorithms and thus is more suit-
able for activity profile based bug assignment approaches. This is due to the fact that
IR based techniques consider the overall expertise of developers towards bug reports
for developer recommendation. This leads to formation of a more efficient and realistic
recommender system. Also, these techniques are easy to comprehend with various new
techniques such as fuzzy sets, social networks, etc.

4.2 RO2: Time Based Model for Bug Triaging

Shokripour et al. [1] proposed a time-based approach for automatic bug assignment.
They emphasized that knowledge decays over time and thus the computation of exper-
tise of developers should also constitute time as the factor for normalization. This in-
clusion lowers the weight for terms that were used earlier and keeps the training data
up-to-date. We performed an empirical study [4] related to time based decay to quantify
the effect of recency (or time of usage) on the efficiency of bug report assignment. We
proposed a novel time based bug triaging model, Visheshagya, that considers various
bug meta-fields for bug report assignment. In addition to existing bug parameters, we
extracted the last changed date of bug reports and calculated the difference in time be-
tween the last usage date of term by developer and the current date of assignment. This
calculated time factor is then used to normalize the frequency values in term-author-
matrix, i.e. the time-based expertise is calculated by dividing all the frequency values
of each developer in the term-author-matrix by their associated time factors. For exam-
ple, if r is the current date of new bug assignment and c (t, d) is the date of last usage
of term, t by the developer, d. Then expertise of developer, d with term, t can be calcu-
lated as:

 (1)

 where, f represents the frequency of usage of term t, by developer, d in the past.

IR based technique is more effective than ML techniques for bug assignment.

20

 Results: The proposed model, Visheshagya, is being evaluated for bug reports
of Mozilla and Eclipse projects. The information retrieval based technique which is
found to be effective in activity profiling of developers is applied to evaluate the effect
of time decay. We compared non-time based and time based weighting approach for
bug report assignment and found that time decay based techniques help in obtaining
better efficiency. We are still investigating which time degradation measure (days,
months or years) is most suitable for bug report assignment as different researchers
used different measures in their evaluations.

4.3 RO3: Bug Triaging Based on Parameter Prioritization.

Bug report assignment approaches extract bug parameters from the historically fixed
datasets and creates corpus which is later used for suitable developer selection for new
bug report. Researchers have augmented the use of different bug report parameters for
corpus creation. In addition to diversity of parameters used for bug triaging, various
studies have concluded different bug report parameters to be more important than oth-
ers for bug triaging. Thus, different parameters should be weighed differently according
to their priority for bug report assignment. Hence, we propose an AHP based technique,
W8Prioritizer, for developer selection in bug repositories. AHP assigns the priorities to
the bug report parameters to highlight the parameter importance before developer se-
lection. It is a popular technique for multi criteria decision making which is a sub dis-
cipline of operational research that explicitly considers multiple criteria for decision
making [21]. AHP is used in numerous situations that includes ranking, prioritization,
selection, etc. We propose the usage of AHP based criteria prioritization method for
prioritizing the various parameters of bug report and to obtain optimization in developer
selection for bug triaging. In the proposed approach, we create the activity profiles of
developers based on their past commits. We further build a matrix of the pair wise
comparison ratings to determine the priorities for all bug parameters. Finally, the de-
veloper activity profiles (in term-author-matrix) are synthesized according to these pa-
rameter priorities. Now whenever a new bug report arrives, its tokens are extracted and
the developers with maximum expertise towards new bug report tokens are selected to
resolve the bug.
 Results: The parameter prioritization based approach, W8Prioritizer, achieved
an improvement of 20.59% and 38.57% in accuracy for Mozilla and Eclipse projects
respectively. We further plan to include time based degradation factor in AHP based
bug assignment approach.

Inclusion of time based decay in expertise calculation of developers increases
the efficiency of IR based technique.

Parameter prioritization helps in optimized developer selection for bug re-
port assignment.

21

Fig. 4. Framework for optimized bug triaging.

4.4 RO4: Bug Triaging for Non-Reproducible Bugs

NR bugs account for approximately 17% of all bug reports and 3% of these bugs are
later marked as fixed [15]. There could be various reasons behind this fixation of NR
bugs. This may be due to any new code patch that might be made available by the
reporter, user or developer which could help to reproduce the cause of bug, or there
may be various solutions to fix a bug. Thus, the choice of solution tried by the developer
to reproduce or fix the bug could be wrong [22]. Another reason could be that the de-
veloper had initially marked the bug as NR erroneously due to negligence or may be,
in reluctance to reduce his or her workload. If we can have a mechanism that can pro-
vide information to developer beforehand that the bug report currently marked as NR
will be fixed in future or not, it will not only provide insights to triager but also helps
developers by predicting the possibility that whether bug report marked as NR could
get fixed in future or not. This will save time, effort and cost incurred in those NR bugs
which have less probability of getting fixed. With the use of such mechanism, develop-
ers & triager can devote their precious time and efforts on those bugs that are regarded
as fixable by the proposed mechanism. This will also raise the level of interest among
developers towards NR bugs. Thus, we are developing a prediction model, NRFixer [5]
to predict the probability of fixation of bug report currently marked as NR. The NR bug
reports predicted as fixable by prediction model will be assigned with a new developer
using the proposed bug assignment technique who will try to reproduce the bug and
may fix it.
 Results: The proposed prediction model, NRFixer has been evaluated on
Mozilla and eclipse bug reports and achieves precision value up to 74.7% for Mozilla
bug reports and 68% for eclipse bug reports.

It is possible to predict whether the bug report marked as NR will get fixed in
future or not.

22

5 Current Status & Future Plan
Till now, we have implemented several empirical investigations related to bug triaging.
A comparative analysis of popular techniques used for bug triaging has been conducted
to discover the most appropriate procedure for bug triaging. We implemented a bug
assignment approach using an additional time degradation factor. We also proposed
and evaluated a parameter prioritization based bug assignment approach. The experi-
mental results show that both time based knowledge decay and parameter prioritization
helps in building more precise developer recommendation models individually. We fur-
ther proposed NRFixer, a prediction framework to predict the fixability of bug reports
marked as NR.

In the future, we first plan to integrate the parameter prioritization model with
the time decay model. Second, we plan to evaluate the effectiveness of bug report as-
signment for NR bugs that are predicted as fixable by NRFixer. The overall framework
for this research work is presented in figure 4.

References

1. Shokripour, R., Anvik, J., Kasirun, Z. M., & Zamani, S. (2015). A time-based approach to
automatic bug report assignment. Journal of Systems and Software, 102, 109-122.

2. Shokripour, R., Anvik, J., Kasirun, Z. M., & Zamani, S. (2014). Improving automatic bug
assignment using time-metadata in term-weighting. IET Software, 8(6), 269-278.

3. Matter, D., Kuhn, A., & Nierstrasz, O. (2009, May). Assigning bug reports using a
vocabulary-based expertise model of developers. In 2009 6th IEEE International Working
Conference on Mining Software Repositories (pp. 131-140). IEEE.

4. Goyal A., Mohan, D., & Sardana, N. (2016). Visheshagya: Time based expertise model for
bug report assignment. In Contemporary Computing (IC3), 2014 Seventh International
Conference on (pp.1-6). IEEE.

5. Goyal, A., & Sardana, N. (2017). NRFixer: Sentiment Based Model for Predicting the
Fixability of Non-Reproducible Bugs. e-Informatica Software Engineering Journal, 11(1),
109-122.

6. Cubranic, D. & Murphy, G. (2004). Automatic bug triage using text categorization.
In Proceedings of the Sixteenth International Conference on Software Engineering &
Knowledge Engineering.

7. J. Xuan, H. Jiang, Z. Ren, J. Yan, and Z. Luo, “Automatic bug triage using semi-supervised
text classification,” In Proc. 22nd Int. Conf. on Software Eng. and Knowledge Eng., SEKE
’10, pp. 209-214.

8. Anvik, J., & Murphy, G. C. (2011). Reducing the effort of bug report triage: Recommenders
for development-oriented decisions. ACM Transactions on Software Engineering and
Methodology (TOSEM), 20(3), 10.

9. Naguib, H., Narayan, N., Brügge, B., & Helal, D. (2013, May). Bug report assignee
recommendation using activity profiles. In Mining Software Repositories (MSR), 2013 10th
IEEE Working Conference on (pp. 22-30). IEEE.

10. Bhattacharya, P., Neamtiu, I., & Shelton, C. R. (2012). Automated, highly-accurate, bug
assignment using machine learning and tossing graphs.Journal of Systems and
Software, 85(10), 2275-2292.

23

11. Hosseini, H., Nguyen, R., & Godfrey, M. W. (2012, March). A market-based bug allocation
mechanism using predictive bug lifetimes. In Software Maintenance and Reengineering
(CSMR), 2012 16th European Conference on (pp. 149-158). IEEE.

12. Sharma, M., Kumari, M., & Singh, V. B. (2015, June). Bug Assignee Prediction Using
Association Rule Mining. In International Conference on Computational Science and Its
Applications (pp. 444-457). Springer International Publishing.

13. Karim, M. R., Ruhe, G., Rahman, M., Garousi, V., & Zimmermann, T. (2016). An empirical
investigation of single objective and multiobjective evolutionary algorithms for developer's
assignment to bugs. Journal of Software: Evolution and Process.

14. Panagiotou, D., & Paraskevopoulos, F. (2011, March). Specifications of developer profile.
15. Erfani Joorabchi, M., Mirzaaghaei, M., & Mesbah, A. (2014, May). Works for me!

Characterizing non-reproducible bug reports. In Proceedings of the 11th Working
Conference on Mining Software Repositories (pp. 62-71). ACM.

16. Shihab, E., Ihara, A., Kamei, Y., Ibrahim, W. M., Ohira, M., Adams, B., ... & Matsumoto,
K. I. (2013). Studying re-opened bugs in open source software. Empirical Software
Engineering, 18(5), 1005-1042.

17. Guo, P. J., Zimmermann, T., Nagappan, N., & Murphy, B. (2010, May). Characterizing and
predicting which bugs get fixed: an empirical study of Microsoft Windows. In Software
Engineering, 2010 ACM/IEEE 32nd International Conference on (Vol. 1, pp. 495-504).
IEEE.

18. Valdivia Garcia, H., & Shihab, E. (2014, May). Characterizing and predicting blocking bugs
in open source projects. In Proceedings of the 11th Working Conference on Mining Software
Repositories (pp. 72-81). ACM.

19. Goyal, A., & Sardana, N. (2016). Analytical Study on Bug Triaging Practices. International
Journal of Open Source Software and Processes (IJOSSP), 7(2), 20-42.

20. Goyal, A., & Sardana, N. (2017). Machine Learning or Information Retrieval Techniques
for Bug Triaging: Which is better?. e-Informatica Software Engineering Journal, 11(1), 123-
147.

21. Triantaphyllou, E., Shu, B., Sanchez, S. N., & Ray, T. (1998). Multi-criteria decision
making: an operations research approach. Encyclopedia of electrical and electronics
engineering, 15, 175-186.

22. Murphy-Hill, E., Zimmermann, T., Bird, C., & Nagappan, N. (2015). The Design Space of
Bug Fixes and How Developers Navigate It. Software Engineering, IEEE Transactions
on, 41(1), 65-81.

24

Propagation of Requirements Engineering
Knowledge in Open Source Software Development:
Causes and Effects – A Distributed Cognitive Per-

spective

Deepa Gopal1 and Kalle Lyytinen2

1 Case Western Reserve University, Ohio, USA
deepa.gopal@case.edu

2 Case Western Reserve University, Ohio, USA
kalle.lyytinen@case.edu

Abstract. Popularity of open source software (OSS) development projects has
spiked an interest in requirements engineering (RE) practices of such communi-
ties that are starkly different from those of traditional software development pro-
jects. Past work has focused on characterizing this difference while this work
centers on the variations in the propagation of RE knowledge among different
OSS development endeavors. The OSS RE activity in OSS communities is con-
ceptualized as a socio-technical distributed cognitive (DCog) activity where het-
erogeneous actors interact with one another and structural artifacts to ‘compute’
requirements. These coordinated sequences of action are continuously inter-
rupted and shaped by the demands of an ever-changing environment resulting in
various DCog configurations and are visible in the communicative pathways de-
ployed by the communities. We explore how the DCog configurations in OSS
communities manifesting the flow of RE knowledge respond to the attributes of
the environment housing the projects and their effects on the attributes of soft-
ware requirements produced by such communities. The requirement attributes
are measured using a 6-V requirements model centered on the volume, veracity,
volatility, velocity, vagueness and variance of software requirements while the
DCog configurations of RE knowledge flow is measured using social network
analysis of the requirement activities in OSS projects. It is hypothesized that low
communication centrality in OSS communities is more effective in task comple-
tion while facing a higher volume and velocity of requirements from its environ-
ment. Lower communication centrality is also hypothesized to result in more ve-
racious and less vague software requirements produced by its members. The hy-
potheses of the study are tested using a mixed method methodology including a
qualitative comparative case study and a quantitative analysis of selected sample
of SourceForge OSS projects.

Keywords: Open source software, requirements quality, distributed cognition,
mixed methods, social network analysis, 6-V requirements model, communica-
tion centrality

25

2

1 Introduction

The determination and management of system requirements continues to be one of the
major challenges of contemporary software development [4]. One challenge that re-
cently has confronted researchers is how to characterize the determination of require-
ments in non-traditional contexts, such as Open Source Software (OSS). In this context,
classical requirements artifacts and processes are almost completely absent [1] and are
accomplished through the use of ‘informalisms’ (such as bug trackers and discussion
forums [38]. It has also been argued that requirements engineering (RE) in OSS is a
high level distributed cognitive (DCog) process spread over time and space comprising
of multiple stakeholders and heterogeneous artifacts [13]. All in all, past work has
mainly focused on delineating the features which make OSS RE distinct from RE in
traditional forms of software development.

However, OSS is not a unitary form of software development. It is that the social

structures of OSS projects are a function of its scope [5] which can be manifested in the
number of requirements faced by the respective OSS communities and the rate at which
such requirements change over time. Given these observed variations it is unlikely that
requirements are determined in a unitary fashion across all OSS projects. Given that
certain environmental factors like volume of requirements affect the way RE is con-
ducted in OSS communities ultimately impacting the RE quality and success of such
projects, more research is needed in understanding what causes the RE variations. To
characterize differences in RE practices across various OSS projects a DCog view of
OSS [13] is deployed. This view is sensitive to the dynamic and distributed nature of
practices in the OSS context, and assumes that multiple actors deploy heterogeneous
artifacts to ‘compute’ requirements to reach a common understanding of what the soft-
ware is going to do. These coordinated interactions are manifestations of the RE
knowledge propagation and the sequences are continuously interrupted and shaped by
its environment [30]. Further, drawing upon the Information Processing View (IPV) [9]
[10], it is conceptualized that the various ways in which an OSS community organizes
its cognitive activities socially and structurally is a response to the RE environment or
more specifically, to requirements emanating within the environment [19]. These di-
verse DCog configurations in turn affect the quality of software requirements produced
by such communities [14]. To understand the reciprocal relationship between the var-
ying attributes of requirements that are addressed by different configurations of DCog
activity for ‘computing’ requirements, the following question needs to be addressed:

 How can the DCog mode of each community be explained by the attributes of
requirements emanating from the environment?

 How is the quality of requirements thus produced affected by its DCog con-
figuration?

26

3

2 Literature Background

2.1 Requirements Engineering in Open Source Software

So far only a sparse amount of studies have shed light on the RE activities of OSS
groups [37]. They have established that RE processes in OSS communities are starkly
different from those in traditional software development due to the voluntary nature of
participation in OSS development [5] and the use of informal web-based documentation
practices which replace formal specifications and other design documents [31] [32].
The requirements in OSS projects are made explicit through a wide range of ‘informal-
isms’ such as threaded discussion forums, web pages, e-mail communications, and ex-
ternal publications [31]. Accordingly, OSS RE is considered to be less formal and de-
pendent on online documentation and communication tools [7] [27]. Though this re-
search provides detailed explanations of how distributed artifacts support RE, it does
not consider the flow of requirements computation through interaction of actors and
artifacts. A model of this interaction is suggested by [35]. They opine that the quality
of RE is related to the structural distribution of the OSS project and the use of diverse
artifacts through which requirements knowledge is disseminated. A recent study [38]
suggests moreover that OSS RE is a socio-technical DCog activity where multiple ac-
tors deploy multiple artifacts to compute requirements to reach a common understand-
ing of what the software is going to do. The organization of developer communities
demonstrates significant variation around the generic core-periphery model [26] sug-
gesting that OSS projects exhibit considerable diversity in their social and structural
distributions. However the reason behind this diversity and how it is reflected in RE
activity remains a largely unexplored area.

2.2 Distributed Cognition

To accommodate the distributed nature of OSS wherein requirements knowledge is dis-
tributed through multiple actors, artifacts and their interaction the DCog theory [16]
[18] is used as the theoretical lens of inquiry. The theory postulates that cognition is not
limited to mental states in the skull of an individual but rather it is deeply distributed
among the social actors and artifacts which together constitute a system. Cognition is
perceived as a socially and structurally distributed phenomenon where cognitive work-
load is shared among the members of a team and its artifacts [15] [17]. It is also fit to
examine RE in OSS through this lens as it involves multiple actors and heterogeneous
artifacts and complex cognitive processes.

Within this framework, cognitive activities are viewed as computations which take
place via the propagation of representational state across media where the media can
be both internal (e.g. individual memories) and external representations (including both
computer and paper-based displays) [30]. The knowledge propagation can be charac-
terized by communicative pathways deployed in such communities, conceptualized as
coordinated sequences of action that are continuously interrupted and shaped by the
demands of an ever-changing environment [30]. These cognitive processes are distrib-
uted across the members of a social group; and involve coordination between internal

27

4

and external (material or environmental) structure. Furthermore, processes can be dis-
tributed over time in such a way that the products of earlier events will transform the
nature of later events [16]. These three forms of distribution have been identified as
‘social distribution’ (the distribution of cognition among actors), ‘structural distribu-
tion’ (the distribution of cognition across artifacts), and ‘temporal distribution’ (the dis-
tribution of cognitive process and tasks over time) [13] [35]. In the context of OSS RE,
it is opined that the RE tasks of discovery, specification and validation evolve in parallel
and through iterative loops as requirements are continuously refined and computed by
the interaction of the social actors and structural artifacts over the lifetime of an OSS
project [38]. These otherwise ‘invisible’ patterns of interactions which characterize the
particular DCog mode present in an OSS development community can be identified
and assessed with the aid of social network analysis.

2.3 Social Networks in Open Source Software

A distributed context like OSS community has been presented as an example of a dy-
namic social network and also as a self-organizing collaboration network [23] that is
complex and evolving [24] where developers collaborate with each other through the
internet based platforms [39]. Compared to traditional organizations, OSS community
in itself is highly decentralized [24], flat and non-hierarchical [3]. This view has been
challenged lately [5] [26]. These scholars argue that the social structure of OSS com-
munities is layered like an onion rather than flat [5] [8]. The communication structure
of such communities has been found to vary from completely centered on one developer
to projects that are highly decentralized and exhibit a distributed pattern of communi-
cation between core developers and other active users [5] thus implying that the DCog
modes in these communities are not uniform.

Though it has been studied that the social DCog modes of OSS communities vary,
the consequences of such variances are unknown. Given the variations in OSS social
structures and the effects of such structures in project success, in the context of OSS
RE, it is important to understand how the formation of those social structures influence
knowledge sharing and maintenance and thereby drive a successful RE process. This
looks into how variation in requirements knowledge is influenced and conditioned by
the underlying DCog mode of the community exhibited in terms of its social network
structure and warrants further academic investigation.

2.4 Influence of Requirements Emanating from the External Environment

To uncover how the different DCog modes can be explained by the environmental char-
acteristics housing the OSS groups, the IPV theory is appropriate. IPV posits that man-
agers use organizational mechanisms, such as communication flows and work pro-
cesses, to address the information processing needs of the organizational tasks. Alter-
native organizational mechanisms are geared towards either reducing information pro-
cessing needs or increasing capacity for processing information [9] [10]. The choice of
the mechanisms is dependent on the amount of information that needs to be processed.
The information processing needs in itself stem from the level of environmental uncer-
tainty. Furthermore, in a context where the cognitive activity is distributed socially,

28

5

structurally and temporally, the communicative pathways exposing the underlying se-
quences of interactions between actors and artifacts are in response to the demands of
the environment [30]. Thus in OSS RE, the propagation of RE knowledge characterized
by its communicative pathways manifesting its DCog mode is a product of the demands
of its environment. It can be inferred that the environmental characteristics of various
OSS groups are likely to invoke varying DCog mechanisms depending on the type of
RE task they need to address. The information processing needs are also related to the
complexity associated with RE. The perception of this complexity has shifted from
managing inner and static complexity (the set of requirements remains stable since its
inception) to a dynamic external form of complexity (the set of requirements is dynamic
and has high level of dependencies) [19]. The requirements thus emanating from the
RE environment can be studied in terms of six V’s – volume, veracity, vagueness, ve-
locity, variance and volatility.

In this regard the design task is approached as an effort to improve the environmental
‘fit’ of the software system by adapting it into a growing number of technical, social
and organizational subsystems [14]. Thus the DCog configurations ‘chosen’ by an OSS
project can be seen as a direct response to the specific environmental factors it is sub-
jected [12]. Along with the exact mechanism of such variations, its consequences are
still unknown.

2.5 Factors Affecting Quality of Requirements Produced

Given the emphasis placed on quality of RE phase in information systems development,
it is interesting to look at if and how various OSS DCog configurations affect the quality
of requirements produced by such project development communities. Quality of re-
quirements in general can be studied in terms of the atomicity, precision, completeness,
consistency, understandability, unambiguity, traceability, abstraction, validability, ver-
ifiability and modifiability of requirements [11]. Though a rapidly changing environ-
ment is detrimental to the quality of RE, it has been found that user participation alle-
viates some of its negative effects [6]. The finding has been reinforced by a later study
[21] that shows that user involvement is the key concept in the development of useful
and usable systems and has positive effects on system success and user satisfaction.
This insight is very valuable in determining the extent to which the stakeholders must
be included in the RE phase of a project and especially in the OSS context, where par-
ticipants are both producers and users of the end software product. The above findings
emphasize the influence of social structure of development teams on the ensuing RE
activity and in the OSS context, resounds in the manner in which the social distribution
of DCog activities affect the RE process.

Effective communication is critical to the development of mutual understanding be-
tween systems professionals and their clients. It is seen that distributed RE is more
effective when stakeholders, participate actively in synchronous activities of the re-
quirements process. Three processes have been identified to help systems analysts es-
tablish mutual understanding with their clients: shifting perspective, managing transac-
tion, and establishing rapport, that reflects an effective communication flow [34]. In-
tensive communication between the developers and customers is identified to be the

29

6

most important RE practice [2]. This finding is especially significant for OSS RE which
is a dynamic process and exposes the effect of structural DCog activities on the RE
process. Fostering mutual understanding and a shared vision among OSS development
participants thus helps maintain a high quality of RE knowledge in the project and
hence a high quality of RE in itself.

2.6 Impact of Communication Structures in Virtual Communities

Having understood how different environmental attributes contribute to different DCog
configurations manifested by OSS communities and what factors influence require-
ments quality, it is important to explore what the outcomes, if any, of these DCog var-
iations are in the RE process of OSS development projects. It is found that through
close social interactions, individuals are able to increase the depth, breadth, and effi-
ciency of mutual knowledge exchange [22]. In the context of software development,
decentralized groups promote performance and creativity by enabling members to share
knowledge in a more efficient and effective manner than centralized ones [20]. Thus in
the context of OSS RE knowledge, decentralization of OSS communities enhance the
quality of RE knowledge shared subsequently exhibiting higher RE knowledge quality
highlighting how various DCog modes affect requirements quality of OSS communi-
ties.

The above literature review reveals that the environment housing an OSS project
influences its configuration of DCog activity exhibited in its communication structures
which in turn impacts the quality of requirements the project produces. However the
requirements quality concepts dealt with in literature so far are from the perspective of
managing the inner static complexity of design tasks [19]. To understand the interde-
pendency between a changing environment that OSS projects are subject to and the RE
outcomes of such development efforts, it is important to account for the external dy-
namic complexity of RE tasks which calls for the evaluation of the requirements stem-
ming from the environment of OSS communities and quality of requirements they pro-
duce via the lens of the 6-V requirements model proposed by [19]. Thus the following
theoretical model attempts to unveil the relationship between the external environment
housing an OSS project, the DCog configuration it chooses and the quality of require-
ments it produces is studied in terms of the 6-V requirements model attributes and its
social communication structure.

3 Theoretical Model

To address the effects between the environmental characteristics and the DCog config-
uration of an OSS community, the work on social structures of OSS projects [5] helps
shed some light. The authors opine that the social structure of OSS communities is not
constant with communication centrality varying form completely centralized on one
developer to vastly decentralized. It has been hinted that OSS projects with a wider
scope often take on a modular social structure and are decentralized [5]. This resonates
with the IPV theory that postulates that when the environmental uncertainty is greater,
an organized entity creates more self-contained tasks to reduce the need to process more

30

7

information and thereby obliterating the need to over-burden the hierarchy [10]. Thus,
in an OSS context, it can thus be inferred that to remain effective in situations where
the project scope widens, the OSS communities have to create more modular task struc-
tures by grouping themselves to smaller sub-projects within the main project mirroring
the shallot structure proposed by [5] along with decentralizing the communication.
Thus, the communication centrality can be more or less effective for OSS communities,
depending on the project scope it is subjected to.

It is arguable that the scope of OSS projects increase with functionality it offers and

changes in the technological context it is embedded in. The amount of functionality
offered by the end OSS product is manifested in the volume of requirements it faces
and the rate of change in technology it is based upon affects the focus of development
activity which is explicit in the velocity of change in the requirements it faces. The
extent to which the team completes identified work tasks (task completion) is an output
effectiveness construct that has been used previously [36] and is adopted in this study
as the OSS project effectiveness measure. As demonstrated in prior work [36], we cal-
culate task completion as the percentage of tasks completed: (total requests – requests
open)/total requests * 100. Thus the initial hypotheses of the study can be summarized
as follows:
H1: Lower communication centrality of an OSS community results in more task com-
pletion under conditions of higher volume of requirements.
H2: Lower communication centrality of an OSS community results in more task com-
pletion under conditions of higher velocity of requirement changes.

To address the effects of various social structural DCog configurations on the quality
of requirements produced, we refer back to the literature review above which exposes
how decentralized communication structures further efficient and effective knowledge
exchange and increased stakeholder participation which in the context of RE activities
help increase mutual understanding and thus enhance the quality of requirements pro-
duced resulting in more unambiguous, concise, well-understood requirements. Stake-
holder dialog is a pillar of the requirements development process [28]. As project teams
experience difficulties and communication breakdowns during the process of acquiring,
sharing, and integrating project-relevant knowledge, requirements or their analyses are
forgotten resulting in different requirements concerning the same objects. A lack of
shared understanding by OSS participants can occur when the communication is highly
centralized around a few select members. This produces inconsistency, ambiguity, and
incompleteness in requirements [28] that are represented by the vagueness and veracity
features in the 6-V requirement model. Viewing this in the context of list of desirable
features in requirements [11], such attributes signal a poor quality of requirements. De-
centralization of communication mitigates this effect by promoting discourse and co-
learning [36] resulting in mutual understanding. Thus, in an OSS context, communities
exhibiting a lower degree of communication centralization point towards effective RE
knowledge exchange and thus higher RE quality manifested by requirements high in
veracity and low in vagueness. Thus, the next two hypotheses of the study can be stated
as:

31

8

H3: OSS communities with a lower degree of communication centrality produce re-
quirements that are more veracious than those produced by communities with a higher
degree of communication centrality.
H4: OSS communities with a lower degree of communication centrality produce re-
quirements that are less vague than those produced by communities with a higher de-
gree of communication centrality.

4 Research Design

Understanding the inter-dependencies between requirement attributes and DCog con-
figurations of OSS communities requires identifying macro level external environmen-
tal characteristics of the projects as well as a rich understanding of the local develop-
ment practices of the projects which requires a mixed methods design. OSS contexts
are suitable for such a method of inquiry as rich qualitative data and quantitative data
that are available from the digital traces left by such projects in collaborative code-
hosting repositories such as Github or SourceForge can be utilized in the proposed
study. This study aims to create theory in an area where none currently exists. To aid
this theoretical development, a quantitative analysis of a sufficient sample size of OSS
projects testing the stated hypotheses followed by an independent longitudinal qualita-
tive case study of an OSS project. This will help paint an overall picture of OSS RE
that explains how the hypothesized relationships exist and change over time.

To understand how the external environment housing OSS projects influence its
DCog mode which in turn has repercussions on the quality of software requirements it
produces, we propose to examine the network centrality of communication during the
bug–fixing process. To mitigate the disadvantages arising from data that has not been
cleaned properly and to encourage a cumulative tradition in the field of OSS research,
we turn towards datasets that are been used by multiple academics and studies. This
leads us to the SourceForge Research Data Archive (SRDA) data hosted by the Uni-
versity of Notre Dame [25]. The criteria for our sampling will be based on the project
characteristics of interest in our study. Since one of the main constructs in our study is
communication decentralization, we will initially filter out those projects that are not
active, are individual efforts, or that do not make bug reports available on the Source-
Forge Tracker system, which is the source of the bug data in SRDA. Since we are in-
terested in team interactions and not individual projects we will further limit our study
to projects that listed more than seven developers. To present a robust picture of the
social network of the OSS projects we need sufficient interactions to construct the same
[5] and thus will choose only those projects that have a minimum of 100 reported bugs.
Considering the requirements attributes of interest in our study, these will be analyzed
from the feature requests in the OSS projects [29]. Hence, we will further filter our
sample to include only those projects that have 600 or more postings in their feature
request forums.

In the second phase, we will study a successful OSS project, Bootstrap, in terms of
the varying environmental factors affecting its social network configuration and result-
ant requirements quality over a period of time. The project is hosted in both Sourceforge

32

9

and Github, is successful, having had multiple releases and involve multiple categories
of developers and is a frontend web design framework originally developed by employ-
ers at Twitter. The project which in 2014 had only two core developers and 600 plus
peripheral members has currently expanded its core along with more releases and
branches in the interim. We will study the evolution of the social network structure of
Bootstrap from 2014 to 2017 as a result of the environmental factors it has been sub-
jected to and its effect on its requirements quality, if any.

5 Contributions

From a theoretical perspective, the study through a mixed methods approach, highlights
the importance of the interaction between human actors and structural elements in OSS
development environments that affects the way requirements are processed during a
project’s lifecycle. It also sheds new insights on the effects of environmental factors on
the DCog configurations exhibited by an OSS group that in turn affects the quality of
requirements produced by the group. From a practice perspective, the framing of re-
quirements-oriented activities as a DCog process influenced by both its external envi-
ronment and its internal social environment can inform OSS trend-setters to the critical
role played by different stakeholders as well as the structural artifacts within the system.
In addition, the study by presenting a range of DCog modes and its relationship to re-
quirements attributes for various environmental backgrounds can help OSS communi-
ties in choosing those governance structures that are conducive to producing require-
ments of high quality irrespective of the vagaries of the environment they would be
faced with. This is a crucial step in guiding OSS project leaders engaging in social
community and structural artifacts maintenance activities to espouse a social structural
climate exhibiting a high quality RE impervious to the mandates of the greater external
world. The proposed causes and effects of RE knowledge propagation can also be eval-
uated in agile-based development environments, traditional software development pro-
jects and Commercial Off-The Shelf (COTS) product development. The application to
multiple environments can foster inductive theory-driven comparison and identification
of computational solution that influences project success and failure rates, developer
and user satisfaction, or perceived innovativeness of solutions [38].

References

1. Alspaugh, T. A., & Scacchi, W. 2013. “Ongoing software development without classical
requirements,” In 2013 21st IEEE International Requirements Engineering Conference
(RE), pp. 165-174.

2. Cao, L., and Balasubramaniam, R. 2008. "Agile requirements engineering practices: An
empirical study." Software, IEEE 25.1, pp. 60-67.

3. Carley, K. and Ahuja, M., 1999. “Network structure in virtual organization,” Organization
Science, (10:6), pp. 741-757.

4. Cheng, B. H., and Atlee, J. M. 2009. “Current and Future Research Directions in
Requirements Engineering,” In Design Requirements Engineering: A Ten-Year Perspective,

33

10

K. J. Lyytinen, P. Loucopoulos, J. Mylopoulos, and W. N. Robinson (eds.), Berlin,
Germany: Springer, pp. 11–43.

5. Crowston, K., and Howison, J. 2005. “The Social Structure of Free and Open Source
Software Development,” First Monday (10:2).

6. El Emam, K., Quintin, S., & Madhavji, N. H. 1996. “User participation in the requirements
engineering process: An empirical study,” Requirements engineering, 1(1), 4-26.

7. Ernst, N. A., and Murphy, G. C. 2012. “Case Studies in Just-In-Time Requirements Analy-
sis,” In IEEE 2nd International Workshop on Empirical Requirements Engineering, pp. 25–
32.

8. Gacek, C. and Arief, B., 2004. “The many meanings of open source,” IEEE software, (21:1),
pp. 34-40.

9. Galbraith, J. R. 1973. Designing complex organizations (p. 150). Addison-Wesley Pub. Co.
10. Galbraith, J. R. 1974. Organization Design: An Information Processing View. Interfaces,

(4:3), pp. 28–36. doi:10.1287/inte.4.3.28
11. Génova, G., Fuentes, J. M., Llorens, J., Hurtado, O., & Moreno, V. 2013. “A framework to

measure and improve the quality of textual requirements,” Requirements Engineer-
ing, 18(1), 25-41.

12. Gopal, D., Lindberg, A., Lyytinen, K. 2015. “Attributes of Open Source Software Require-
ments – The Effect of the External Environment and Internal Social Structure,” Proceedings
of the 49th Hawaii International Conference on System Sciences.

13. Hansen, S. W., Robinson, W. N., and Lyytinen, K. J. 2012. “Computing Requirements:
Cognitive Approaches to Distributed Requirements Engineering,” In 2012 45th Hawaii In-
ternational Conference on System Sciences, pp. 5224–5233.

14. Hanseth, O., Lyytinen, K. 2010. “Design Theory for Adaptive Complexity in Information
Infrastructures,” Journal of Information Technology (25:1), pp. 1-19.

15. Hutchins, E. 1995. Cognition in the Wild, MIT Press, Cambridge, MA, pp. 408.
16. Hutchins, E. 2000. "Distributed Cognition." Internacional Enciclopedia of the Social and

Behavioral Sciences.
17. Hutchins, E. and Klausen, T. 1996. "Distributed Cognition in an Airline Cockpit," In

Cognition and Communication at Work, Y. Engestrom and D. Middleton (eds.), Cambridge
University Press, New York, pp. 15-34.

18. Hutchins, E., and Lintern, G. 1996. Cognition in the Wild, MIT Press, Cambridge, MA.
19. Jarke, M., and Lyytinen, K. 2014. “Special Issue on Complexity of Systems Evolution:

Requirements Engineering Perspective,” ACM Transcations on Management Information
Systems

20. Kidane, Y.H. and Gloor, P.A. 2007. “Correlating temporal communication patterns of the
Eclipse open source community with performance and creativity,” Computational and
mathematical organization theory, (13:1), pp.17-27.

21. Kujala, S., Kauppinen, M., Lehtola, L., & Kojo, T. 2005. “The role of user involvement in
requirements quality and project success,” In Requirements Engineering, 2005. Proceed-
ings. 13th IEEE International Conference on (pp. 75-84). IEEE.

22. Lane, P.J., Lubatkin, M. 1998. “Relative absorptive capability and interorganizational learn-
ing,” Strategic Management Journal, (19:5), pp. 461–477.

23. Madey, G., Freeh, V., and Tynan, R. 2002. “The open source software development phe-
nomenon: An analysis based on social network theory,” In: Proceedings of Americas Con-
ference on Information Systems (AMCIS 2002), Dallas, US, pp. 1806–1813.

24. Madey, G., Freeh, V., and Tynan, R. 2004. “Modeling the F/OSS Community: A Quantita-
tive Investigation, Free/Open Source Software Development,” Edited by Koch, S., Hershey:
Idea Publishing, pp. 203–220.

25. Madey, G. ed. 2016. The SourceForge Research Data Archive (SRDA). University of Notre
Dame. (2016) <http://srda.cse.nd.edu/>

34

11

26. Mockus, A., Fielding, R. T., and Herbsleb, J. D. 2002. “Two Case Studies of Open Source
Software Development: Apache and Mozilla,” ACM Transactions on Software Engineering
and Methodology (11:3), pp. 309–346.

27. Noll, J., and Liu, W.-M. 2010. “Requirements Elicitation in Open Source Software Devel-
opment,” In Proceedings of the 3rd International Workshop on Emerging Trends in Free/Li-
bre/Open Source Software Research and Development, ACM Press, pp. 35–40.

28. Robinson, W. N., & Pawlowski, S. D. 1999. “Managing requirements inconsistency with
development goal monitors,” IEEE Transactions on Software Engineering, (25:6), pp. 816-
835.

29. Robinson, W. and Vlas, R., 2015.” Requirements Evolution and Project Success: An Anal-
ysis of SourceForge Projects,” In Americas Conference on Information Systems
(AMCIS2015).

30. Rogers, Y., and Ellis, J. 1994. “Distributed cognition: an alternative framework for analyz-
ing and explaining collaborative working,” Journal of information technology, (9:2), pp.
119-128.

31. Scacchi, W. 2002. “Understanding the Requirements for Developing Open Source Software
Systems,” IEE Proceedings Software (149:1), pp. 24–39.

32. Scacchi, W. 2009. “Understanding Requirements for Open Source Software,” In Design
Requirements Engineering: A Ten-Year Perspective, K. Lyytinen, P. Loucopoulos, J.
Mylopoulos, and B. Robinson (eds.), Berlin, Germany: Springer, pp. 467–494.

33. Stewart, K.J. and Gosain, S., 2006. “The moderating role of development stage in free/open
source software project performance,” Software Process: Improvement and Prac-
tice, (11:2), pp.177-191.

34. Tan, M. 1994. "Establishing mutual understanding in systems design: An empirical
study." Journal of Management Information Systems 10.4, pp. 159-182.

35. Thummadi, B. V., Lyytinen, K., and Hansen, S. 2011. “Quality in Requirements
Engineering (RE) Explained Using Distributed Cognition: A Case of Open Source
Development,” Sprouts: Working Papers on Information Systems (11).

36. Toral, S.L., Martínez-Torres, M.D.R. and Barrero, F., 2010. “Analysis of virtual communi-
ties supporting OSS projects using social network analysis,” Information and Software
Technology, (52:3), pp. 296-303.

37. Vlas, R., and Vlas, C. 2011. “A Requirements-Based Analysis of Success in Open-Source
Software Development Projects,” In Proceedings of the 17th Americas Conference on In-
formation Systems, Detroit, Michigan

38. Xiao, X., Lindberg, A., Hansen, S., and Lyytinen, K. 2013. “‘Computing’ Requirements in
Open Source Software Projects,” In The 34th International Conference on Information Sys-
tems (ICIS 2013).

39. Xu, J., Christley, S. and Madey, G., 2006. “Application of social network analysis to the
study of open source software,” The economics of open source software development, pp.
205-224.

35

36

Supporting Open Source Communities to Foster Code
Contributions through Community Code Engagements

Jefferson O. Silva

University of São Paulo, Institute of Mathematics and Statistics, São Paulo, Brazil

silvajo@ime.usp.br

Abstract. Open Source Software (OSS) communities depend on recruiting new
contributors to remain sustainable. Many communities are trying to retain new
contributors and promote contributions by means of community code
engagements (CCE), which are software development arrangements that include
summers of code. There is empirical evidence that CCEs can be potentially more
attractive to newcomers than the self-guided contribution to OSS, since many are
held by high-profile software companies. However, the literature only provides
evidence for specific domains, not offering practical insights on how effective
these engagements are. This research aims at investigating how OSS
communities can take advantage of CCEs, by fostering code contributions and
retaining contributors. To achieve our goal, we plan to employ a mixed-method
approach, combining data from different sources. We believe that the results can
be compiled into a model, which may support communities and CCE organizers
on fostering code contributions and engaging students as contributors.

Keywords: Summer of Code · Community Code Engagement · Open Source
Software · Newcomer · Motivation · Sustainability · Attraction · Visibility · Early
Identification.

1 Introduction

Recruiting new contributors is a difficult endeavor to many open source software
(OSS) communities, especially because newcomers may not be strongly
committed, making them more susceptible to leave in face of minor adversities [1].
As newcomers’ ties are fragile, the communities may have to engage in tactics to
keep newcomers around until they learn how to contribute [2].

There is evidence that many OSS communities are joining community code
engagements (CCE), not only to attract newcomers, but also to retain them [3]–[5].
CCEs are short-term software development arrangements that are becoming
common in OSS, which include Summer of Code (SoC) internships. SoCs promote

37

software development by students. Examples include Google SoC (GSoC)1, Rails
Girls SoC 2 , Open SoC 3 , Julia SoC 4 , and Ruby SoC 5 . When applying for
participating in CCEs, many OSS communities express the expectation to increase
both the projects’ visibility and the number of contributors, as exemplified by the
following excerpt:

 “(…) Participating at GSoC will increase the visibility of Pharo project efforts (…) We
expect also to bring more people into our community”
Source: http://lists.pharo.org/pipermail/pharo-users_lists.pharo.org/2016-February/024579.html

Many CCEs are held by high-profile companies such as Facebook, and Google,
which can potentially be more attractive to newcomers than the volunteer self-
guided contribution to OSS. CCEs are a recent phenomenon and represent an
additional entity not yet comprehensively studied. The current literature on CCEs
mostly provides evidence on retention and code contribution for OSS projects
belonging to the scientific domain [4]–[6]. The study of Schilling et al. [6] is
restricted to the KDE project. In addition, these studies only targeted GSoC.

The current literature does not offer adequate support for the OSS communities
to decide if participating in CCEs is a good strategy to remain sustainable. In
addition, to our best knowledge, the existing evidence on how much the students’
code can be incorporated to the codebase is scant. Finally, little is known on how to
help the OSS communities to select the CCE applicants focusing on increasing the
odds of retaining the participants after the engagement program.

This research aims at understanding how to support OSS communities that want
to take advantage of the participation in CCEs, and also at proposing and
evaluating a model to assist these communities to rank and select promising
candidates. The overall question addressed by this research is:

“How to support OSS communities to foster code contributions through CCEs?”
To guide our answer, we have defined specific research questions (RQ):
RQ1. Do CCEs foster code contributions to OSS projects?
RQ2. Do CCEs retain students as code contributors of OSS projects?
RQ3. What motivates students to enter CCEs?
RQ4. What barriers do OSS communities face when trying to incorporate the

code produced in CCEs into the codebase?
RQ5. What factors influence the CCEs students’ retention?

 1 https://developers.google.com/open-source/gsoc/ 2 http://railsgirlssummerofcode.org/ 3 http://2016.summerofcode.be/ 4 http://julialang.org/blog/2015/05/jsoc-cfp/ 5 http://www.rubysummerofcode.org/

38

In this thesis’ proposal, we focus on studying how to support the OSS
communities to take advantage of CCEs (i.e., fostering code contributions to OSS
and retaining the students as new contributors). We believe that the results of this
study can help researchers and the OSS community to invest their efforts in
building or improving tools, ultimately gaining more effective contributions from
participants interested in short and long-term collaboration.

2 Related Work

Despite its practical relevance, little research has examined how CCEs influence
participants to contribute. For online communities, the literature offers several
models about volunteer contributions, such as the Feature Article process, where
the idea is to provide visibility and concentrate efforts to provide high-quality
content to the Wikipedia [7].

In OSS, typically, studies on retention take the individual developer’s
perspective. Thereby, intrinsic motivation (e.g., [8]–[10]), social ties with team
members (e.g., [11]–[13]), project characteristics (e.g., [14]–[16]), ideology (e.g.,
[17]), and rewards (e.g., [18]–[20]) have been found relevant for developers’
retention.

Schilling et al. [6] used the concepts of Person-Job and Person-Team fit from the
traditional recruitment literature to derive objective measures to predict the
retention of 80 former GSoC students in the KDE project. Using a classification
schema of prior code contributions to KDE, they found that intermediate and high
levels of prior development were strongly associated with retention.

Trainer et al. [5] conducted a case study of a bioinformatics library called
Biopython to investigate the outcomes of this GSoC project. By interviewing the
top 15 developers ranked by the number of commits, the researchers identified
three positive outcomes: the addition of new features to the codebase; training; and
personal development. In addition, the researchers found that mentors faced several
challenges related to the selection and ranking of applicants.

Trainer et al. [4] conducted a multiple case study of 22 GSoC projects in the
scientific domain to understand the range of GSoC outcomes and the underlying
practices that lead to these outcomes. They found that GSoC facilitated the creation
of strong ties between mentors and students, and reported that 18% of the students
(n=22) became mentors in subsequent editions.

While these previous works help to enlighten understudied aspects of CCEs,
their scope is restricted to a few GSoC projects and mainly to the scientific
software domain, and consequently their conclusions may not be representative of
other engagements. Schilling et al. [6] mined software repositories for quantifying
students’ retention, but limited their analysis to the KDE project. Trainer et al. [4],
[5] collected data through interviews. Although we understand the relevance of
interviews for achieving the researchers’ goals, their results only represented the

39

subjective students’ perception on the students’ retention. In addition, in Schilling
et al. [6], it is not clear whether there was students’ code that was not incorporated
into the codebase and how the researchers handled it. We are not aware of any
studies for the other CCEs.

We argue that CCEs have the potential of influencing newcomers’ decision
process, which is not predicted by existing theories. The Legitimate Peripheral
Participation (LPP) theory has been usually embraced to explain how an individual
engages in a community of practice, such as OSS [21]. The LPP theory, applied to
OSS, predicts that future contributors get involved by observing before coding,
then interacting with experienced members at the margin, in a process that
culminates in the emergence of regular contributors. However, contributing to OSS
by means of CCEs alters this process in significant manner: there is a contract
binding the students to the OSS projects for a period of a few months. CCE
students do not start at the margin, instead, they are individually guided – many
times, sponsored – to become contributors, having the time to dedicate themselves
to the project, potentially developing strong social ties to the community members.
We claim that it is relevant to provide more research so that theories can be tested
under new conditions.

3 Research Method and Preliminary Results

This section details our planed approaches to address our RQs. In addition, we
present some preliminary results for the work accomplished so far.

RQ1. Do CCEs foster code contributions to OSS projects?

Motivation. As previously evidenced, there are OSS communities that expect to
have their software issues addressed by participating in CCEs. Answering this RQ
may potentially help these communities to manage their expectations about how
much contribution (i.e., code churn and commits) the OSS projects should get by
participating.

Approach. Data Collection. For collecting and analyzing the students’ code, we
have been using the method depicted in Fig. 1.

40

Fig. 1. Method used to collect and analyze the students’ interaction with their GSoC
projects.

We have started the investigations on a specific CCE by contacting the
organizers, explaining our research goals, and eventually asking for the students’
assigned projects URL’s. As a rule, the organizers did not provide us with this
information, probably for privacy concerns. Hence, we have obtained this
information by consulting a list of accepted students and their assigned projects’
names, which is usually publicly available online.

Next, as collecting and verifying data on the students and their assigned projects
is time consuming, we have worked with a random sample of students for each
CCE, aiming for a confidence level of 95% and a margin of error of 5%. Using the
students’ names and the projects’ description contained in the lists, we have
manually searched for the students’ assigned projects in source code management
systems (SCM).

We have used MetricsGrimoire-CVSAnalY6 to extract information out of the
SCMs and store it into a local database (one for each CCE). Next, we have to
identify all the IDs that the students may have used. For this, we have used the
students’ names and emails (or combinations) to decide if an ID belongs to the
same student. We have applied common disambiguation heuristics to identify the
students, such as the ones presented by Wiese et al. [22]. This procedure has
yielded the final working sample for each CCE.

Data Analysis. For the analysis, we have split the students’ commits into three
participation periods: Before, During, and After CCE. We have used the official
engagements’ timelines (i.e., start and end dates) to classify the commits in each
period. Then, we have analyzed the contributions in terms of: (i) commits; and (ii)
code churn.

(i) Commits’ Analysis. To understand if an OSS project benefited from the
students’ contribution, we have investigated whether the students’ commits were
incorporated into the codebase. Thus, we have compared each Secure Hash
Algorithm (SHA) – a unique identifier – of the students’ commits to the ones
belonging to the main branch, and we have grouped them by participation period.

 6 http://metricsgrimoire.github.io/CVSAnalY/

41

The number of the students’ commits in the codebase was obtained by counting the
number of commits in each group.

(ii) Code Churn Analysis. To estimate how much code the students added to the
codebase, we used the following procedure. For each student, we used three tuples
of commits’ SHAs. The first tuple comprised the SHA of the first commit in the
Before period and the SHA of the first commit in the During period. We represent
this as (SHA-first-before, SHA-first-during). The other tuples, were obtained
analogously: the second tuple (SHA-first-during, SHA-last-during); and the third,
(SHA-last-during, SHA-last-after). Next, we used the git guilt (from git extras7)
tool to calculate the code churn, using each tuple as arguments. As a result, we
have obtained a measure for the churn for each period for each CCE.

Preliminary results. We decided to firstly investigate GSoC as it is a worldwide,
consolidated Google program that offers students a stipend to write code for OSS
for a three-month period. Also, it is well known compared to other SoCs, it has
been in operation for more than 10 years, it has students from all over the world,
and it provides students with a richer set of participation rewards than other SoCs
[23], which, at least theoretically, may be attractive to students.

GSoC Sample Characteristics. We worked with a sample of 260 students: 75, in
GSoC 2015; 62, in GSoC 2014; 56, in GSoC 2013; 12, in GSoC 2015 and GSoC
2014; 14, in GSoC 2014 and GSoC 2013; and 5, in GSoC 2013 to GSoC 2015. We
first present: the (i) Commit Analysis’ Results; followed by the (ii) Code Churn
Analysis’ Results.

(i) Commit Analysis’ Results. To understand how many of the GSoC students’
commits were incorporated into the codebase, we present the violin plots in Fig. 2
per participation period. For a better visualization of the data, we removed the
students without commits in the plots. We report how many students were
removed, in brackets.

 7 https://github.com/tj/git-extras

42

(a) Commits’
distribution before
GSoC
[130/260 (50%) did
not commit]

(b) Incorp. commits’
distribution before
GSoC
[158/260 (~61%) did
not have any commit
incorporated]

(c) Commits’
distribution during
GSoC
[0/260 (0%) did not
commit]

(d) Incorp. commits’
distribution during
GSoC
[59/260 (~23%) did
not have any commit
incorporated]

(e) Commits’
distribution after GSoC
[107/260 (~41%) did
not commit]

(f) Incorp. commits’
distribution after GSoC
[157/260 (~60%) did
not have any commit
incorporated]

Fig. 2. Commits and incorporated commits distribution by participation period (Before,
During, and After).

Fig. 2 (a) and Fig. 2 (b) show that there were both commits and code
incorporated before kickoff, which may have come from at least three distinct
sources: students who were already project members; former GSoC students; and
newcomers. One possible explanation for newcomers contribute before kickoff
is that they contribute to OSS as a means to be accepted.

Fig. 2 (c) and Fig. 2 (d) show that incorporations usually occurred during
GSoC’s timeframe, ranging from 1 (first quartile) to 92.50 (third quartile), totaling
~2,640 incorporated commits. During this timeframe, GSoC students performed
4,250 commits. In the worst cases (~25%), the OSS communities had not any
incorporated commits, even though these students performed 2,875 commits.
Strictly, most OSS projects benefited from participation in GSoC since in 75%

43

of the cases during the program they had at least one incorporated commit to
the project codebase.

Fig. 2 (e) shows that 59% of the students committed after GSoC, and Fig. 2 (f)
shows that ~40% of them had their commits incorporated to the codebase after the
program. Therefore, in all periods, there were code incorporations to the
codebase.

(ii) Code Churn Analysis’ Results. We broadened our investigation by studying
how much code the students added to the codebase. We used the concept of code
churn to represent another perspective of the students’ contribution.

Fig. 3 depicts the distribution of students’ code churn in boxplots per
participation period. The churn before boxplot shows that the distribution median
is 913, with its top 25% ranging between 5,000 (third quartile) and 12,000 (upper
quartile). For the next period, the distribution median approximately doubled
(~1,900), presented in the churn during boxplot, with its top 25% ranging between
7,000 (third quartile) and 17,000 (upper quartile). The churn after boxplot shows
that the students’ code churn significantly decreases after the end of the program,
with the distribution median decreasing to 8.5. However, the top 25% of the
distribution remained high, ranging between 833 (third quartile) and 1,971 (upper
quartile).

Fig. 3. Students’ code churn by participation period.

Fig. 3 depicts the magnitude of the students’ code contribution to the codebase:
the code churn Before GSoC totaled 21,599,122 (mean: 913, STD: 612,793.92),
During, 28,388,710 (mean: 1905, STD: 687,706.04), and After, 5,863,721
(mean: 2, STD: 127,853.65).

RQ2. Do CCEs retain students as contributors of OSS projects?

Motivation. Answering this RQ may potentially help OSS communities to manage
their expectations about how many new contributors they should retain by
participating in CCEs.

Approach. For obtaining the information on the students, we have used the method
depicted in Fig. 1. We have used the term permanence to refer to the time in days
that a student kept contributing to the assigned project after the end of the CCE.

44

To determine a CCE’s retention rate, it has been necessary to distinguish former
CCE’s students and project members from newcomers. For distinguishing former
CCE’s students, we have counted how many participations the students had for that
CCE. For distinguishing project members, we have needed to find a suitable
timeframe (threshold) after which we could consider that a specific contributor
refers to a project member (and not a newcomer who started contributing early for
being accepted in the CCE). Thus, for each CCE and all students in our sample, we
have created a statistical distribution of the intervals between the commits
performed before the start of the CCE to arrive at an estimation of this threshold. If
the interval between the CCE official start date and the date of the commit was
higher than the threshold, we have considered that the student was a project
member. For GSoC, we selected 127 days as the threshold, the 99th percentile of
the distribution. Thus, any applicant with commits older than 127 days before the
GSoC’s kickoff was not considered a newcomer. We refer to former CCEs students
and contributors with commits older than the threshold as veterans. Newcomers
are the first-time CCE participants with commits younger than the threshold. A
similar approach was used by Colazo and Fang [15], even though they used this
method to define retention. Here, retention has the same meaning as
permanence. We have used the term prior permanence to refer to the period that
the students remained before kickoff.

Preliminary results. To understand how long GSoC participants kept committing
to their assigned projects after CCE, Fig. 4 depicts the distribution of permanence
before and after kickoff. We split our analysis into newcomers and veterans. Fig. 4
(a) and Fig. 4 (c) depict newcomers’ permanence, in days, before and after GSoC,
while Fig. 4 (b) and Fig. 4 (d) depict the same information but for veterans.

As previously, we only show the students who kept contributing to the project
for better data visualization, reporting how many students were removed after the
figures’ captions, in brackets. Fig. 4 (a) complements a previous finding, by
informing that ~33% of newcomers started contributing to their GSoC projects ~90
days before the programs’ kickoff (i.e., before knowing they would be accepted).

45

(a) Newcomers’
permanence before
GSoC
[128/191 (~67%) did
not contribute before]

(b) Veterans’
permanence before
GSoC
[38/69 (~55%) did not
contribute before]

(c) Newcomers’
permanence after
GSoC
[125/191 (~65%) did
not remain]

(d) Veterans’
permanence after
GSoC
[42/69 (~61%) did not
remain]

Fig. 4. Permanence before and after (retention) distribution for newcomers and veterans (in
days)

Fig. 4 (b), shows that veterans were mostly consisted of GSoC former students
(56), and the prior permanence refer to previous editions. Fig. 4 (c) shows that the
newcomers did not typically keep committing to their projects (~65%), but for the
~35% of the students who did, their permanence on the project lasted around 150
days after GSoC. So, some OSS projects benefited from the newcomers’
contributions even after the official program timeline.

In Fig. 4 (d), as with newcomers, we can see that most veterans did not keep
committing. The long permanence of the ones who did refers mostly to
participation in subsequent GSoC editions, which we consider a different, but valid,
type of retention.

Thus, GSoC had a retention rate of 35% for newcomers, who typically
contributed additional 150 days to their GSoC projects. For veterans, GSoC
had a retention rate of 40%, who typically remained up to 700 days, including
the participation in subsequent GSoC editions.

RQ3. What motivates students to join CCEs?

Motivation. As previously mentioned, CCEs may potentially influence the
students’ decision to voluntarily contribute to OSS, by providing many reward
types. Many of these rewards have been linked to developers’ retention (see
Beecham et al. [24]). Students comprise a different population than developers, and
mapping the rewards that motivate students to join CCEs can potentially have
practical implications for the stakeholders: OSS communities can take advantage of

46

CCEs by, for instance, attracting newcomers before the engagements; and CCE
organizers can, for instance, provide participation certificates.

Approach. To obtain the students’ contact information, we used the method
depicted in Fig. 1. We designed the study to answer this RQ in two steps. In the
first, we have conducted surveys with students8 and mentors9 of different CCEs.
The surveys were designed following Fink’s advice [25]. Questionnaires have been
used as they allow for the data collection of a sizeable population and provide
relatively standardized data. The questionnaires included open-ended and closed-
ended questions.

In the second step, we have conducted semi-structured interviews with some
students, mentors, and CCE organizers for validating/deepening the answers. We
have crafted the interviews’ script10 following the six types of questions described
by Merriam [26]. For analyzing the closed-ended questions, we have been using
descriptive statistics. For analyzing the open-ended questions and the interviews,
we have been using open coding and axial coding [27]. During open coding,
concepts are identified and their properties are discovered in the data. During axial
coding, connections between the codes are identified and grouped according to
their properties to represent categories [12], [28].

Preliminary results. We conducted a survey with 141 students and 53 mentors who
participated in GSoC 2010-2015. Among other things, we asked why did the GSoC
students become interested in the program. Table 1 presents the categories yielded
from the grouping of the codes and their count (for the GSoC students).

Table 1. Why did you [GSoC student] become interested in the program?

Categories Count
Money for financial profit 52
Learning experience 42
OSS project gateway 39
Career concerns 29
Work type rewards 30
Money for funding 22
Summer job/project 19
Networking 14
Academic rewards 7
Peer-recognition 3

 8 The GSoC students’ questionnaire: https://goo.gl/forms/aEO1DDYqT76dsHED2 9 The GSoC mentors’ questionnaire: https://goo.gl/forms/nHSnfYzVbBgDGkXp2 10 The interviews’ script can be accessed at: https://goo.gl/4El62E

47

RQ4. What barriers do OSS communities face when trying to incorporate the
code produced in CCEs to the projects’ codebase?

Motivation. To our best knowledge, no empirical study has tried to understand
what are the drawbacks that the OSS communities face when they try to
incorporate the students’ code into the codebase. We believe that the identification
of these barriers can potentially can better equip the OSS communities to take
advantage of CCEs.

Approach. We plan to conduct surveys and semi-structured interviews with
mentors and other community members to understand the range of tactics that they
adopt to incorporate the students’ code into the codebase.

RQ5. What factors influence the CCEs students’ retention?

Motivation. The early identification of long-term contributors among CCE
applicants can potentially help the OSS communities to remain sustainable.

Approach. Our first step is to identify the factors that may influence the students’
retention. For this, we plan to review the current literature to obtain a
comprehensive set of factors. For instance, previous studies found that
contributors’ retention (in general) was strongly correlated with prior permanence
in the project [6], OSS ideology [17], contribution complexity [29].

Next, we intend to perform qualitative and quantitative analysis of various OSS
projects. For the qualitative analysis, we plan to conduct surveys and interviews
with students and project members to better understand the relation between the
students’ willingness to contribute and the factors (context) that lead them to
keep/stop contributing. For the quantitative analysis, we plan to use historical data
(by mining software repositories) for an objective view of the students’ interaction
with their projects. We believe that the results of this research can potentially be
compiled into a model, which may assist the OSS communities to select the
applicants with higher probabilities of becoming long-term contributors.

4 Conclusion

In this research, we have investigated whether the participation in CCEs can lead to
better outcomes in terms of more code contributions and new contributors.

We expect that we can provide the OSS communities with practical and valuable
information on how to engage more contributors in OSS and also on how to take
advantage of CCEs for the benefit of the community.

48

References

[1] Y. Fang and D. Neufeld, “Understanding Sustained Participation in Open Source Software
Projects,” J. Manag. Inf. Syst., vol. 25, no. 4, pp. 9–50, 2009.

[2] R. Farzan, L. Dabbish, R. E. Kraut, and T. Postmes, “Increasing Commitment to Online
Communities by Designing for Social Presence,” Proc. ACM 2011 Conf. Comput. Support. Coop.
Work - CSCW ’11, no. March 1923, p. 321, 2011.

[3] E. H. Trainer, A. Kalyanasundaram, C. Chaihirunkarn, and J. D. Herbsleb, “How to Hackathon:
Socio-technical Tradeoffs in Brief, Intensive Collocation,” in Proceedings of the 19th ACM
Conference on Computer-Supported Cooperative Work & Social Computing - CSCW ’16, 2016,
pp. 1116–1128.

[4] E. H. Trainer, C. Chaihirunkarn, A. Kalyanasundaram, and J. D. Herbsleb, “Community code
engagements: Summer of Code & hackathons for community building in scientific software,” in
Proceedings of the International ACM SIGGROUP Conference on Supporting Group Work, 2014,
pp. 111–121.

[5] E. H. Trainer, C. Chaihirunkarn, and J. D. Herbsleb, “The Big Effects of Short-term Efforts:
Mentorship and Code Integration in Open Source Scientific Software,” J. Open Res. Softw., vol. 2,
no. 1, p. Art. e18, 2014.

[6] A. Schilling, S. Laumer, and T. Weitzel, “Who will remain? - An evaluation of actual Person-Job
and Person-Team fit to predict developer retention in FLOSS projects,” Proc. Annu. Hawaii Int.
Conf. Syst. Sci., pp. 3446–3455, 2011.

[7] K. Crowston, N. Jullien, and F. Ortega, “Sustainability of Open Collaborative Communities :
Analyzing Recruitment Efficiency Sustainability of Open Collaborative Communities :
Analyzing Recruitment Efficiency,” Technol. Innov. Manag. Rev., no. January, pp. 20–26, 2013.

[8] K. R. Lakhani and R. G. Wolf, “Why Hackers Do What They Do: Understanding Motivation and
Effort in Free/Open Source Software Projects,” in Perspectives on Free and Open Source
Software, Cambridge: MIT Press, 2005.

[9] A. Hars and S. Shaosong Ou, “Working for free? Motivations of participating in open source
projects,” in Proceedings of the 34th Annual Hawaii International Conference on System
Sciences, 2001, vol. 7, p. 9.

[10] J. a. Roberts, I.-H. Hann, and S. a. Slaughter, “Understanding the Motivations, Participation, and
Performance of Open Source Software Developers: A Longitudinal Study of the Apache Projects,”
Manage. Sci., vol. 52, no. 7, pp. 984–999, 2006.

[11] I. Steinmacher, T. Conte, M. A. Gerosa, and D. Redmiles, “Social Barriers Faced by Newcomers
Placing Their First Contribution in Open Source Software Projects,” Proc. 18th ACM Conf.
Comput. Support. Coop. Work Soc. Comput. - CSCW ’15, pp. 1379–1392, 2015.

[12] I. Steinmacher, I. S. Wiese, T. Conte, M. A. Gerosa, and D. Redmiles, “The hard life of open
source software project newcomers,” Proc. 7th Int. Work. Coop. Hum. Asp. Softw. Eng. - CHASE
2014, pp. 72–78, 2014.

[13] F. Fagerholm, A. S. Guinea, J. Münch, and J. Borenstein, “The role of mentoring and project
characteristics for onboarding in open source software projects,” ESEM conf., pp. 1–10, 2014.

[14] P. Meirelles, C. Santos, J. Miranda, F. Kon, A. Terceiro, and C. Chavez, “A Study of the
Relationships between Source Code Metrics and Attractiveness in Free Software Projects.”

[15] J. Colazo and Y. Fang, “Impact of license choice on open source software development activity,”

49

J. Am. Soc. Inf. Sci. Technol., 2009.
[16] C. Santos, G. Kuk, F. Kon, and J. Pearson, “The attraction of contributors in free and open source

software projects,” J. Strateg. Inf. Syst., vol. 22, no. 1, pp. 26–45, 2013.
[17] K. J. Stewart and S. Gosain, “The impact of ideology on effectiveness in open source software

development teams,” MIS Q., vol. 30, no. 2, pp. 291–314, 2006.
[18] S. Krishnamurthy, S. Ou, and A. K. Tripathi, “Acceptance of monetary rewards in open source

software development,” Res. Policy, vol. 43, no. 4, pp. 632–644, 2014.
[19] I.-H. Hann, J. Roberts, S. Slaughter, and R. Fielding, “Economic Incentives for Participating

Open Source Software Projects,” Twenty-Third Int. Conf. Inf. Syst., vol. ICIS 2002, 2002.
[20] J. Tirole and J. Lerner, “Some Simple Economics of Open Source,” J. Ind. Econ., vol. 50, no. 2,

pp. 197–234, 2002.
[21] J. Lave and E. Wenger, Situated learning: Legitimate Peripheral Participation. Cambridge

University Press, 1991.
[22] I. S. Wiese, J. T. da Silva, I. Steinmacher, C. Treude, and M. A. Gerosa, “Who is Who in the

Mailing List? Comparing Six Disambiguation Heuristics to Identify Multiple Addresses of a
Participant,” 2016 IEEE Int. Conf. Softw. Maint. Evol., pp. 345–355, 2016.

[23] E. H. Trainer, C. Chaihirunkarn, A. Kalyanasundaram, and J. D. Herbsleb, “Community code
engagements: Summer of Code & hackathons for community building in scientific software,”
Proc. Int. ACM Siggr. Conf. Support. Gr. Work, pp. 111–121, 2014.

[24] S. Beecham, N. Baddoo, T. Hall, H. Robinson, and H. Sharp, “Motivation in Software
Engineering: A systematic literature review,” Inf. Softw. Technol., vol. 50, no. 9–10, pp. 860–878,
2008.

[25] A. G. Fink, How to Ask Survey Questions, Vol 2. SAGE Publications, Inc, 1995.
[26] S. B. Merriam, Qualitative Research: A Guide to Design and Implementation, vol. 1. Jossey-Bass,

2009.
[27] A. Strauss and J. M. Corbin, Basics of Qualitative Research: Techniques and Procedures for

Developing Grounded Theory. 1998.
[28] I. Steinmacher, M. A. Gerosa, and D. F. Redmiles, “Social Barriers Faced by Newcomers Placing

Their First Contribution in Open Source Software Projects,” Proc. ACM Conf. Comput. Coop.
Work Soc. Comput., pp. 1379–1392, 2015.

[29] S. Dejean and N. Jullien, “Big from the beginning: Assessing online contributors’ behavior by
their first contribution,” Res. Policy, vol. 44, no. 6, pp. 1226–1239, 2015.

50

ON OSS FOUNDATION COMMUNITY SERVICES

Remo Eckert

University of Bern, Switzerland
remo.eckert@iwi.unibe.ch

Abstract. Open source software (OSS) communities are forms of inter-organi-
zational collaborative ecosystems. In case an OSS community is successful and
the project grows, there is a need for institutionalization to involve outside par-
ties. The OSS community face a choice of how to organize the community. Either
they continue as is, join an existing foundation or they found their own founda-
tion. In this tentative paper, we are going to show that a major motivation why
communities join a foundation is due to the related services the foundation pro-
vides to them. We structure the provided services in regard to our organizational
framework. While some foundations provide services across all three dimen-
sions, other foundations set a clear focus on financial services.

Keywords: Open source software, collaborative software development, organi-
zational affiliation, OSS foundation.

1 Background Of The Research

With respect to the development of OSS, governing the community plays a central role.
Governance within OSS communities has been a widely discussed topic for many years
[1–3]. By creating a three phase model, de Laat [4] describes the structural evolution
of an OSS project. In phase one, governance is spontaneous and explicit coordination
and control are non-existent. Phase two introduces internal governance with formal
tools, e.g. division of roles, training, modularization or decision-making. This enables
an OSS community to be governed internally in order to increase efficiency and effec-
tiveness as the community grows. Eventually, in phase three, in case the OSS commu-
nity is successful and both companies and other organizations are willing to participate,
there is a need for institutionalization to involve outside parties [4]. As OSS communi-
ties mature and become economically relevant, those communities face a choice: Either
continue as is, create an own OSS foundation or to affiliate with an existing OSS foun-
dation [5].

There are different OSS foundations which offer services to OSS communities as their
affiliates. As an example, the Eclipse Foundation has “working groups” as affiliated
OSS communities. These working groups include geospatial technologies, Internet of
Things or embedded Java systems for the aircraft industry. Similarly, the organization

51

behind the Linux kernel development, the Linux Foundation, offers a platform for in-
dustry-driven OSS development [6]. Their “collaborative projects” currently cover hor-
izontal OSS solutions (widely used in different industries) such as a cloud-computing
platform or an embedded Linux platform, as well as vertical OSS solutions (used in a
particular industry) such as financial services middleware or a drone open source plat-
form. These practical examples show how mature OSS organizations like the Eclipse
Foundation and the Linux Foundation are concerned with more than the initial OSS
project they were created for, the Integrated Development Environment respectively
the Linux kernel. They offer community management activities to emerging OSS pro-
jects as professional services. The foundations share their longstanding experience in
community governance and thereby fostering collaborative software development.

While Riehle and Berschneider [5] present an analysis of the structure and processes of
OSS developer foundations and distill a model of the structure and governance of foun-
dations, this paper focus on what services an umbrella organization such as the Eclipse
Foundation and the Linux Foundation provide for their affiliated communities.

2 Research Motivation & Research Question

The way in which even successful independent OSS projects such as the Node.js Ja-
vaScript community joined the Linux Foundation indicates the unpreceded attractive-
ness of an OSS umbrella organizations [7]. However, it is not clear why OSS commu-
nities join an existing OSS foundation. In our work we show that a major motivation
why communities join a foundation is due to the related services the foundation pro-
vides to them. This research in progress tries to answer the following research question:

RQ: What are the services OSS foundations provide for their affiliated communities?

To answer this question, we developed an organizational framework that consists of
different elements of an OSS community. Such a framework helps to understand the
needs an OSS community has in order to govern itself. The remainder of this paper is
structured as follows: Section 3 illustrates our organizational framework and the mean-
ing of each underlying element. Section 4 we present our research design and section 5
shows the services OSS foundations provide to its affiliated communities. Finally, in
section 6 we discuss further research.

3 Organizational Framework Of An OSS Community

With respect to the development of OSS, its community plays a central role. Commu-
nities are commonly defined as a group of people who share common values or inter-
ests. The common interest of an OSS community is to develop software that is distrib-
uted under an OSS license. By looking at the rather general definition of a community
it is somewhat related to the term of an organization.

52

An organization is defined as an entity comprising multiple people that has a collective
goal. According to Luhmann [9], there are three characteristics that highlight the or-
ganization: First, an organization can decide which people are part of it and which are
not. Moreover, the organization can define restrictions and rules and its members have
to adhere to the rules, otherwise they can be excluded. Second, organizations have cer-
tain goals they want to achieve. Hence, decisions are oriented on these goals. Lastly,
organizations exhibit certain hierarchies that regulate the position of its members within
the organization.

Besides common goals, roles, rules and structures, most if not all organizations are in
need of assets. Assets can either be tangible or intangible and can be owned or con-
trolled to produce a positive economic value. Moreover, they can be converted into cash
[10]. From an accounting viewpoint, an asset is a resource controlled by an entity as a
result of past events and from which future economic benefits are expected to flow to
the entity1.

The similarities between an organization and OSS communities can be structured in
areas derived from organizational theory. Following this, the dimensions of an OSS
community are structured in people, organization and assets. In the following subsec-
tions, we explain how each of the corresponding elements of people, organization and
assets can be understood.

Fig. 1. Different elements of an OSS community.

3.1 People

OSS communities consist of people who virtually find together to share a common goal
[11]. The motivation why to contribute to an OSS project differs. Contributors to an
OSS project can either by paid by an employer or they can be volunteers. Generally,
motivation can be distinguished in intrinsic and extrinsic motivation. An action is ex-
trinsically motivated when it is performed to obtain some separable outcome whereas
an intrinsically motivated action is done for the mere interest or joy of performing it
[12]. However, the motivations to contribute to an OSS projects of hired people and
volunteers differ [13]. A developer's “itch worth scratching”, as stated by Raymond,
might be not as strong for a paid developer as for a volunteer [14]. Tasks such as the
project design, coordination, testing, documentation and bug fixing are less attractive

1 http://www.ifrs.org/

53

for volunteers and could therefore be done by hired people to ensure that these tasks
are done [15]. We therefore distinguish between hired and volunteers.

3.2 Organization

Some OSS communities, especially bigger ones, have formal membership rules and
agreements such as the membership fee and bylaws with different roles and functions
[16]. Bylaws are rules established by the community to regulate itself in a structural
and a processual way. As an example, the Eclipse Foundation bylaws regulate the over-
all purpose of the community, the powers and duties of the different roles within the
community, how and when the members are elected and how meetings are organized.
Moreover, the Eclipse Foundation bylaws regulate how decisions are made, explain the
tasks of the different committees, councils as well as the different boards and the dif-
ferent forms of membership [17]. Contributions not only evolve the software but also
redefine the role of the contributors and thus changes the social dynamics of the com-
munity. Consequently, project leaders and core members should not only focus on the
evolution of the software, but also on creating an environment and culture which foster
and encourage new members to move toward the center of the OSS community through
continual contributions by informal as well as formal mechanisms. Such mechanisms
allow developers to work independently by encouraging or reinforce other developers
to work in ways that are expected by the community [18]. We therefore distinguish
between structures and processes.

3.3 Assets

If an OSS wants to get contributions, it needs to market itself, across the market or
within the community. This includes hosting a website with the published source code
of the OSS project. To do so, an IT infrastructure is required. For example, in order to
push changes, a committer needs access to a copy of the latest version of the project's
source code. This is usually done by relying on decentralized technologies, such as a
distributed repository and some form of version control. Normally, this is done using a
decentralized version control system (DVCS) such as GIT where collaboration among
various developers is possible [19]. However, a DVCS and websites need to run on a
server where access via Internet is guaranteed. As described by German [15], at the
level of community infrastructure, servers as well as bandwidth are required to com-
municate and share progress of the collaborators. Although OSS do not fully accom-
plish conditions to be included in financial reports as an asset [20], it can be protected
in different ways such as trademarks and brands. A common practice of OSS founda-
tions is to own the copyright of the source code and related texts, as stated by Riehle
[21]. Having a single and central copyright holder means that it holds the asset and
therefore can protect it easier compared to the situation when hundreds of contributors
holding individual rights of their parts. Further, a legal entity ensure to protect volunteer
contributors from individual liability, enter into agreements collectively and protect
their code, trademarks, licenses and brands [22]. Because most of the work in an OSS
community is done by globally distributed individuals, face to face meetings are rare.

54

However, they help to better communicate and resolve potential conflicts. Conse-
quently, an infrastructure such as rooms for meetings and an internet connection are
needed. We therefore distinguish between three different assets: IT Infrastructure, legal
assets and other assets.

4 Research Design

This research in progress shows the result of an exploratory theory generation process
for the affiliation of OSS communities to an existing OSS foundation. To answer the
research question, we are going to show services an OSS foundation provide and struc-
ture them in regard to our organizational framework. To get intersubjectivity, the author
of this paper and a second researcher did the research independent and discussed and
merged the different results in a table.

4.1 Data Collection And Analysis

Our sample consists of 7 OSS foundations which have affiliated communities. While
some OSS foundations offer a wide range of different services (e.g. the Eclipse Foun-
dation), others are more lightweight and only provide services in a given area (e.g. the
Software in the Public Interest acts as a fiscal sponsor). Unlike random sampling, we
chose the approach of maximum variation cases, therefore our analyzed OSS founda-
tions show distinct characteristics and processes [8]. Our 7 OSS foundations are: the
Eclipse Foundation (EF), the Linux Foundation (LF), the Apache Software Foundation
(ASF), the Software in the Public Interest (SPI), the Software Freedom Conservancy
(SFC), the OW2 Association (OW2) and the OS Geospatial Foundation (OSG). Our
analysis is based on publicly accessible documents from the foundations or its affiliated
communities.

5 Services of an OSS Foundation

The following section will give a description which services a foundation can provide
for its affiliated communities, based on the provided services of our 7 chosen OSS
foundations.

Hired: As an established foundation already has employed staff, it can provide its com-
munities with shared labor. The staff can reach from a shared community manager
helping to establish and maintain a healthy community, to legal consultants helping in
the intellectual property rights (IPR) management, back-office work such as member-
ship-collection and accounting and various others. The foundation can provide already
existing services such as recruiting, payroll-services, insurance-handling and others. As
an example, the SFC provides financial services such as the funding of the communi-
ties. To do so, it employs full time employees which are paid by the different affiliated
projects who need to pay a certain amount of their revenue that SFC processes.

55

Volunteers: Ecosystem Marketing & Development: As a "community-forming" ser-
vice, a foundation can substantially raise the attention within an already existing eco-
system. Because an established foundation is already part within an ecosystem, the
foundation can help its affiliated communities to get new members. As an example, a
foundation can organize events, conferences, marketing events or it can provide online
resources (such as social media marketing) to get attention within the OSS ecosystem.
Such occasions can provide a community with the opportunity to meet developers from
the already existing OSS ecosystem. This strengthens the community because affiliated
communities can share knowledge among each other while promoting their own pro-
jects. Furthermore, events and conferences can be used to enlarge the community of the
affiliated organization and to boost interest in the OSS community itself. As an exam-
ple, OW2 organizes tradeshows and conferences such as the annual OW2 conference
where affiliated project members and other interested people can meet.

Structures: With their experience and given legal entity, a foundation can provide its
communities a structural framework for reuse. Affiliated communities can profit from
established bylaws with structural elements of different boards and committees, poli-
cies on membership dues, license policies or IPR policy. Contracts and legal documents
are ready for reuse. The given bylaws can regulate the purpose of the community, power
and duties of the different roles as well as other organizational elements such as how
decisions are made. Moreover, a foundation can help to establish a business plan and a
vision for its communities. As an example, the Eclipse Foundation provides its affili-
ated communities with bylaws which are ready to use.

Processes: Affiliated communities can benefit from a written software development
process of the foundation. As an example, the Eclipse Foundation has a formal devel-
opment process for large-scale and distributed development which can be adopted by
its affiliated communities2. In its core, the development process relies on openness,
transparency and meritocracy. IPR-management: The co-developed software needs to
be managed to make sure it is compliant and does not infringe any legal rights of others.
An established foundation, such as the Eclipse foundation, can provide its affiliated
communities with an IPR process to help that all contributions made don't infringe
rights of others. To do so, every contribution has an own copyright holder and the con-
tribution is made publicly available under the Eclipse public license. Therefore, all con-
tributors are required to sign a contributor license agreement where they accept that
their original work is being contributed under the EPL. In a second step, the Eclipse
foundation analyzes all contributions. In this process, contributions are analyzed if their
license is compatible with the EPL. The end result is a software product which can
safely be distributed in commercial products. Financial services: The foundation can
help to handle the membership application-process, membership-renewals, manage the

2 https://eclipse.org/projects/dev_process/development_process.php

56

billing process for membership fees and the related back-office work such as account-
ing. As an example, the SPI handles the donation process for its affiliated communities.
Donations can be made to the SPI to a specific affiliated project or to the SPI in general.
The affiliated community can then request the payment of project expenses such as
infrastructure or other community expenses. The remaining money is held in trust by
the SPI for the community and the SPI is doing all the related back-office work.

IT Infrastructure: A foundation with its existing IT infrastructure can provide differ-
ent services related to the IT infrastructure. It can host entire projects on their infra-
structure including code-repositories, mailing lists, issue trackers, newsgroups, wikis,
download-sites as well as websites. Providing those services, the foundation enables
not only the development process as well as internal communication between the com-
munities but it also helps the community to market itself by hosting a website where
the community can promote itself and provide access to the software. As an example,
OSGeo provides its affiliated communities with source code control systems, issue
trackers, mailing lists and web hostings.

Legal: Intellectual property management: Although OSS does not fully accomplish
conditions to be included in financial reports as an asset [23], it can be protected in
different ways such as with trademarks and brands. The foundation can help to protect
assets of their affiliated communities. Affiliated communities may transfer trademarks
and brands to the umbrella organization. As an example, the SFC can hold any assets
for an affiliated project: copyrights, trademarks, domain names or computer equipment.
Further, the foundation can allow its affiliated communities to brand their project under
their name. Doing so, affiliated communities may profit from an existing reputation of
the umbrella organization Shelter for legal suits: Another way an affiliated community
may profit is by running under the legal umbrella of the foundation. Doing so, the com-
munity is able to use a sustainable framework to operate within. Moreover, a foundation
can provide protection against individual liability because in a lawsuit, only the legal
entities assets and not those from individuals are potentially liable. As an example, the
ASF allow individual volunteers to be sheltered from legal suits directed at the founda-
tions projects and individuals benefit of protection from personal liability of their work
on the project.

Others: Legal organizations need a physical address and the foundation can provide
the same address to their affiliated communities. Moreover, the foundation can give
access to their premises. A community may then attend meetings in a room at the foun-
dations location or at conferences organized by the foundation as it is the case on some
events organized by the Linux Foundation.

Table 1 shows the results of our data analysis, the references can be found in the ap-
pendix.

57

Area Dimension Service Potential com-
munity-benefit LF EF ASF SPI SFC OW2 OSG

People
Hired Shared em-

ployees

Cost sharing,
know-how shar-

ing
X1 X2 X3 X4 X5 X6 X7

Volunteers Ecosystem
Marketing

Getting new
contributors X8 X9 X10 X11 X12 X13

Organiza-
tion

Structures

Help in es-
tablishing a

structure
(e.g. by-

laws)

Shorter time-to-
market X14 X15 X16 X17 X18 X19

Processes

Software
Develop-

ment Guid-
ance

Preventing po-
tential conflicts X20 X21 X22 X23 X24

Financial
Services

Reducing ad-
ministration

overhead
X25 X26 X27 X28 X29 X30

Legal sup-
port

Preventing po-
tential conflicts X31 X32 X33 X34 X35 X36 X37

IPR man-
agement, IP

Policy

Preventing po-
tential conflicts X38 X39 X40 X41 X42 X43

Assets

IT Infra-
structure

IT Infra-
structure
manage-

ment

Reducing ad-
ministration

overhead
X44 X45 X46 X47 X48 X49

Legal

IP Manage-
ment (Hold-
ing Trade-
marks &
Brands)

Reducing ad-
ministration

overhead
X50 X51 X52 X53 X54 X55 X56

Shelter for
legal suits

Preventing po-
tential conflicts X57 X58 X59 X60 X61

Others Shared
rooms

Rooms at con-
ferences X62 X63 X64 X65 X66 X67

Table 1. Services of 7 OSS foundations.

58

6 Discussion And Further Research

Our research in progress shows the different services OSS foundations provide for their
affiliated projects. The services can be structured according to our organizational
framework in the dimensions people, organization and assets. While some foundations
provide services across all three dimensions, other foundations set a clear focus on fi-
nancial services. As an example, the Software in the Public Interest mainly accept do-
nations and hold funds and assets on behalf of associated projects. Certain foundations
such as the OSGeo Foundation are specialized for communities in a specific area, in
the case of OSGeo in the area of geospatial technology.

OSS communities benefit from the provided services of the foundation, however, cer-
tain restrictions may emerge. Communities need to balance the provided services with
the restrictions and cost. The Eclipse Foundation, as an example, provides affiliated
communities with bylaws which cannot be changed by the affiliated communities and
need to be accepted to join as an affiliate project. Moreover, some OSS foundations
require a specific license the software needs to have in order to join as an affiliate pro-
ject or require to transfer IPR to the foundation.

The needs may differ from community to community. Further research could distin-
guish the different needs OSS communities have and how the foundation and its affili-
ated communities interact with each other. While the provided services offer commu-
nities various benefits, a community may decide to make its own foundation. Further
research could try to shed some light into the advantages and disadvantages of being
affiliated to an umbrella organization or being autonomous.

59

7 References

1. De Noni, I., Ganzaroli, A., Orsi, L.: The evolution of OSS governance: a dimen-
sional comparative analysis. Scandinavian Journal of Management. 29, 247–263
(2013).

2. Franck, E., Jungwirth, C.: Reconciling rent-seekers and donators–The governance
structure of open source. Journal of Management and Governance. 7, 401–421
(2003).

3. Schaarschmidt, M., Walsh, G., von Kortzfleisch, H.F.O.: How do firms influence
open source software communities? A framework and empirical analysis of dif-
ferent governance modes. Information and Organization. 25, 99–114 (2015).

4. de Laat, P.B.: Governance of open source software: state of the art. Journal of
Management & Governance. 11, 165–177 (2007).

5. Riehle, D., Berschneider, S.: A Model of Open Source Developer Foundations. In:
Open Source Systems: Long-Term Sustainability. pp. 15–28. Springer Berlin Hei-
delberg (2012).

6. The Linux Foundation: Becoming a Linux Foundation Collaborative Project:
Working Together to Help Projects Grow, http://collabprojects.linuxfounda-
tion.org/sites/collabprojects/files/lf_collaborative_projects_brochure.pdf. (2014).

7. The Linux Foundation: Node.js Foundation Advances Community Collaboration,
Announces New Members and Ratified Technical Governance, http://www.linux-
foundation.org/news-media/announcements/2015/06/nodejs-foundation-ad-
vances-community-collaboration-announces-new. (2015).

8. Flyvbjerg, B.: Five Misunderstandings About Case-Study Research. Qualitative
Inquiry. 12, 219–245 (2006).

9. Luhmann, N.: Funktionen und Folgen formaler Organisation. Berlin: Duncker &
Humblot (1964).

10. O’Sullivan, A., Sheffrin, S.M.: Economics: Principles in Action. Upper Saddle
River, New Jersey: Pearson Prentice Hall. (2003).

11. Rheingold, H.: The Virtual Community: Homesteading on the Electronic Frontier.
Cambridge, Mass: MIT Press (2000).

12. Deci, E.L., Ryan, R.M.: The general causality orientations scale: Self-determina-
tion in personality. Journal of Research in Personality. 19, 109–134 (1985).

13. Roberson, Q.M., Stewart, M.M.: Understanding the motivational effects of proce-
dural and informational justice in feedback processes. British Journal of Psychol-
ogy. 97, 281–298 (2006).

14. Raymond, E.S.: The Cathedral & the Bazaar: Musings on Linux and Open Source
by an Accidental Revolutionary. O’Reilly Media, Inc., Sebastopol, CA, USA
(2001).

15. German, D.M.: The GNOME project: a case study of open source, global software
development. Software Process: Improvement and Practice. 8, 201–215 (2003).

16. von Krogh, G., Spaeth, S., Lakhani, K.R.: Community, joining, and specialization
in open source software innovation: a case study. Research Policy. 32, 1217–1241
(2003).

17. The Eclipse Foundation: BYLAWS OF ECLIPSE FOUNDATION, INC.
https://eclipse.org/org/docu-
ments/Eclipse%20BYLAWS%202003_11_10%20Final.pdf,

60

https://eclipse.org/org/docu-
ments/Eclipse%20BYLAWS%202003_11_10%20Final.pdf, (2003).

18. Jensen, C., Scacchi, W.: Collaboration, leadership, control, and conflict negotia-
tion and the netbeans.org open source software development community. In: Sys-
tem Sciences, 2005. p. 196b–196b. IEEE (2005).

19. Kalliamvakou, E., Damian, D., Blincoe, K., Singer, L., German, D.M.: Open
source-style collaborative development practices in commercial projects using
github. In: Proceedings of the 37th International Conference on Software Engi-
neering-Volume 1. pp. 574–585. IEEE Press (2015).

20. García-García, J., Alonso de Magdaleno, M.I.: VALUATION OF OPEN
SOURCE SOFTWARE: HOW DO YOU PUT A VALUE ON FREE?, (2013).

21. Riehle, D.: The Economic Case for Open Source Foundations. Computer. 43, 86–
90 (2010).

22. O’Mahony, S.: Guarding the commons: how community managed software pro-
jects protect their work. Research Policy. 32, 1179–1198 (2003).

23. García-García, J., Alonso de Magdaleno, M.I.: VALUATION OF OPEN
SOURCE SOFTWARE: HOW DO YOU PUT A VALUE ON FREE? Revista de
Gestão, Finanças e Contabilidade 3.1. (2013).

8 Appendix

X1 https://www.linuxfoundation.org/projects/services/public-relations-social-media-video

X2 https://eclipse.org/org/foundation/reports/annual_report.php &
https://dev.eclipse.org/mhonarc/lists/ide-dev/msg01077.html

X3 https://www.apache.org/foundation/how-it-works.html &
https://www.apache.org/foundation/governance/orgchart

X4 http://www.spi-inc.org/donations/

X5 https://sfconservancy.org/projects/services/ &
https://sfconservancy.org/projects/apply/

X6 https://www.ow2.org/bin/download/Membership_Joining/Legal_Resources/OW2-2015-
ReportOnFinanceAndOperations.pdf

X7 http://www.osgeo.org/content/faq/foundation_faq.html

X8
https://www.linuxfoundation.org/projects/services/community-and-ecosystem-enablement
& https://www.linuxfoundation.org/projects/services/creative-services &
https://www.linuxfoundation.org/projects/services/public-relations-social-media-video

X9 http://www.eclipse.org/org/workinggroups/about.php#wg-neutral
X10 https://www.apache.org/foundation/governance/

X11 https://sfconservancy.org/projects/services/ &
https://sfconservancy.org/about/

X12 https://www.ow2.org/bin/view/About/OW2_Consortium#OW2_business_ecosystem

X13 http://www.osgeo.org/content/foundation/about.html &
http://www.osgeo.org/content/faq/foundation_faq.html

61

X14 https://www.linuxfoundation.org/projects/services/governance-and-intellectual-property &
https://www.linuxfoundation.org/projects/services/project-setup-and-launch

X15 https://eclipse.org/org/documents/Eclipse%20BYLAWS%202011_08_15%20Final.pdf
X16 https://www.apache.org/foundation/how-it-works.html
X17 https://sfconservancy.org/projects/services/
X18 https://www.ow2.org/bin/view/Collaborative_Projects/
X19 http://www.osgeo.org/content/foundation/about.html
X20 https://www.linuxfoundation.org/projects/services/open-source-compliance
X21 https://eclipse.org/projects/dev_process/development_process.php
X22 http://www.apache.org/legal/release-policy.html
X23 https://projects.ow2.org/bin/view/wiki/oscar
X24 http://www.osgeo.org/incubator/process/codereview.html
X25 https://www.linuxfoundation.org/projects/services/finance-operations-human-resources
X26 http://www.eclipse.org/org/workinggroups/polarsys_charter.php
X27 https://www.apache.org/foundation/sponsorship
X28 http://www.spi-inc.org/donations/
X29 https://sfconservancy.org/projects/services/
X30 http://www.osgeo.org/content/foundation/about.html
X31 https://www.linuxfoundation.org/open-source-professionals
X32 http://www.eclipse.org/org/workinggroups/about.php#wg-ip
X33 https://www.apache.org/foundation/how-it-works.html
X34 http://www.spi-inc.org/projects/services/
X35 https://sfconservancy.org/projects/services/
X36 https://www.ow2.org/bin/view/Membership_Joining/Membership_Benefits
X37 http://www.osgeo.org/content/foundation/about.html
X38 https://www.linuxfoundation.org/projects/services/open-source-compliance
X39 https://eclipse.org/org/documents/Eclipse_IP_Policy.pdf
X40 http://www.apache.org/foundation/marks/
X41 http://www.spi-inc.org/corporate/resolutions/1998/1998-11-16.iwj.2/
X42 https://sfconservancy.org/news/2015/jul/15/ubuntu-ip-policy/
X43 https://www.ow2.org/bin/download/Membership_Joining/Legal_Resources/OW2C-IPR.pdf
X44 https://www.linuxfoundation.org/projects/services/it-infrastructure-management
X45 http://www.eclipse.org/org/workinggroups/about.php#wg-neutral
X46 https://www.apache.org/dev/services.html

62

X47 https://sfconservancy.org/about/ &
https://sfconservancy.org/projects/services/

X48 https://www.ow2.org/bin/view/About/OW2_Consortium &
https://www.ow2.org/bin/view/About/FAQ#FAQ.1_OW2_services

X49 http://www.osgeo.org/content/faq/foundation_faq.html &
http://www.osgeo.org/content/foundation/about.html

X50 https://www.linuxfoundation.org/projects/services/governance-and-intellectual-property &
https://www.linuxfoundation.org/projects/services/open-source-compliance

X51 http://www.eclipse.org/org/workinggroups/about.php#wg-neutral
X52 https://www.apache.org/foundation/how-it-works.html

X53
http://www.spi-inc.org/projects/services/ &
http://www.spi-inc.org/corporate/resolutions/2004/2004-08-10.iwj.1/ &
http://www.spi-inc.org/corporate/trademarks/

X54 https://sfconservancy.org/projects/services/

X55 https://www.ow2.org/bin/view/About/FAQ#FAQ.IPRs_to_OW2 &
https://tc.ow2.org/bin/view/wiki/Intellectual_Property

X56 http://www.osgeo.org/content/faq/foundation_faq.html &
http://www.osgeo.org/content/foundation/legal/licenses.html

X57 https://www.linuxfoundation.org/terms
X58 https://eclipse.org/legal/termsofuse.php
X59 https://www.apache.org/foundation/how-it-works.html

X60 http://www.spi-inc.org/projects/services/ &
http://www.spi-inc.org/corporate/resolutions/2004/2004-08-10.iwj.1/

X61 https://sfconservancy.org/projects/services/
X62 https://www.linuxfoundation.org/projects/services/event-management
X63 http://www.eclipse.org/org/workinggroups/about.php#wg-neutral

X64 http://events.linuxfoundation.org/events/archive/2016/apachecon-north-america/pro-
gram/schedule

X65 https://sfconservancy.org/projects/services/
X66 https://www.ow2.org/bin/view/About/FAQ#FAQ.Does_OW2_organise_events
X67 http://www.osgeo.org/conference

Appendix 1. References of the services.

63

64

Analysis and Prediction of Log Statement in
Open Source Java Projects

Sangeeta Lal1, Neetu Sardana1, and Ashish Sureka2

1 Jaypee Institute of Information Technology (JIIT), India
sangeeta@jiit.ac.in,neetu.sardana@jiit.ac.in

2 ABB Corporate Research, India
ashish.sureka@in.abb.com

Abstract. Log statements present in the source code provide impor-
tant information about program execution which is helpful in several
software development activities such as remote issue resolution, debug-
ging, and load testing. However, log statements have a trade-off between
cost and benefit and hence it is important to optimize the number of
log statements in the source code. Previous studies show that optimizing
log statements in the source code is a non-trivial activity and software
developers often face difficulty in it. Several previous studies empirically
analyze log statement and propose models for logging prediction. How-
ever, there are gaps in the literature which our study aims to address.

In this work, we aim to build tools and techniques which can help devel-
opers in optimizing the number of log statements in the source code. In
order to do so, we first start by performing a survey of software devel-
opers from open-source projects. We then analyze properties of logged
and non-logged code constructs at multiple levels. Using inputs from our
empirical analysis we then propose machine learning based models for
within-project catch-blocks and if-blocks logging prediction. We extend
this study for cross-project logging prediction using ensemble based ma-
chine learning techniques. Our initial results are encouraging and show
the possibility of making a robust machine learning based logging pre-
diction tool for Java projects.

Keywords: Debugging, Logging, Machine Learning, Source Code Analysis, Trac-
ing

1 Problem statement and its importance

Logging is a software development practice that is performed by inserting log
statements in the source code. Log statements are used to record execution in-
formation about the program. For example, Listing 1.1 shows a try/catch block
taken from the Tomcat project. This catch-block consists of a log statement
which records the information about login failure. This recorded log can be used
by the software developers at the time of debugging, in a case of login failure.

65

Log statements are customizable and provide feature for verbosity level modifica-
tion. Hence, logging is a better alternative to commonly used print statements
for debugging. In a survey performed by Fu et al. [4], 96% of the survey re-
spondents agreed that log statements are important in system maintenance and
development. In addition to debugging [20], logging is useful several other soft-
ware development activities such as remote issue resolution [1] and load testing
[6, 7].

Listing 1.1: Example of a try/catch-block code snippet from the Tomcat project

try{
lc=new LoginContext(getLoginConfigName());
lc.login();

}catch(LoginException e)
{
log.error(sm.getString(spnegoAuthenticator.serviceLoginFail),e);
response.sendError(HttpServletResponse.SC_INTERNAL_SERVER_ERROR);
return false;

}

Fig. 1: Illustration of five step study objective to improve logging in open-source
Java projects

Log statements are beneficial but they have trade-off between cost and benefit
[4, 22]. Logging is an I/O intensive activity and hence excess of log statements
in the source code can cause performance overhead to the system. For exam-
ple, excessive or unnecessary logging is considered as one of the top 5 reasons
for performance bottlenecks in .NET applications [5]. In addition, excess of log
statements can generate too many trivial logs and can make debugging harder.
Similar to excess logging sparse logging is also not good. Sparse logging can miss
important debugging information and can potentially make debugging harder.
Shang et al. [17] reported a case of a user who was complaining about less log-
ging of catch-blocks in Hadoop project. Hence, it is important to optimize the
number of log statements in the source code.

Previous research shows that optimizing log statements in the source code
is a non-trivial task and software developers often face difficulty in it [4, 22]. In
a survey by Zhu et al. [22], 68% of the participants said that they face logging

66

difficulties. Optimized source code logging is particularly challenging for OSS
because source code logging is often based on domain knowledge & experience of
software developers. Contribution to OSS is voluntary and hence, such domain
knowledge is seldom documented in the real world. A study by Levesque [13]
shows that OSS lack documentation. In addition to this, finding mentors in OSS
is a challenging task. Due to which source code becomes challenging for new
OSS developers. We believe that automated tools and techniques that can aid
OSS developers in logging can be beneficial in improving both OSS product and
process. New OSS developers can get guidance about source code logging at
the times of coding which will improve the quality of OSS product. Similarly,
automated logging checking tool can be run before every commit or release which
can generate warnings about code constructs that need to be logged and hence
will improve the OSS process.

Several recent studies work on empirically analyzing and predicting log state-
ments in the source code for C# projects [4, 22]. These studies show that logged
and non-logged code constructs have differentiating properties for C# projects.
For example, Fu et al. [4] reported that catch-blocks consisting of ‘FileNot-
FoundException’ and the corresponding try-block consisting of the keyword
‘delete’ are often not logged. However, there does not exists any large scale &
focused study which analyze properties of logged and non-logged code constructs
for Java projects. Previous studies show that machine learning based models can
be beneficial in predicting logged code constructs and propose machine learn-
ing based logging prediction models for C# projects [4, 22]. At present, there
is no machine learning based model for logging prediction on Java projects. In
addition to this, cross-project logging prediction is relatively unexplored yet.
Logging prediction models for Java code constructs can be beneficial to the soft-
ware developers because Java is one of the widely used programing language [2].
Therefore, my dissertation explore following:

“Analyzing logged and non-logged code constructs to build machine learning
based logging prediction model for Java project”.

To address the above, this work is broadly divided into five parts i.e, Research
Objectives (RO’s), also illustrated in Figure 1:

– RO 1: Analysis of open-source developers opinion towards source code log-
ging on Java projects.

– RO 2: Perform a large-scale and in-depth study of logged and non-logged
code constructs for Java projects.

– RO 3: Build a machine learning based within-project logging prediction
model for Java projects.

– RO 4: Analysis of machine learning based logging prediction models for
cross-project logging prediction for Java projects.

– RO 5: Build an ensemble of classifier based cross-project logging prediction
model for Java projects.

67

Literature shows that currently there is no in-depth study on logged code con-
structs analysis or prediction for Java projects (refer to section 2). To address
this gap, in RO 1, we first perform a survey of open-source developers to identify
their opinion about logging on Java projects. The outcome of the survey reveals
that software developers face difficulty in source code logging in Java project. We
believe that automated tools and techniques that can aid software developers in
source code logging can be beneficial. Hence, we propose machine learning based
logging prediction models. The main challenge in machine learning based logging
prediction is the identification of good features for training the machine learning
model. To identify these features, in RO 2, we perform a large scale, focused and
two-level empirical analysis of logged and non-logged Java code constructs. A
code construct is consider as logged if it consists of at least one log statement
otherwise it is considered as non-logged. This study reveal that there are several
distinguishing features of logged and non-logged code constructs. Using some
of the findings of our empirical study, in RO 3, we propose machine learning
based logging prediction model for catch-blocks and if-blocks logging prediction
model. We start by catch-blocks and if-blocks because they are one of the most
frequent logged code snippets [14]. Empirical study of these machine learning
based models show that they are effective in within-project (i.e., when training
and testing data is from the same project) logging prediction. The performance
of these models was not tested for cross-project (i.e., when training data and
testing data are from the different projects) logging prediction. Hence, in RO 4,
we analyze performance of several classifiers for cross-project logging prediction.
The analysis reveals that different classifiers are complementary to each other
for the task of cross-project catch-blocks logging prediction. Using this finding,
in RO 5, we propose an ensemble of classifier based approach for cross-project
catch-blocks logging prediction. This thesis provides a comprehensive study of
source code logging with respect to Java projects. Following are the main scien-
tific and technical contributions made by this thesis:

Scientific Contribution: In the literature, there are studies on logged and
non-logged code constructs only for C\C++\C# projects. This thesis fills this
significant research gap and perform in-depth study of logging in Java code
constructs. The survey of open source developers indicates a need towards log-
ging prediction tool for Java code constructs. The empirical study reveals the
presence of distinguishing properties among logged and non-logged Java code
constructs. This study propose machine learning based logging prediction mod-
els for catch-blocks and if-blocks logging. Analysis of these models on two Java
projects reveals that machine learning based logging prediction models are effec-
tive in logged code construct prediction for Java projects. This study performs
comprehensive analysis of several machine learning classifiers for cross-project
catch-blocks logging prediction and show the effectiveness of using ensemble of
classifier based approach for cross-project catch-blocks logging prediction.

Technical Contribution: This thesis have proposed several conceptual models

68

for logging prediction Java project. LogOpt [12] and LogOptPlus [11] models
proposed in this thesis are useful for within-project catch-blocks and if-blocks
logging prediction for Java projects. ECLogger [9] models proposed in this the-
sis is useful in improving the performance of cross-project catch-blocks logging
prediction performance of Java projects.

2 Related Work

2.1 Empirical Analysis of Log statements

Fu et al. [4] analyze 100 randomly selected log statements from two closed-
source systems (written in C#). They categories the log statements in five cat-
egories: assertion-check, return-value-check, exception, execution points, logic-
branch and observing-point logging. They further perform detailed study of 70
non-logged catch-blocks and find reasons of not-logging. Several other studies
analyze different aspect of logs. Yuan et al. [19] analyze 250 randomly sampled
bug reports from five large C/C++ projects to find efficacy of logs for debug-
ging. They report that most of the failures can not be diagnosed using existing
logs. In another study, Yuan et al. [20] analyze four open source projects written
in C/C++. They investigate amount of effort that software developers spend on
modifying existing log statements. Shang et al. [16] analyze logs and report that
log statements are often modified without considering the underlying application
that use logs, and hence, log modification often results in break of functionality
in log processing applications.

As the literature shows, currently there is no large scale & in-depth study of
logged and non-logged code constructs for Java projects. Hence, as part of this
work, we first perform a survey of software developers from open-source Java
projects. In order to know their opinion about logging in Java projects (refer
to section 3.1). We then perform, a two level, in-depth, and large scale study of
logged and non-logged code constructs for open-source Java projects (refer to
section 3.2).

2.2 Logged Code Construct Prediction

Several prior studies focus on improving logging statements in the code. Yuan
et al. [21] propose LogEnhancer tool to enhance the content of log statements
by adding causally-related information to improve failure diagnosis. Enhancing
content of log statements is important but it does not consider cases of code
snippets which are not logged. Yuan et al. [19] propose ErrorLog tool to log
all the generic exceptions in C# code. This study shows the first steps towards
automated logging but logging all the generic exceptions can cause too many
log statements. Fu et al. [4] show the uses of machine learning based model
for logging prediction. Zhu et al. [22] extended the study performed by Fu et
al. and propose, LogAdviosr, an improved machine learning based model for
logging prediction on C# projects. While there have been studies on machine

69

learning based logging prediction for C# projects, there has been no research
study which focuses on logging prediction on Java projects. Hence, in this work
we propose two machine learning based models for catch-blocks and if-blocks
logging prediction for Java projects (refer to section 3.3).

2.3 Cross-project logging prediction

Cross-project logging prediction is important, as in real world there are many
new or small projects. These projects do not have the sufficient amount of prior
data to train the machine learning model. In such cases, it is important to
train the prediction model from other large and long live projects. Cross-project
prediction have been explored in detail for other software development activities
such as defect prediction [15] and build co-change [18] prediction. However, cross-
project logging prediction is relatively unexplored yet. Zhu et al. [22] perform an
experiment related to cross-project logging prediction. They report that perfor-
mance of cross-project logging prediction is degraded considerably as compared
to within-project logging prediction. In this work, we perform in-depth analy-
sis of several machine learning algorithms for cross-project catch-blocks logging
prediction (refer to section 3.4) and also propose an ensemble of classifier based
approach to improve cross-project logging prediction performance (refer to sec-
tion 3.5).

3 Approach

In the following subsections, we give brief detail about each RO. We discuss
motivation, research questions (RQ’s), and approach used to answer these RQ’s.

3.1 RO 1: Survey of Open-source Software Developers

We conduct a cross-sectional survey of developers from several open-source
projects. We create a survey using SurveyMonkey 3 website and create a web
link to it. We sent an email with the link to our survey to the project mailing
lists (for example: chromium-dev@chromium.org) of Google Chromium, Apache
OpenOffice, Apache Tomcat, Geronimo and Presto projects. Our survey consists
of five mandatory questions. Table 2 lists all the five survey questions. In this
survey, we ask software developers about their opinion towards source code log-
ging. For example, we ask questions related to ‘frequency of log churning, ‘log
verbosity level assignment’, and ‘what & where to log ?’. We believe that inputs
from practitioners are needed to inform our research on logging.

3 https://www.surveymonkey.com/

70

3.2 RO 2: Empirical Analysis of Logged and Non-logged Code
Constructs

We perform two level -high level (file level) and low level (catch-block) level-
analysis of logged and non-logged code on Java projects. We perform statistical-
analysis of logged and non-logged files and answer three RQ’s. First, we analyze
the distribution of logged files in total files. Second, we analyze the complexity
of logged and non-logged files. We use Source Lines of Code (SLOC) of a file
as a measure of complexity for logged and non-logged files. Third, we analyze
co-relation between file complexity and its log statement count.

We perform statistical-analysis of logged and non-logged catch-blocks and
answer five RQ’s. First, we analyze complexity of try-blocks associated with
logged and non-logged catch-blocks. We measure complexity using three param-
eters: SLOC, number of arithmetic operators, and number of functions called in
try-blocks. Second, we analyze logging ratio of all the exception types. Third,
we analyze the contribution of all the exception types in total catch-blocks and
in logged catch-blocks. Fourth, we identify top-20 exception types and compare
their logging ratios across the projects. Fifth, we analyze whether a single try-
block can have both logged and non-logged catch-blocks or not. We use LDA
to perform content-analysis of try-blocks associated with logged and non-
logged catch-blocks. We perform content analysis to find whether try-blocks
associated with logged and non-logged catch-blocks consists of different topics
on not. LDA is a popular topic modeling technique, but currently there is no
study which analyzes topics present in try-blocks associated with logged and
non-logged catch-blocks.

We perform two level analysis to explore whether logged and non-logged code
constructs have differentiating properties at both the levels or not. Multi-level
analysis is useful in feature identification phase of logging prediction tools. As
it gives insights about which part of the source code is more useful for feature
extraction for training the logging prediction model.

3.3 RO 3: With-in Project Logging Prediction

We use findings from our previous work [10] for feature set identification. We
extract 46 and 28 distinguishing features for catch-blocks and if-blocks logging
prediction. We categories each features based on its domain, type and class. Do-
main, identifies the part of source code from where the feature is extracted. Type,
identifies whether the feature is boolean, numeric or textual. Class, identifies
whether the feature is positive or negative. We extract features from different
domains, as our previous study show that both high level and low level code
construct show differentiating properties towards logged and non-logged code
constructs. Using these features we propose two machine learning based models:
LogOpt [12] and LogOptPlus [11]. LogOpt for catch-blocks and LogOptPlus
for if-blocks logging prediction for Java projects. In this work, we answer two
RQ’s: first, we analyze properties of all the proposed features, second, we ana-
lyze the performance of the proposed machine learning models for the task of

71

logging prediction. This work serves as a first step towards machine learning
based catch-blocks and if-blocks logging prediction for Java projects.

Table 1: Experimental Dataset Details
Type Tomcat CloudStack Hadoop

Version 8.0.9 4.3.0 2.7.1

No. of Java File 2036 5350 6331

Total Catch-Blocks 3279 8077 7947

Logged Catch-Blocks 887 (27%) 2792(34.56%) 2078(26.14%)

Distinct Exception Types 119 163 265

Total If-Blocks 16991 65392 32143

Logged If-Blocks 1423 (8.37%) 5653 (8.64%) 3407 (10.60%)

3.4 RO 4: Cross-project Logging Prediction Analysis

Cross-project logging prediction is a relatively unexplored area. Hence, as a first
step toward cross-project logging prediction, we perform a large scale study of
cross-project catch-block logging prediction on Java projects. We explore effec-
tiveness of nine machine learning classifiers for cross-project catch-blocks logging
prediction. We carefully select algorithms belonging to different domains such
as probabilistic, decision tree etc. We answer several RQ’s. We first compare
performances of different machine learning algorithms for within-project and
cross-project logging prediction. We then analyze performance of algorithm with
respect to different parameters in order to identify whether they provide com-
plementary information or not and finally compare the performances of single-
project and multi-project training models. The output of this analysis is benefi-
cial for building a robust cross-project logging prediction model.

3.5 RO 5: Ensemble Based Cross-project Logging Prediction

During cross-project model building, we face two main challenges. First, non-
uniform distribution of numerical attributes, second, vocabulary mis-match prob-
lem. In order to address these challenges, we perform standardization of the
attributes and also propose uses of ensemble based learning. Ensemble based
learning is useful in improving the accuracy of base machine learning algorithms
but their effectiveness with respect to cross-project logging prediction is unex-
plored yet. As a first step towards effective cross-project logging prediction, we
propose ECLogger, a novel ensemble based model for cross-project catch-blocks
logging prediction. ECLogger uses 9 base machine learning algorithms and three
ensemble techniques. We create 8 ECloggerbagging models, by applying bagging
on 8 base machine learning algorithms. We create 466 ECLoggerAverageV ote mod-
els by applying average vote ensemble technique on every possible combination

72

of base machine learning algorithms, using group of 3-9 algorithms at a time.
Similarly, we create 466 ECLoggerMajorityV ote models using majority vote en-
semble technique. In this work, we answer two RQ’s. First, we compare the
performances of baseline machine learning classifiers with the ECLogger classi-
fier for cross-project catch-blocks logging prediction individually for each source
and target project pair. Second, we compare the performance of baseline ma-
chine learning classifiers with ECLogger classifiers for cross-project catch-blocks
logging prediction average on all source and target project pairs. We believe that
this work serves as a first step towards improving cross-project logging prediction
performance for Java projects.

4 Results

In this section, we give brief detail about the experimental dataset used for this
study and the metrics used for prediction model evaluation. We then present
results obtained for each RO.

4.1 Experimental Dataset

We select three large open-source projects from Apache Software Foundation
(ASF) for evaluation: Tomcat, CloudStack, and Hadoop. Apache Tomcat is a web
server that implements Java EE specifications like Java Servlet, Java Sever Pages
and Java EL. CloudStack provides public, private, and hybrid cloud solutions.
CloudStack provides a highly available and scalable Infrastructure as a Service
(IaaS) cloud computing platform for deployment and management of networks
of virtual machines. Hadoop is a framework that enables distributed processing
of large datasetset. Table 1 shows details of the experimental dataset. All the
three projects used in our study are long lived Java projects having several years
(≈ 7 to 17 year) of history. Table 1 shows that all three projects have several
thousands of SLOC. Tomcat, CloudStack and Hadoop have been previously used
by the research community for logging and other studies [3][8][17][23].

4.2 Metrics

In this subsection, we describe the performance metrics used to evaluate the
effectiveness of the prediction models. At the time of prediction, we count the
total number of logged code constructs predicted as logged (Cl→l), logged code
constructs falsely predicted as non-logged (Cl→n), non-logged code constructs
predicted as non-logged (Cn→n), and non-logged code constructs predicted and
logged (Cn→l). Using these 4 values, we compute the following metrics:

Logged Precision (LP) =
Cl→l

Cl→l + Cn→l
× 100 (1)

Logged Recall (LR) =
Cl→l

Cl→l + Cl→n
× 100 (2)

73

Logged F −measure (LF) =
2× LP × LR

LP + LR
× 100 (3)

Accuracy (ACC) =
Cl→l + Cn→n

Cl→l + Cl→n + Cn→n + Cn→l
× 100 (4)

Area under the ROC curve (RA): RA measures the likelihood that a posi-
tive class instance is given a high likelihood score compared to a negative class
instance. RA can take any value in the range 0 to 1, higher the better.

Table 2: Results of survey performed on software developers from open-source
projects
Q1 How many years of experience do you have in software development?

�Less than 1 year (0%) �Between 1 and 5 years (25.53%) �More than 5 years (76.47%)

Q2 Do you believe where and what to log is subjective?

�Strongly Disagree (11.76%) �Disagree (11.76%) �Neutral (17.65%) �Agree (47.06%)
�Strongly Agree (11.76%)

Q3 Fatal, Debug, Error and Info are various log levels. Do you believe assigning
right verbosity level for a give case is challenging and developers make mistakes
in verbosity level assignment?

�Strongly Disagree (0%) �Disagree (17.65%) �Neutral (25.53%) �Agree (25.53%)
�Strongly Agree (35.29%)

Q4 Do you believe a static code or program analysis tool or checker which can guide
a developer in recommending where to log and which log level to use will be
useful?

�Strongly Disagree (05.88%) �Disagree (35.29%) �Neutral (25.53%) �Agree (29.41%)
�Strongly Agree (05.88%)

Q5 In your experience, the modification and churn of logging code is:

�Rare (47.06%) �Between Rare and Common (35.29%) �Common (17.65%)

4.3 RO 1: Survey of Open-source Software Developers

We received a total of 17 responses of the survey. Among the 17 respondents
more than 75% of the respondents have more than 5 years of experience in
software development. Questions 2-4 are Likert questionnaire items in which the
respondents specify their level of agreement or disagreement (ordinal variable) on
a symmetric agree-disagree scale consisting of 5 choices. 60% of the respondents
believe that where and what to log is subjective. 60% of the respondents believe
that assigning right verbosity level for a given case is challenging and developers
make mistakes in verbosity level assignment. 15% of the developers responded
that in their experience, the modification and churn of logging code are common.

74

For Question 4, we conduct a Chi-Squared Test (non-parametric test) to test the
goodness of fit between an expected frequency distribution (equal distribution
between agree and disagree) and the observed frequency distribution. In the
statistical significance testing, we get the p-value as 0.78. Since the p-value is
greater than 0.1, we have no presumption against the null hypothesis (that a
static code or program analysis tool or checker which can guide a developer
in recommending where to log and which log level to use will be useful). The
results of the survey reveal that more than 33% of the respondents believe that
a checker to assist developers in automated logging can be useful.

Software developers face challenges in source code logging and logging
prediction tools can be beneficial.

4.4 RO 2: Empirical Analysis of Logged and Non-logged Code
Constructs

We answer all the 9 research questions related to two level empirical analysis of
logged and non-logged code constructs by conducting experiments on Tomcat,
CloudStack, and Hadoop project (refer to Table 1). Our statistical-analysis
of files shows that very less percentage of files are logged. For example, only
14.9% of files are logged in Tomcat project. Our analysis reveals that SLOC
of logged files is considerably higher as compared to non-logged files and there
exists a positive correlation between SLOC of a file and its log statement count.
However, we notice presence of some very large non-logged files. The manual
analysis reveals that these files are tool generated and hence do not consist
of any log statements. Statistical-analysis of try-blocks show that for some
projects try-blocks associated with logged catch-blocks have higher complexity
as compared to that of non-logged catch-blocks. Our analysis reveals that few
try-blocks i.e., ≤1.5%, consists of both logged and non-logged catch-blocks. We
also observe that logging ratio of exception types is project specific. For example,
exception type ‘IOException’, has logging ratio of 37.25%, 66.81%, and 27.72%
for Tomcat, CloudStack, and Hadoop project, respectively. Content-analysis
of try-blocks associated with logged and non-logged catch-blocks revels presence
of different topics. For example, ‘thread.sleep’ topic is present in the non-logged
catch-blocks of Tomcat project. Manual analysis reveals that in 84 occurrences
of ‘thread.sleep’ it occurred 71 times in try-blocks associated with non-logged
catch-blocks. More details on two level empirical analysis of logged and non-
logged code constructs can be found in our published work [10].

Empirical analysis reveals presence of different features in logged and
non-logged code constructs at both the levels.

75

Table 3: LF for catch-blocks and if-blocks logging prediction using RF classifier
Model Type Tomcat CloudStack

LogOpt Catch-blocks 85.50% 93.4%

LogOptPlus If-blocks 80.70% 92.25%

4.5 RO 3: With-in Project Logging Prediction

We empirically analyze all the proposed Boolean & numeric features and eval-
uate LogOpt and LogOpt models with five machine learning algorithms on two
datasets (Tomcat and CloudStack). Results show that Random Forest (RF) clas-
sifier give the highest LF for both catch-blocks and if-blocks logging prediction
for both the projects. RF classifier gives the highest LF of 93.4% and 92.25% for
catch-blocks and if-blocks logging prediction (refer to Table 3). For both catch-
blocks and if-blocks model gives the better results on CloudStack project. We
analyze some of the exception types in both Tomcat and CloudStack project.
Our analysis reveals the there are certain exception types in CloudStack project
which are heavily non-logged. We believe that this is the reason for model per-
forming better on the CloudStack project as compared to the Tomcat project
for catch-blocks logging prediction. More details on logged code constructs pre-
diction can be found in our published work [12] and [11].

Machine learning based models are effective in catch-blocks and if-blocks
logging prediction on Java projects.

4.6 RO 4: Cross-project Logging Prediction Analysis

We conduct our cross-project experiments on all the three projects (Tomcat,
CloudStack, and Hadoop). We create six source & target project pairs by con-
sidering one project as source project and other two projects as target project
(one at a time). Results show that performance of machine learning algorithms
degraded considerably for cross-project catch-blocks logging prediction. We no-
tice upto 6.37% to 18.05% drop in performance of machine learning algorithms
for cross-project prediction as compared to within-project logging prediction. We
also notice that performance of single-project and multi-project training mod-
els is similar. However, we notice that different classifiers are complementary to
each other. For example, for CloudStack→Tomact project pair, ADTree algo-
rithm gives the highest LP, ACC and RA values, whereas BN gives the highest
LF. Hence, combination of different machine learning algorithms can be useful in
improving cross-project catch-blocks logging prediction performance. More de-
tails on cross-project logging prediction analysis can be found in our published
work [9].

76

Different classifiers provide complementary information and hence en-
semble based approach can be effective in improving the cross-project
catch-blocks logging prediction performance.

4.7 RO 5: Ensemble Based Cross-project Logging Prediction

We evaluate performances of ECLogger models on all the three projects (Tomcat,
CloudStack, and Hadoop). For each source and target project pair, we report the
ECLogger model giving the best results. We observe that ensemble based models
are effective in improving the cross-project catch-blocks logging prediction per-
formances. Results show that average vote based ECLogger model performs the
best and give highest results (both individual as well as average performance)
as compared to the baseline classifier. Average vote model gives the highest
improvement of 3.12% (average LF) and 6.08% (average ACC). Overall, we ob-
serve that CloudStack project is more generalizable as compared to the Tomcat
and the Hadoop project for cross-project catch-block logging prediction. Man-
ual analysis reveals that CloudStack project provide support for both Tomcat
and Hadoop projects and hence gives better results for cross-project prediction.
More details on ensemble based cross-project logging prediction can be found in
our published work [9].

Ensemble based model is effective in improving the cross-project catch-
blocks logging prediction performance.

5 Threats to Validity

In this section, we discuss various threats to validity to this work.

5.1 External Validity

External validity refers to the generalization of the results. In our work, we
investigate three open source Java projects which have different domains and
sizes. However, the results may not be generalizable to other types of project
such as closed source or projects written in other programming languages as
different projects may have different logging practices.

5.2 Construct Validity

The construct threat refers to how we identify log statements in the source code.
We create 26 regular expressions to find all the log statements. The manual
inspection reveals that we identify all the types of log statements. However,
there is still a possibility that we missed some types of log statements.

77

5.3 Internal Validity

Threat to internal validity refers to the error in our code and bias in sampling.
We have double checked our code to remove errors from our code. To mitigate
the sampling bias in training and testing dataset split creation, we create 10
training and testing dataset and report the average results.

6 Conclusions and Future Work

This work aims towards analysis and prediction of log statements on Java projects.
We start by performing a survey of software developers from open-source projects.
Results of the survey revel that developers face challenges in logging. Now in or-
der to provide software developers with better logging mechanism, we perform an
in-depth, focused, and two level empirical study of logged and non-logged code
constructs. Preliminary results show distinguishing features between logged and
non-logged code constructs which can be helpful in predicting logged code con-
structs. Using inputs from our empirical study we propose machine learning
based models for catch-blocks and if-blocks logging prediction on Java projects.
Initial results show that both the models are effective for within-project log-
ging prediction. We analyze performance of this catch-block logging prediction
mode for cross-project logging prediction. Our results reveal that performance of
model degrades considerable for cross-project logging prediction as compared to
within-project logging prediction. We then propose an ensemble based approach
to improve cross-project catch-block logging prediction performance. Results
show that ensemble based approach is effective in improving cross-project log-
ging prediction performance. Our initial results are encouraging but much work
yet remains to improve within-project and cross-project logging prediction per-
formance. In future, we plan to extend the current work for other types of code
constructs such as while loops, switch statements. ECLogger model proposed
in this thesis is used for cross-project logging prediction only for catch-blocks.
Hence, can be extended to other types of code constructs such as if-block. We
plan to extend this work for other language such as C#, Python. We also plan
to study the evolution of log statements over the lifetime of projects.

78

Bibliography

[1] Blackberry enterprise server logs submission.
BlackBerryEnterpriseServerLogsSubmission. [Online; accessed 4-
June-2016].

[2] Java regains spot as most popular language in developer index. http:

//www.infoworld.com/article/2909894/application-development/

java-back-at-1-in-language-popularity-assessment.html. [Online;
accessed 19-March-2016].

[3] Boyuan Chen and Zhen Ming (Jack) Jiang. Characterizing logging practices
in java-based open source software projects – a replication study in apache
software foundation. Empirical Software Engineering, pages 1–45, 2016.

[4] Qiang Fu, Jieming Zhu, Wenlu Hu, Jian-Guang Lou, Rui Ding, Qingwei
Lin, Dongmei Zhang, and Tao Xie. Where do developers log? an empirical
study on logging practices in industry. In Companion Proceedings of the
36th International Conference on Software Engineering, ICSE Companion
2014, pages 24–33, 2014.

[5] Steven Haines. Top 5 performance problems in .net
applications. https://blog.appdynamics.com/net/

top-5-performance-problems-in-net-applications/. [Online; ac-
cessed 27-July-2016].

[6] Z. M. Jiang, A. E. Hassan, G. Hamann, and P. Flora. Automatic identifica-
tion of load testing problems. In Software Maintenance, 2008. ICSM 2008.
IEEE International Conference on, pages 307–316, Sept 2008.

[7] Z. M. Jiang, A. E. Hassan, G. Hamann, and P. Flora. Automated perfor-
mance analysis of load tests. In Software Maintenance, 2009. ICSM 2009.
IEEE International Conference on, pages 125–134, Sept 2009.

[8] Suhas Kabinna, Cor-Paul Bezemer, Weiyi Shang, and Ahmed E. Hassan.
Examining the stability of logging statements. In The 23rd IEEE Inter-
national Conference on Software Analysis, Evolution, and Reengineering
(SANER), 2016.

[9] S. Lal, N. Sardana, and A. Sureka. Eclogger: Cross-project catch-block
logging prediction using ensemble of classifiers. eInformatica Software En-
gineering Journal, 2017.

[10] Sangeeta Lal, Neetu Sardana, and Ashish Sureka. Two level empirical study
of logging statements in open source java projects. International Journal of
Open Source Software and Processes (IJOSSP), 6(1):49–73, 2015.

[11] Sangeeta Lal, Neetu Sardana, and Ashish Sureka. Logoptplus: Learning to
optimize logging in catch and if programming constructs. In 2016 IEEE 40th
Annual Computer Software and Applications Conference (COMPSAC), vol-
ume 1, pages 215–220, June 2016.

[12] Sangeeta Lal and Ashish Sureka. Logopt: Static feature extraction from
source code for automated catch block logging prediction. In 9th India
Software Engineering Conference (ISEC), pages 151–155, 2016.

79

[13] Michelle Levesque. Fundamental issues with open source software develop-
ment. First Monday, 9(4), 2004.

[14] Heng Li, Weiyi Shang, and Ahmed E Hassan. Which log level should devel-
opers choose for a new logging statement? Empirical Software Engineering,
pages 1–33, 2016.

[15] J. Nam, S. J. Pan, and S. Kim. Transfer defect learning. In 2013 35th
International Conference on Software Engineering (ICSE), pages 382–391,
May 2013.

[16] Weiyi Shang, Zhen Ming Jiang, Bram Adams, Ahmed E Hassan, Michael W
Godfrey, Mohamed Nasser, and Parminder Flora. An exploratory study of
the evolution of communicated information about the execution of large
software systems. Journal of Software: Evolution and Process, 26(1):3–26,
2014.

[17] Weiyi Shang, Meiyappan Nagappan, and Ahmed E. Hassan. Studying the
relationship between logging characteristics and the code quality of platform
software. Empirical Software Engineering, 20(1):1–27, 2015.

[18] X. Xia, D. Lo, S. McIntosh, E. Shihab, and A. E. Hassan. Cross-project
build co-change prediction. In 2015 IEEE 22nd International Conference on
Software Analysis, Evolution, and Reengineering (SANER), pages 311–320,
March 2015.

[19] Ding Yuan, Soyeon Park, Peng Huang, Yang Liu, Michael M. Lee, Xiaoming
Tang, Yuanyuan Zhou, and Stefan Savage. Be conservative: Enhancing
failure diagnosis with proactive logging. In Proceedings of the 10th USENIX
Conference on Operating Systems Design and Implementation, OSDI’12,
pages 293–306, 2012.

[20] Ding Yuan, Soyeon Park, and Yuanyuan Zhou. Characterizing logging prac-
tices in open-source software. In Proceedings of the 34th International Con-
ference on Software Engineering, ICSE ’12, pages 102–112, 2012.

[21] Ding Yuan, Jing Zheng, Soyeon Park, Yuanyuan Zhou, and Stefan Savage.
Improving software diagnosability via log enhancement. In Proceedings of
the Sixteenth International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, ASPLOS XVI, pages 3–14,
New York, NY, USA, 2011. ACM.

[22] Jieming Zhu, Pinjia He, Qiang Fu, Hongyu Zhang, M.R. Lyu, and Dongmei
Zhang. Learning to log: Helping developers make informed logging decisions.
In Software Engineering (ICSE), 2015 IEEE/ACM 37th IEEE International
Conference on, volume 1, pages 415–425, May 2015.

[23] Thomas Zimmermann, Nachiappan Nagappan, Harald Gall, Emanuel Giger,
and Brendan Murphy. Cross-project defect prediction: A large scale exper-
iment on data vs. domain vs. process. In Proceedings of the the 7th Joint
Meeting of the European Software Engineering Conference and the ACM
SIGSOFT Symposium on The Foundations of Software Engineering, ES-
EC/FSE ’09, pages 91–100, New York, NY, USA, 2009. ACM.

80

Hammouda, I., Lundell, B., Madey, G. and Squire, M. (Eds.) Proceedings of the
Doctoral Consortium at the 13th International Conference on Open Source
Systems, Skövde University Studies in Informatics 2017:1, ISSN 1653-2325,
ISBN 978-91-983667-1-6, University of Skövde, Skövde, Sweden.

Copyright of the papers contained in this proceedings remains with the
respective authors.

Skövde University Studies in Informatics 2017:1
ISSN 1653-2325
ISBN 978-91-983667-1-6

www.his.se

