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Abstract— This paper presents a systematic approach to
design observer-based output feedback controllers for hybrid
dynamical systems arising from bipedal walking. We consider
a class of parameterized observer-based output feedback con-
trollers for local exponential stabilization of hybrid periodic
orbits. The properties of the Poincaré map are investigated to
show that the Jacobian linearization of the Poincaré map takes
a triangular form. This demonstrates the nonlinear separation
principle for periodic orbits. In particular, the exponential
stabilization of hybrid periodic orbits under dynamic output
feedback control can be achieved by solving separate eigenvalue
placement problems for the nonlinear state feedback and the
observer. The paper then solves the state feedback and observer
design problems by employing an iterative algorithm based on a
sequence of optimization problems involving bilinear and linear
matrix inequalities. The theoretical results are confirmed by de-
signing a nonlinear observer-based output feedback controller
for underactuated walking of a 3D humanoid model with 18
state variables, 54 state feedback parameters, and 271 observer
parameters.

I. INTRODUCTION

This paper provides the analytical foundation to systemat-
ically design observer-based output feedback controllers for
hybrid dynamical systems arising from bipedal locomotion.
The stabilization problem is addressed through the Poincaré
sections analysis. Properties of the Poincaré return map are
investigated to extend the nonlinear separation principle to
hybrid periodic orbits. We employ an algorithm based on
an iterative sequence of optimization problems involving
linear and bilinear matrix inequalities (LMIs and BMIs) to
synthesize the state feedback and observer. The proposed
framework can overcome specific difficulties arising from the
lack of a closed-form expression for the Poincaré map, high
dimensionality, and underactuation in tuning observer-based
nonlinear output controllers for legged robots.

Models of bipedal locomotion are hybrid with continuous-
time dynamics representing the stance phases and discrete-
time dynamics representing the impact events, that is, the
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nonstance legs contacting the walking surface. State-of-the-
art nonlinear control approaches for bipedal walking such
as the zero moment point [1], [2], controlled symmetries
[3], hybrid reduction [4]–[6], transverse linearization [7]–
[9], and hybrid zero dynamics (HZD) [10]–[12] assume
that all state variables are available for feedback in real
time. Among the above-mentioned approaches, the trans-
verse linearization approach and HZD-based controllers deal
with underactuation. HZD controllers have been validated
numerically and experimentally for 2D and 3D bipedal
robots [13]–[18], monopedal robots [19], quadruped robots
[20], powered prosthetic legs [21]–[24], and exoskeletons
[25]. In this approach, a set of output functions, referred
to as virtual constraints, is defined for the continuous-time
dynamics of the system and asymptotically driven to zero by
the input-output (I-O) linearizing feedback controller [26].
Although legged robots are becoming more sophisticated
with high degrees of freedom (DOF), the measurement of the
entire state variables for feedback linearization becomes too
expensive. Furthermore, it is not clinically feasible for human
users of prosthetic legs to wear sensors at their intact joints.
Hence, nonlinear control approaches for powered prosthetic
legs, e.g., [21], primarily rely on high-gain controllers or
expensive force sensors to deal with nonlinear interactions
between the amputee body and robotic leg for feedback
linearization. This underlines the need to systematically de-
velop observer-based output feedback controllers to stabilize
walking gaits for hybrid models of legged machines.

Existing observer design approaches for nonlinear dy-
namical systems, including hybrid systems, pertain to the
estimation of state variables around equilibrium points and
not periodic orbits. The design of an observer for nonlinear
systems is a significant challenge. This challenge has been
addressed in the literature of dynamical systems through the
development of different techniques including Luenberger-
like observers [27]–[29], the use of LMIs [27], [28], [30] and
BMIs [31]–[33], and the use of high-gain observers [34]–
[37]. There are several results that present the separation
principle for equilibrium points of nonlinear systems [26],
[28], [29], [34], [38]–[44]. Asymptotic observers that deal
with periodic gaits of underactuated bipedal robots have
been designed based on two different approaches. The first
approach makes use of sliding mode observers to estimate the
absolute orientation of planar (2D) bipedal robots when the
robot’s shape (i.e., internal joint) variables are measurable
[45]–[47]. The second approach applies high gain full-
and reduced-order observers to estimate generalized velocity
components of bipedal robots when position variables are



measurable [48]. However, these approaches cannot address
the general problem of designing observer-based output
feedback controllers when a given set of measurements is
available.

The contributions of this paper are as follows: 1) A class of
parameterized, smooth, and nonlinear observer-based output
feedback controllers is proposed; 2) The properties of the
Poincaré map for the closed-loop models of dynamic walking
are investigated; 3) It is shown the Jacobian linearization of
the Poincaré map has a triangular structure that demonstrates
the nonlinear separation principle for hybrid periodic orbits;
4) The state feedback and observer design problems are
separately solved through application of an offline algo-
rithm based on an iterative sequence of BMI optimization
problems; and 5) The power of the analytical framework
is ultimately illustrated through designing a set of HZD-
based controllers integrated with an observer for dynamic
walking of a 3D bipedal model with human parameters, 18
state variables, 3 degrees of underactuation, 54 state feedback
control parameters, and 271 observer parameters.

II. HYBRID MODELS OF BIPEDAL WALKING
We consider single-phase hybrid dynamical systems aris-

ing from bipedal walking as follows

Σol :


ẋ = f(x) + g(x)u, x− /∈ S
y = h(x)

x+ = ∆(x−), x− ∈ S,
(1)

in which the superscript “ol” stands for the open-loop system,
and x ∈ X and u ∈ U represent the state variables and
control inputs, respectively. The state manifold and set of
admissible control inputs are denoted by X ⊂ Rn and U ⊂
Rm for some positive integers n and m. The continuous-
time portion of the hybrid system is given by the ordinary
differential equation (ODE) ẋ = f(x) + g(x)u, where the
vector field f : X → TX and columns of g (i.e., gj for j =
1, · · · ,m) are smooth (i.e., C∞). In our notation, TX denotes
the tangent bundle of the state manifold X . The measurement
vector is given by y = h(x) ∈ Rν for some positive integer
ν, in which h : X → Rν is a C∞ mapping. The discrete-time
portion of the hybrid system is represented by the reset law
x+ = ∆(x−), where ∆ : X → X is a C∞ reset map, and
x−(t) := limτ↗t x(τ) and x+(t) := limτ↘t x(τ) denote the
left and right limits of the state trajectory x(t), respectively.
The guard of the hybrid system is then represented by the
switching manifold S := {x ∈ X | s(x) = 0, σ(x) < 0} on
which the state solutions undergo an abrupt change according
to the reset law. Here, s : X → R denotes a C∞ switching
function with the property ∂s

∂x (x) 6= 0 for all x ∈ S. Finally,
σ : X → R is a C∞ function to determine feasible switching
events as σ(x) < 0.

Throughout this paper, we shall assume that there exists a
period-one orbit for the hybrid system (1) that is transversal
to S. This notion can be expressed precisely as follows.

Assumption 1 (Transversal Period-One Orbit): There are
a positive scalar T ? (referred to as the fundamental period),
smooth nominal state solution ϕ? : [0, T ?]→ X , and smooth

nominal control input u? : [0, T ?]→ U such that 1) ϕ̇?(t) =
f(ϕ?(t))+g(ϕ?(t))u?(t) for all t ∈ [0, T ?]; 2) ϕ?(t) /∈ S for
every t ∈ [0, T ?) and ϕ?(T ?) ∈ S; 3) ϕ?(0) = ∆(ϕ?(T ?))
(periodicity); and 4) ṡ(ϕ?(T ?)) = ∂s

∂x (ϕ?(T ?)) ϕ̇?(T ?) 6=
0 (transversality). Then, O := {x = ϕ?(t) | 0 ≤ t < T ?} is
a period-one orbit transversal to the switching manifold S.
Furthermore, {x?} := O∩S is a singleton, where O denotes
the set closure of the orbit O.

Our objective is to systematically design nonlinear and
time-invariant observer-based output controllers that expo-
nentially stabilize the orbit O for the closed-loop system.
For this purpose, we make use of the concept of the phas-
ing variable. The phasing variable represents the system’s
(i.e., robot’s) progression through the orbit (i.e., walking
cycle), replacing the role of time in time-invariant feedback
controllers. This becomes more precise in the following
assumption.

Assumption 2 (Phasing Variable): There exists a C∞ and
real-valued function θ : X → R, referred to as the phasing
variable, such that 1) LgLifθ(x) = 0 for all x ∈ X , i =
0, 1, · · · , r− 2 and some positive integer r > 1, and 2) θ(x)
is strictly increasing function of time along the orbit O, i.e.,
θ̇(x) = Lfθ(x) > 0 for all x ∈ O.

Reference [49] shows that Assumption 2 follows directly
from Assumption 1 on the periodic orbit. For later purposes,
the desired evolution of the state variables on the orbit O can
be expressed in terms of the phasing variable θ as follows

xd(θ) := ϕ?(t)
∣∣
t=Θ−1(θ) , (2)

where θ = Θ(t) and t = Θ−1(θ) represent the time profile of
the phasing variable on the orbit O and its inverse function,
respectively.

III. FAMILY OF PARAMETERIZED
OBSERVER-BASED OUTPUT CONTROLLERS

This section presents a family of parameterized observer-
based output feedback controllers to exponentially stabilize
the periodic orbitO. We consider a general class of nonlinear
dynamic feedback controllers as follows

Σc :


˙̂x = f (x̂) + g (x̂) u+ L(η) (y(x)− y (x̂))

u = Γ (x̂, ξ) , x− 6∈ S
x̂+ = ∆

(
x̂−
)
, x− ∈ S

(3)

which is parameterized by 1) a set of adjustable controller
parameters ξ ∈ Ξ ⊂ Rpc and 2) a set of adjustable observer
parameters η ∈ Rpo for some positive integers pc and po.
Here, the superscript “c” stands for the controller and Ξ ⊂
Rpc represents the set of admissible controller parameters.
In (3), we consider a full-order observer dynamics whose
structure is taken from [48]. The observer consists of a copy
of the continuous- and discrete-time dynamics of the original
model (1) plus measurement error injection and boolean
information for the feet contact. The switching condition for
the observer dynamics is expressed in terms of the impact
instants of the original system. In particular, we assume that
the switching events of the system (1) are detectable. This



assumption is not restrictive for models of bipedal machines
as one can detect the impact events using the contact sensors
attached to the leg ends. In (3), x̂ and ŷ := y(x̂) represent
the estimates of the state vector x and measurement vector
y, respectively. The observer gain matrix is then denoted
by L(η) ∈ Rn×ν which is parameterized by η. Finally,
Γ : X ×Ξ→ U is a C∞ state feedback law parameterized by
the controller parameters ξ. Throughout this paper, we shall
assume that the following invariance condition is satisfied.

Assumption 3 (Invariant Periodic Orbit): The family of
state feedback laws u = Γ(x, ξ) preserves the orbit O for
the following parameterized closed-loop hybrid system

Σcl
ξ :

{
ẋ = f(x) + g(x) Γ(x, ξ), x− /∈ S

x+ = ∆(x−), x− ∈ S,
(4)

in which the superscript “cl” stands for the closed-loop
system. In particular, ∂

∂ξΓ (x, ξ) = 0 for all (x, ξ) ∈ O × Ξ,
i.e., Γ(ϕ?(t), ξ) = u?(t) for every t ∈ [0, T ?] and ξ ∈ Ξ.

Assumption 3 states that O is an invariant periodic orbit
for the closed-loop hybrid system (4) under the change of
the controller parameters ξ ∈ Ξ. This condition helps us to
preserve the orbit O while looking for a stabilizing set of
controller parameters in Section V.

Example 1: (Partial Feedback Linearizing Laws): We
consider an important family of state feedback laws satis-
fying the invariance condition. Let us consider the following
parameterized controlled functions to be regulated for the
continuous-time dynamics of (1):

z (x, ξ) := H (ξ) (x− xd (θ)) , (5)

where dim(z) = dim(u) = m, and H(ξ) ∈ Rm×n denotes
the controlled matrix to be determined and parameterized
by ξ. One possible parameterization is to assume that ξ :=
vec(H) ∈ Rpc , where “vec” denotes the vectorization oper-
ator and pc := mn. We further suppose that the controlled
function z has uniform relative degree r with respect to u
on an open neighborhood of O for ξ ∈ Ξ ⊂ Rpc . The partial
feedback linearizing law then takes the form

Γ (x, ξ) = −
(

LgLr−1
f z

)−1

Lrfz +
r−1∑
j=0

kj Ljfz

 , (6)

where the constants kj for j = 0, 1, · · · , r−1 are chosen such
that the monic polynomial λr + kr−1λ

r−1 + · · ·+ k1λ+ k0

becomes Hurwitz. Applying the partial feedback linearizing
controller results in the controlled function dynamics z(r) +∑r−1
j=0 kj z

(j) = 0 for which the origin is exponentially
stable. Reference [50, Example 2] shows that the feedback
law (6), restricted to O, is invariant under the choice of ξ.
That is, ∂Γ

∂ξ (x, ξ) = 0 for all (x, ξ) ∈ O×Ξ, and hence, the
invariance condition is satisfied.

IV. EXPONENTIAL STABILIZATION UNDER
DYNAMIC OUTPUT FEEDBACK CONTROL

The objective of this section is to investigate the properties
of the Poincaré map to extend the separation principle for
local exponential stabilization of hybrid periodic orbits.

A. Augmented Closed-Loop Dynamics

By defining the estimation error e := x − x̂ ∈ Rn, we
can express the augmented closed-loop hybrid system in the
(x, e) coordinates as follows

Σcl
ξ,η :


[
ẋ
ė

]
=

[
f cl (x, e, ξ)
v (x, e, ξ, η)

]
, x− /∈ S[

x+

e+

]
=

[
∆ (x−)

w (x−, e−)

]
, x− ∈ S,

(7)

in which

f cl (x, e, ξ) := f (x) + g (x) Γ (x− e, ξ) (8)
v (x, e, ξ, η) := f (x)− f (x− e)

+ g (x) Γ (x− e, ξ)− g (x− e) Γ (x− e, ξ)
− L (η) (y (x)− y (x− e)) (9)

w (x, e) := ∆ (x)−∆ (x− e) . (10)

To simplify the notation, one can present the augmented
system (7) in a compact form as follows

Σcl
ξ,η :

{
ẋa = f cl

a (xa, ξ, η) , x−a /∈ Sa
x+
a = ∆a

(
x−a
)
, x−a ∈ Sa,

(11)

where xa := (x>, e>)> ∈ Xa, Xa := X ×
Rn, and Sa := S × Rn represent the augmented
state variables, augmented state manifold, and aug-
mented switching manifold, respectively. The augmented
closed-loop vector field and reset map are also defined
as f cl

a (xa, ξ, η) :=
(
f cl> (x, e, ξ) , v> (x, e, ξ, η)

)>
and

∆a (xa) :=
(
∆> (x) , w> (x, e)

)>
, in which the subscript

“a” stands for the augmented system. For later purposes,
the unique solution of the smooth and augmented closed-
loop ODE ẋa = f cl

a (xa, ξ, η) with the initial condition
xa(0) := (x>(0), e>(0))> ∈ Xa is denoted by

ϕa(t, xa(0), ξ, η) :=

[
ϕx(t, xa(0), ξ, η)
ϕe(t, xa(0), ξ, η)

]
for all t ≥ 0 in the maximal interval of existence, where the
subscripts “x” and “e” represent the x- and e-components
of the solution, respectively. The time-to-switching function,
T : Xa × Ξ × Rpo → R>0, is then defined as the first time
at which the flow ϕa(t, xa(0), ξ, η) intersects the augmented
switching manifold Sa, i.e.,

T (xa(0), ξ, η) := inf {t > 0 |ϕa (t, xa(0), ξ, η) ∈ Sa} .

The following lemma presents some fundamental proper-
ties of the augmented closed-loop hybrid system.

Lemma 1: (Properties of the Closed-Loop System): As-
sume that Assumptions 1-3 are satisfied. Then, the following
statements are correct.

1) v(x, 0, ξ, η) = 0 for all (x, ξ, η) ∈ X × Ξ× Rpo .
2) For all (ξ, η) ∈ Ξ× Rpo ,

Oa := O × {0}

=

{
xa = ϕ?a(t) :=

[
ϕ?(t)

0

] ∣∣∣ 0 ≤ t < T ?
}



is an invariant period-one orbit for Σcl
ξ,η which is

transversal to Sa.
Proof: Part (1) is immediate. From Part (1) and the fact

that w(x, 0) = 0 for all x ∈ X , one can conclude that Oa
is a period-one orbit. By defining the augmented switching
function sa(xa) := s(x) and x?a := (x?>, 0)>, we observe
that ∂sa

∂xa
(x?a)f cl

a (x?a, ξ, η) = ∂s
∂x (x?) f cl (x?, 0, ξ) 6= 0 for all

(ξ, η) which completes the proof.

B. Augmented Poincaré Map

To study the stabilization problem, we make use of
Poincaré section analysis. By taking the Poincaré section
as the augmented switching manifold Sa, the evolution of
Σcl
ξ,η on Sa can be described by the following discrete-time

system

xa[k + 1] = Pa (xa[k], ξ, η) , k = 0, 1, · · · , (12)

where Pa : Sa × Ξ× Rpo → Sa defined by

Pa(xa, ξ, η) :=

[
P (x, e, ξ, η)
Q (x, e, ξ, η)

]
:= ϕa (T (∆a (xa) , ξ, η) ,∆a (xa) , ξ, η)

represents the parameterized and augmented Poincaré map.
According to the invariance condition, x?a is an invariant
fixed point for Pa under the change of the controller and
observer parameters, that is, Pa (x?a, ξ, η) = x?a for all
(ξ, η) ∈ Ξ × Rpo . Linearization of the discrete-time system
(12) around x?a then results in

δxa[k + 1] =
∂Pa
∂xa

(x?a, ξ, η) δxa[k] (13)

where δxa[k] := xa[k]− x?a.
Problem 1 (Exponential Stability): The problem of expo-

nential stabilization of the periodic orbit Oa consists of
finding the controller and observer parameters (ξ, η) such
that the Jacobian matrix ∂Pa

∂xa
(x?a, ξ, η) becomes Hurwitz.

For later purposes, we define the compact notation for the
Jacobian matrix as A(ξ, η) := ∂Pa

∂xa
(x?a, ξ, η).

C. Nonlinear Separation Principle for Periodic Orbits

Theorem 1: (Separation Principle for Hybrid Periodic Or-
bits): Assume that Assumptions 1-3 are satisfied. Then, the
Jacobian matrix A(ξ, η) has an upper triangular structure as
follows:

A(ξ, η) =

[
A11(ξ) A12(ξ, η)

0 A22(η)

]
, (14)

where A11 := ∂P
∂x (x?, 0, ξ, η), A12 := ∂P

∂e (x?, 0, ξ, η), and
A22 := ∂Q

∂e (x?, 0, ξ, η). Furthermore, the submatrices A11(ξ)
and A22(η) are only functions of the controller and observer
parameters, respectively.

Remark 1: Theorem 1 presents an upper triangular struc-
ture for the Jacobian linearization of the augmented Poincaré
map. This demonstrates the nonlinear separation principle
for hybrid periodic orbits, i.e., exponential stabilization of
periodic orbits under the dynamic output feedback control
(3) can be achieved by solving separate eigenvalue placement

problems for the nonlinear state feedback and the observer.
That is, eig(A(ξ, η)) = eig(A11(ξ)) ∪ eig(A22(η)).

Proof: Let us define the Jacobian matrix of the aug-
mented vector field along the orbit Oa as follows:

Ja (t, ξ, η) :=
∂f cl

a

∂xa
(xa, ξ, η)

∣∣∣
xa=ϕ?

a(t)

=

[
∂f cl

∂x (x, e, ξ) ∂f cl

∂e (x, e, ξ)
∂v
∂x (x, e, ξ, η) ∂v

∂e (x, e, ξ, η)

] ∣∣∣∣∣
x=ϕ?(t),e=0

for all (t, ξ, η) ∈ [0, T ?] × Ξ × Rpo . Now we consider the
following linear time-varying matrix differential equation,
referred to as the variational equation (VE),

Φ̇a (t, ξ, η) = Ja (t, ξ, η) Φa (t, ξ, η) , 0 ≤ t ≤ T ?

Φa (0, ξ, η) = I,
(15)

where Φa(t, ξ, η) = ∂ϕa

∂xa(0) (t, xa(0), ξ, η) ∈ R2n×2n rep-
resents the trajectory sensitivity matrix for the closed-loop
ODE ẋa = f cl

a (xa, ξ, η). According to [51, Appendix D],
the Jacobian matrix of the augmented Poincaré map, i.e.,
A(ξ, η), can be expressed as

A (ξ, η) = Πa Φa (T ?, ξ, η)Da, (16)

in which Πa represents the saltation matrix for the aug-
mented closed-loop system defined by

Πa := I −
f cl
a (x?a, ξ, η) ∂sa∂xa

(x?a)
∂sa
∂xa

(x?a) f cl
a (x?a, ξ, η)

. (17)

Furthermore, Da denotes the Jacobian matrix of the aug-
mented reset map, evaluated at x?a, i.e., Da := ∂∆a

∂xa
(x?a).

In what follows, we will study the properties of the three
matrices in (16).

According to the construction procedure, one can show
that the saltation matrix Πa and the reset map Jacobian Da

take block diagonal forms as follows:

Πa = block diag {Π11, I}
Da = block diag {D11, D11} ,

(18)

where Π11 := I − f cl(x?,0,ξ) ∂s
∂x (x?)

∂s
∂x (x?)f cl(x?,0,ξ)

and D11 := ∂∆
∂x (x?).

Moreover from the invariance condition in Assumption 3,
Π11 and D11 are independent of the choice of the controller
and observer parameters (ξ, η). Next, we focus on the VE
given in (15). From Part (1) of Lemma 1, ∂v

∂x (x, 0, ξ, η) ≡
0, and hence, one can conclude that the Jacobian matrix
Ja(t, ξ, η) has an upper triangular structure as follows:

Ja(t, ξ, η) =

[
J11(t, ξ) J12(t, ξ)

0 J22(t, η)

]
, (19)

in which

J11 (t, ξ) :=
∂f cl

∂x
(x, e, ξ)

∣∣∣
x=ϕ?(t),e=0

=
∂

∂x
(f(x) + g(x) Γ (x, ξ))

∣∣∣
x=ϕ?(t)

J12 (t, ξ) :=
∂f cl

∂e
(x, e, ξ)

∣∣∣
x=ϕ?(t),e=0

= −g(x)
∂Γ

∂x
(x, ξ)

∣∣∣
x=ϕ?(t)



are solely functions of the controller parameters ξ. Fur-
thermore, we claim that J22 only depends on the observer
parameters η. To observe this, we remark that

J22 (t, η) :=
∂v

∂e
(x, e, ξ, η)

∣∣∣
x=ϕ?(t),e=0

=
∂f

∂x
(x)
∣∣∣
x=ϕ?(t)

+
m∑
j=1

gj(x)

(
∂Γj
∂x

(x, ξ)− ∂Γj
∂x

(x, ξ)

) ∣∣∣
x=ϕ?(t)

+
m∑
j=1

∂gj
∂x

(x) Γj (x, ξ)
∣∣∣
x=ϕ?(t)

− L(η)
∂y

∂x
(x)
∣∣∣
x=ϕ?(t)

=
∂f

∂x
(x)
∣∣∣
x=ϕ?(t)

+
m∑
j=1

∂gj
∂x

(x)
∣∣∣
x=ϕ?(t)

u?j (t)

− L(η)
∂y

∂x
(x)
∣∣∣
x=ϕ?(t)

,

(20)

in which we have made use of the invariance condition in the
sixth line of (20) as Γj(ϕ

?(t), ξ) = u?j (t) for all ξ ∈ Ξ and
u?(t) is the nominal control input defined in Assumption 1.

Now we study the structure of the trajectory sensitivity
matrix. According to the triangular structure of the Jacobian
matrix Ja(t, ξ, η) in (19) and the VE in (15), we can
decompose the trajectory sensitivity matrix as follows:

Φa (t, ξ, η) :=

[
Φ11(t, ξ) Φ12(t, ξ, η)

0 Φ22(t, η)

]
, (21)

where Φ11(t, ξ) := ∂ϕx

∂x(0) (t, xa(0), ξ, η), Φ12(t, ξ, η) :=
∂ϕx

∂e(0) (t, xa(0), ξ, η), and Φ22(t, η) := ∂ϕe

∂e(0) (t, xa(0), ξ, η)
satisfying the following matrix differential equations

Φ̇11(t, ξ) = J11(t, ξ) Φ11(t, ξ), Φ11(0, ξ) = I

Φ̇22(t, η) = J22(t, η) Φ22(t, η), Φ22(0, η) = I

Φ̇12(t, ξ, η) = J11(t, ξ) Φ12(t, ξ, η)

+ J12(t, ξ) Φ22(t, η), Φ12(0, ξ, η) = 0.

Finally, substituting (18) and (21) into (16) completes the
proof of (14) for which

A11(ξ) = Π11 Φ11 (T ?, ξ)D11 (22)
A12(ξ, η) = Π11 Φ12 (T ?, ξ, η)D11 (23)
A22(η) = Φ22 (T ?, η)D11. (24)

V. ITERATIVE BMI ALGORITHM FOR THE
EXPONENTIAL STABILIZATION PROBLEM

The objective of this section is to solve the state feedback
and observer design problems through application of an itera-
tive algorithm based on a sequence of optimization problems
involving BMIs. Our previous work has developed the BMI
algorithm to systematically choose stabilizing state feedback
laws from a family of parameterized controllers [50], [52],

[53]. In addition, we have numerically and experimentally
validated the algorithm in designing nonlinear state feedback
controllers for walking of 3D underactuated bipedal robots
[54], [55]. In this paper, we show that the BMI algorithm
can be employed to design observer-based output feedback
controllers.

A. Stability as Nonlinear Matrix Inequalities

The separation principle in Section IV-C enables us to
synthesize the observer-based output feedback control (3) by
looking for the controller and observer parameters (i.e., ξ and
η) such that the eigenvalues of A11(ξ) and A22(η) lie inside
the unit circle. In particular from Theorem 1 and [53, Eqs.
2-4], we can express Problem 1 in terms of the following
two nonlinear matrix inequalities (NMIs):

Controller Design: I (A11(ξ),W1, γ1) > 0, γ1 > 0 (25)

Observer Design: I (A22(η),W2, γ2) > 0, γ2 > 0, (26)

where

I (Aii,Wi, γi) :=

[
Wi AiiWi

? (1− γi)Wi

]
> 0, i ∈ {1, 2}

(27)
represents a matrix inequality to guarantee that the eigen-
values of Aii lie inside the unit circle. Specifically, V (x) =
x>W−1

i x is a Lyapunov candidate function for x[k + 1] =
Aii x[k] such that V [k + 1] − V [k] < −γi V [k], in which
0 < γi < 1 is a scalar to tune the convergence rate.

B. Iterative BMI Algorithm

The BMI algorithm provides a sequence of observer
parameters {η0, η1, · · · } for the observer synthesis (resp.,
controller parameters {ξ0, ξ1, · · · } for the state feedback
synthesis) that eventually solves (26) (resp. (25)). In our
notation, the superscript ` ∈ {0, 1, · · · } denotes the iteration
number. During iteration ` of the algorithm, the Jacobian
matrix A22

(
η` + ∆η

)
(resp. A11

(
ξ` + ∆ξ

)
) is replaced by

its first-order approximation, based on the Taylor series
expansion, which is affine in ∆η (resp., ∆ξ). Here, ∆η (resp.
∆ξ) is a sufficiently small increment in the observer (resp.
controller) parameters and the approximate Jacobian matrix
is shown by Â22

(
η`,∆η

)
(resp. Â11

(
ξ`,∆ξ

)
). Next, we

replace A22

(
η` + ∆η

)
(resp., A11

(
ξ` + ∆ξ

)
) in the NMI

(27) by the first-order approximation. This will yield a BMI
condition in terms of (∆η,W2, γ2) (resp., (∆ξ,W1, γ1))
rather than an NMI condition which can be solved with
available software packages such as PENBMI [56]. In par-
ticular, we solve the following BMI problem for the observer
synthesis:

min
(∆η,W2,γ2,δ)

− w γ2 + δ (28)

s.t. I
(
Â22

(
η`,∆η

)
,W2, γ2

)
> 0, γ2 > 0 (29)[

I ∆η
? δ

]
> 0, (30)



where from the Schur complement lemma and LMI (30), δ
is an upper bound on the 2-norm of ∆η, i.e., δ > ‖∆η‖22.
Furthermore, w > 0 is a weighting factor as a trade-off
between improving the convergence rate (i.e., minimizing
(1− γ2)) and minimizing ‖∆η‖22 to have a good first-order
approximation. An analogous BMI optimization problem can
be presented for the state feedback synthesis. The local
minimum solution (not necessarily the global solution) of
the BMI optimization problem is then used to update the
observer (resp., controller) parameters as η`+1 = η` + ∆η
(resp., ξ`+1 = ξ` + ∆ξ)) for the next iteration. We have
presented sufficient conditions for the convergence of the
algorithm to a stabilizing set of parameters at a finite number
of iterations in [52, Theorem 2]. In addition, an effective
numerical approach to compute the first-order approximation
of the Jacobian matrix has been developed in [50, Theorem
2]. Finally we remark that if the BMI optimization is not
feasible, the algorithm is not successful and stops.

VI. APPLICATION TO 3D UNDERACTUATED
BIPEDAL WALKING

This section confirms the analytical results by design-
ing observer-based output feedback controllers for dynamic
walking of a 3D underactuated bipedal robot.

A. 3D Underactuated Bipedal Robot

The model of the robot consists of a rigid tree structure
with a torso and two identical legs terminating at point feet
(see Fig. 1). Each leg of the robot includes 3 actuated DOFs:
a 2 DOF (ball) hip joint with roll and pitch angles plus a
1 DOF knee joint in the sagittal plane. During the single
support phase, the robot has 9 DOFs with 6 actuators. We
remark that the roll, pitch, and yaw angles associated with
the torso frame are unactuated. The kinematic and dynamic
parameter values for the links are taken according to those
reported in [57] from a human cadaver study. A minimal
set of configuration variables for the robot, shown by q,
consists of the yaw, roll, and pitch angles for the torso
plus a set of six relative angles to describe the shape of
the mechanical system. The state vector is also represented
by x :=

(
q>, q̇>

)> ∈ X ⊂ R18. Using the motion planning
algorithm of [17], a periodic gaitO is designed for walking at
0.6 (m/s) with the cost of mechanical transport CMT = 0.07.

B. State Feedback Controller Design

Virtual constrains are kinematic relations among the gen-
eralized coordinates enforced asymptotically by continuous-
time feedback control [13]–[18], [21]–[25], [50]. They are
defined to coordinate the links of the bipedal robot within
a stride. In this paper, we consider a set of parameterized
virtual constraints as follows:

z (x, ξ) := H (ξ) (q − qd (θ)) , (31)

in which qd(θ) represents the desired evolution of the config-
uration variables on the desired gaitO in terms of the phasing
variable. The virtual constraints are then enforced by the I-O

linearizing feedback laws of (6) for which the uniform rela-
tive degree r is assumed to be 2. The stability of the walking
gait in the virtual constraints approach depends on the choice
of the output matrix H(ξ) ∈ R6×9 [50]. To stabilize the gait,
we employ the iterative BMI algorithm to look for stabilizing
controller parameters ξ = vec(H) ∈ Ξ ⊂ R54. To solve the
BMI optimization problem at each iteration of the algorithm,
we make use of the PENBMI solver from TOMLAB [58]
integrated with the MATLAB environment through YALMIP
[59]. BMIs are nonconvex and NP-hard problems [60]. How-
ever, PENBMI is a general-purpose solver for BMIs, which
guarantees the convergence to a local optimal point satisfying
the Karush-Kuhn-Tucker optimality conditions. The BMI
algorithm starts with an initial set of controller parameters
ξ0 for which H

(
ξ0
)
q represents the actuated position vari-

ables. For this set of controller parameters, the dominant
eigenvalues and spectral radius of the 17 × 17 Jacobian
matrix A11 become {−4.0307,−1.000, 0.7915,−0.262} and
4.0307, respectively, and hence, the gait is unstable. After
four iterations, the algorithm successfully converges to a
stabilizing set of virtual constraints for which the dominant
eigenvalues and spectral radius of A11 become {0.1624 ±
0.7446i, 0.5309,−0.4176} and 0.7621, respectively.

C. Observer Design

Motivated by future applications in prosthetic control
where the joints of the human body do not have encoders,
we assume that there is an array of five IMUs attached
to the links of the kinematic chain (torso, right and left
femurs, and right and left tibias). We further suppose that the
available measurements for the system (i.e., y) only include
the roll, pitch, and yaw signals from these five sensors, i.e.,
y = h(x) ∈ R15 (no relative angle and no velocity measure-
ment). The relation between the minimal set of configuration
variables q ∈ R9 and the position measurements from the
IMU network, denoted by q̄ := h(x) ∈ R15, can then be
expressed by a nonlinear function as follows:

q = F (q̄) (32)

for which there is not a closed-form expression according
to the inverse kinematics techniques. The objective of this
section is to design a full-order observer to estimate (q, q̇)
while measuring q̄ and using the state feedback Γ(q, q̇, ξ).
We remark that the high-gain observer of [48] cannot be
employed to solve this problem. Instead, we will see that
the BMI optimized observer can asymptotically solve (32),
and hence, one does not need to design an alternative state
feedback in terms of (q̄, ˙̄q) for exponential stabilization of
walking gaits.

In this paper, the observer gain is taken as L := 1
εL0 ∈

R18×15, where 0 < ε < 1 is a sufficiently small number.
The observer parameters then consist of the columns of
L0 and ε, that is, η :=

(
vec(L0)>, ε

)> ∈ R271. We
note that ε helps the BMI algorithm search for high-gain
observers in case needed. The BMI algorithm starts from
an initial set of observer parameters for which the dominant
eigenvalues and spectral radius of the 18×18 Jacobian matrix



0 0.5 1 1.5 2

-50

0

50

100

Fig.1:The3Drobotmodeltogetherwiththeestimation
errorsinthevelocitycomponentsoverthefirst5stepsof3

-0.15 -0.1 -0.05 0 0.05 0.1

-1

-0.5

0

0.5

D
walkingwiththeBMIoptimizedoutputfeedbackcontroller.

-0.02 -0.01 0 0.01 0.02

-1

-0.5

0

0.5

1

-0.18-0.16-0.14-0.12 -0.1 -0.08-0.06

-0.5

0

0.5

1

1.5

2

2.5

0.08 0.09 0.1 0.11 0.12 0.13

-1.5

-1

-0.5

0

0.5

1

1.5

Fig.2:PhaseportraitsforthetorsoEulerangles(yaw,roll,
andpitch)andfrontalhipduring100consecutivestepsof3D
walkingwiththeBMIoptimizedoutputfeedbackcontroller.

A22are{26.8856,0.1129,−0.0095,0.0079}and26.8856,
respectively1.Thealgorithmsuccessfullyconvergestoaset
ofstabilizingobserverparametersafter19iterationsfor
whichthespectralradiusofA22becomes0.0053.Figures1
and2illustratetheestimationerrorinthevelocitycompo-
nentsversustimeandphaseportraitsfortheBMIoptimized
closed-loopsystem,respectively.Here,thesimulationstarts
offoftheorbitatthebeginningoftherightstancephase
withanestimationerrorof90%inthevelocitycomponents.
Convergencetotheperiodicorbitevenintheyawcomponent
isclear.Theanimationofthissimulationtogetherwiththe
optimalcontrollerandobserverparameterscanbefoundat
[61].

VII.CONCLUSIONS

Thispaperintroducedasystematicalgorithmtodesign
observer-basedoutputfeedbackcontrollersthatlocallyand
exponentiallystabilizeperiodicorbitsofhybriddynamical
systems.Aclassofparameterizedoutputfeedbackcon-
trollerswithfull-orderobserversisassumed.Theproperties
ofthePoincaŕe mapareinvestigatedtoshowthatthe
JacobianlinearizationofthePoincaŕemaparoundthefixed

1WeremarkthattheaugmentedPoincarémapis35-dimensional.

pointoftheorbithasatriangularstructure.Thisextends
thenonlinearseparationproblemtohybridperiodicorbits.
Thepaperthenemploysaniterativesequenceofoptimization
problemsinvolvingBMIstosynthesizethestatefeedback
andobserver.Thepoweroftheanalyticalapproachisfinally
confirmedbydesigninganobserver-basedoutputfeedback
controllerfor3Dunderactuated walkingofahumanoid
model with 18statevariables,54controllerparameters,
and271observerparameters.Forfuture work, we will
investigatethedesignofH2-andH∞-optimalobserver-
basedoutputfeedbackcontrollersforrobuststabilizationof
dynamicwalking.Wewillalsoinvestigatetheminimalsets
ofrequiredsensorstoachievestablewalkingformodelsof
autonomousrobotsandamputeelocomotion.
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