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Abstract—Research efforts over the last few decades produced
multiple wireless technologies, which are readily available to
support communication between devices in various Internet
of Things (IoT) applications. However, none of the existing
technologies delivers optimal performance across all critical
quality of service (QoS) dimensions under varying environmental
conditions. Using a single wireless technology therefore cannot
meet the demands of varying workloads or changing environmen-
tal conditions. This problem is exacerbated with the increasing
interest in placing embedded devices on the user’s body or other
mobile objects in mobile IoT applications. Instead of pursuing
a one-radio-fits-all approach, we design ARTPoS, an adaptive
radio and transmission power selection system, which makes
available multiple wireless technologies at runtime and selects
the radio(s) and transmission power(s) most suitable for the
current conditions and requirements. Experimental results show
that ARTPoS can significantly reduce the power consumption,
while maintaining desired link reliability.

I. INTRODUCTION

Diverse wireless technologies, produced by research over

the years, are available to support communication between

devices in various Internet of Things (IoT) applications. How-

ever, each of these technologies were originally designed with

different goals, such as high throughput, low power consump-

tion, low latency, and robustness to interference, and thus offer

very different characteristics. None of the existing technologies

delivers optimal performance in all desirable quality of service

(QoS) dimensions, especially under varying environmental

conditions. For instance, WiFi can provide high throughput,

but suffers from high power consumption. A considerable

amount of energy can be wasted if a WiFi radio experiences

irregular data transmission at low data rate such that it stays

longer in a power-hungry active mode, rather than in the power

save mode. On the other hand, ZigBee is power-efficient, but

cannot support high data rate applications.

Using a single wireless technology therefore cannot meet

the demands of varying workloads or changing environmen-

tal conditions. This issue becomes further pronounced with

emerging mobile IoT applications that involve placing embed-

ded devices on the user’s body or other mobile objects. Mon-

itoring and controlling mobile objects open up opportunities

for novel and exciting IoT applications (e.g., assisted living,

health monitoring, and multi-agent autonomous vehicular and

robotic systems), while also introducing the fundamental chal-

lenge of maintaining optimal wireless communication between

devices under the following uncertainties: Network Traffic

Uncertainties: The network traffic is subject to spontaneous

changes. For instance, in a health monitoring application, a

wearable device may produce low amount of data during some

hours of the day, but sporadically require rapid transmission

of large volume of data in response to a critical medical

condition. Moreover, devices may have multiple sensors, with

diverse traffic patterns, and the system may turn ON or OFF

any of the sensors at any given time. Wireless Environment

Uncertainties: The wireless environment changes when the

device moves around. At times, a mobile device will need to

be able to deal with a highly noisy environment; at other times

it may enjoy a clean environment [1]. A stationary device may

also experience environment changes due to changing ambient

interference. Given the dynamic nature of communication

in IoT applications, a traditional one-radio-fits-all approach

cannot meet the challenges associated with the dynamics and

uncertainties in network traffic and operating conditions.

Fortunately, embedded system hardware and radio tech-

nologies have been seeing appreciable advancement. Het-

erogeneous radios, e.g., WiFi, LTE, Bluetooth, and ZigBee

are becoming increasingly available in modern embedded or

mobile devices. Most smartphones nowadays support WiFi,

LTE, and Bluetooth. A majority of modern devices designed

for IoT applications also support heterogeneous radios. For

instance, Firestorm platform [2] supports Bluetooth low energy

(BLE) and ZigBee and uses a 32 bit low-power microcontroller

with the duty cycling capability. TI CC2650 [3] integrates two

radios (i.e., ZigBee and BLE) on a single chip. Raspberry Pi

3 model B [4] uses a Broadcom single-chip radio supporting

both WiFi and BLE. Recent hardware advancement offers new

opportunities to use multiple wireless technologies efficiently.

This paper aims to address the previously stated networking

challenges, while leveraging the above-stated hardware ad-

vancements; specifically, it makes the following contributions:

• We design the Adaptive Radio and Transmission Power

Selection (ARTPoS) system that makes available multiple

wireless technologies at runtime and selects the radio(s)

and their transmission power(s) that are best suited for

the current network traffic and operating conditions.

• We develop new modeling approaches that allow the

selection system to adapt to large variance in power

consumption and link reliability measurements.



• We formulate the problem of radio and transmission

power selection as an optimization problem and develop

a practical (lightweight) online solution.

• We implement the ARTPoS in Raspbian Linux and Con-

tiki and evaluate it on a new embedded platform support-

ing WiFi, ZigBee, and BLE; these efforts demonstrate the

unique benefits of adaptive runtime selection of radios

and their transmission powers.

The remainder of the paper is organized as follows. Sec-

tion II reviews related work and Section III introduces our

ARTPoS design. Section IV presents the power consumption

and link reliability modeling and Section V introduces our

problem formulation and solution strategy. Section VI presents

our experimental evaluation. Section VII concludes the paper.

II. RELATED WORKS

Bandwidth aggregation for a device with multiple network

interfaces has been studied extensively in the literature and

many techniques are readily available [5]. Those early efforts

are not directly applicable to embedded wireless devices with

power constraints since they were not designed to provide

energy-efficient wireless radio interfaces [6], [7]. There has

also been increasing interest in studying the energy-aware

bundling or switching between WiFi and 3G/4G radios on

smartphones [8], [9]. There exists software, e.g., VideoBee,

Super Download Lite-Booster, MPTCP in iOS, KT’s GiGA

LTE, that support concurrent use of WiFi and cellular radios.

More recently, research efforts have begun to pay more atten-

tion to energy efficiency in the context of smartphones. Exam-

ples include generating energy models for smartphones [10]–

[14] and WiFi/3G/LTE [15]–[17] and developing radio switch-

ing or bundling approaches [6], [7], [13], [18], [19].

These existing approaches are not directly applicable to

support various embedded and IoT applications in an energy-

efficient manner using heterogeneous radios since they are

tailored for smartphones to support high data rate applications,

limited to mainly WiFi and 3G/4G, and not integrated with

transmission power control. Generally speaking, it is largely

unknown how to energy-efficiently use radios with very dif-

ferent characteristics through runtime radio and transmission

power adaptation. To address this critical gap in the current

state of the art, this paper investigates the joint impact of radio

and transmission power selection on energy efficiency and link

reliability, and proposes a practical approach that intelligently

uses a high throughput radio (i.e., WiFi) and an energy-

efficient radio (i.e., ZigBee). To our knowledge, the ARTPoS

system presented in this paper is the first to support not only

runtime bundling and switching between WiFi and ZigBee

but also adaptive transmission power control, that proactively

minimizes power consumption subject to given network traffic

and operating conditions.

Transmission power control for a single radio has been

extensively investigated in the literature of wireless sensor

networks and wireless mesh networks. Indirect link quality

metrics such as received signal strength indication (RSSI) and

link quality indicator (LQI) [20], [21] or direct link quality

Fig. 1. System architecture.

metrics such as packet reception ratio (PRR) and packet

error rate (PER) [22], [23] have been used to measure the

link quality. Heuristics [22], [24], [25] and control-theoretic

approaches [20], [21], [23] have been applied to achieve the

desirable link quality by controlling the transmission power

at runtime. These existing approaches, designed to control a

single radio, are not directly applicable here, since the power

consumptions have to be compared between different radios

and the link quality and power consumption of multiple radios

have to be jointly considered. In contrast, this paper employs

a pragmatic integrated systems approach to optimize the

transmission power selection together with the radio selection.

The performance of our ARTPoS has been demonstrated via

implementation and experiments on real hardware.

III. ARTPOS SYSTEM ARCHITECTURE

This section presents the design of ARTPoS. Fig. 1 shows

the system architecture. The Modeling Engine generates the

power consumption and link reliability models needed for

the radio and transmission power selection (Section III-A).

The Radio/Transmission Power Selection Engine selects the

best-suited radio(s) and transmission power(s) based on the

application specified data rate and the throughput of each avail-

able link measured at runtime (Section III-B). Multiple Radio

Controller modules (e.g., WiFi, BLE, and ZigBee controllers)

exist in ARTPoS. Each radio controller controls the state (i.e.,

on or off) of a radio and sets its transmission power based on

the decision made by the Radio/Transmission Power Selection

Engine, while the User Interface supports the interactions

with system users (Section III-C).

To support the realization of ARTPoS, we have built a

new embedded platform with heterogeneous radios consisting

of WiFi, ZigBee, and BLE by instrumenting a Raspberry Pi

3 Model B [4] with a TI CC2650 development kit [3] as

shown in Fig. 1. CC2650 is connected to the Raspberry Pi

through a USB port. The integrated emulator (XDS100v3)

on CC2650 enables the communication between Raspberry

Pi and CC2650 through a UART. Raspberry Pi integrates a

Broadcom BCM43438 single chip radio processor supporting

WiFi and BLE, while CC2650 has a multi-standard wireless

MCU supporting ZigBee and BLE. (Currently, we use the

BLE radio on Raspberry Pi since the Contiki has not yet

implemented the BLE stack in its master branch). To power



(a) Boxplot at transmission powers
of 1 dBm to 21 dBm.

(b) A 5-second trace at minimum
transmission power (1 dBm).

Fig. 2. Power consumptions of our embedded platform when only WiFi
radio is on and transmits at maximum speed. The traces are measured by
a Monsoon power meter [26]. In boxplot, central red mark in box indicates
median; bottom and top of box represent the 25th percentile (q1) and 75th
percentile (q2); crosses indicate outliers (x > q2 + 1.5 · (q2 − q1) or x <

q1 − 1.5 · (q2 − q1)); whiskers indicate range excluding outliers.

the device, we use a USB battery to which a Monsoon power

meter [26] is connected to measure the power consumption.

We have realized ARTPoS in Raspbian Linux [27], a Debian

based Linux system for Raspberry Pi, and Contiki [28], an

operating system for low-power wireless IoT devices. To

support WiFi, our ARTPoS implementation adopts the 802.11

MAC and physical layer implementations provided by the

Linux kernel and employs the libpcap library for sending

and receiving packets to/from the MAC layer. Similarly, our

implementation adopts the Linux’s BLE implementations and

HCI tools to support BLE and uses the 802.15.4 physical layer

implementations in Contiki to support ZigBee. Our imple-

mentation also adopts the existing UART implementations in

Raspbian and Contiki to support the communication between

Raspberry Pi and CC2650. In Fig. 1, the existing implementa-

tions in Raspbian Linux and Contiki adopted by ARTPoS are

marked with dash lines, while our new designs are marked

with solid lines. WiFi controller, BLE controller, and ZigBee

controller are three radio controllers that control WiFi, BLE,

and ZigBee radios, respectively. We intentionally implement

all modules except the ZigBee Controller in Raspbian Linux,

since Raspberry Pi has richer hardware resources. The design

of the major modules in ARTPoS are discussed next.

A. Modeling Engine

The Modeling Engine generates the power consumption

model and link reliability model to support runtime radio

and transmission power selection. Most existing solutions for

transmission power control for a single radio use a simple

power model assuming that using a lower transmission power

level leads to lower power consumption. However, this simple

model no longer works for a device with multiple radios

since the power consumptions have to be compared between

different radios. Hence, our Modeling Engine is designed to

take real power consumption traces as input and generate

power models accordingly. As an example, Fig. 2 shows the

power consumptions of our embedded platform when its WiFi

radio transmits at maximum speed. As shown in Fig. 2(a),

the median power consumption increases from 2585mW to

3065mW when the WiFi transmission power increases from

1dBm to 21dBm. Large variances can be seen in the boxplot

in Fig. 2(a) as well as Fig. 2(b), which shows a 5-second power

measurement when the WiFi is transmitting at 1dBm. The

large variance is caused by the power consumption differences

when the WiFi radio hardware is at different states. We also

measure the power consumption of the platform when its

radios are under various modes (e.g., only ZigBee radio on and

transmits, only BLE radio on and transmits, and all radios off)

and observe large variance and non-normal distribution of the

measurements. Using the first statistical moments (e.g., mean

or median of the data) is deemed not suitable. Instead, we use

a more robust scalar measure of the power consumption in

ARTPoS, which will be discussed in Section IV-A in detail.

The Modeling Engine also generates the link reliability

model based on the PRR measurements at difference distances

between the sender and the receiver, and when the sender

transmits at different transmission power. PRR can be defined

as the fraction of transmitted packets successfully received

by the receiver. Our Modeling Engine provides a feature that

controls each radio to transmit packets using a single transmis-

sion power, then proceeds to the next power in a round robin

fashion. With this feature, the PRR measurements for all radios

and transmission powers can be done automatically at each

distance. However, changing the distance between the sender

and receiver has to rely on human operators, introducing labor-

intensive measurement overheads. Therefore, it is important to

use a frugal set of distance samples that will produce a training

data set suitable for effective (subsequent) model development.

Therefore, the Distance Sample Generator is designed

to generate suitable distance samples based on a feasible

communication range and the desired number of distance

samples. The desired number of distance samples is decided

by the total time allowed for PRR measurements divided

by the measurement execution time at each distance. A de-

sign of experiments approach adopted from the Engineering

Design paradigm is used to generate the distance samples.

For instance, the communication range considered, 0− 200m
(based on our observed maximum communication range of

WiFi/ZigBee/BLE), is divided into three zones. Zone 1,

0 < x ≤ 30m, corresponds to the spatial range in typical

home or office-space IoT applications, where a low-power

radio like ZigBee is seeing increasing popularity; Zone 2,

30 < x ≤ 100m, corresponds to the spatial range in typical

commercial/residential buildings as well as factories and ware-

houses (i.e., industrial IoT or IIoT applications) where ZigBee

becomes progressively less effective, and WiFi is expected to

become more dominant; and Zone 3, x > 100m, corresponds

to the spatial range (typical of small autonomous ground/aerial

vehicle applications) where WiFi with greater range capacity

will typically dominate. In each of these ranges, we use

the Latin hypercube sampling (LHS) method to generate 10

distance samples. LHS is a popular approach to generate

near-random samples that can provide a relatively uniform

coverage of an input space or a probability space [29]. Unlike

factorial design or simple Monte Carlo simulations, the size of

the sample set yielded by LHS does not scale exponentially

with the number of input parameters, thereby making LHS

more suitable to design frugal set of experiments (as needed

here). A LHS containing n sample points (between 0 and 1)



over m dimensions is a matrix of n rows and m columns.

Each row corresponds to a sample point. The values of n
points in each column are randomly selected, one from each

of the intervals, (0, 1/n), (1/n, 2/n), . . . , (1 − 1/n, 1). We

use the optimal LHS implementation, which maximizes the

minimum Euclidean distance between the samples [30]. To

demonstrate the PRR measurement process, we collect a series

of PRR traces by varying the distance between the sender

and receiver following the 30 distance samples generated by

LHS. Section IV-B will discuss the method that is used to

train models of PRR as functions of the respective radio

transmission power settings based on our collected PRR traces.

B. Radio/Transmission Power Selection Engine

The Radio/Transmission Power Selection Engine imple-

ments ARTPoS core logic. It is designed to facilitate the identi-

fication of the best-suited radio(s) and transmission power(s) at

runtime. The Model Container stores the power consumption

model and link reliability model generated by the Modeling

Engine. With these two models, the Optimizer selects the

best radio (or a set of radios) and their optimal transmission

power(s) based on the application specified data rate and

the throughput of all available links measured by the radio

controllers. Section V will discuss the problem formulation

and optimization in detail.

C. Radio Controllers and User Interface

The Radio Controllers are important design constructs of

ARTPoS. Their main purpose is to forward data packets

between the application and the radio stacks. The Radio Con-

trollers are responsible for switching on the radio(s) selected

by the Radio/Transmission Power Selection Engine, keeping

the unselected radio(s) off, applying the selected transmission

power(s), and routing data packets between the application and

the radio stack(s) of the selected radio(s). The Link Monitor

gathers the runtime link statistics (i.e., throughput and PRR)

and feeds them to the Optimizer. To support WiFi, BLE, and

ZigBee on our embedded platform, we have implemented three

Radio Controllers (i.e., WiFi Controller, BLE Controller, and

ZigBee Controller as shown in Fig. 1).

The User Interface supports the interactions between our

ARTPoS and its user. First, it allows the system user to reveal

the debugging and operation logs through a SSH connection.

Second, it notifies the user to move the device to the next

distance when the Modeling Engine finishes the PRR measure-

ments at the current distance. Third, it allows the application

to set its desired data rate at runtime.

IV. MODELING

This section presents the development of tailored regression

models with specialized smoothing characteristics, to represent

the (uncertain) nodal power consumption and PRR variations

as functions of the radio transmission power settings. This

modeling approach is aimed to facilitate robust radio and

transmission power selection decisions (failure to address

these uncertainties undermines radio selection processes, as

demonstrated later in Section V-B).

A. Power Consumption Modeling

The measurements from Section III-A are used to develop

quantitative models of power consumption, as functions of

the transmission power setting (p) of the concerned radio.

As evident from Fig. 2, significant variations, which cannot

be solely attributed to change in radio transmission power,

are inherent in the measurements. We therefore represent the

platform base power consumption with all radios off (Ep (V )),
and the respective platform power consumptions with only

Bluetooth on (Eb (V, pb)), only Zigbee on (Ez (V, pz)), and

only WiFi on (Ew (V, pw)) as functions of uncertain parame-

ters V and the respective transmission power of the Bluetooth,

ZigBee, and WiFi radios (pb, pz , and pw, respectively).

Here the quantity of interest (QoI), i.e., total power con-

sumption, is a function of the design variable (radio trans-

mission power setting) and a vector of uncertain parameters

V , where the latter can be assumed to be outside the control

of the designer and not practically measurable in the current

context (e.g., radio backoffs caused by failed clear channel

assessment and inaccurate power meter reading). Considering

the availability of dedicated QoI data (Section III-A), it can be

assumed that the uncertainty therein is quantifiable. However,

given the observed large variance and non-normal distribution

of the platform power consumption data (Fig. 2), using the

first statistical moments (e.g., mean or median) is deemed not

suitable. Instead, perceiving platform power consumption as an

“expense”, the notion of s-risk [31] is used here − to provide

a robust or uncertainty-aware scalar measure of this expense

under any given radio setting.

The notion of s-risk, also known as “conditional-value-

at-risk”, originated in the Finance domain [32]. We use the

example of the platform power consumption with only WiFi

on (Ew), to further describe the s-risk concept. Assuming

that Ew follows a continuous probability distribution, for a

given risk-aversive parameter γ (0 ≤ γ ≤ 1), the s-risk of

Ew can be defined as the average value of Ew over its worst

1 − γ outcomes. Therefore, assuming N samples of Ew are

available, s-risk can be expressed as:

Sγ (Ew (V, pw)) =
1

(1− γ)N

∑

∀k∈Γ

[Ew (V, pw)k]

Γ = set of the highest (1− γ)100% values of Ew

(1)

It is readily evident from Eq. 1 that higher values of γ
leads to greater risk aversion or more conservative decisions.

Owing to its ability to consider tails of probability distribution

and ease of interpretation and computation, s-risk provides a

tractable stochastic measure of the worst-case scenarios. Based

on the definition in Eq. 1, we compute the following:

• s-risk value of the platform baseline power consumption

(Sp) when all radios are off;

• s-risk value of the platform power consumption with

only BLE on (Sb). (Raspberry Pi only supports single

transmission power for BLE.);

• s-risk values of the platform power consumption with

only ZigBee on (Sz) at the following different transmis-

sion power settings: pz ∈ {−6,−3, 0, 1, 2, 3, 4, 5} dBm;



• s-risk values of the platform power consumption with

only WiFi on (Sw) at the following different transmission

power settings: pw ∈ {1, 2, . . . , 20, 21} dBm.

All s-risk values are computed at a prescribed γ = 0.8, which

here calls for averaging over the worst 50 values in each case.

(a) With ZigBee on (b) With WiFi on

Fig. 3. Regression plots of s-risk values of platform power consumption as
functions of radio transmission settings.

The s-risk values of the platform power consumption with

only WiFi on and only ZigBee on are then separately modeled

as linear regressions of their respective transmission settings.

A piecewise linear regression is used in the case of WiFi

(Fig. 3(a)), and a single linear regression is used in the case of

ZigBee (Fig. 3(a)). The linear regressions provide a smoothing

of the large variations in the power traces, while also yielding

a monotonically increasing (instead of oscillatory) trend w.r.t.

transmission power − which promotes a more robust template

for selecting transmission settings (guided by power savings).

The trained regression functions can be expressed as:

Sz,0.8 = 2.05pz + 1.89e03, − 6 ≤ pz ≤ 5

Sw,0.8 =

{

1.14e01pw + 2.64e03, 1 ≤ pw ≤ 19
2.18e02pw − 1.27e03, 20 ≤ pw ≤ 21

(2)

B. Link Reliability (PRR) Modeling

The PRR measurements from Section III-A are used to

train models of PRR as functions of the respective radio

transmission power settings. Here, we particularly develop the

PRR models for ZigBee and WiFi, since multiple transmission

power settings are available for these two radios on our

platform, and they are the ones also considered in the optimal

radio and transmission selection process (Section V).

We observe large variations in PRR measurements, espe-

cially when the links are in the transitional region. Specifically,

at many sample transmission power settings and sender-

receiver distances, significant variations in PRR are observed.

The radio control scheme in practice will usually be unaware

of the exact distance between the sender and receiver, as well

as of the other uncertain environmental factors affecting the

PRR. Instead, what is measurable at runtime are the PRR

values being experienced by the individual radios. With this

perspective, we propose the state of the system associated with

the PRR recordings to be segregated into different performance

categories. In this context, the PRR and throughput of an

individual radio can also be simultaneously considered, where

the categories will then represent the state of the goodput (i.e.,

PRR × throughput) in that case.

In the current implementation, four categories, namely

“poor”, “low”, “medium”, and “high” performing states, are

defined w.r.t. PRR. For every transmission power setting of

a radio (WiFi/ZigBee), the top 25% PRR measurements are

assigned to the “high” state, the next 25% are assigned to

“medium” state, the subsequent 25% are assigned to “low”

state, and the bottom 25% are assigned to the “poor” state.

Although the recorded (sample) distance between the sender

and receiver is not explicitly considered when making this

state-category assignments (i.e., all PRR measurements under

a given radio setting are pooled together), the assignments are

implicitly sensitive to the distance − this is because sender-

receiver distance has a strong adverse impact on PRR.The

mean of the PRR values categorized under each state for a

given transmission setting is then computed to serve as the

representative bounding value of the PRR for that state (to

be referred to as the PRR state or state-representative PRR

values in the remainder of this paper). Regression functions

are subsequently used to fit the high, medium, low, and poor

state PRR values of a radio as four separate functions of its

transmission settings.

(a) PRR of ZigBee (b) PRR of WiFi

Fig. 4. Regression plots of PRR as functions of radio transmission settings;
PRR data segregated into poor, low, medium, and high states.

The PRR state values were observed to present S-shaped

trends w.r.t. the corresponding radio transmission power set-

tings. This observation led to the choice of logistic regression

(and sigmoid fit, a special case of logistic) to model the

“PRR-p” relationships between PRR values and transmission

power settings. An implementation called L4P [33] of the four

parameter logistic function is used, with the PRR expressed

as a function of the radio transmission power, p, as given by

PRR(p) = d+ (a− d)/(1 + (p/c)b) (3)

Here, the four parameters a, b, c, and d respectively represent

the minimum asymptote, the stiffness of the curve, the inflec-

tion point, and the maximum asymptote. The estimated values

of the 8 sets of these four parameters are not listed here, since

they are subjective to our recorded PRR measurements, and do

not add significant generalized value. Instead, the four logistic

functions, that are trained on the high/ medium/ low/ poor

state PRR values of ZigBee and WiFi, are respectively shown

in Figs. 4(a) and 4(b). It is readily evident from Fig. 4 that

while adequately capturing the nonlinear S-shaped “PRR-p”

relationship, the logistic regression also provides monotoni-

cally increasing “PRR-p” functions. Such a positive “PRR-



p” correlation is imperative to promoting robust transmission

setting modulation − where an optimal scheme should seek to

increase the radio transmission power, in response to the need

to increase PRR, over the entire range of available transmission

power settings. Given the noisy PRR measurements, such a

trend would have been difficult to achieve using other models

such as polynomial regression or interpolating functions.

V. OPTIMIZATION

A. Problem Formulation

As stated before, the generalized objective of the radio and

transmission selection is to adapt to the current needs of the

application (under the current environment) in a way that: both

packet loss and platform power consumption attributed to

the radios are minimized. These two criteria, packet loss and

power consumption, can be perceived as the state parameters;

and the choice of the radio type (ZigBee, WiFi, BLE, or any

of their combinations) and their transmission power setting

can be perceived as action variables. This perspective lends

to formulating the radio and transmission selection process

as an optimization problem. The Raspberry Pi only supports

single transmission power for BLE; we therefore only consider

ZigBee and WiFi in our problem formulation. (We plan to

implement our own CC2650 BLE driver under Contiki and

include BLE into our optimization as our future work.)

In the remainder of the paper, the PRR of WiFi and ZigBee

will be respectively represented by rw and rz (where 0 ≤
rw, rz ≤ 1), and the throughput of WiFi and ZigBee will be

expressed in terms of the number of packets transmitted, and

represented by hw and hz , respectively. The packet size for

WiFi and ZigBee is considered to be 64 bytes. The aggregated

goodput (Gw,z) of the radios is then given by:

Gw,z = hwrw + hzrz (4)

If only one of the radios is on, the aggregated gootput reduces

to the individual goodput of that radio. The power consump-

tion of the transmitting platform can then be expressed as a

function of the data rate (D), the aggregated goodput Gw,z , the

platform baseline power consumption (Ep), and the estimated

platform power consumption when radios operate at the given

transmission settings (Ew and Ez). The time averaged power

consumption of the platform is thus given by:

fE = min (1, D/Gw,z) (Ew + Ez − 2Ep) + Ep (5)

where (Ew + Ez − 2Ep) gives a measure of the power

consumption attributable to the active radios. This measure

is multiplied by the fraction of the time when the radios need

to be active in a given interval; the latter is given by the “data

rate/goodput” ratio (min (1, D/Gw,z)). When the WiFi is off,

Ew(Off) = Ep and rw(Off) = 0; similarly, when the ZigBee

is off, Ez(Off) = Ep and rz(Off) = 0. It is also important

to note that Eq. 5 assumes that the data is split between the

two radios based on the ratio of their individual goodputs, and

retransmission of lost packets is implicit to the system.

The generalized optimization problem, with the WiFi and

ZigBee transmission settings (pw and pz , respectively) serving

as the decision variables, can therefore be defined as follows:

min
pw,pz

fE (pw, pz, hw, hz)

subject to 1−
D

hwrw (pw) + hzrz (pz)
≥ ϵ

where
pw ∈ {Off, 1, 2, . . . , 20, 21} ;
pz ∈ {Off,−6,−3, 0, 1, 2, 3, 4, 5}

(6)

where the tolerance parameter ϵ represents a safety margin

in the “data rate/goodput” ratio; e.g., ϵ = 0.1 indicates a

safety margin of 10% in the “data rate/goodput” ratio. It

is important to note that both the objective function, fE
(Eq. 5), and the “data rate/goodput” (Eq. 6) constraint are

nonlinear, since the PRR is a nonlinear function of the radio

transmission power (as seen from Fig. 4). In addition, owing to

the uncertainties in the PRR and throughput of the radios, and

uncertainties in the power consumption of the platform, both

the objective and constraint functions are also uncertain. As

a result, we have an integer non-linear programming (INLP)

problem with uncertainties. Although the INLP problem is

NP-hard [34], the relatively limited number of transmission

power settings that the two radios can assume (WiFi: 22

and ZigBee: 9) alleviates the computational burden of solving

this optimization at runtime. On the other hand, uncertainties

are addressed using the combination of s-risk measures and

specific regression modeling of PRR and power consumption

(as presented in Section IV). The execution time of solving

this optimization problem is presented in Section VI-A.

An offline optimization study, illustrating the impact of

the PRR and power consumption uncertainties (when left

untreated) on the radio selection decisions, and the design

of our online optimization scheme for runtime radio and

transmission selection are discussed next.

B. Study on the Impact of Uncertainties

An offline optimization study is set up to investigate the im-

pact of environmental uncertainties (that cause PRR variations)

and systemic uncertainties (that cause power consumption

variations) on the radio selections. Therefore, in this study,

we neither employ any smoothing operation on the empirical

data nor use the regression models developed in Section IV.

Optimization is performed for different sample combina-

tions of distance between sender and receiver (X) and data

rate (D), where X ∈ {10, 20, 30, . . . , 150}m and D ∈
{25, 50, 75 . . . , 150}packets/s. A conservative safety margin

of 20% (ϵ = 0.2) is imposed on the data rate/goodput ratio.

For a given distance, data rate, and radio transmission settings

(pw, pz), the objective function is evaluated by directly com-

puting the s-risk value of fE (Eq. 5) from the platform power

measurements data pertaining to the stated radio transmission

settings and the PRR measurements data pertaining to given

distance and radio transmission settings (Section III); a risk-

aversive parameter of β = 0.8 is used here. Considering



the comparatively smaller variance in the throughput mea-

surements and the focus of the paper on dynamic systems

(where distance variation mainly affects PRR), the throughput

of ZigBee and WiFi is fixed at their respective measured

median values (hw = 800 packets/s and hz = 225 packets/s).

Since a small number of radio settings are available – 22×9
possible combinations of (pw, pz) – those violating the data

rate/goodput ratio constraint are first filtered out; then a simple

min-search is employed to identify the optimal feasible setting,

p∗w, p
∗
z , that yields the minimum power consumption. This pro-

cess is performed for all the sample combinations of sender-

receiver distance and data rate. The radio transmission setting

decisions yielded by this uncertainty-sensitive optimization

is shown in Fig. 5. For illustration purposes, the results for

three data rates (150, 175, and 200 packets/s) are shown. In

Fig. 5, the X-axis and Y-axis respectively represent the sender-

receiver distance and the data rate; in the top two plots, the

color of the circles represent the optimal WiFi and ZigBee

transmission settings in dBm; and a missing circle indicates

that particular radio was set to “OFF” (for the given data

rate/distance sample). The last plot in Fig. 5 indicates whether

the optimal radio setting succeeded (= 1) or failed (= 0) to

satisfy the data rate/goodput ratio constraint.

Fig. 5. Offline study: Optimal transmission power settings of ZigBee/WiFi
(operating together) and success (= 1) or failure (= 0) in meeting the “data
rate/goodput” ratio constraint for different distance and data rate combinations

The impact of noise/uncertainty of the empirical data (driv-

ing the nominal decisions) is apparent in the offline optimiza-

tion results as shown in Fig. 5. For example, it can be seen

that when increasing the sender-receiver distance, the radios

often switch back and forth between higher and lower settings

(instead of a more robust monotonic variation); secondly,

no feasible/successful radio setting combination is found for

distances of 90m and 110m, although feasible/successful

settings were found for higher distances of 120−140m. These

observations highlight the detrimental impact that directly

using recorded data (with their associated uncertainties)

can have on any empirical decision-making strategy. This

directly motivates 1) the uncertainty-aware power consump-

tion and PRR models developed in Section IV, and 2) the

new online algorithm that uses these models to offer robust

solutions, which will be described in the next section.

C. Online Optimization

The online optimization approach is developed to serve as a

first foray into training a light-weight solution for runtime se-

lection of radio and transmission power under an energy-scarce

and uncertain/dynamic environment − typical of application

domains such as home/commercial area networks or highly

mobile networks. The online scheme should be able to process,

interpret, and optimally respond to the uncertainties, without

resorting to expensive uncertainty quantification/resolution and

typical robust optimization techniques − these techniques are

generally not suited to be executed at runtime on embedded

systems with humble computing capacities.

Our approach aims to construct a novel runtime scheme

with the following desirable characteristics: (i) lightweight

execution, (ii) uncertainty-awareness, and (iii) promotion

of a power-saving radio/transmission selection policy. It

is important to reiterate that the unique models of power

consumption (s-risk models) and PRR (logistic regressions),

presented in Section IV, are particularly aimed at enabling

this light-weight runtime scheme. Drawing parallels to robust

control and Markov Decision Processes, the overall objective

of the online scheme can be stated as: to maintain/accomplish

desirable values of the state parameters (e.g., goodput and

platform power consumption) under a dynamic and uncertain

environment, by optimally modulating the action variables

(i.e., selection of radio(s) and transmission setting(s)).

A look-up table system (radio-settings-table) is first gen-

erated. Each row (i) and each column (j) of this table

respectively corresponds to a WiFi and a ZigBee transmission

setting (pjz, p
i
w); the table thus comprises a total of 22×9 cells

(See Eq. 6), where each cell Cij contains one scalar value and

two 4-tuples, as shown below:

Cij = {E(pz,j , pw,i), R(pz,j), R(pw,i)}

E(pjz, p
i
w) = Sz,0.8

(

pjz
)

+ Sw,0.8

(

piw
)

− 2Sp,0.8

R(pz,j) =
(

rhighz,j , rmedium
z,j , rlowz,j , r

poor
z,j

)

R(pw,i) =
(

rhighw,i , rmedium
w,i , rloww,i , r

poor
w,i

)

where i = 1, 2, . . . , 22; j = 1, 2, . . . , 9

(7)

In Eq. 7, the scalar E(pz,j , pw,i) represents the power con-

sumption attributed to the active radios, when operating at

the associated transmission setting combination (i, j); it is

derived from the s-risk measures of power consumption (Sec-

tion IV-A), where the s-risk value of the platform baseline

power consumption with radios off (Sp,0.8) is estimated to be

1831mW ; the s-risk values of the platform power consumption

with ZigBee on (Sz,0.8) and that with WiFi on (Sw,0.8) are

estimated from the linear regressions in Eq. 2.

The two 4-tuples in Eq. 7, R(pz,j) and R(pw,i), represent

the four PRR values corresponding to the high, medium, low,

and poor operational (or performance) states of ZigBee and

WiFi, respectively. These state values are given by the logistic

PRR functions developed in Section IV-B (Figs. 4(a) and 4(b)).

It is important to note that in practice, the look-up table is

stored/loaded in a more compact form, instead of the 22 × 9
table (described here for ease of illustration). Since the WiFi

and ZigBee settings (i, j) are essentially independent of each

other, the look-up table can be stored in the actual test bed in a

form that yields a frugal set of “1+(5×(22+9))” floating point



values, making it highly effective for fast runtime decision-

making on embedded devices.

The runtime radio and transmission selection,

that uses this lookup table, is designed as a

sense→classify→predict→search process.

• Sense: The online process measures PRR (reported by the

receiver) and throughput of each radio at a desired sampling

frequency; it computes the data rate/goodput ratio (Dt/Gt)

based on the time averaged values of PRR and throughput over

the last time window t. If the constraint, 1 − Dt/Gt ≥ ϵ, is

violated, it invokes the succeeding steps; otherwise, no change

is made. In addition, the process computes and checks if the

relative change in the D/G ratio is greater than 10%, i.e.,

|Dt/Gt − Dt−1/Gt−1| > 0.1. If this criteria is met, the

succeeding steps are again invoked; otherwise no changes

are made. The frequency of the constraint computation and

the D/G change computation depends on the designer’s

preferences. More risk aversive strategies will call for higher

frequency of the former, and more energy-conscious strategies

will demand higher frequency of the latter. Too frequent

changes however may not be recommended, as it might entail

unnecessary computing overhead on the system.

• Classify: If the sense process invokes the succeeding steps,

first, the current state of each radio’s performance, (ptw, r
t
w)

and (ptz, r
t
z), is classified into the high, medium, low, and poor

(or in-between) state categories. This is accomplished by the

following rule: Classify the current state of the WiFi into lying

at one or between the two categories, whose associated PRR

values immediately bound the measured PRR. For example

(using Fig. 4(b)), if the PRR of WiFi transmitting at 14dBm is

70%, then its performance/operation is classified to currently

lie between the “medium” and “low” states; or if the PRR

of WiFi transmitting at 4dBm is 90%, then its operation is

classified into purely “high” state. A similar rule applies to

ZigBee as well. More sophisticated classification schemes,

such as using Bayes rule, can also be readily implemented

within this process. This being the first implementation of this

novel online scheme, the simpler interval based classification

is instead employed here.

• Predict: After the classification step, the D/G constraint

(where G = ht
wr

t
w,ij + ht

zr
t
z,ij) and the energy objective

function (fE) are evaluated for each cell of the radio-settings

table, where the latter is given by:

f t
E,ij = min

(

1,
Dt

ht
wr

t
w,i + ht

zr
t
z,j

)

E(pjz, p
i
w) + Sp,0.8

where i = 1, 2, . . . , 22; j = 1, 2, . . . , 9
(8)

where the PRR values of ZigBee and WiFi for each cell of the

lookup table (rtw,ij , r
t
z,ij) correspond to the classified category.

More specifically, a linear interpolation is used. Taking the

previous example of PRR of WiFi transmitting at 14dBm to be

70% − where its operational state is estimated to lie between

the “medium” and “low” categories, the expected PRR of WiFi

(at that time point) for say 12dBm will be given by:

rtw,12 = rloww,12 +
rtw,14 − rloww,14

rmedium
w,14 − rloww,14

(

rmedium
w,12 − rloww,12

)

.

For purely high or purely poor states, 100 and 0 are used as

the respective upper and lower bounds for the interpolation.

• Search: Once the expected power consumption (fE,ij)

and the D/G constraint has been computed for all 22 × 9
ZigBee/WiFi settings, those violating the D/G constraint are

first filtered out. A min-search is then executed to identify the

optimal ZigBee/WiFi setting, (i, j)∗, as the one that yields the

smallest value of fE,ij . The system immediately switches to

this new setting. This step can be expressed as:

min
i,j

f t
E,ij

subject to 1−
Dt

ht
wr

t
w,ij + ht

zr
t
z,ij

≥ ϵ

where i = 1, 2, . . . , 22; j = 1, 2, . . . , 9

(9)

In practice, the filtering of feasible solutions and searching

for the optimal solution are both performed in computational

efficient ways − e.g., the filtering is initiated by searching

from the highest setting, (pjz, p
i
w) = (5, 21)dBm, and moving

somewhat diagonally, until a setting (k, l) is reached where

the constraint is violated; all other lower settings (i.e., ∀(i ≤
k, j ≤ l)) are filtered out without computing the constraint.

The median execution time of our online optimization is

49ms on an ARM processor. Section VI-A will present our

micro-benchmark evaluations in detail.

VI. EVALUATION

To examine the efficiency of ARTPoS, we perform a series

of experiments on our embedded platform presented in Sec-

tion III. We first measure the overhead of the key ARTPoS

operations such as the time duration of the optimizer selecting

the best radio(s) and needed transmission power(s) and the

radio turning on and off overhead. We then evaluate ARTPoS’s

impact on power consumption and link reliability, and compare

its performance against three baselines.

In all experiments, we deploy a benchmark application on

top of the ARTPoS by generating data packets periodically.

The ARTPoS is configured to perform the radio and transmis-

sion power selection in each period (i.e., 10s) based on the

measured PRR and throughput of the ZigBee and WiFi links. If

the then-active radio and transmission power setting is found to

be the best-suited, it is retained; else the ARTPoS switches to

a new best-suited setting. Non-overlapping channels are used

for ZigBee and WiFi to avoid interference. A power meter

from Monsoon Solutions [26] is connected to the sender to

measure the power consumption. Radios are turned off after

the last transmission in each period and the unselected one is

kept off to reduce power consumption for both our approach

and baselines. If both radios are selected for use, packets

are partitioned based on their throughput ratio, allowing the

platform to sleep earlier and save energy. Due to the lack of

a baseline that jointly optimizes the selection of both radio

and transmission power, we extend the ART [22], a practical

state-of-the-art transmission power control approach designed

for ZigBee, and create three baselines: one with only ZigBee

radio on running ART (ART-ZigBee), one with only WiFi radio



Fig. 6. CDF of the time duration for the online scheme to determine the
optimal radio and transmission power.

Fig. 7. Radio activities when the WiFi controller manages packet transmission
in a 10s period.

on running ART (ART-WiFi), and one with both radios on

operating at their default powers (Fixed-power).

A. Micro-Benchmark Experiments

We first evaluate the time duration taken by the designed

optimal online scheme to select the best radio(s) and minimum

needed transmission power(s). We record the time of the

events when the input is fed into the optimizer and the output

(i.e., radio and transmission power selection) is generated.

For this experiment, we repeat the measurement 10,000 times,

using randomly generated inputs, on our 1.2GHz 64-bit quad-

core ARMv8 CPU platform. Fig. 6 shows the cumulative

probability density (CDF) of the time duration of the 10,000

runs. As shown in Fig. 6, the median execution time is 49ms
(consuming 13.5mJ more energy than CPU idling), while

90% and 99% of the experimental runs finish within less than

225ms and 456ms, respectively.

We also measure the time duration and energy consumption

of other key operations in ARTPoS. Fig. 7 shows an example

power consumption trace where the WiFi controller switches

on the WiFi radio, transmits 1000 packets, and then switches

off the radio. The platform takes T2 − T1 = 0.44s and

consumes 0.92J of energy to turn on the radio and set its

transmission power. Transmitting 1000 packets takes T3−T2 =
1.38s, while turning off the radios takes T4−T3 = 1.02s. The

platform consumes 3.60J and 2.07J of energy to transmit

the data and turn off the radio, respectively. The radios are

kept off for the rest of the period T5 − T4 = 7.16s. These

results demonstrate the efficiency of the optimizer and the

radio controllers, as well as the advantage of turning the radios

off after transmissions in each period, and also illustrate the

significant need of developing new low-power platforms for

IoT applications to achieve lower baseline power consumption.

(a) Power consumption improvement over baselines

(b) PDR improvement over baselines

Fig. 8. Power consumption and PDR differences between ARTPoS and three
baselines (Fixed-power, ART-WiFi, and ART-ZigBee) at different data rates.

B. Impact on Power Consumption and Link Reliability

To understand the effectiveness of our ARTPoS and its im-

pact on power consumption and link reliability, we performed

a set of experiments comparing ARTPoS’s performance with

three baselines. We performed the four experimental runs,

respectively with ARTPoS, Fixed-power, ART-WiFi, and ART-

ZigBee, in a round robin fashion to minimize the temporal

effects of the dynamic wireless environment (for fair compar-

ison). Fig. 8 shows the power consumption and packet delivery

rate (PDR) comparisons between our ARTPoS and the three

baselines. To explore ARTPoS’s performance under different

traffic demands, we repeated the experiments by controlling

the application to generate data at different rates. Under each

data rate and approach, we repeat the experiments five times

and present the confidence intervals in Fig. 8.

As shown in Fig. 8(a), ARTPoS reduces the average

power consumption by 98.2mW and 86.3mW over Fixed-

power and ART-WiFi, respectively, when the data rate is

1000 packets/period. Similarly, ARTPoS achieves significant

power savings over Fixed-power and ART-WiFi at higher

data rates (51.4mW and 57.5mW at 3000 packets/period,

73.7mW and 91.2mW at 5000 packets/period, 111.9mW
and 112.7mW at 7000 packets/period). As a comparison for

power saving values, the CC2650 radio consumes 27.3mW
power when transmitting at 5dBm [3]. ARTPoS consumes

23.9mW more power than ART-ZigBee at the lowest data

rate since it needs to occasionally turn on the WiFi radio

to measure its channel condition. It is to be noted that

ARTPoS consumes more power than ART-ZigBee but ART-

ZigBee is not able to to deliver satisfactory PDRs at high

data rates because of the ZigBee’s limited bandwidth (i.e., the



median PDRs under ART-ZigBee are 68.7%, 44.6%, 31.0%,

and 25.0% when the data rate is 3000, 5000, 7000, and

9000 packets/period, respectively, i.e., significantly inferior

to ARTPoS (as seen from Fig. 8(b)). Neither WiFi nor ZigBee

alone can support the data rate of 9000 packets/period,

while our ARTPoS provides satisfactory PDRs by bundling

the WiFi and ZigBee radios. The experimental results show

that ARTPoS can effectively reduce the energy consumption,

while maintaining satisfactory link reliability.

VII. CONCLUSION AND FUTURE WORK

Given the dynamic nature of communication in IoT (e.g.,

mobile/vehicular and industrial wireless sensor networks), a

traditional one-radio-fits-all approach cannot meet the chal-

lenges under typically varying operating conditions and traffic.

This paper presents the ARTPoS system that makes avail-

able multiple wireless technologies at runtime and selects

the radio(s) and transmission power(s) most suitable for the

current conditions. New power and PRR modeling approaches

are presented, which allow the system to proactively adapt

to large variations in power consumption and link reliability

measurements. This is followed by the development of a light-

weight online optimization scheme, based on a sense-classify-

predict-search process. Experimental evaluations of the thus

formulated online optimization scheme, and its comparison

with different baselines, show that ARTPoS can remarkably

reduce the power consumption, while maintaining satisfactory

link reliability. We plan to integrate ARTPoS with the low

power listening technique to support efficient duty cycling and

enable model updating at runtime as our future works. In addi-

tion, we are also currently investigating approaches to extend

this fundamental radio/transmission selection technique from a

one-to-one communication to a many-to-many/network-scale

communication framework involving gateways. Decomposed

problem formulations and decentralized decision-making are

expected to serve as two other core elements in facilitating

this important next step in this research.
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