
ROSplane:
Fixed-wing Autopilot for Education and Research

Gary Ellingson1 and Tim McLain2

Abstract— This paper presents a fixed-wing autopilot code
base called ROSplane. ROSplane utilizes the ROSflight board,
firmware, and driver, which was developed to make autopi-
lot development faster, easier and cheaper. By leveraging a
textbook and university course content, the autopilot facil-
itates education and accelerates research and development.
The textbook provides high-level documentation for the code.
The code is structured to facilitate learning by providing a
framework for student assignments. The addition of ROSplane
software and documentation make ROSflight closer to a plug-
and-play solution while maintaining simplicity and usability
for researchers and students. ROSplane has been used in a
graduate level flight dynamics class, demonstrated through test
flights, and modified for research purposes.

I. INTRODUCTION

Small, unmanned, autonomous aircraft are increasingly
being used in a variety of applications, including package
delivery, surveillance, and remote sensing. There has also
been an increase in research and development in making
these aircraft more autonomous. To achieve high levels
of autonomy the aircraft system require sensors, actuators,
and computational device or autopilot. The autopilot must
be programed with estimation and control algorithms for
processing sensor inputs and providing actuator outputs.

Education about autopilots is necessary to facilitate re-
search and development of autonomous aircraft. Students
must learn the autopilot basics before attempting to modify
or improve the existing autopilot technologies. Currently
available autopilot hardware and education practices make
it difficult to translate autopilot education into practice.
This is largely because embedded autopilots are complex to
modify and common simulation software does not seamlessly
translate to autopilot code.

Most autopilots used in education and research are consid-
ered plug-and-play, which means they can be purchased off
the shelf and are fully featured without the need for any
development or modification. While research applications
can benefit from having plug-and-play autopilot solutions,
often it is more important that the autopilot inner workings
be completely open to study and modification with no
hidden or obfuscated sections. In other words, for education
and research the autopilot should have no black boxes. In
most instances, simple and well structured software is better
than software that is feature-rich. Many autopilots often
hide their inner workings by being closed source, overly

1Gary Ellingson is a PhD candidate in the Department of Mechanical En-
gineering, Brigham Young University gary.ellingson@byu.edu

2Tim McLain is a professor in the Department of Mechanical Engineer-
ing, Brigham Young University mclain@byu.edu

complex, and/or under documented. Some research groups
have developed their own autopilot hardware and code base
to remove all black boxes (e.g. MIT ACL UberPilot [1]).
Full development of an autopilot, however, can require a
significant amount of development resources.

We have created our own fixed-wing autopilot code base
called ROSplane to overcome these common challenges.
ROSplane is based on the textbook Small Unmanned Air-
craft: Theory and Practice [2], which is used in a graduate-
level flight dynamics and control course at Brigham Young
University (BYU). The autopilot structure directly matches
the architecture presented in the book and class. The code
base is also set up to allow students to easily modify autopilot
code for assignments or projects. This means ROSplane users
(researchers and students) can directly leverage documenta-
tion in the textbook and learning gained in the course. Thus
ROSplane can both facilitate learning and rapidly advance
research and development of autonomous fixed-wing aircraft.

II. RELATED WORK

Several fixed-wing autopilots already exist, including pro-
prietary solutions such as those by MikroKopter [3], Ascend-
ing Technologies [4], Lockheed Martin Procerus [5], Cloud
Cap Technologies [6] and others. There are also autopilots
that are open source such as the Paparazzi [7], PX4 [8],
and PixHawk [9]. Additionally, most of these autopilots are
fully featured and are currently used in a large variety of
research applications. Most of these autopilots originated
from university-based projects.

Many of these autopilots offer full plug-and-play solutions
for a wide variety of autopilot use cases, including high-
level waypoint following and control. They often work with
ground-control stations (QGroundControl, APM Planner,
Virtual Cockpit, etc.) for a clean interface to autopilot func-
tions. For research and/or educational purposes, however, that
include low-level development of estimation or control, then
they become hard to use because of the abstractions created
by their plug-and-play characteristics.

The Robot Operating System (ROS) [10] is a software
framework and middleware commonly used in many robotic
applications and includes many standardized robotic devel-
opment tools. Included are tools for processing a variety of
sensor information, simulating robotic hardware, and devel-
oping robotic software. ROS utilizes a publisher/subscriber
framework where every task is represented by and imple-
mented as a node in a directed graph structure with inputs
and outputs to other nodes. ROS has also been applied to
research of autonomous aircraft [11]–[15]. Often ROS is used

2017 International Conference on
Unmanned Aircraft Systems (ICUAS)
June 13-16, 2017, Miami, FL, USA

978-1-5090-4494-8/17/$31.00 ©2017 IEEE 1503

to interface with the autopilot hardware through a telemetry
link to extend the autopilot capabilities, while low-level
estimation and control remain on the embedded autopilot.

ROSflight [16] is a input/output (I/O) board, firmware, and
driver for ROS based autopilots. It was created to facilitate
research-autopilot development. It utilizes inexpensive, open-
source hardware and software to create a cheep, readily-
available fight-control-unit I/O board. The I/O board ab-
stracts the real-time critical processes such as sensor and
receiver reading and actuator output. It allows autopilot
estimation and control to happen directly in ROS, thus
avoiding complex embedded development where possible.
The ROSflight system also includes aircraft simulation tools
that interfaces ROS with a Gazebo simulator.

The Small Unmanned Aircraft: Theory and Practice [2]
textbook teaches all of the physical concepts and con-
trols technologies necessary for autopilot development. For
brevity, we will refer to the textbook as the UAV book. The
course material includes MATLAB and Simulink templates
that are used by students to create a full autopilot simulation.
The files for each UAV book chapter are provided to the
students with the main, flight-critical functions partially
deleted. Throughout the course, students complete these
functions and then test their autopilot simulation as part of
their homework and lab assignments. These files allow the
students to implement the inner workings of the autopilot
without having to build from scratch all of the simulation
structure and data flow.

III. SYSTEM ARCHITECTURE

The structure of the ROSplane implementation provides
several usability benefits for education and research. First,
the ROSplane system is implemented in ROS so the UAV
book provides useful documentation. It matches the MAT-
LAB simulation code in both in its form and educational
function. The ROSplane code is also set up to be easily dis-
tributed for instruction purposes by removing some critical
pieces while abstracting the complex structure and data flow,
similar to the UAV book MATLAB and Simulink files.

A. Autopilot Structure

ROSplane implements the autopilot functions from the
UAV book and maintains the same architecture. Fig. 1 shows
the autopilot implemented in ROS, including the ROSflight
driver and I/O board.

The autopilot computer receives sensor information from
the ROSflight I/O board and provides the measurements to
the state estimator ROS node. The sensors measurements
incorporated are the three-axis accelerations and angular-
rates from the inertial measurement unit (IMU), differen-
tial pressure from the airspeed sensor, barometric pressure
altitude, and global positioning system (GPS) position and
velocity. The sensor measurements are provided to the esti-
mator, which propagates the IMU inertial state at 100 Hz
and process GPS position updates at 5 Hz. An extended
data rate and loop rate discussion for ROSflight is included
in [16]. The estimator incorporates an extended Kalman filter

Computer Running ROS

path manager

path follower

controller

state estimator

ROSflight driver

ROSflight I/O board
on unmanned aircraft

waypoints

path definition

airspeed
altitude
heading

commands

state

sensors

servo commands

USB serial

Fig. 1. ROSplane system using the ROSflight I/O board [16] and imple-
menting the UAV book architecture within ROS. Blocks that are bold with
rounded corners are ROS nodes and blocks with square corners represent
physical computing devices. Notice similarities to architecture found in the
UAV book.

to provide a state estimate to the rest of the autopilot nodes
at 100 Hz and is described in [2].

The autopilot further consists of several ROS nodes that
make up the rest of autopilot architecture including autopilot
control loops, path follower, and path manager. Various
chapters of the UAV book describe these pieces in detail.
While the UAV book further develops autonomous path
planner and vision based navigation sections, currently ROS-
plane does not implement these highest level functions. The
current implementation receives preplanned waypoints from
the operator and then execute the maneuvers to fly the path
connecting the waypoints using orbital and straight-line seg-
ments. ROSplane default behavior is to update each control
output at 100 Hz, and in step with the state estimation. All
nodes can be throttled to operate at lower rates as processing
limitations require.

Autopilot simulation can also be performed on a ROS
computer by exchanging the ROSflight driver node with
a Gazebo simulator (see Fig. 2). Gazebo simulates the
dynamics of the aircraft and the aircraft sensors. Running
the Gazebo simulation requires desktop-level computing
resources. Since most of the student learning and coding
happen at desktop workstations then this type of comput-
ing environment is both appropriate and advantageous. The
Gazebo simulation provides simulated sensor measurements
to the ROSplane estimator and receives actuator commands
from the ROSplane controller. The simulation architecture is
described in [16] and is similar to the simulator described

1504

Computer Running ROS

path manager

path follower

controller

state estimator

ROSflight Gazebo
simulation

waypoints

path definition

airspeed
altitude
heading

commands

state

sensors

servo commands

Fig. 2. ROSplane system simulation using the ROSflight Gazebo simulation.
Blocks that are bold with rounded corners are ROS nodes and the block with
square corners represents a physical computing device. Notice the driver
block is switched for simulation block.

in [17]. Fixed-wing aircraft dynamics were added to feed
the sensor models [2]. Different aircraft can be simulated by
providing aerodynamic coefficients and control derivatives
specific to that aircraft.

Using ROS for development of the autopilot code also has
many advantages [16]. The main advantage is that it removes
the necessity for embedded development and makes the
desktop development environment the same as the operating
and running environment. This removes the necessity for
specialized software tool chains and hardware drivers. This
facilitates debugging, simplifies simulation and testing, and
improves autopilot accessibility for students. The use of ROS
also standardizes the implementation, enabling it to work on
multiple platforms and computer form factors.

B. Code Structure

The ROSplane code is set up so that it can be easily used
by instructors and students in a teaching environment by
abstracting the ROS information flow and carefully defining
the structure of what the students do for their assignments.
This limits the scope of the students assignments and allows
students with limited ROS experience to develop autopilot
code, within the ROS framework. ROSplane is implemented
in C++ and uses class inheritance, polymorphism, and C++
data structures to abstract ROS communication.

Each ROS node has a key task to perform. The perfor-
mance of the task is both what is studied and implemented
by the students. We will refer to the performance of the
task by each node as the work that the node performs. The
rest of the code is to satisfy the requirements of the ROS
middleware communication and to provide the structure for
the student implemented work function. In general, each ROS
node includes all of the following code pieces:

• main function
– base class pointer to a child object
– ROS spin function

• base class
– protected input, output, and param structs
– pure virtual work function declaration

∗ receives static input and param structs
∗ receives reference to non-static output struct

– ROS subscriptions and publications
– ROS timer that calls work at a specified rate

• child class (inherits from base class)
– parent’s work function implementation

∗ gets information from input and params
structs

∗ performs the node’s primary task, e.g. esti-
mation

∗ puts result in output struct
– other helper functions as necessary

The above code structure allows the instructor to remove
the child class and let the students reimplement the autopilot
function without having to rewrite the ROS communica-
tion. In the above code, the work function is pure virtual,
meaning it is defined by the base class but implemented
only by the child class. Thus, the child class already has
the correct information flowing into and out of the work
function through the input, output, and param structs that
are defined in the base class. The code structure also allows
the autopilot to utilize different implementations of the same
block by simply changing which child class is constructed
(e.g. polymorphism).

IV. RESULTS

To demonstrate the usefulness of ROSplane for education
and research, this section provides a summary of the results
of having used ROSplane in both the classroom and the
laboratory. While our evaluation of usefulness is subjective,
this paper offers a description of our efforts that may be
helpful for other educators and researchers.

The ROSplane code and Gazebo simulation was first
used in the flight dynamics class at BYU during winter
semester 2016. Approximately 20 students were provided
with the ROSplane source code and Gazebo simulator. The
students had already gained experience with the MATLAB
and Simulink implementations and were required to reimple-
ment or extend several pieces of the autopilot in a variety of
ways. They then ware able to test their work in the simulation
environment. Valuable feedback was incorporated from these
students to improve ROSplane. The students expressed that
the code was fairly easy to use after being familiar with the
MATLAB and Simulink files.

ROSplane was then demonstrated with flight tests on
a HobbyKing Bixler 3 (see Fig. 3). The aircraft carried
an onboard raspberry pi 2 computer running ROS and a
Naze32 Rev5 I/O board running the ROSflight firmware.

1505

Fig. 3. Bixler 3 aircraft flown in ROSplane demonstration.

East Positon (m)
-200 -180 -160 -140 -120 -100 -80 -60 -40 -20

N
or

th
Po

si
tio

n
(m

)

-60

-40

-20

0

20

40

60

Orbital Path Following

Actual
Command

Fig. 4. ROSplane demonstrating orbit following. Flown in approximately
4 m/s cross wind.

The flight took place using the same code that was provided
to and reimplemented by the students. Fig. 4 and Fig. 5
show the aircraft telemetry while it followed orbital and
straight-line paths respectively. The results shown represent
neither the state-of-the-art in aircraft estimation and control,
nor a complex use case. They do, however, demonstrate
that students in a university course can produce the inner
workings of a fixed-wing autopilot for a practical and useful
flight using ROSflight and the documentation provided in the
UAV book.

Several pieces of ROSplane were further modified for
research purposes. Current and former students of the flight
dynamics class were able to replace the longitudinal loops
of the controller block with the total energy control scheme
presented in [18]. Using any other autopilot, replacing the
inner loops of a controller would likely have been difficult
due to the complex nature of autopilot code and the difficultly

East Positon (m)
-200 -150 -100 -50 0

N
or

th
Po

si
tio

n
(m

)

-100

-80

-60

-40

-20

0

20

40

60

80

100 Straight-Line Path Following

Actual
Command

Fig. 5. ROSplane demonstrating path following. Flying south after being
disturbed from path.

in anticipating all of the implications of such changes. This
was straightforward within ROSplane because the students
were already familiar with the autopilot architecture from
the UAV book. This demonstrates that ROSplane has the
potential to be useful in research applications.

Because ROSplane is implemented in the ROS pub-
lisher/subscriber framework, each piece of the autopilot can
be easily removed and replaced as research needs change.
For example, if a new camera-based, estimation scheme is
developed, then the estimator can be replaced. Further more,
a large number of ROS packages for a variety of uses are
freely available, including state-of-the-art image processing,
estimation, and control, any of which could be adapted into
the ROSflight architecture.

V. CURRENT AND FUTURE WORK

ROSplane is currently being applied to a number of other
educational and research projects. These projects will help
to further refine and improve the code base, which will, in
turn, help to accelerate education and research.

Based on feedback from students ROSplane is being
implemented in the python programing language. The python
implementation will include the same code structure as
described above and will maintain ROS compatibility. The
goal is to make ROSplane even more accessible to students
so that it can optionally replace the MATLAB and Simulink
assignments in the flight dynamics course.

Several undergraduate students are also using ROSplane in
a design-build-fly competition. The students will be adding
to the code to enable specific functionality required for their
competition, but that is not including in the UAV book.
Added capabilities will include the ability to perform a
landing flare, follow dynamic waypoints, and avoid collisions
with other similar aircraft. The students are also created a
ground station that will work with ROSplane for visualizing
telemetry and sending high-level commands.

1506

Fig. 6. A Gazebo screenshot showing multiple simulated aircraft. Simulated
camera gimbal view is shown top right.

ROSplane is also being used for research in a multi-aircraft
tracking project. Initial experiments have already begun
using the Gazebo simulation environment. The simulation
includes multiple aircraft and ground vehicles (see Fig.6).
The simulation has been extended to include a simulated
gimbal and camera on each aircraft, which allow Gazebo to
simulate camera measurements. The project will be extended
to hardware testing at a future date.

ROSplane is found in an online github repository [19].
Collaboration leading to improvements in robustness and
usability is welcome. While the algorithms that are contained
could be easily extended and improved, the repository will
be limited to the documented algorithms in the UAV book.
Our hope is that by limiting feature creep, the code base
will maintain simplicity and usability necessary for students
and researchers. Researchers are welcome to make their own
changes as their needs require, but additional features will
not be merged into ROSplane.

VI. CONCLUSION

ROSplane is a useful tool for teaching and learning as well
as research. It is based on a textbook and university course
that make it easily accessible to researchers and students.
It uses the ROSflight I/O board and ROS middleware to
make autopilot development easier by reducing the amount
of embedded development required.

Use in a university course has shown how ROSplane
can be used for educational purposes because the code is
structured to abstract ROS communication through polymor-
phism. Flight demonstrations and code modifications also
show that it can easily be used for autopilot research.

ROSplane is not as fully featured as some plug-and-play
autopilots but it is useful because it is well-documented by
the UAV book and has a well-structured code base. Every
piece of the autopilot functionality is easily understood and
therefore easily modified. Higher-level functionality can be

added, while low-level components can be easily modified
as research requires.

REFERENCES

[1] M. J. Cutler, Design and control of an autonomous variable-pitch
quadrotor helicopter. PhD thesis, MIT, 2012.

[2] R. W. Beard and T. W. McLain, Small Unmanned Aircraft: Theory
and Practice. Princeton University Press, 2012.

[3] GmbH, HiSystems, “Mikrokopter,” 2016.
[4] Ascending Technologies GmbH, “Ascending Technologies.” http:

//www.asctec.de/en/, 2016.
[5] Lockheed Martin, “Kestrel Flight Systems & Autopilot.”

http://www.lockheedmartin.com/us/products/
procerus/kestrel-autopilot.html, 2016.

[6] Cloud Cap Technology, “Piccolo autopilots.” http://www.
cloudcaptech.com/products/auto-pilots, 2016.

[7] B. Gati, “Open source autopilot for academic research-the Paparazzi
system,” American Control Conference (ACC), 2013, 2013.

[8] L. Meier, D. Honegger, and M. Pollefeys, “PX4 : A Node-Based
Multithreaded Open Source Robotics Framework for Deeply Embed-
ded Platforms,” International Conference on Robotics and Automation,
pp. 6235–6240, 2015.

[9] Ardupilot.com, “Ardupilot — open source autopilot.” http://
ardupilot.com/, 2016.

[10] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
E. Berger, R. Wheeler, and A. Mg, “ROS: an open-source Robot
Operating System,” ICRA, vol. 3, no. Figure 1, p. 5, 2009.

[11] M. Achtelik, M. Achtelik, S. Weiss, and R. Siegwart, “Onboard IMU
and monocular vision based control for MAVs in unknown in- and
outdoor environments,” Proceedings - IEEE International Conference
on Robotics and Automation, pp. 3056–3063, 2011.

[12] M. Nieuwenhuisen, D. Droeschel, M. Beul, and S. Behnke, “Obstacle
detection and navigation planning for autonomous micro aerial vehi-
cles,” 2014 Int. Conf. Unmanned Aircr. Syst., no. May, pp. 1040–1047,
2014.

[13] A. Harmat, M. Trentini, and I. Sharf, “Multi-camera tracking and
mapping for unmanned aerial vehicles in unstructured environments,”
Journal of Intelligent and Robotic Systems: Theory and Applications,
vol. 78, no. 2, pp. 291–317, 2015.

[14] N. Berezny, L. De Greef, B. Jensen, K. Sheely, M. Sok, D. Lin-
genbrink, and Z. Dodds, “Accessible aerial autonomy,” 2012 IEEE
Conference on Technologies for Practical Robot Applications, TePRA
2012, pp. 53–58, 2012.

[15] M. Langerwisch, M. Ax, S. Thamke, T. Remmersmann, A. Tiderko,
K. D. Kuhnert, and B. Wagner, “Realization of an autonomous team
of unmanned ground and aerial vehicles,” Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), vol. 7506 LNAI, no. PART 1,
pp. 302–312, 2012.

[16] J. Jackson, G. Ellingson, and T. McLain, “ROSflight: A lightweight,
inexpensive MAV research and development tool,” in 2016 Interna-
tional Conference on Unmanned Aircraft Systems (ICUAS), pp. 758–
762, IEEE, 2016.

[17] F. Furrer, M. Burri, M. Achtelik, and R. Siegwart, Robot Operating
System (ROS): The Complete Reference (Volume 1), ch. RotorS—A
Modular Gazebo MAV Simulator Framework, pp. 595–625. Springer
International Publishing, 2016.

[18] M. E. Argyle and R. W. Beard, “Nonlinear total energy control for
the longitudinal dynamics of an aircraft,” in 2016 American Control
Conference (ACC), pp. 6741–6746, IEEE, 2016.

[19] “ROSplane.” https://github.com/byu-magicc/ros_
plane, 2017.

1507

