
Real-Time Wireless Routing for

Industrial Internet of Things

Chengjie Wu, Dolvara Gunatilaka, Mo Sha∗, Chenyang Lu

Cyber-Physical Systems Laboratory, Washington University in St. Louis
∗Department of Computer Science, State University of New York at Binghamton

Abstract—With the emergence of the Industrial Internet of
Things (IIoT), process industries have started to adopt wireless
sensor-actuator networks (WSANs) for control applications. It is
crucial to achieve real-time communication in this emerging class
of networks, and routing has significant impacts on end-to-end
communication delays in WSANs. However, despite considerable
research on real-time transmission scheduling and delay analysis
for such networks, real-time routing remains an open question
for WSANs. This paper presents a conflict-aware real-time routing
approach for WSANs, leveraging a key observation that con-
flicts among transmissions involving a common field device can
contribute significantly to communication delays in industrial
WSANs, such as WirelessHART networks. By incorporating
conflict delays into the routing decisions, conflict-aware real-time
routing algorithms allow a WSAN to accommodate more real-
time flows while meeting their deadlines. Both evaluations based
on simulations and experiments on a physical WSAN testbed
show that conflict-aware real-time routing can lead to as much
as a three-fold improvement in the real-time capacity of WSANs.

I. INTRODUCTION

Industrial networks connect sensors and actuators in the

industrial facilities, such as steel mills, oil refineries, and

chemical plants, implementing complex monitoring and con-

trol processes. The industrial Internet of Things (IIoT) is a

key enabling technology to realize the vision of Industry 4.0.

Wireless sensor-actuator networks (WSANs) provide an ap-

pealing solution to connect IIoT devices because they require

minimal infrastructure. Moreover, wireless modules can be

used to easily and inexpensively retrofit existing sensors and

actuators in industrial facilities, without running cabling for

communication and power [1]. Recent years have witnessed

world-wide deployment of WSANs implementing industrial

standards, such as WirelessHART [2] and ISA100.11a [3].

Feedback control loops for industrial automation impose

stringent end-to-end delay requirements on data communi-

cation. To support a feedback control loop, the network

periodically delivers data from sensors to a controller and then

delivers control commands to the actuators within an end-to-

end deadline. The effects of deadline misses in data commu-

nication may range from production inefficiency, equipment

destruction, system failure for instability, to irreparable finan-

cial and environmental damage.

Real-time communication in industrial WSANs is chal-

lenging due to their limited bandwidth and multi-hop mesh

topologies [1]. Furthermore, industrial standards, such as

WirelessHART and 6TiSCH [4] employ Time Slotted Channel

Hopping (TSCH), a TDMA-based MAC with channel hop-

ping, to achieve predictable and reliable communication. End-

to-end communication delays in such networks are affected

by conflicts between transmissions involving a common de-

vice [5]. Because conflicting transmissions cannot be sched-

uled in a same time slot, transmission conflicts contribute

significantly to the end-to-end communication delays of data

flows. Recent studies demonstrated that end-to-end delays of

multi-hop flows are heavily influenced by their routes [6].

While real-time routing has received attention in the research

community, there has been limited work on routing algorithms

specifically designed for recent industrial WSAN standards.

Moreover, they generally ignore transmission conflicts in rout-

ing decisions, which negatively affect the ability to meet the

delay requirements of a large number of real-time flows.

To meet this open challenge, we propose conflict-aware

routing, a novel approach to real-time routing in Wire-

lessHART networks, a WSAN standard widely adopted in

process industries. The key novelty of conflict-aware routing

is that it incorporates transmission conflicts and scheduling

into its routing decisions to improve real-time performance.

Experiments on a physical testbed and in numerical simula-

tions show that conflict-aware routing can lead to as much as a

three-fold improvement in the real-time capacity of a WSAN.

The rest of the paper is organized as follows. Section II

reviews related work. Section III presents the network model.

Section IV discusses the problem formulation. Section V

provides a brief review of the existing delay analyses. Sec-

tion VI presents our real-time routing algorithms. Section VII

evaluates our routing algorithms through experiments and

simulations. Section VIII concludes the paper.

II. RELATED WORK

The field of wireless sensor networks produced a multi-

tude of sophisticated routing protocols (e.g., RPL [7] and

ORPL [8], just to name a few). Designed for general-purpose

applications that do not demand real-time performance, these

routing protocols were optimized for efficiency and adaptivity

to link dynamics. There were efforts to improve the real-time

performance of traditional sensor networks in a best-effort

manner such as the works presented in [9]–[12]. A common

approach adopted by these protocols is to employ localized

algorithms to dynamically select the next hop to forward

a packet. However, those decentralized approaches cannot

provide end-to-end delay guarantees and are incompatible with

recent standards for industrial WSANs.

In contrast to traditional sensor networks, industrial WSAN

standards adopt drastically different design choices in order

to meet the stringent reliability and real-time requirements

of IIoT. For example, in a WirelessHART network, links

used for routing are usually more reliable and stable than

those in traditional sensor networks. Furthermore, to achieve

predictable latency, WirelessHART employs TSCH MAC pro-

tocol. Finally, WirelessHART adopts a centralized network

manager responsible for computing routes for all flows in the

network. Industrial WSANs thus need a new class of routing

algorithms.

Several groups proposed algorithms [13]–[15] for reliable

graph routing, a multi-path routing approach supported by

WirelessHART. Many efforts [16], [17] were geared toward

improving the reliability and robustness of industrial WSANs.

Other routing algorithms such as [18], [19] aimed to improve

energy efficiency and prolong network lifetime. However,

these aforementioned algorithms were not targeted at improv-

ing the real-time performance of industrial WSANs. The recent

6TiSCH standard combines the RPL routing protocol and the

TSCH MAC to support decentralized adaptation [20]. This

work is in contrast to our work that is based on TSCH with

centralized scheduling.

There exist real-time routing protocols for TDMA-based

wireless sensor networks. Xu et al. [21] designed the PRTR

protocol to minimize the delay of real-time traffic in a TDMA-

based network. However, their end-to-end delay bounds are

probabilistic, which is in contrast to many industrial appli-

cations that require deterministic delay bounds. Nirjon et al.

[22] proposed IAA, a real-time routing algorithm that can

guarantee end-to-end delay in TDMA-based networks. IAA

employs heuristics to assign shorter paths to flows with tighter

deadlines. It does not take into account transmission conflicts,

which play a significant role in communication delays in

WirelessHART networks. Moreover, in contrast to our work

that is based on TSCH and WirelessHART, IAA is designed

for a single-channel TDMA network that allows concurrent

transmissions on the same channel.

III. NETWORK MODEL

We consider a network model based on the WirelessHART

standard [2] that has been widely adopted in process industries.

A WSAN consists of a gateway, multiple access points, and a

set of field devices (e.g., sensors or actuators). The access

points and network devices are equipped with half-duplex

radio transceivers compatible with the IEEE 802.15.4 physical

layer; together they form a wireless mesh network. A WSAN

can use up to 16 channels, as specified in the IEEE 802.15.4
standard. The access points are wired to the gateway and serve

as bridges between the gateway and field devices.

The WSAN adopts a centralized network management ap-

proach, where the network manager (i.e., a software module

running on the gateway or a host connected to the gateway)

manages all devices. The network manager gathers the network

topology information, and then generates and disseminates

the routes and transmission schedule to all network devices.

This centralized network management architecture, adopted by

the WirelessHART standard, enhances the predictability and

visibility of network operations at the cost of scalability.

The WSAN adopts the TSCH MAC on top of the IEEE

802.15.4 physical layer. TSCH is a TDMA-based protocol in

which all devices in the network are time synchronized. Time

is divided into 10 ms slots, and each slot can accommodate

one packet transmission and its acknowledgment. In a slot,

only one transmission is scheduled on each channel across

the entire network to avoid channel contention, and enhance

reliability. Moreover, TSCH supports channel hopping (i.e.,

each node switches to a new receiving channel in every time

slot) to enhance network resiliency through channel diversity.

The network operator can blacklist channels with poor quality.

The WirelessHART standard supports two types of routing:

source routing and graph routing. Source routing provides a

single route from a source to a destination, whereas graph

routing provides multiple redundant routes in a routing graph.

Hence, graph routing promotes reliability through route di-

versity, at the cost of longer latency and higher energy cost

[6]. Given our interest in real-time communication, this paper

focuses on source routing. In addition, while our algorithms

are designed for the WirelessHART standard, the insights and

approach may be extended to other WSANs based on TSCH.

IV. PROBLEM FORMULATION

We consider a WSAN with a set of N real-time flows F =
{F1, F2, · · · , FN}. For each flow Fk = (sk, dk, φk, Dk, Tk), a

source sk generates a packet at a constant period Tk. A packet

must be delivered to a destination dk through a source route

φk within a relative deadline Dk.

Due to its simplicity and efficiency, fixed priority scheduling

is commonly adopted as the real-time scheduling policy in

CPU and traditional real-time networks (e.g., Control- Area

Networks). A recent study [23] has shown that fixed prior-

ity scheduling is an effective policy for real-time flows in

WSANs. Hence, we will adopt the fixed priority scheduling

framework in this work.

In practice, priorities are assigned based on deadlines,

periods, or the criticality of the real-time flows. Priorities

of flows remain constant during run-time unless the user

requirements or the traffic demands are changed. In this work,

we use the deadline-monotonic priority assignment policy,

where flows with closer deadlines are assigned with higher

priorities. Priorities of flows with the same deadline are

randomly assigned. Our routing algorithms can be applied to

any fixed priority assignment.

Under a fixed priority scheduling policy, the transmissions

of the flows are scheduled in the following way. We assume

that all flows are ordered by priorities. Flow Fi has a higher

priority than flow Fj if and only if i < j. Starting from the

highest priority flow, F1, the following procedure is repeated

for every flow Fi in decreasing order of priority. The network

manager schedules transmissions of the current flow Fi in

the earliest available time slots and on available channels. A

time slot is available if no conflicting transmission is already

scheduled in that slot.

The goal of our routing algorithm is to find routes for

the flows so that every flow can meet its deadline. The

shortest path algorithms based on hop count [13]–[15] are

commonly adopted in WSANs. However, as shown in our

simulation results, the effectiveness of these algorithms is far

from optimal. Based on the insights from end-to-end delay

analysis, we propose two new heuristics to assign routes to

meet real-time requirements.

V. CONFLICT DELAY ANALYSIS

In this section, we summarize the delay analysis for

WSANs. We later use these insights to design our routing

algorithms. According to the previous work [23] on delay

analysis, a packet can be delayed for two reasons: conflict

delay and contention delay. Due to the half-duplex radio, two

transmissions conflict with each other if they share a node

(sender or receiver). In this case, only one of them can be

scheduled in the current time slot. Therefore, if a packet

conflicts with another packet that has already been scheduled

in the current time slot, it has to be postponed to a later slot,

resulting in conflict delay. Because a WSAN does not allow

concurrent transmissions on the same channel, each channel

can accommodate only one transmission across the network in

each slot. If all channels are assigned to transmissions of other

packets, a packet must be delayed to a later slot, resulting in

contention delay.

From the delay analyses presented in [23], [24], and our

simulations, conflict delay plays a significant role in the end-

to-end delays of flows. Furthermore, routing directly impacts

conflict delays, whereas contention delays largely depend on

the number of channels available. Therefore, in our routing

design, we focus only on conflict delay. Saifullah et al.

proposed Efficient Delay Analysis (EDA) [23], a state-of-the-

art delay analysis algorithm for WSANs. Here, we briefly

discuss the EDA algorithm.

We denote the total number of transmissions of flow Fh

that conflict with flow Fl as ∆h
l . Here, flow Fh has a higher

priority than flow Fl. ∆
h
l is counted based on the routes of the

two flows. ∆h
l equals the number of links in Fh’s route that

share nodes with Fl’s route, times the number of transmissions

scheduled on each link. For example, given Fh’s route is u !
p ! q ! x ! y, Fl’s route is v ! p ! q ! z, and the

number of transmissions over each link is one, then ∆h
l =

3, i.e., three links, {(u, p), (p, q), (q, x)}, in Fh’s route share

nodes with Fl’s route.

Given a time interval of t slots, the number of packets of

flow Fh that contribute to the delay of a packet of flow Fl

during this time interval is upper bounded by d t
Th

e, where Th

is the period of flow, Fh. Therefore, the worst-case conflict

delay of flow Fl from all flows with higher priority than Fl

in a time interval t can be bounded as

Θl(t) =
X

h<l

d
t

Th

e∆h
l (1)

Based on Equation (1), EDA uses an iterative fixed-point

algorithm to get the upper bound of Fl’s conflict delay.

We further break down Equation (1) to learn how much a

transmission of high priority flow can delay a low priority

flow. Here, we will give an approximation of conflict delay

by a single transmission of high priority flow.

A packet of flow Fl can be delayed only within its lifetime

Dl (the relative deadline of flow Fl). To simplify Equation

(1), we use Fl’s deadline as the length of the time window.

We further ignore the ceiling function and approximate the

conflict delay that Fl can suffer from flow Fh as

Θh
l =

Dl

Th

∆h
l (2)

where Θh
l is the total conflict delay that flow Fh brings to

flow Fl. Since the total number of transmissions of flow Fh

that conflict with flow Fl is ∆h
l , we approximate the number

of conflict delays from a single transmission of flow Fh as
Dl

Th

. We will use this approximation in our routing design.

VI. REAL-TIME ROUTING

In this section, we propose two real-time routing algorithms:

Conflict-Aware Routing (CAR) and Iterative Conflict-Aware

Routing (ICAR).

A. Conflict-Aware Routing (CAR)

As Section V shows, the conflict delay that a single trans-

mission of a high priority flow, Fh, brings to a low priority

flow, Fl, is Dl

Th

. We will incorporate this idea into our Conflict-

Aware Routing (CAR) algorithm, which picks routes with

small conflict delays caused by high-priority flows.

Algorithm 1 presents the pseudocode of our CAR algorithm.

The two inputs to the algorithm are (1) a graph G(V,E), where

V is the set of devices in the network and E is the set of links

in the network, and (2) a flow set F = {F1, F2, · · · , FN}
ordered by priority. We assign routes for flows following the

priority order, from the highest to the lowest. Each link (u, v)
has a link weight w(u,v) and a delay coefficient c(u,v). For

each flow Fl, we update the link weights based on the routes

of higher priority flows. If a link (u, v) shares at least one

node with a higher priority flow Fh’s route, its weight will be

increased by Dl

Th

, based on Equation (2).

In our algorithm, we implement the link weight update in

two steps. In the first step, once the route Rh of a high priority

flow Fh is fixed, because every link on Rh will impose Dl

Th

conflict delays on flows with lower priority, we increase the

delay coefficient of any link (u, v) that shares at least one

node with Rh by 1
Th

. In the second step, when we calculate

the route for a lower priority flow Fl, we update the weight

of each link as w(u,v) = 1 + Dl · c(u,v), which takes into

account all flows that have higher priority. After updating the

link weights, we run Dijkstra’s algorithm to find the path φl

with the smallest path weight. The algorithm terminates when

the flow with the lowest priority is assigned a route φN .

Algorithm 1: Conflict-Aware Routing

1 Function CAR(G,F)
Input : A graph G(V,E), A flow set

F = {F1, F2, · · · , FN} ordered by priority

with Fl = (sl, dl, Tl, Dl)
Variable: link weight w, link delay coefficient c

Output : A route φl for each flow Fl

2 for each link (u, v) 2 E do

3 w(u,v) = 1;

4 c(u,v) = 0;

5 for each flow Fl from F1 to Fn do

6 if l > 1 then

7 for each link (u, v) 2 E do

8 w(u,v) = 1 +Dl · c(u,v);

9 Find the shortest path φl connecting sl to dl;

10 Assign φl as flow Fl’s route;

11 for each link (u, v) 2 E do

12 if (u, v) shares at least one node with Fl’s

route φl then

13 c(u,v) = c(u,v) +
1
Tl

;

Now, we discuss the complexity of the CAR algorithm.

We first check the complexity for each flow (one iteration

within the for loop at lines 5-13). The complexity to update

the link weights is O(|E|). It takes O(|E| + |V | log |V |) to

execute the Dijkstra’s algorithm, and O(|E|) to update the

delay coefficients. Then, the total complexity of each flow

is O(|E| + |V | log |V |). Finally, the complexity of our CAR

algorithm is O(N(|E|+ |V | log |V |)), where N is the number

of flows in the WSAN.

B. Iterative Conflict-Aware Routing (ICAR)

By reducing the conflict delay of low priority flows, we

can accommodate more flows while meeting their deadlines.

However, CAR is based on flow priorities, and high priority

flows are not aware of the routes of low priority flows.

We further improve the real-time capacity by introducing an

approach where high priority flows also take into account

the routes of low priority flows to avoid the overlapping

routes. This approach gives low priority flows a higher chance

to find routes that are schedulable. Hence, in this section,

we introduce our Iterative Conflict-Aware Routing (ICAR)

algorithm, which is an extension of CAR

ICAR is an iterative algorithm that runs in rounds. Within

each round, flows compute their routes one by one. As with

CAR, each flow Fl will first update link weights based on the

routes of other flows, and then use Dijkstra’s algorithm to find

the path with the smallest path weight. ICAR then determines

if flow Fl with this new route is schedulable under EDA. If

yes, this new route is assigned to Fl, and flow Fl is indicated

as schedulable. The delay coefficients of the links belonging to

the old route of Fl are deducted by 1
Tl

, and the coefficients of

the links on the new route are increased by 1
Tl

. Otherwise, flow

Fl will not update its route. ICAR terminates when (1) none of

the flows update their routes or, (2) all flows are schedulable

under EDA or, (3) the number of iterations exceeds the preset

threshold M . Otherwise, the algorithm will enter a new round.

The complexity of one round is O(N(|E| + |V | log |V | +
Dmax)). Compared with the complexity of the CAR algorithm

O(N(|E|+ |V | log |V |)), ICAR incurs an additional complex-

ity of O(NDmax) for the delay analysis EDA, where Dmax is

the maximum deadline in F . The total complexity of ICAR is

O(MN(|E|+|V | log |V |+Dmax)), where M is the maximum

number of rounds. M is no larger than 5 in our simulation.

VII. EVALUATION

We evaluate our real-time routing algorithms through both

experiments on a physical WSAN testbed and numerical simu-

lations. As discussed in Section II, routing protocols designed

for traditional wireless sensor networks are incompatible with

the WirelessHART standard, whereas recent efforts on Wire-

lessHART routing have focused on enhancing the reliability

[13]–[15] and energy efficiency [18], [19] of multi-path graph

routing which usually lead to larger latency than single-path

routing like our routing algorithms. Henceforth, we compare

our conflict-aware routing algorithms (CAR and ICAR) against

Shortest Path Routing (SP) as a baseline for performance

evaluation. Note that, while link quality is often incorporated

in routing metrics for traditional wireless sensor networks as a

routing metric, it is not as useful for WirelessHART networks

in which links are usually highly reliable due to aggressive link

blacklisting and conservative deployment. In such networks,

the shortest path is a reasonable heuristic to reduce latency.

Comparing conflict-aware routing against shortest path routing

quantifies the benefit of considering transmission conflicts to

real-time performance.

Our evaluation includes two parts: (1) experiments on a

WSAN testbed and (2) simulations based on network topol-

ogy traces collected from physical experiments. We evaluate

routing protocols with three metrics: (a) Acceptance ratio: the

percentage of test cases that are deemed schedulable, (b) End-

to-end delay: the communication delay between the release of

a packet from the source and the reception at the destination,

and (c) Execution time: the total time required to compute

routes at the network manager.

A. Experiments on a WSAN Testbed

We evaluate our routing designs on an indoor WSAN

testbed consisting of 63 TelosB motes. Figure 1 shows the

topology of the WSAN testbed, and the locations of access

points, sources and destinations of flows. For each link in

the testbed, we measure its packet reception ratio (PRR) by

counting the number of received packets among 250 packets

transmitted on the link. Following the practice of industrial

deployment, we add only links with PRRs higher than 90%

to the topology of the testbed. The motes in the testbed run a

