Real-Time Wireless Routing for
Industrial Internet of Things

Chengjie Wu, Dolvara Gunatilaka, Mo Sha*, Chenyang Lu
Cyber-Physical Systems Laboratory, Washington University in St. Louis
*Department of Computer Science, State University of New York at Binghamton

Abstract—With the emergence of the Industrial Internet of
Things (IIoT), process industries have started to adopt wireless
sensor-actuator networks (WSANs) for control applications. It is
crucial to achieve real-time communication in this emerging class
of networks, and routing has significant impacts on end-to-end
communication delays in WSANs. However, despite considerable
research on real-time transmission scheduling and delay analysis
for such networks, real-time routing remains an open question
for WSANSs. This paper presents a conflict-aware real-time routing
approach for WSANS, leveraging a key observation that con-
flicts among transmissions involving a common field device can
contribute significantly to communication delays in industrial
WSANSs, such as WirelessHART networks. By incorporating
conflict delays into the routing decisions, conflict-aware real-time
routing algorithms allow a WSAN to accommodate more real-
time flows while meeting their deadlines. Both evaluations based
on simulations and experiments on a physical WSAN testbed
show that conflict-aware real-time routing can lead to as much
as a three-fold improvement in the real-time capacity of WSANs.

I. INTRODUCTION

Industrial networks connect sensors and actuators in the
industrial facilities, such as steel mills, oil refineries, and
chemical plants, implementing complex monitoring and con-
trol processes. The industrial Internet of Things (IIoT) is a
key enabling technology to realize the vision of Industry 4.0.
Wireless sensor-actuator networks (WSANSs) provide an ap-
pealing solution to connect IIoT devices because they require
minimal infrastructure. Moreover, wireless modules can be
used to easily and inexpensively retrofit existing sensors and
actuators in industrial facilities, without running cabling for
communication and power [1]. Recent years have witnessed
world-wide deployment of WSANs implementing industrial
standards, such as WirelessHART [2] and ISA100.11a [3].

Feedback control loops for industrial automation impose
stringent end-to-end delay requirements on data communi-
cation. To support a feedback control loop, the network
periodically delivers data from sensors to a controller and then
delivers control commands to the actuators within an end-to-
end deadline. The effects of deadline misses in data commu-
nication may range from production inefficiency, equipment
destruction, system failure for instability, to irreparable finan-
cial and environmental damage.

Real-time communication in industrial WSANs is chal-
lenging due to their limited bandwidth and multi-hop mesh
topologies [1]. Furthermore, industrial standards, such as
WirelessHART and 6TiSCH [4] employ Time Slotted Channel

Hopping (TSCH), a TDMA-based MAC with channel hop-
ping, to achieve predictable and reliable communication. End-
to-end communication delays in such networks are affected
by conflicts between transmissions involving a common de-
vice [5]. Because conflicting transmissions cannot be sched-
uled in a same time slot, transmission conflicts contribute
significantly to the end-to-end communication delays of data
flows. Recent studies demonstrated that end-to-end delays of
multi-hop flows are heavily influenced by their routes [6].
While real-time routing has received attention in the research
community, there has been limited work on routing algorithms
specifically designed for recent industrial WSAN standards.
Moreover, they generally ignore transmission conflicts in rout-
ing decisions, which negatively affect the ability to meet the
delay requirements of a large number of real-time flows.

To meet this open challenge, we propose conflict-aware
routing, a novel approach to real-time routing in Wire-
lessHART networks, a WSAN standard widely adopted in
process industries. The key novelty of conflict-aware routing
is that it incorporates transmission conflicts and scheduling
into its routing decisions to improve real-time performance.
Experiments on a physical testbed and in numerical simula-
tions show that conflict-aware routing can lead to as much as a
three-fold improvement in the real-time capacity of a WSAN.

The rest of the paper is organized as follows. Section II
reviews related work. Section III presents the network model.
Section IV discusses the problem formulation. Section V
provides a brief review of the existing delay analyses. Sec-
tion VI presents our real-time routing algorithms. Section VII
evaluates our routing algorithms through experiments and
simulations. Section VIII concludes the paper.

II. RELATED WORK

The field of wireless sensor networks produced a multi-
tude of sophisticated routing protocols (e.g., RPL [7] and
ORPL [8], just to name a few). Designed for general-purpose
applications that do not demand real-time performance, these
routing protocols were optimized for efficiency and adaptivity
to link dynamics. There were efforts to improve the real-time
performance of traditional sensor networks in a best-effort
manner such as the works presented in [9]-[12]. A common
approach adopted by these protocols is to employ localized
algorithms to dynamically select the next hop to forward
a packet. However, those decentralized approaches cannot

provide end-to-end delay guarantees and are incompatible with
recent standards for industrial WSANS.

In contrast to traditional sensor networks, industrial WSAN
standards adopt drastically different design choices in order
to meet the stringent reliability and real-time requirements
of IIoT. For example, in a WirelessHART network, links
used for routing are usually more reliable and stable than
those in traditional sensor networks. Furthermore, to achieve
predictable latency, WirelessHART employs TSCH MAC pro-
tocol. Finally, WirelessHART adopts a centralized network
manager responsible for computing routes for all flows in the
network. Industrial WSANSs thus need a new class of routing
algorithms.

Several groups proposed algorithms [13]-[15] for reliable
graph routing, a multi-path routing approach supported by
WirelessHART. Many efforts [16], [17] were geared toward
improving the reliability and robustness of industrial WSANS.
Other routing algorithms such as [18], [19] aimed to improve
energy efficiency and prolong network lifetime. However,
these aforementioned algorithms were not targeted at improv-
ing the real-time performance of industrial WSANSs. The recent
6TiSCH standard combines the RPL routing protocol and the
TSCH MAC to support decentralized adaptation [20]. This
work is in contrast to our work that is based on TSCH with
centralized scheduling.

There exist real-time routing protocols for TDMA-based
wireless sensor networks. Xu et al. [21] designed the PRTR
protocol to minimize the delay of real-time traffic in a TDMA-
based network. However, their end-to-end delay bounds are
probabilistic, which is in contrast to many industrial appli-
cations that require deterministic delay bounds. Nirjon et al.
[22] proposed IAA, a real-time routing algorithm that can
guarantee end-to-end delay in TDMA-based networks. IAA
employs heuristics to assign shorter paths to flows with tighter
deadlines. It does not take into account transmission conflicts,
which play a significant role in communication delays in
WirelessHART networks. Moreover, in contrast to our work
that is based on TSCH and WirelessHART, TAA is designed
for a single-channel TDMA network that allows concurrent
transmissions on the same channel.

III. NETWORK MODEL

We consider a network model based on the WirelessHART
standard [2] that has been widely adopted in process industries.
A WSAN consists of a gateway, multiple access points, and a
set of field devices (e.g., sensors or actuators). The access
points and network devices are equipped with half-duplex
radio transceivers compatible with the IEEE 802.15.4 physical
layer; together they form a wireless mesh network. A WSAN
can use up to 16 channels, as specified in the IEEE 802.15.4
standard. The access points are wired to the gateway and serve
as bridges between the gateway and field devices.

The WSAN adopts a centralized network management ap-
proach, where the network manager (i.e., a software module
running on the gateway or a host connected to the gateway)
manages all devices. The network manager gathers the network

topology information, and then generates and disseminates
the routes and transmission schedule to all network devices.
This centralized network management architecture, adopted by
the WirelessHART standard, enhances the predictability and
visibility of network operations at the cost of scalability.

The WSAN adopts the TSCH MAC on top of the IEEE
802.15.4 physical layer. TSCH is a TDMA-based protocol in
which all devices in the network are time synchronized. Time
is divided into 10 ms slots, and each slot can accommodate
one packet transmission and its acknowledgment. In a slot,
only one transmission is scheduled on each channel across
the entire network to avoid channel contention, and enhance
reliability. Moreover, TSCH supports channel hopping (i.e.,
each node switches to a new receiving channel in every time
slot) to enhance network resiliency through channel diversity.
The network operator can blacklist channels with poor quality.

The WirelessHART standard supports two types of routing:
source routing and graph routing. Source routing provides a
single route from a source to a destination, whereas graph
routing provides multiple redundant routes in a routing graph.
Hence, graph routing promotes reliability through route di-
versity, at the cost of longer latency and higher energy cost
[6]. Given our interest in real-time communication, this paper
focuses on source routing. In addition, while our algorithms
are designed for the WirelessHART standard, the insights and
approach may be extended to other WSANSs based on TSCH.

IV. PROBLEM FORMULATION

We consider a WSAN with a set of N real-time flows F =
{F1, Fy,--- ,Fn}. For each flow Fy, = (sk,dk, ¢, D, Tk), a
source s generates a packet at a constant period 7},. A packet
must be delivered to a destination dj through a source route
¢, within a relative deadline Dy.

Due to its simplicity and efficiency, fixed priority scheduling
is commonly adopted as the real-time scheduling policy in
CPU and traditional real-time networks (e.g., Control- Area
Networks). A recent study [23] has shown that fixed prior-
ity scheduling is an effective policy for real-time flows in
WSANSs. Hence, we will adopt the fixed priority scheduling
framework in this work.

In practice, priorities are assigned based on deadlines,
periods, or the criticality of the real-time flows. Priorities
of flows remain constant during run-time unless the user
requirements or the traffic demands are changed. In this work,
we use the deadline-monotonic priority assignment policy,
where flows with closer deadlines are assigned with higher
priorities. Priorities of flows with the same deadline are
randomly assigned. Our routing algorithms can be applied to
any fixed priority assignment.

Under a fixed priority scheduling policy, the transmissions
of the flows are scheduled in the following way. We assume
that all flows are ordered by priorities. Flow F; has a higher
priority than flow Fj if and only if 7 < j. Starting from the
highest priority flow, F}, the following procedure is repeated
for every flow F; in decreasing order of priority. The network
manager schedules transmissions of the current flow F; in

the earliest available time slots and on available channels. A
time slot is available if no conflicting transmission is already
scheduled in that slot.

The goal of our routing algorithm is to find routes for
the flows so that every flow can meet its deadline. The
shortest path algorithms based on hop count [13]-[15] are
commonly adopted in WSANs. However, as shown in our
simulation results, the effectiveness of these algorithms is far
from optimal. Based on the insights from end-to-end delay
analysis, we propose two new heuristics to assign routes to
meet real-time requirements.

V. CONFLICT DELAY ANALYSIS

In this section, we summarize the delay analysis for
WSANs. We later use these insights to design our routing
algorithms. According to the previous work [23] on delay
analysis, a packet can be delayed for two reasons: conflict
delay and contention delay. Due to the half-duplex radio, two
transmissions conflict with each other if they share a node
(sender or receiver). In this case, only one of them can be
scheduled in the current time slot. Therefore, if a packet
conflicts with another packet that has already been scheduled
in the current time slot, it has to be postponed to a later slot,
resulting in conflict delay. Because a WSAN does not allow
concurrent transmissions on the same channel, each channel
can accommodate only one transmission across the network in
each slot. If all channels are assigned to transmissions of other
packets, a packet must be delayed to a later slot, resulting in
contention delay.

From the delay analyses presented in [23], [24], and our
simulations, conflict delay plays a significant role in the end-
to-end delays of flows. Furthermore, routing directly impacts
conflict delays, whereas contention delays largely depend on
the number of channels available. Therefore, in our routing
design, we focus only on conflict delay. Saifullah et al.
proposed Efficient Delay Analysis (EDA) [23], a state-of-the-
art delay analysis algorithm for WSANs. Here, we briefly
discuss the EDA algorithm.

We denote the total number of transmissions of flow F},
that conflict with flow Fj as A?. Here, flow F}, has a higher
priority than flow Fj. A{l is counted based on the routes of the
two flows. A? equals the number of links in F}’s route that
share nodes with F}’s route, times the number of transmissions
scheduled on each link. For example, given F},’s route is u —
p—q—x— vy, Fi’'srtoute is v — p — q — 2z, and the
number of transmissions over each link is one, then Af =
3, i.e., three links, {(u,p), (p,q),(g,x)}, in Fy’s route share
nodes with Fj’s route.

Given a time interval of ¢ slots, the number of packets of
flow Fj that contribute to the delay of a packet of flow F;
during this time interval is upper bounded by [Tih}, where T},
is the period of flow, F},. Therefore, the worst-case conflict
delay of flow Fj from all flows with higher priority than F;

in a time interval ¢ can be bounded as

t
Out) = 3 7181 ()
h<l

Based on Equation (1), EDA uses an iterative fixed-point
algorithm to get the upper bound of Fj’s conflict delay.
We further break down Equation (1) to learn how much a
transmission of high priority flow can delay a low priority
flow. Here, we will give an approximation of conflict delay
by a single transmission of high priority flow.

A packet of flow F; can be delayed only within its lifetime
Dy (the relative deadline of flow Fj). To simplify Equation
(1), we use Fj’s deadline as the length of the time window.
We further ignore the ceiling function and approximate the
conflict delay that Fj can suffer from flow F}, as

D
O = 7 Al)

where O is the total conflict delay that flow Fj, brings to
flow Fj. Since the total number of transmissions of flow F7,
that conflict with flow Fj is A;’, we approximate the number
of conflict delays from a single transmission of flow Fj}, as
%. We will use this approximation in our routing design.

VI. REAL-TIME ROUTING

In this section, we propose two real-time routing algorithms:
Conflict-Aware Routing (CAR) and Iterative Conflict-Aware
Routing (ICAR).

A. Conflict-Aware Routing (CAR)

As Section V shows, the conflict delay that a single trans-
mission of a high priority flow, Fj}, brings to a low priority
flow, F7, is %. We will incorporate this idea into our Conflict-
Aware Routing (CAR) algorithm, which picks routes with
small conflict delays caused by high-priority flows.

Algorithm 1 presents the pseudocode of our CAR algorithm.
The two inputs to the algorithm are (1) a graph G(V, E), where
V is the set of devices in the network and E is the set of links
in the network, and (2) a flow set F = {Fy, F5,---,Fn}
ordered by priority. We assign routes for flows following the
priority order, from the highest to the lowest. Each link (u,v)
has a link weight w(,) and a delay coefficient ¢,). For
each flow Fj, we update the link weights based on the routes
of higher priority flows. If a link (u,v) shares at least one
node with a higher priority flow F},’s route, its weight will be
increased by %, based on Equation (2).

In our algorithm, we implement the link weight update in
two steps. In the first step, once the route R, of a high priority
flow Fj, is fixed, because every link on Rj; will impose %
conflict delays on flows with lower priority, we increase the
delay coefficient of any link (u,v) that shares at least one
node with Ry by T% In the second step, when we calculate
the route for a lower priority flow Fj, we update the weight
of each link as w(,,) = 1 + Dy - ¢(y,4), Which takes into
account all flows that have higher priority. After updating the
link weights, we run Dijkstra’s algorithm to find the path ¢,

with the smallest path weight. The algorithm terminates when
the flow with the lowest priority is assigned a route ¢y .

Algorithm 1: Conflict-Aware Routing

1 Function CAR(G, F)
Input : A graph G(V, E), A flow set
F ={F,,F,,--- ,Fn} ordered by priority
with F} = (s;,d;, Ty, Dy)
Variable: link weight w, link delay coefficient ¢
Output : A route ¢; for each flow F;
2 for each link (u,v) € E do

3 Wiy,w) = 15
4 | Cluw) = 0;
5 for each flow F; from F; to F, do
6 if [> 1 then
7 for each link (u,v) € E do
8 | W) =1+ Di cuy
9 Find the shortest path ¢; connecting s; to d;
10 Assign ¢; as flow Fj’s route;
1 for each link (u,v) € E do
12 if (u,v) shares at least one node with Fy’s
route ¢; then
1.
13 | Cluw) = Cuw) + 77 3

Now, we discuss the complexity of the CAR algorithm.
We first check the complexity for each flow (one iteration
within the for loop at lines 5-13). The complexity to update
the link weights is O(|E|). It takes O(|E| + |V|log|V]) to
execute the Dijkstra’s algorithm, and O(|E|) to update the
delay coefficients. Then, the total complexity of each flow
is O(|E| + |V|log |V]). Finally, the complexity of our CAR
algorithm is O(N(|E|+|V|log |V|)), where N is the number
of flows in the WSAN.

B. Iterative Conflict-Aware Routing (ICAR)

By reducing the conflict delay of low priority flows, we
can accommodate more flows while meeting their deadlines.
However, CAR is based on flow priorities, and high priority
flows are not aware of the routes of low priority flows.
We further improve the real-time capacity by introducing an
approach where high priority flows also take into account
the routes of low priority flows to avoid the overlapping
routes. This approach gives low priority flows a higher chance
to find routes that are schedulable. Hence, in this section,
we introduce our Iterative Conflict-Aware Routing (ICAR)
algorithm, which is an extension of CAR

ICAR is an iterative algorithm that runs in rounds. Within
each round, flows compute their routes one by one. As with
CAR, each flow F; will first update link weights based on the
routes of other flows, and then use Dijkstra’s algorithm to find
the path with the smallest path weight. ICAR then determines
if flow F; with this new route is schedulable under EDA. If
yes, this new route is assigned to Fj, and flow Fj is indicated

as schedulable. The delay coefficients of the links belonging to
the old route of F; are deducted by T%’ and the coefficients of
the links on the new route are increased by T% Otherwise, flow
F; will not update its route. ICAR terminates when (1) none of
the flows update their routes or, (2) all flows are schedulable
under EDA or, (3) the number of iterations exceeds the preset
threshold M. Otherwise, the algorithm will enter a new round.
The complexity of one round is O(N(|E| + |V]log |V]| +
Dinaz)). Compared with the complexity of the CAR algorithm
O(N(|E|+|V]log|V])), ICAR incurs an additional complex-
ity of O(N D4) for the delay analysis EDA, where D, is
the maximum deadline in F. The total complexity of ICAR is
O(MN(|E|+|V|log |V|+Dmaz)), where M is the maximum
number of rounds. M is no larger than 5 in our simulation.

VII. EVALUATION

We evaluate our real-time routing algorithms through both
experiments on a physical WSAN testbed and numerical simu-
lations. As discussed in Section II, routing protocols designed
for traditional wireless sensor networks are incompatible with
the WirelessHART standard, whereas recent efforts on Wire-
lessHART routing have focused on enhancing the reliability
[13]-[15] and energy efficiency [18], [19] of multi-path graph
routing which usually lead to larger latency than single-path
routing like our routing algorithms. Henceforth, we compare
our conflict-aware routing algorithms (CAR and ICAR) against
Shortest Path Routing (SP) as a baseline for performance
evaluation. Note that, while link quality is often incorporated
in routing metrics for traditional wireless sensor networks as a
routing metric, it is not as useful for WirelessHART networks
in which links are usually highly reliable due to aggressive link
blacklisting and conservative deployment. In such networks,
the shortest path is a reasonable heuristic to reduce latency.
Comparing conflict-aware routing against shortest path routing
quantifies the benefit of considering transmission conflicts to
real-time performance.

Our evaluation includes two parts: (1) experiments on a
WSAN testbed and (2) simulations based on network topol-
ogy traces collected from physical experiments. We evaluate
routing protocols with three metrics: (a) Acceptance ratio: the
percentage of test cases that are deemed schedulable, (b) End-
to-end delay: the communication delay between the release of
a packet from the source and the reception at the destination,
and (c) Execution time: the total time required to compute
routes at the network manager.

A. Experiments on a WSAN Testbed

We evaluate our routing designs on an indoor WSAN
testbed consisting of 63 TelosB motes. Figure 1 shows the
topology of the WSAN testbed, and the locations of access
points, sources and destinations of flows. For each link in
the testbed, we measure its packet reception ratio (PRR) by
counting the number of received packets among 250 packets
transmitted on the link. Following the practice of industrial
deployment, we add only links with PRRs higher than 90%
to the topology of the testbed. The motes in the testbed run a

OSP ECAR EICAR

OSP MCAR MICAR

w
o
]

Delay (ms)

W= NN e i A
P 0T (o — o —— -

Al 3 = 1 2
- |O Access Point Z\ Source] Destination @ Relay Node |

Fig. 1: WSAN testbed topology that
includes the locations of access points,
sources, and destinations of flows.

protocol stack [6] implementing source routing and TSCH on
top of the CC2420X radio stack.

In our experiment, we generate 8 distinct flows, and use 8
channels for communication. Due to channel hopping, each
transmission of any flow can hop through all channels used.
The period of each flow is in the range of 2*~7 x 10 millisec-
onds, which are typical periods used in process industries, as
specified in the WirelessHART standard [2]. The length of the
hyper-period is 1280 milliseconds. The relative deadline of
each flow is equal to its period. We run the experiments long
enough that each flow can deliver at least 100 packets.

We evaluate how much our approach improves end-to-end
and conflict delays over the performances of SP. Figure 2(a)
presents the worst-case end-to-end delays of each flow. CAR
and ICAR consistently achieve similar or better end-to-end
delays than SP. Moreover, ICAR can further improve the
delays of some lower priority flows compared to CAR. Note
that since the locations of a source and destination of a flow,
and the network topology also impact the end-to-end delay
of a flow, some of the lower priority flows may have smaller
delays than those of higher priority flows.

We next investigate conflict delays of flows under our
approaches and the baseline. Since conflict delay contributes to
the end-to-end delay of a flow, reducing the conflict delay can
enhance the end-to-end delay. As shown in Figure2(b), under
CAR and ICAR, flows incur less conflict delay than under
SP. For flow 2 and flow 7, CAR and ICAR can eliminate the
conflict delay, while SP still incurs some conflict delay. In
addition, ICAR can outperform CAR in many cases since it
uses an iterative algorithm that allows higher priority flows to
take into account routes of lower priority flows.

B. Simulations based on the WSAN Testbed Topology

To provide a more comprehensive evaluation, we also eval-
uate our routing algorithms through simulations based on the
WSAN testbed topology. The simulator uses the same routing
and scheduling algorithms as in our testbed experiments and is
written in C++. All simulations are performed on a MacBook
Pro laptop with 2.4 GHz Intel Core 2 Duo processor.

We evaluate our algorithms under different numbers of
channels (from 4 to 15). With a given set of channels, we
test our routing designs on different numbers of flows by
increasing the numbers of source and destination pairs from 2

3

(a) End-to-end delays

2R NN
U o u o u
o & © & o

Conflict Delay (ms)

o
/=

T T T
4 5 6 7 8 1 2 3 4 5 6 7 8

Flow Priority Flow Priority

(b) Conflict delays

Fig. 2: Delays in experiments.

to 22. The period of the each flow is randomly picked within
the range of 24~7 x 10 milliseconds. The relative deadline of
each flow is equal to its period. For the same number of flows,
we run 100 tests with randomly generated pairs of sources and
destinations. In summary, we perform numerical evaluations
on about 10K different configurations. The following results
are from simulations with 8 channels.

Figure 3(a) compares the acceptance ratios of CAR, ICAR,
and SP in simulations. SP always has the lowest acceptance
ratio, and both CAR and ICAR have much higher acceptance
ratios. ICAR has a higher acceptance ratio than CAR, which
shows the benefit of letting flows with higher priorities be
aware of the routes of lower priority flows. Compared to SP,
CAR and ICAR can respectively improve the acceptance ratio
by 239% and 350% on average.

We then compare the delays of CAR, ICAR, and SP under
8 channels. As shown in Figure 3(c), conflict delay indeed
dominates contention delay. Moreover, although CAR and
ICAR may lead to routes with longer hop counts, their end-
to-end delays are smaller than SP on average as presented
in Figure 3(b). This is because CAR and ICAR have fewer
conflict delays than SP in all cases.

We obtain similar results with 4-7 and 9-15 channels used.
Within all simulations, our CAR and ICAR algorithms im-
prove the acceptance ratio significantly, with smaller conflict
delays. When the number of channels is small (4-8), the
contention delays can be an important part of the end-to-end
delays. However, when more (12-15) channels are used, the
contention delays are zero, and conflict delays dominate.

Execution Time: We compare the execution time of SP,
CAR, and ICAR in Figure 4. The execution time increases
as the number of flows increases in all three algorithms. The
execution times of the three routing algorithms follow the
order SP<CAR<ICAR. SP has the lowest execution time
since it uses the breadth-first search algorithm. ICAR has a
higher execution time than CAR because it is an iterative
algorithm. The execution time of ICAR is less than 200 ms
when the number of flows is 22. According to the Wire-
lessHART Standard [2], when a node loses connectivity to its
neighbor for a certain period of time (timeout period), a node
will send a keep-alive packet to probe the connection. This
timeout period is no less than 30 seconds. If the node fails to

—a-SP -e-CAR —«ICAR

-8-SP -e--CAR —<ICAR

_ 100 200

2 g0

2 =150

5 60 £

= > 100

g 40 3

£ 20 e 50

g o

o PR O I T TR S|
T Nvowgzg32x]N Nwowg

Number of Flows

(a) Acceptance ratios.

(o]
-

Number of Flows

(b) End-to-end delays

—=—SP-Conf —e—CAR-Conf ~>¢ICAR-Conf
-#&--SP-Cont ~@-CAR-Cont --»¢-ICAR-Cont
50
40
@
£ 30
)
< 20 +
a
10
PR S 0 - A
39y LR I NI A N I

Number of Flows

(c) Conflict (Conf) and contention (Cont) delays.

Fig. 3: Simulation results: acceptance ratio and delays.

N
(=3
o

1 sp
[CAR
Il ICAR

ﬂAJJJJ]

2 4 6 8 10 12 14 16 18 20 22
Number of Flows

Execution Time (ms)
S =
s &

[
o

o

Fig. 4: Execution time

receive a response from its neighbor, a node will issue a path-
down alarm to the network manager, which will recalculate a
new route. This indicates that the 200 ms execution time is
acceptable for the real-world operations.

VIII. CONCLUSIONS

As process industries start to embrace WSANS, it becomes
critical for WSANs to support real-time communication for
IIoT. Due to limited results on real-time routing for industrial
WSAN:S, this paper proposes conflict-aware routing, a new ap-
proach to real-time routing in industrial WSANSs that considers
transmission conflict delays in routing decisions. As a result, a
WSAN can accommodate more real-time flows while meeting
their deadlines. Evaluations based on both testbed experiments
and simulations show that conflict-aware routing can lead to
up to three-fold improvement in the real-time capacity of a
WSAN when compared to shortest path routing.

ACKNOWLEDGMENT

This work is supported, in part, by the NSF through grants
1320921 (NeTS), 1646579 (CPS), and 1657275 (CRII).

REFERENCES

[1] C. Lu, A. Saifullah, B. Li, M. Sha, H. Gonzalez, D. Gunatilaka, C. Wu,
L. Nie, and Y. Chen, “Real-Time Wireless Sensor-Actuator Networks for
Industrial Cyber-Physical Systems,” in Proceedings of the IEEE, Special
Issue on Industrial Cyber Physical Systems, vol. 104, pp. 1013-1024,
May 2016.

“WirelessHART Sfpecification,” 2007. http://www.hartcomm?2.org.

] “ISA100: Wireless Systems for Automation.” https://www.isa.org/
isa100/.

“IPv6 Over the TSCH Mode of IEEE 802.15.4e (6TiSCH).”
https://datatracker.ietf.org/wg/6tisch/about/.

A. Saifullah, Y. Xu, C. Lu, and Y. Chen, “Real-Time Scheduling for
WirelessHART Networks,” in RTSS, 2010.

[6] M. Sha, D. Gunatilaka, C. Wu, and C. Lu, “Empirical Study and En-
hancements of Industrial Wireless Sensor-Actuator Network Protocols,”
IEEE Internet of Things Journal, vol. 4, pp. 696-704, June 2017.
“RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks.”
https://tools.ietf.org/html/rfc6550.

S. Duquennoy, O. Landsiedel, and T. Voigt, “Let the Tree Bloom:
Scalable Opportunistic Routing with ORPL,” in Sensys, 2013.

T. He, J. A. Stankovic, C. Lu, and T. Abdelzaher, “SPEED: A Stateless
Protocol for Real-Time Communication in Sensor Networks,” in ICDCS,
2003.

O. Chipara, Z. He, G. Xing, Q. Chen, X. Wang, C. Lu, J. Stankovic, and
T. Abdelzaher, “Real-time Power-Aware Routing in Sensor Networks,”
in IEEE International Workshop on Quality of Service, 2006.

J. Heo, J. Hong, and Y. Cho, “EARQ: Energy Aware Routing for
Real-Time and Reliable Communication in Wireless Industrial Sensor
Networks,” IEEE Transactions on Industrial Informatics, vol. 5, pp. 3—
11, Feb 2009.

P. T. A. Quang and D. S. Kim, “Enhancing Real-Time Delivery
of Gradient Routing for Industrial Wireless Sensor Networks,” IEEE
Transactions on Industrial Informatics, vol. 8, pp. 61-68, Feb 2012.

J. Zhao, Z. Liang, and Y. Zhao, “ELHFR: A Graph Routing in Industrial
Wireless Mesh Network,” in ICIA, 2009.

S. Han, X. Zhu, A. K. Mok, D. Chen, and M. Nixon, “Reliable and
Real-time Communication in Industrial Wireless Mesh Networks,” in
RTAS, 2011.

G. Gao, H. Zhang, and L. Li, “A Reliable Multipath Routing Strategy
for WirelessHART Mesh Networks Using Subgraph Routing,” Journal
of Computational Information Systems, vol. 9, March 2013.

J. Niu, L. Cheng, Y. Gu, L. Shu, and S. K. Das, “R3E: Reliable
Reactive Routing Enhancement for Wireless Sensor Networks,” IEEE
Transactions on Industrial Informatics, vol. 10, pp. 784-794, Feb 2014.
L. Pradittasnee, S. Camtepe, and Y. C. Tian, “Efficient Route Update
and Maintenance for Reliable Routing in Large-Scale Sensor Networks,”
IEEE Transactions on Industrial Informatics, vol. 13, pp. 144-156, Feb
2017.

C. Wu, D. Gunatilaka, A. Saifullah, M. Sha, P. B. Tiwari, C. Lu, and
Y. Chen, “Maximizing Network Lifetime of WirelessHART Networks
under Graph Routing,” in loTDI, 2016.

S. Zhang, A. Yan, and T. Ma, “An Energy-Balanced Graph Routing
Algorithm for WirelessHART Networks,” in IHMSC, 2013.

S. Duquennoy, B. Al Nahas, O. Landsiedel, and T. Watteyne, “Orchestra:
Robust Mesh Networks Through Autonomously Scheduled TSCH,” in
Sensys, 2015.

Y. Xu, F. Ren, T. He, C. Lin, C. Chen, and S. K. Das, “Real-time
Routing in Wireless Sensor Networks: A Potential Field Approach,”
ACM Transactions on Sensor Networks, pp. 35:1-35:24, June 2013.

S. M. S. Nirjon, J. A. Stankovic, and K. Whitehouse, “TAA: Interference
Aware Anticipatory Algorithm for Scheduling and Routing Periodic
Real-time Streams in Wireless Sensor Networks,” in INSS, 2010.

A. Saifullah, Y. Xu, C. Lu, and Y. Chen, “End-to-End Delay Analysis
for Fixed Priority Scheduling in WirelessHART Networks,” in RTAS,
2011.

C. Wu, M. Sha, D. Gunatilaka, A. Saifullah, C. Lu, and Y. Chen,
“Analysis of EDF Scheduling for Wireless Sensor-Actuator Networks,”
in IWQoS, 2014.

(7]
(8]
[91

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

