PUBLISHED BY

INTECH

openscience | open minds

World's largest Science,
Technology & Medicine
Open Access book publisher

o] i 4

107,000+
’
3,300+ INTERNATIONAL 113+ MILLION
OPEN ACCESS BOOKS AUTHORS AND EDITORS oML O
e,
= 1]
AUTHORS AMONG 0
BOOKS TOP 1% 12.2%
DELIVEREDTO OST O SO AUTHORS AND EDITORS
151 COUNTRES FROM TOP 500 UNIVERSITIES

Selection of our books indexed in the
Book Citation Index in Web of Science™
Core Collection (BKCI)

BOOK
CITATION
INDEX

/NpEXE®

WEB OF SCIENCE™

Chapter from the book Kinematics
Downloaded from: http://www.intechopen.com/books /kine matics

Interested in publishing with InTechOpen?
Contact us at book.department@intechopen.com

http://www.intechopen.com/books/kinematics
mailto:book.department@intechopen.com

Chapter 3

Path Planning in the Local-Level Frame for Small
Unmanned Aircraft Systems

Laith R. Sahawneh and Randal W. Beard

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.71895

Abstract

In this chapter, we propose a 3D path planning algorithm for small unmanned aircraft
systems (UASs). We develop the path planning logic using a body fixed relative coordi-
nate system which is the unrolled, unpitched body frame. In this relative coordinate
system, the ownship is fixed at the center of the coordinate system, and the detected
intruder is located at a relative position and moves with a relative velocity with respect
to the ownship. This technique eliminates the need to translate the sensor’s measure-
ments from local coordinates to global coordinates, which saves computation cost and
removes the error introduced by the transformation. We demonstrate and validate this
approach using predesigned encounter scenarios in the Matlab/Simulink environment.

Keywords: small unmanned aircraft systems, path planning, collision avoidance,
cell decomposition, Dijkstra’s search algorithm

1. Introduction

The rapid growth of the unmanned aircraft systems (UASs) industry motivates the increasing
demand to integrate UAS into the U.S. national airspace system (NAS). Most of the efforts
have focused on integrating medium or larger UAS into the controlled airspace. However,
small UASs weighing less than 55 pounds are particularly attractive, and their use is likely to
grow more quickly in civil and commercial operations because of their versatility and rela-
tively low initial cost and operating expense.

Currently, UASs face limitations on their access to the NAS because they do not have the
ability to sense-and-avoid collisions with other air traffic [1]. Therefore, the Federal Aviation
Administration (FAA) has mandated that UASs were capable of an equivalent level of safety to
the see-and-avoid (SAA) required for manned aircraft [2, 3]. This sense-and-avoid (SAA)

I N‘r EC H © 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

open science | open minds distribution, and reproduction in any medium, provided the original work is properly cited.

56 Kinematics

mandate is similar to a pilot’s ability to visually scan the surrounding airspace for possible
intruding aircraft and take action to avoid a potential collision.

Typically, a complete functional sense-and-avoid system is comprised of sensors and associ-
ated trackers, collision detection, and collision avoidance algorithms. In this chapter, our main
focus is on collision avoidance and path planning. Collision avoidance is an essential part of
path planning that involves the computation of a collision-free path from a start point to a goal
point while optimizing an objective function or performance metric. A robust collision avoid-
ance logic considers the kinematic constraints of the host vehicle, the dynamics of the
intruder’s motion, and the uncertainty in the states estimate of the intruder. The subject of path
planning is very broad, and in particular collision, avoidance has been the focus of a significant
body of research especially in the field of robotics and autonomous systems. Kuchar and Yang
[4] provided a detailed survey of conflict detection and resolution approaches. Albaker and
Rahim [5] conducted a thorough survey of collision avoidance methods for UAS. The most
common collision avoidance methods are geometric-based guidance methods [6-13], potential
field methods [14, 15], sampling-based methods [16, 17], cell decomposition techniques, and
graph-search algorithms [18-20].

Geometric approaches to collision avoidance are straightforward and intuitive. They lend
themselves to fast analytical solutions based on the kinematics of the aircraft and the geometry
of the encounter scenario. The approach utilizes the geometric relationship between the
encountering aircraft along with intuitive reasoning [8, 21]. Generally, geometric approach
assumes a straight-line projection to determine whether the intruder will penetrate a virtual
zone surrounding an ownship. Then, the collision avoidance can be achieved by changing the
velocity vector, assuming a constant velocity model. Typically, geometric approaches do not
account for uncertainty in intruder flight plans and noisy sensor information.

The potential field method is another widely used approach for collision avoidance in robotics.
A typical potential field works by exerting virtual forces on the aircraft, usually an attractive
force from the goal and repelling forces from obstacles or nearby air traffic. Generally, the
approach is very simple to describe and easy to implement. However, the potential field
method has some fundamental issues [22]. One of these issues is that it is a greedy strategy
that is subject to local minima. However, heuristic developments to escape the local minima
are also proposed in the literature [23]. Another problem is that typical potential field
approaches do not account for obstacle dynamics or uncertainly in observation or control. In
the context of airborne path planning and collision avoidance, Bortoff presents a method for
modeling a UAS path using a series of point masses connected by springs and dampers [24].
This algorithm generates a stealthy path through a set of enemy radar sites of known locations.
McLain and Beard present a trajectory planning strategy suitable for coordinated timing for
multiple UAS [25]. The paths to the target are modeled using a physical analogy of a chain.
Similarly, Argyle et al. present a path planner based on a simulated chain of unit masses placed
in a force field [26]. This planner tries to find paths that go through maxima of an underlying
bounded differentiable reward function.

Sampling-based methods like probability road maps (PRM) [16] and rapidly exploring ran-
dom trees (RRTs) [17] have shown considerable success for path planning and obstacle

Path Planning in the Local-Level Frame for Small Unmanned Aircraft Systems 57
http://dx.doi.org/10.5772/intechopen.71895

4

/o ' 8y
possible avoidance/ [' ~
\ ; N

maneuver
/ Intruder Aircraft

potential collision site

ownship

')'

virtual collision volume

— i
— 1 o

Intrudef‘Aircraft

Figure 1. The geometry of an encounter scenario.

avoidance, especially for ground robots. They often require significant computation time for
replanning paths, making them unsuitable for reactive avoidance. However, recent extensions
to the basic RRT algorithm, such as chance-constrained RRT" [27] and close-loop RRT [28],
show promising results for uncertain environments and nontrivial dynamics [28-30]. Cell
decomposition is another widely used path planning approach that partitions the free area of
the configuration space into cells, which are then connected to generate a graph [20]. Generally,
cell decomposition techniques are considered to be global path planners that require a priori
knowledge of the environment. A feasible path is found from the start node to the goal node by
searching the connectivity graph using search algorithms like A" or Dijkstra’s algorithm [18].

The proposed approach in this work will consider encounter scenarios such as the one
depicted in Figure 1, where the ownship encounters one or more intruders. The primary focus
of this work is to develop a collision avoidance framework for unmanned aircraft. The design,
however, will be specifically tailored for small UAS. We assume that there exists a sensor(s)
and tacking system that provide states estimate of the intruder’s track.

2. Local-level path planning

A collision event occurs when two aircraft or more come within the minimum allowed dis-
tance between each other. The current manned aviation regulations do not provide an explicit
value for the minimum allowed distance. However, it is generally understood that the mini-
mum allowed or safe distance is required to be at least 500 ft. to 0.5 nautical miles (nmi) [21, 31].
For example, the near midair collision (NMAC) is defined as the proximity of less than 500 ft.
between two or more aircraft [32]. Similarly and since the potential UAS and intruder aircraft

58 Kinematics

cover a wide range of vehicle sizes, designs, airframes, weights, etc., the choice of a virtual
fixed volume boundary around the aircraft is a substitute for the actual dimensions of the
intruder.

As shown in Figure 2, the choice for this volume is a hockey-puck of radius d; and height £, that
commonly includes a horizontal distance of 500 ft. and a vertical range of 200 ft. [1, 33, 34].
Accordingly, a collision event is defined as an incident that occurs when two aircraft pass less
than 500 ft. horizontally and 100 ft. vertically.

In this work, we develop the path planning logic using a body-centered relative coordinate
system. In this body-centered coordinate system, the ownship is fixed at the center of the
coordinate system, and the intruder is located at a relative position p, and moves with a
relative velocity v, with respect to the ownship [35].

We call this body-centered coordinate frame the local-level frame because the environment is
mapped to the unrolled, unpitched local coordinates, where the ownship is stationary at the
center. As depicted in Figure 3, the origin of the local-level reference is the current position of
the ownship. In this configuration, the x-axis points out the nose of the unpitched airframe, the
y-axis points points out the right wing of the unrolled airframe, and the z-axis points down
forming a right-handed coordinate system. In the following discussion, we assume that the
collision volume is centered at the current location of the intruder. A collision occurs when the
origin of the local-level frame penetrates the collision volume around the intruder.

L.
K collision volume 3

P
—_——_—— ==
|
|

I .
2001t |

Figure 2. A typical collision volume or protection zone is a virtual fixed volume boundary around the aircraft.

Avoidance *Goal point
1000 h T % 1000:
800 pat,/ < .\
>\\ Intruder _ s
g oo S AN 2 L
Sl S < . Collision volume
g \ 5 o .
S 200f \ 3 . centered at intruder
g -2001 / 2
T -400) ¥ :Sgg 50
-600] 10
800) 0 1000
N - Heading directi (-500 o0 0
~1%000 50 0 500 1000 eading dircction (m)_1000™ 1009 Right wing direction (m) 2 Radingdrectonamy,
Right wing direction (m)
Top view 3D view Side view

Figure 3. Local-level reference frame.

Path Planning in the Local-Level Frame for Small Unmanned Aircraft Systems
http://dx.doi.org/10.5772/intechopen.71895

The detection region is divided into concentric circles that represent maneuvers points at
increasing range from the ownship as shown in Figure 4, where the radius of the outmost
circle can be thought of as the sensor detection range. Let the region in the space covered by the
sensor be called the workspace. Then, this workspace is discretized using a cylindrical grid in
which the ownship is commanded to move along the edges of the grid. The result is a directed
weighted graph, where the edges represent potential maneuvers, and the associated weights
represent the maneuver cost and collision risk. The graph can be described by the tuple
G(N,E,C), where N is a finite nonempty set of nodes, and £ is a collection of ordered pairs
of distinct nodes from N such that each pair of nodes in € is called a directed edge or link, and
C is the cost associated with traversing each edge.

The path is then constructed from a sequence of nonrepeated nodes (ni,ny, -, ny) such that
each consecutive pair (n;, n;q) is an edges in G. Let the detection range d, be the radius of the
outermost circle, and r be the radius of the innermost circle so that d, = mr. As shown in
Figure 6, let £}, [= 1,2, -, m be the Ith level curve of the concentric circles. Assume that the
level curves are equally partitioned by a number of points or nodes such that any node on the
Ith level curve, £; connects to a predefined number of nodes k in the next level, that is, in the
forward direction along the heading axis as depicted in Figure 4. The nodes on the graph can
be thought of as predicted locations of the ownship over a look-ahead time window. Addi-
tionally, we assume that only nodes along the forward direction of the heading axis, that is,
x = 0 connect to nodes in the vertical plane. This assumption allows to command the aircraft to
climb or descend by connecting to nodes in the vertical plane as shown in Figure 4. Let the first
level curve of the innermost circle be discretized into |£1| = k + 2 nodes including nodes in the
vertical plane. Then, using the notation |A| to denote the cardinality of the discrete set .A, the
number of nodes in the Ith level curve is given by

Goal point
1000 v Int d
s00l < ‘ ntruder
- g o,
}

600F

\« =

400 py N/ . LN A A S Climb maneuver
200 — ‘ Wy 4 Q

-200f

-400F

Heading direction (m)
o

-600
-800(- Descend maneuver

19%%0 500 0 500 1000
Right wing direction (m)

Top view Side view

Figure 4. Discretized local-level reference workspace. The three concentric circles represent three maneuvers points.

59

60

Kinematics

k+2 if =1,
ICII:{ M

2L 4| +20+1 if 1=2,3,,m,

where the total number of nodes is |M| = Y}, | £/|. For example, assuming that the start node
is located at the origin of the reference map and given that k = 3, that is, allowing the ownship
to fly straight or maneuver right or left. The total number of nodes in the graph including the
start and destination node is given by

m+1
W] = <Zz’+2l3>+1.)
=1

Figure 5 shows an example of a discretized local-level map. In this example, k = 3 and m =3,
and the total number of nodes in the graph |[A/] is 39.

Assuming that the ownship travels between the nodes with constant velocity and climb rate,
the location of the ith node at the /th level curve, and n;; in the horizontal plane of the graph is
given by

T
n; = [lrsin lpf‘7 Ir cos 112)]-‘:17 O} , 3)

where ¢! = Z{ﬂ and j = {—#, —l g, 1,%} and 7 is the allowed head-

ing. In the vertical plane, the location of nodes is n;, = [O, 0, i]lhd} T, where] ={1,2,-,1} and
K" are the altitude change at each step as shown in Figure 6.

For example, if gbd =n/4, h'= 50 m, r= 500 m, k= 3, and |L1] = 5, then we have
ji={-1,0,1}, j={-1,1}, 1;)} ={-mn/4,0,—m/4}, and the locations of nodes at £; in the

Ny N3y
Intruder Goal node °
39 n
(M e > s n3s Goal node
7 25 o,
. N — e
28, n E &
i« 23;0\‘ = |n ns ny T
Ja'/ 29 nzz\k E
y A . =S
/M . of
o S "y - g N6 n36
v \\ »
zg N, ey \
s \ / LN Mo\
M3z /;Lﬂ T th\ \ ey nzy
P g 5 & Ty
h / AN ™) b
N33 / 2\ -
om Heading Direction (m)
(a) (b)

Figure 5. Example of discretized local-level map. (a) Top view: location and index of nodes and (b) side view: location
and index of nodes.

Path Planning in the Local-Level Frame for Small Unmanned Aircraft Systems 61
http://dx.doi.org/10.5772/intechopen.71895

nj, = [lrsiny}, Ir cos Y, 0]T

le’l = [O,O,flhd]T

d, — L, L3

n]—,l = [0,0, —]_lhd]T

Top view Side view

Figure 6. Nodes location in the local-level reference frame.

horizontal plane are {(—500 sin 71/4, 500 cos 7t/4,0)", (0,500,0)", (500 sin 7t/4,500 cos 71/4,0)"},
and in the vertical plane are {(07 0, SO)T7 (0,0, —SO)T}.

The main priority of the ownship where it is under distress is to maneuver to avoid predicted
collisions. This is an important note to consider when assigning a cost of each edge in the
resulting graph. The cost associated with traveling along an edge is a function of the edge
length and the collision risk. The cost associated with the length of the edge ¢; ;11 that connects
between the consecutive pair nodes (n;,n;i1) is simply the Euclidean distance between the
nodes n; and n;;; expressed as

Crleiiv1) = Imipa — .)

The collision cost for traveling along an edge is determined if at any future time instant, the
future position of the ownship along that edge is inside the collision volume of the predicted
location of an intruder. An exact collision cost computation would involve the integration of
collision risk along each edge over the look-ahead time window 7 € [t,t 4+ mT].

A simpler approach involves calculating the collision risk cost at several locations along each
edge, taking into account the projected locations of the intruder over the time horizon r.
Assuming a constant velocity model, a linear extrapolation of the current position and velocity
of the detected intruders are computed at evenly spaced time instants over the look-ahead time
window. The look-ahead time interval is then divided into several discrete time instants. At
each discrete time instant, all candidate locations of the ownship along each edge are checked
to determine whether it is or will be colliding with the propagated locations of the intruders.
For the simulation results presented in this chapter, the collision risk cost is calculated at three

62 Kinematics

points along each edge in G. If v, is the speed of the ownship, then the distance along an edge
is given by v,T, where T = r/v,. The three points are computed as

ni—n;

=n;+v,[g—, 5

P T ©)
n —n;

=p, v, Ts— L 6

Pr =Pty —n] ©
n; —n;

Py =p,+ 0. s ——)

S 7
i1 —ny|

where T, = T/3. Let the relative horizontal and vertical position of the intruder with respect to
the ownship at the current time ¢ be p, (f) and p, (#), respectively. Define the collision volume as

C(p, (1) = {d€R?: p, ()] — d<d. and heR: |p, —h|<h,/2}. ®)

The predicted locations of each detected intruder over time horizon T at three discrete time
samples T, are

Py, (E+ (1430 =1)T5) = p,,,, (1) + Vi () (1 +3(1 = 1)) T, ©)
P, (t+ 2430 =1)Ts) = p,,,(£) +Vr, (H(2+3(1 = 1))T, (10)
Py, (E+ B +3(=1)Ts) = p,,, () + Vi (B +3(1 = 1)) T, 1)

T
where p,_(t) = [p,(t)7 P, (t)] eR®and v, (t) = [0,(), v,.(H)]" €R® be the 3D relative position

and velocity of the intruder with respect to the ownship in the relative coordinate system,
where v,(t) and v, (t) are the relative horizontal velocity and vertical speed at the current time ¢.

In Egs. (9)-(11), if ¢; ;11 is the current edge being evaluated, then the node n;;; determines the
value of I. In other words, if n;;1 € £y, then [= 1. For example, if we are to compute the three
points along the edge e;, in Eqs (5)-(7), then n, € £; and [= 1. Using the definition of the
binary cost function, the collision risk cost associated with the e; ;11 edge with respect to each
detected intruder is given by the expression

Conlint, o) = {m if any of p;, p, or p3ec(pm(t+ (€+3(1— 1))T5)), (12)
0 otherwise,

where ¢ = {1,2,3}. In Eq. (12), the e or the maximum allowable cost is assigned to any edge
that leads to a collision, basically eliminating that edge and the path passing through it. The
total collision risk associated with the ith edge is given by

M
Caileiis1) = Y Caalint, e;i11), (13)

int=1

where M is the number of detected intruders.

Path Planning in the Local-Level Frame for Small Unmanned Aircraft Systems
http://dx.doi.org/10.5772/intechopen.71895

A visual illustration of the collision risk computation is shown in Figure 7. The propagated
collision volume of a detected intruder and the candidate locations of the ownship over the
first-time interval [t + T, t+ 3Ts] both in the horizontal and vertical plane is depicted in
Figure 7a and b. Clearly, there is no intersection between these candidate points the ownship
may occupy and the propagated locations of the collision volume over the same interval. Then,
according to Eq. (13), the cost assigned to these edges is zero. Next, all candidate locations of
the ownship along each edge over the second time interval [t 4 4T, t 4 67| are investigated.
As shown in Figure 7c, edges e, 7, €5 3, and e, g intersect with the predicted intruder location at
time t 4+ 4T and t 4 5T, respectively. Similarly, edges e3 15 and e3 16 in the horizontal plane
intersect with the predicted intruder location at time ¢ 4-4Ts as shown in Figure 7d. Accord-
ingly, the maximum allowable costs will be assigned to these edges, which eliminate these
edges and the path passing through them. All the candidate locations of the ownship over the
time interval [t + 7T, t + 9T;] do not intersect with the predicted locations of the intruder as
shown in Figure 7e and f. Therefore, by the time, the ownship will reach these edges the
detected intruder will be leaving the map, and consequently, a cost of zero is assigned to edges
belonging to the third level curve Ls.

To provide an increased level of robustness, an additional threat cost is added to penalize
edges close to the propagated locations of the intruder even if they are not within the collision
volume. At each discrete time instant, we compute the distances from the candidate locations
of the ownship to all the propagated locations of the intruders at that time instant. The cost of
collision threat along each edge is then given by the sum of the reciprocal of the associated
distances to each intruder

1 1 1

Cy(int,ejir1) = —+—+—. 14
th(2 1) L I s (14)
where dj, d», and d3 are given by

7

dr = [[py = Py (E+ (1430 -)T)

d = [p, = Pt 4 @+ 30— 1)T)

7

7

ds = [Py = Pyt + B +30 - 1))T)

and the total collision risk cost associated with the ith edge with regard to all intruders is given by

M
Cunleiis1) = Y Cu(int, e 111)- (15)

int=1

For example, the edges ¢1,2, €1,3, €1,4, €1,5, and e1,6 shown in Figure 7a are not intersecting with
the propagated collision volume locations over the first-time interval, yet they will be penalized
based on their distances to the predicated locations of the intruder according to Eq. (15). Note
that edge e, will have greater cost as it is the closest to the intruder among other candidate
edges.

63

64 Kinematics

Intruder predicted locations at

Intruder detected time
it ti
attime t = =) t+ T:
Z \ b et + 2, . .
1 2 : Candidate locations
Y Y ¥ t+ 3T, of the ownship n3
z
A A —
% E t+ 2T, oy, ne
Candidate locations of the E| I
ownsk,\ip at time 7 ¢+ 37, o B t+ T \5 ns N5
t+72T; T ers 3 > o
- ny LOT) nys
\ |
Ne
o % s 2 Inlru.der
predicted
ny Ny locations
N3g
Heading Direction (m)
(@) (b
Intruder detected at time ¢t
£ R » -,
4 ‘ »
A \{ntrm.:ler pred.icted
v t i . . .
Je ocations at time Candidate locations of the ownship
44T, ¢+ 6T, ns
t+ 67,
—_ t + 5T,
f t+ 5T E .
g t + 4T e T34
f i = '
13 et 46T,] ns s nas
- =) o > n3y
Candidate K : n ny ny o mys ©
locations of & 1y _ I-
the ownship .|
e Ny M6
1- 5
Intruder predicted ny; ngy
locations % »
N3g
Heading Direction (m)
(d)
Intruder detected at time t
Candidate locations of the ownship
t+9T,
t+ 8T,
n33
_ t+ 7T,
g ny N3y
Intruder predicted £
X X =) ns
locations at time "3 5 nys n3s
jas) 1 n:
t + 8T, 39
s n ny ny nys °
t+8T Intruder predicted £+ 9T, t+ 7T, n ny, nig
t+9T; Candidate locations locations 1
of the ownship t+ 7T ny n
37
t+8T; b
t + 9T, Lo
+97s Heading Direction (m)
(e))

Figure 7. Example illustrating the steps to compute the collision risk. In this example, we have k = 3 and m = 3. (a) Top
view: predicted locations of intruder (less transparent circles), and candidate locations of ownship; (b) side view:
predicted locations of intruder (less transparent rectangles), and candidate locations of ownship; (c) predicted locations
of intruder and candidate locations of ownship over time window (t + 4T5, t + 6T5); (d) time window (f + 4T5, t + 6T5); (e)

time window (¢ + 775, t + 9T5); (f) time window (¢ + 775, t + 9T5).

Path Planning in the Local-Level Frame for Small Unmanned Aircraft Systems
http://dx.doi.org/10.5772/intechopen.71895

Another objective of a path planning algorithm is to minimize the deviation from the original
path, that is, the path the ownship was following before it detected a collision. Generally, the
path is defined as an ordered sequence of waypoints W = wj, wy, ---.wy, where
Wi = (Wy, i, We i, wd,i)T €R3 is the north-east-down location of the ith waypoint in a globally
known NED reference frame. The transformation from the global frame to the local-level frame
is given by

w) = RZ, (¥,)wi, (16)

where
cosy, siny, 0

R,g (Izl)o) = | —sin % cos lvba 0
0 0 1

where ¢, is the heading angle of the ownship. Let w, be the location waypoint of the ownship
at the current time instant ¢ and wy € W be the next waypoint the ownship is required to
follow. Assuming a straight-line segment between the waypoints ws and wy, then any point on
this segment can be described as £(g) = (1 — @)ws + pwy where @€0,1], and the minimum
distance between an arbitrary node n; in G can be expressed by [36]

D(g*), if *€][0,1],
D(ws, wp, ;) £ |[n; —wsl, if @* <0, 17)
an —wy||, if @*>1,
where
(s =) (w _Wf))2
S 1 s
D(Q") = | lImi — we|* -) /
[[we — wy
and

. (we—n)" (W —wy)

Q:

2

[lws = w

Then, the cost that penalizes the deviation of an edge in G from the nominal path is given by
Caeo(€ji41) = D(Ws, Wg, ;). (18)

If small UASs are to be integrated seamlessly alongside manned aircraft, they may require to
follow right-of-way rules. Therefore, an additional cost can be also added to penalize edges that
violate right-of-way rules. In addition, this cost can be used to favor edges in the horizontal

65

66 Kinematics

plane over those in the vertical plane. Since the positive direction of the y-axis in the local-level
frame is the right-wing direction, it is convenient to define right and left maneuvers as the

positive and the negative directions along the right-wing axis, respectively. Let €;2n; ; — n; be
I . . . T .
the direction vector associated with the edge ¢;;+1 in G, where n; 2 (x;,y,,z) €R’ is the

location of ith node in the local-level reference frame. Let the direction vector e; be expressed
. T
as e; = (e,vx, éi, eg) €R3. We define E£ (e, L, R, eiZ)T eR* where e;, and ¢; are the x and the z

components of ;. The y-component of e; is decomposed into two components: left L and right
R, that are defined by

L=0R= ei, if e, > 0. (19)

. Ré{Leiy,RO if e <0,
If we define the maneuvering design matrix to be J = diag([0, cz, cr, ¢:]), then the maneuvering
cost associated with each edge is given by

Cu(eiix1) = \/E'JE, (20)

The costs ¢;, and cg allow the designer to place more or less cost on the left or right edges.
Similarly, c, allows the designer to penalize vertical maneuvers. Multiple values of these cost
parameters may be saved in a look-up table, and the collision avoidance algorithm choses the
appropriate value based on the geometry of the encounter.

The overall cost for traveling along an edge comes from the weighted sum of all costs given as
[35]

Cleiiv1) = Crleyiv1) + Cealeiiv1) + k1Culeiiv1) + k2Caeo(eyiv1) + k3Cri(e 1), (21)

where k1, ky, and k3 are positive design parameters that allow the designer to place weight on
collision risk or deviation from path or maneuvering preferences depending on the encounter
scenario. Once the cost is assigned to each edge in G, then a graph-search method can be used
to find the least cost path from a predefined start point to the destination point. In this work,
we have used Dijkstra’s algorithm.

Dijkstra’s algorithm solves the problem of shortest path in a directed graph in polynomial time
given that there are not any negative weights assigned to the edges. The main idea in Dijkstra’s
algorithm is to generate the nodes in the order of increasing value of the cost to reach them. It
starts by assigning some initial values for the distances from the start node and to every other
node in the graph. It operates in steps, where at each step, the algorithm updates the cost
values of the edges. At each step, the least cost from one node to another node is determined
and saved such that all nodes that can be reached from the start node are labeled with cost
from the start node. The algorithm stops either when the node set is empty or when every node
is examined exactly once. A naive implementation of Dijkstra’s algorithm runs in a total time

complexity of O(\.N' |2> However, with suitable data structure implementation, the overall

time complexity can be reduced to O(|€| + |N|log2|N) [23, 35].

Path Planning in the Local-Level Frame for Small Unmanned Aircraft Systems
http://dx.doi.org/10.5772/intechopen.71895

The local-level path planning algorithm generates an ordered sequence of waypoints
W, = Wi, We, -, Wei. Then, these waypoints are transformed from the relative reference
frame to the global coordinate frame and added to the original waypoints path Y. When the
ownship is avoiding a potential collision, the avoidance waypoints overwrite some or all of the
original waypoints. Next, a path manager is required to follow the waypoints path and a
smoother to make the generated path flyable by the ownship. One possible approach to follow
waypoints path is to transit when the ownship enters a ball around the waypoint W; or a better
strategy is to use the half-plane switching criteria that is not sensitive to tracking error [36].
Flyable or smoothed transition between the waypoints can be achieved by implementing the
fillet maneuver or using Dubins paths. For further analysis on these topics, we refer the
interested reader to Ref. [36].

3. Simulation results

To demonstrate the performance of the proposed path planning algorithm, we simulate an
encounter scenario similar to the planner geometry shown in Figure 8. The aircraft dynamics
are simulated using a simplified model that captures the flight characteristics of an autopilot-
controlled UAS. The kinematic guidance model that we considered assumes that the autopilot
controls airspeed, v,, altitude, &, and heading angle, ¢. Under zero-wind conditions, the
corresponding equations of motion are given by

B, = vacosy, (22)

p, = vgsing, (23)
v=50 (24)

0 = by (05 — v,) (25)

¢ =by(¢° ~) (26)
i=by (hf L h) +by(K —), 27)

where p,, p, are the north-east position of the aircraft. The inputs are the commanded altitude,
k¢, the commanded airspeed, ¢S, and the commanded roll angel, ¢°. The parameters by, b, by,

and bl are positive constants that depend on the implementation of the autopilot and the state
estimation scheme. For further analysis on the kinematic and dynamic guidance models for
UAS, we refer the interested reader to [36]. In the following simulation, the ownship starts at
(0,0,—-200)" in the NED coordinate system, with an initial heading of 0 deg. measured from
north and follows a straight-line path at a constant speed of 22 m/s to reach the next waypoint
located at (1500, 0, —200)". The encounter geometry includes three intruders flying at different
altitudes: the first is approaching head-on, the second is converging from the right, and the
third is overtaking from the left. We chose the intruders’s speed similar to the known cruise
speed of ScanEagle UAS, Cessna SkyHawk 172R, and Raven RQ-11B UAS. The speed of the

67

68 Kinematics

1500 T T T T

intruder 1
1000 - 1
intruder 2
500 ~
N
_ mlmdcrl:‘\\\
) e
= o 4
E intruder 3 *ownship
Z
500
’é‘ ¥ ownship
500 1 = o
c » -
3 intruder 3 1500
e 3
] 500 .
' 1500
-1000 1
1500 L L L L |
-1500 -1000 -500 0 500 1000 1500 500
East (m dE
(m) North (m) 1000 1000 East (m)
4500 1500
(@)
1500 T — T T
intruder 1
300 - 1 . . .
1000 - . i g al
o A intrudér 2
: : : 200 1
E ' :
c . o : E 100 |- -
s} : - - ¥ ¥ .
2 ituders :) intruder 1
@ 0k @ SOOI SOVOUTOOSIOIN SISO | — intruder 3 .
= Z £ intruder 2
° 3 =z
=) g " =
£ : iy 5 =3
he] » L ; g
@ ¢ ; 3
O -500 . G . T
I
-100 1
-1000 < 3 ' 4
. 200 8
1500 . [e . 300 L L L L |
-1500 -1000 -500 o 500 1000 1500 -500 0 500 1000 1500
Right wing direction (m) Heading direction (m)
(@ (d)

Figure 8. Encounter geometry for the ownship and three intruders at t = 0.1 s. (a) Overhead view of initial locations of
aircraft; (b) 3D view of initial locations of aircraft; (c) overhead view of reference frame; (d) side view of relative reference
frame.

intruders is 41, 65, and 22 m/s, respectively. In addition, the intruders are assumed to fly at
a constant speed the entire simulation period. As shown in Figure 8, the initial locations

of intruders in the NED coordinate system are (—25,1000,—-225)", (500,1000, —180)", and
(25,500, —200)", respectively, with initial heading of 180, —90, and 0°, respectively.

In the following simulation, our choice of the collision volume is a cylinder of radius d; =
152.4 m (500 ft) and height h; = 61 m (200 ft) centered on each of the intruders. A collision
incident occurs when the horizontal relative range and altitude to the ownship are simulta-
neously below horizontal and vertical minimum safe distances ds; and h;/2. We assume that
there exists a sensor and tracking system that provides the states of the detected intruders.

Path Planning in the Local-Level Frame for Small Unmanned Aircraft Systems
http://dx.doi.org/10.5772/intechopen.71895

However, not every aircraft that is observed by the sensing system presents a collision threat.
Therefore, we implemented a geometric-based collision detection algorithm to determine
whether an approaching intruder aircraft is on a collision course. The collision detection
approach is beyond the scope of this work, and we refer the interested reader to [37].

At the beginning of simulation, the predicted relative range and altitude at the closest point of
approach (CPA) are shown in Table 1. Imminent collisions are expected to occur with the first
and second intruders as their relative range and altitude with respect to the ownship are below
the defined horizontal and vertical safe distances. The time remaining to the closest point of
approach tcpa with respect to the first and second intruders is 15.77 and 16.56 s, respectively.
The scenario requires that the ownship plans and executes an avoidance maneuver well before
the tcpa. This example demonstrates the need for an efficient and computationally fast avoid-
ance planning algorithm. Table 2 shows the total time required to run the avoidance algo-
rithm, and the maximum and average time required to execute one cycle. The results show that
the proposed algorithm takes a significantly reduced time in computation with an average and
maximum time to execute one cycle of the code of 20 ms and 0.1326 s, respectively, and a total
time of 0.3703 s to resolve the collision conflict.

Figure 9 shows the planned avoidance path by the ownship. These results show that the
avoidance path safely maneuvers the ownship without any collisions with the intruders. In
addition, the ownship should plan an avoidance maneuver that does not lead to a collision
with intruders that were not on a collision course initially such as the case with the third
intruder. Initially, the third intruder and the ownship are flying on near parallel courses. The
relative range and altitude at CPA with respect to the third intruder are 437.14 and 4361.07 m,
respectively, and the time remaining to the CPA is 1982.25 s. Obviously, both aircrafts are not
on a collision course. However, the third intruder is descending and changing its heading
toward the ownship. The path planner, however, accounts for predicted locations of the
detected intruder over the look-ahead time window, allowing the ownship to maintain a safe
distance from the third intruder. This example demonstrates that the proposed path planner
can handle unanticipated maneuvering intruders. Once collisions are resolved the path plan-
ner returns the ownship to the next waypoint of its initial path.

Intruder lp, (tcpa)|| (m) P,,Z(tCPA>| (m) tcpa (s)
1 24.90 25 15.77
2 141.33 20 16.56
3 437.14 4361.07 1982.25

Table 1. Relative range and altitude, and the time remaining to the closest point of approach.

Total run time (s) Max. run time (one cycle) (s) Average run time (one cycle) (s)

0.3703 0.1326 0.0206

Table 2. Collision avoidance algorithm run time.

69

70 Kinematics

1500 T T T T T T T T T

ownship

1000 [‘ q

500 -

/ /n/wnsmp avoidance
or path 1

500

North (m)

1000 |

-Down (m)

1500
-1500 - 1 1000
500

-2000 i g 3000

L L L L L L L L L L -1000
3500 -3000 2500 -2000 -1500 -1000 -500 0 500 1000

East (m) East (m)

(@) (b)

-500
-1000

1500

-2000 North (m)

-2000

1000

Figure 9. Avoidance path followed by the ownship and path tracks of the intruders at t = 75 s. (a) Overhead view of
avoidance path and (b) 3D view of of avoidance path.

The relative range between the ownship and the intruders is shown in Figure 10. The results
show that no collisions have occurred, and that the ownship successfully planned an avoid-
ance maneuver. The avoidance planner ensures that when the relative horizontal range is less
than d;, the relative altitude is greater than /2. For example, as shown in Figure 10b, the
relative range to the first intruder over time interval [16.2, 18] s is below d,. However, over the
same time interval, the relative altitude is above 5 /2.

Another important aspect to evaluate the performance of the proposed algorithm is its ability to
reduce the length of the avoidance path while avoiding the intruders. This is important because
it reduces the amount of deviation from the original path and ultimately the flight time, which is
of critical importance for the small UAS with limited power resources. Table 3 shows that the
length of the avoidance paths is fairly acceptable compared to the initial path length.

—intruder | = =intruder 2 ===intruder3 - d, ~ h ‘—inlruder 1 = =intruder 2 ===intruder 3~ d_—h_

24000 F T T T T T : == F T T T T T - .]
‘:/ S 20f===mmmmmmmmmmmmm === === 1
= &0

E £ 100 x:17.2 1
= 2000 = Y:142.3

2 2 0r]
= 5100} ,
= 0 2 | | | ‘ | | ‘ |

162 164 166 168 17 172 174 176 178 18

= —_

g B

5 5 60

E z 40

= e

2 £2

= =

2 S of 1

0 10 20 30 40 50 60 70 162 164 166 168 17 172 174 176 178 18
time (s) time (s)

(a) (b)

Figure 10. Relative horizontal range and altitude between the ownship and intruders. (a) Horizontal range and relative
altitude to intruders and (b) a close up view of Figure 10a.

Path Planning in the Local-Level Frame for Small Unmanned Aircraft Systems 71
http://dx.doi.org/10.5772/intechopen.71895

Scenario number Initial path length (m) Avoidance path length (m)

1 1500 1955

Table 3. Length of the avoidance path.

4. Conclusions

In this chapter, we have presented a path planning approach suitable for small UAS. We have
developed a collision avoidance logic using an ownship-centered coordinate system. The
technique builds a maneuver graph in the local-level frame and use Dijkstra’s algorithm to
find the path with the least cost.

A key feature of the proposed approach is that the future motion of the ownship is constrained
to follow nodes on the map that are spaced by a constant time. Since the path is represented
using waypoints that are at fixed time instants, it is easy to determine roughly where the
ownship will be at any given time. This timing information is used when assigning cost to
edges to better plan paths and prevent collisions.

An advantage of this approach is that collision avoidance is inherently a local phenomenon
and can be more naturally represented in local coordinates than global coordinates. In addi-
tion, the algorithm accounts for multiple intruders and unanticipated maneuvering in various
encounter scenarios. The proposed algorithm runs in near real time in Matlab. Considering the
small runtime shown in the simulation results, we expect that implementing these algorithms
in a compiled language, such as C or C++, will show that real-time execution is feasible using
hardware. That makes the proposed approach a tractable solution in particular for small UAS.

An important step forward to move toward a deployable UAS is to test and evaluate the
performance of the close-loop of sensor, tracker, collision detection, path planning, and colli-
sion avoidance. Practically, the deployment of any UAS requires a lengthy and comprehensive
development process followed by a rigorous certification process and further analysis includ-
ing using higher fidelity models of encounter airspace, representative number of simulations,
and hardware-in-the-loop simulation. Unlike existing collision manned aviation collision
detection and avoidance systems, an encounter model cannot be constructed solely from
observed data, as UASs are not yet integrated in the airspace system and good data do not
exist. An interesting research problem would be to design encounter models similar to those
developed to support the evaluation and certification of manned aviation traffic alert and
collision avoidance system (TCAS).

Acknowledgements

This research was supported by the Center for Unmanned Aircraft Systems (C-UAS), a National
Science Foundation-sponsored industry/university cooperative research center (I/UCRC) under
NSF Award No. IIP-1161036 along with significant contributions from C-UAS industry members.

72 Kinematics

Author details

Laith R. Sahawneh'* and Randal W. Beard?

*Address all correspondence to: Isahawneh@ufl.edu

1 Department of Mechanical and Aerospace Engineering, University of Florida, Florida, USA

2 Department of Electrical and Computer Engineering, Brigham Young University, Utah, USA

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

&

[10]

(11]

(12]

George S. FAA Workshop on Sense and Avoid (SAA) for Unmanned Aircraft Systems
(UAS). 2009

Hottman SB, Hansen KR, Berry M. Literature review on detect, sense, and avoid technol-
ogy for Unmanned Aircraft Systems. In: Technical Report. 2009

Federal Aviation Administration. Subchapter F-Air Traffic and General Operating Rules.
2015

Kuchar JK, Yang LC. A review of conflict detection and resolution modeling methods.
IEEE Transactions on Intelligent Transportation Systems. Dec. 2000;1(4):179-189

Albaker BM, Rahim NA. A survey of collision avoidance approaches for unmanned aerial
vehicles. International Conference for Technical Postgraduates (TECHPOS). 2009:1-7

Hyunjin YK. Reactive collision avoidance of unmanned aerial vehicles using a single
vision sensor. AIAA Guidance, Control, and Dynamics. 2013;36(4):1234-1240

Rajnikant S, Saunders JB, Randal Beard W. Reactive path planning for micro air vehicles
using bearing-only measurements. International Robotic Systems. 2012;65(1-4):409-416

White BA, Antonios HS. UAV obstacle avoidance using differential geometry concepts.
In: 18th IFAC World Congress; Milano, Italy; 2011. Vol. 3. pp. 6325-6330

Saunders], Beard RW. Vision-based reactive multiple obstacle avoidance for micro air
vehicles. In: IEEE American Control Conference ACC’09; St. Louis, MO, June 10-12; 2009,
pp- 5253-5258

George J, Ghose D. A reactive inverse PN algorithm for collision avoidance among
multiple unmanned aerial vehicles. In: American Control Conference; St. Louis, MO; June
10-12; IEEE. pp. 3890-3895

Bilimoria KD. A geometric optimization approach to aircraft conflict resolution. In: Pro-
ceedings of the AIAA Guidance, Navigation and Control Conference and Exhibit; 2010

Fiorini P, Shiller Z. Motion planning in dynamic environments using velocity obstacles.
The International Journal of Robotics Research. 1998;17(7):760-772

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

[21]

[22]

(23]
(24]

(23]

[26]

(27]

Path Planning in the Local-Level Frame for Small Unmanned Aircraft Systems
http://dx.doi.org/10.5772/intechopen.71895

Chakravarthy A, Ghose D. Obstical avoidance in a dynamic environment: A collision
cone approach. IEEE Transactions on System, Man and Cybernitics, Part A: Systems and
Humans. 1998;28(5):562-572

Lam TM, Mulder M, Van Paassen M, Mulder JA, Van Der FC. Force-stiffness feedback in
uninhabited aerial vehicle teleoperation with time delay. AIAA Guidance, Control, and
Dynamics. 2009;32(3):821-835

Sahawneh LR, Beard RW, Avadhanamz S, He B. Chain-based collision avoidance for UAS
sense and avoid systems. In: AIAA Guidance, Navigation, and Control (GNC) Confer-
ence; Boston, MA; 2013

Kavraki LE, Svestka P, Latombe JC, Overmars MH. Probabilistic roadmaps for path
planning in high-dimensional configuration spaces. IEEE Transactions on Robotics and
Automation. 1996;12(4):566-580

LaValle SM. Rapidly-exploring random trees: A new tool for path planning. Technical
Report TR 98-11. Computer Science Department, lowa State University; October 1998

Dijkstra EW. A note on two problems in connection with graphs. Numerische Mathe-
matik. 1959;1:269-271

Dechter R, Pearl J. Generalized best-first search strategies and the optimality of a". Journal
of the ACM (JACM). 1985;32(3):505-536

Mirolo C, Pagello E. A cell decomposition approach to motion planning based on colli-
sion detection. In: Proceedings of the 1995 International Conference on Advanced Robot-
ics. 1995. pp. 481-488

Angelov P. Sense and Avoid in UAS: Research and Applications. Chichester, West Sussex,
United Kingdom: John Wiley & Sons, Ltd; 2012

Koren Y, Borenstein J. Potential field methods and their inherent limitations for mobile
robot navigation. In IEEE International Conference On Robotics And Automation; IEEE.
1991;2:1398-1404

LaValle SM. Planning Algorithms. Cambridge University Press; 2006

Bortoff SA. Path planning for UAVs. In: Proceedings of the American Control Conference.
Chicago, Illinois; June 2000. pp. 364-368

McLain TW, Beard RW. Trajectory planning for coordinated rendezvous of unmanned air
vehicles. In: Proceedings of the AIAA Guidance, Navigation, and Control Conference.
ATAA Reston, VA; 2000. Vol. 4369. pp. 1-8

Argyle ME, Chamberlain C, Beard RW. Chain-based path planning for multiple UAVs.
In: 50th IEEE Conference on Decision and Control and European Control Conference,
Orlando, FL, USA. Dec. 2011

Luders BD, Karaman S, How JP. Robust sampling-based motion planning with asymp-
totic optimality guarantees. In: AIAA Guidance, Navigation, and Control Conference
(GNC), Boston, MA. 2013

73

74 Kinematics

(28]

[29]

(30]

(31]

(32]

(33]

(34]

[35]

[36]

(37]

Luders BD, Karaman S, Frazzoli E, How JP. Bounds on tracking error using closed-loop
rapidly-exploring random trees. In: American Control Conference (ACC). IEEE; 2010. pp.
5406-5412

Luders B, Karaman S, How JP. Robust sampling-based motion planning with asymptotic
optimality guarantees. In Guidance, Navigation, and Control (GNC) Conference, Boston,
MA. 2013. ATAA

Kothari M, Postlethwaite I. A probabilistically robust path planning algorithm for UAVs
using rapidly-exploring random trees. International Robotic Systems. 2013;71:231-253

Standard Specification for Design and Performance of an Airborne Sense-and-Avoid
System. Tech. Rep. TR F2411-07. West Conshohocken, PA: ASTM International; 2007

US Department of Transportation and Federal Aviation Adminstration. Aeronautical
Information Manual Official Guide to Basic Flight Information and ATC Procedures

Lee SM, Park C, Johnson MA, Mueller ER. Investigating effects of well clear definitions on
UAS sense-and-avoid operations. In: Aviation Technology, Integration, and Operations
Conference, Los Angeles, CA. ATAA. 2013

Consiglio M, Chamberlain J, Munoz C, and Hoffler K. Concept of integration for UAS
operations in the NAS. In: 28th International Congress of the Aeronautical Sciences
(ICAS); Brisbane, Australia; 2012

Sahawneh LR, Airborne Collision Detection and Avoidance for Small UAS Sense and
Avoid Systems [PhD Thesis] Brigham Young University; 2016

Beard RW, McLain TW. Small Unmanned Aircraft: Theory and Practice. New Jersey, USA:
Princeton University Press; 2012

Sahawneh LR, Argyle ME, Beard RW. 3D path planning for small UAS operating in low-
altitude airspace. In International Conference on Unmanned Aircraft Systems (ICUAS).
IEEE, 2016. pp. 413-419

