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Abstract

In this paper, we present a deep coupled learning frame-
work to address the problem of matching polarimetric ther-
mal face photos against a gallery of visible faces. Polariza-
tion state information of thermal faces provides the miss-
ing textural and geometrics details in the thermal face im-
agery which exist in visible spectrum. we propose a coupled
deep neural network architecture which leverages relatively
large visible and thermal datasets to overcome the problem
of overfitting and eventually we train it by a polarimetric
thermal face dataset which is the first of its kind. The pro-
posed architecture is able to make full use of the polari-
metric thermal information to train a deep model compared
to the conventional shallow thermal-to-visible face recogni-
tion methods. Proposed coupled deep neural network also
finds global discriminative features in a nonlinear embed-
ding space to relate the polarimetric thermal faces to their
corresponding visible faces. The results show the superior-
ity of our method compared to the state-of-the-art models in
cross thermal-to-visible face recognition algorithms.

1. Introduction

Face recognition has been one of the most challenging
areas of research in biometrics and computer vision. Many
face recognition algorithms are dedicated to address pose
and illumination problems for visible face images. In re-
cent years, there has been significant amount of research
in Heterogeneous Face Recognition (HFR) [24]. The main
issue in HFR is to match the visible face image to a face
image that has been captured in other sensing modalities
such as infrared spectrum. Infrared images are divided into
two major categories of reflection and emission. The re-
flection category, which consists of near infrared (NIR) and
shortwave infrared (SWIR) bands, is more similar to the
visible imagery and it is more informative about the facial
details of the face. Due to this reflective phenomenology
of the NIR and SWIR, there has been success on NIR-to-
visible face recognition [40, 16] and SWIR-to-visible face
recognition [1, 23] to some extent. Klare et al. [17] used
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Figure 1. Visible spectrum and its corresponding conventional
thermal, and polarimetric thermal images of a subject.
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kernel similarities for a set of training subjects as features.
A novel transductive subspace learning method was pro-
posed in [42] for domain invariant feature extraction for
VIS-NIR matching problem. In [39] the authors used Re-
stricted Boltzmann Machine (RBM) to learn a shared repre-
sentation of features locally and consequently removed the
heterogeneity around each facial point. They applied PCA
to the local features extracted from RBM to get the high
level features. Juefei-Xu et al. [15] used a dictionary learn-
ing approach to reconstruct images between visible and NIR
domains. A common weakness of the mentioned methods
is that they are not using a deep global features of face im-
ages, which has been shown to have better results in face
recognition problems [25].

Compared with the reflection category, the emission
group which contains the midwave infrared (MWIR) and
longwave infrared (LWIR) bands is less informative [18].
Due to the inherent phenomenology of thermal imaging
which is significantly different from visible imagery, match-
ing a thermal face against a gallery of visible faces becomes
a challenging task. However, thermal-to-visible recogni-
tion is highly demanding as the thermal data is illumina-
tion invariant and useful for face recognition in the cover
of darkness. In recent years, there has been a growing re-
search on thermal-to-visible face recognition [5, 2, 17, 11]
and thermal-to-visible detection [38]. Furthermore, via an
emerging technology, the polarization state information of
thermal emission has been exploited to provide the geomet-
rical and textural details of a face. This information which
is not available in the conventional intensity-based thermal
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Figure 2. shows the first 13 convolutional layers of a VGG-16 ar-
chitecture.

imaging [9], is used to improve the cross thermal-to-visible
face recognition [31, 30, 9]. Figure 1 shows a visible image
and its corresponding conventional thermal and polarimet-
ric thermal images. In cross-spectrum face recognition a
thermal probe is matched against a gallery of visible faces,
corresponding to the real-world scenario [12]. Researchers
have also investigated a variety of approaches to exploit
the polarimetric thermal images in LWIR to improve cross-
spectrum face recognition [9, 31, 27, 41].

Recently, almost all the state-of-the-art techniques in
face recognition have applied Deep Convolutional Neural
Networks (DCNN) trained on extremely huge datasets to
construct a compact discriminative feature representation.
This approach also has been applied in other cross-modal
applications such as [10, 38] to find a representative em-
bedding space. In [37], the authors who were the pio-
neers in training a Deep Neural Network (DNN) for face
recognition, trained a network on a private dataset con-
taining 4.4 million labeled images of 4030 different sub-
jects. They finally fine-tuned their network with a Siamese
network [6] for the face verification task. They also ex-
tended their work with an expanded dataset which contains
500 million images related to 10 million subjects. Sun et
al. [33, 34, 35, 36] studied a different deep neural network
architecture including a joint verification-identification loss
function and Bayesian metrics in their works. They used
two different datasets, namely, CelebFaces [33] (202,599
images of 10,177 different subjects) and WDRef [3] (99,773
images of 2995 subjects) to train their deep networks. A
triplet loss function is utilized in [7] to train a feature em-
bedding space. Schroff et al. [29] also trained a deep net-
work using 200 million images of 8 million different sub-
jects. This network has the best performance on Labeled
Faces in the Wild (LFW) [13], which is a standard uncon-
strained face recognition benchmark.

Motivated by recent advances in face recognition algo-
rithms using DCNN, in this paper we propose a novel Cou-
pled Deep Convolutional Neural Network (CpDCNN) for
polarimetric thermal-to-visible face recognition, which uti-
lizes both the thermal and polarization state information to
enhance the performance of a cross-spectrum face recog-
nition system. In [25], they used a coupled architecture

for their face recognition system. However, they evalu-
ated their framework only for near infrared which is very
close to visible and they had a huge number of data for both
modalities. Here, we evaluate the proposed algorithm on a
thermal dataset which is more challenging due to the differ-
ence between the modalities and the small size of dataset.
Scarcity of dataset is an active area of research which has
been investigated in other applications [21]. We applied
our framework on thermal polarimetric dataset which con-
tains face images that has been taken at three different
ranges and with different face expressions. We compare
our proposed framework against several different state-of-
the-art techniques in the literature such as deep percep-
tual mapping technique (DPM) [28], a coupled neural net-
work (CpNN) [26], and a partial least squares (PLS) [11],
PLSoDPM and PLSoCpNN [12]. Our results show that our
proposed deep method could fuse polarimetric and thermal
features in a way to outperform the conventional methods
and enhance the performance of a thermal-to-visible face
recognition system.

2. Background

The Stokes parameters Sy, S1, S2, and S5 are the ther-
mal polarization state information that are captured from an
object. The polarimetric measurement is done using a series
of linear and circular polarizers. The four mentioned Stokes
parameters which completely define the polarization states
are:

So =15 + 15 (1)
S = IS - Ié)o ’ (2)
So =I5+ 1°,5 , (3)
Sy=Ip+1}, (4)

where I, 15y, 145, and I° ;5 represent the measured inten-
sity of the light after passing through a linear polarizer with
angle of 0°, 90°, 45°, and —45° related to horizontal axes,
respectively. Ir and I, are the intensity of the light after
passing through right and left circularly polarization filters.
Since there is no artificial illumination in passive imaging,
there is almost no circularly polarized information in LWIR
or MWIR spectrum. Therefore, S5 is considered to be zero
for most of the applications. The linear combination of the
remaining Stokes, namely, the Degree of Linear Polariza-
tion (DoLP), is computed as:

/32 2
DoLP:ﬁ.
So

3. Deep cross polarimetric thermal-to-visible
face recognition
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In this paper, we used a VGG-16 like network [32] in
our cross-spectrum recognition framework. The VGG-16



VGG16 Convolutional Layers

Visible I

*\ I':anv\z\uﬁ \ ’1 oryin e
RN H FRTF r =N
b < "ﬂ!poa|1‘ MﬂPD;IZ\‘ — Mlxponla

- “ Global
= Max pool 4 pool 5

Vis-DCNN

Convs-512

Ny

Z1(5™)

VGG16 Convolutional Layers

Convz-lzn Conva-256

[l

pool 3

..\\\ H

Z Mupoolz

& MaxpoaH

/—”/

< Max ponlA pool §

1 N N

= 7 2 2 Leom @ 05%), 2o, Yeom)

=1 j=1

Pol-DCNN

Zp(xP)

Global

Figure 3. Proposed network using two convolutional networks (Vis-DCNN and Pol-DCNN) coupled by contrastive loss function.

neural network comprised of five major convolutional com-
ponents which are connected in series (see Figure 2). The
first two components, Convl — 64 and C'onv2 — 128 con-
sists of the following layers: a convolutional layer, a recti-
fied linear unit layer, a second convolutional layer, a second
rectified linear unit layer, and a max pooling layer. The
remaining three components contain one additional convo-
lutional layer and a rectifier linear unit layer. The only ex-
ception is in the last component, where global pooling was
used instead of the max pooling to reduce the number of
parameters.

The final objective of the proposed model is identifica-
tion of the polarimetric thermal images of the probe faces
while we do not have access to them during the training
phase. For this reason, we coupled two VGG-16 like net-
works one dedicated to the visible spectrum (Vis-DCNN)
and the other one to the polarimetric thermal (Pol-DCNN).
Each DCNN performs a non-linear transformation of the in-
put space. The ultimate goal of our proposed CpDCNN is
to find the global deep features representing the relationship
between polarimetric thermal face images and their corre-
sponding visible ones. In other to find the common embed-
ding space between these two different domains we cou-
pled two VGG-16 structured networks (Vis-DCNN and Pol-
DCNN) via a contrastive loss function [6], which has been
used in other applications such as domain adaptation [22].
This function (¢.,,,;) pulls the genuine pairs (i.e., a face vis-
ible image with its own corresponding polarimetric face im-
ages) toward each other into a common latent feature sub-
space and push the impostor pairs (i.e., a face visible im-
age with another subject’s polarimetric thermal face image)
apart from each other (see Figure 3). Despite the use of a
contrastive loss function in the Siamese network [6], due

to the heterogeneous nature of the visible and polarimetric
thermal images, we cannot use the weight sharing of the
Siamese network here. Similar to [6], the contrastive loss is
of the form of:

écont(zl (xms), ZZ(mgd)’ ycont) = (6)

(1 = Yeont) Lygen (D(z1 (™), 2a(af)) +

Yeont Limp(D(21(x17%), 22(a2™)) |

where xfis is the input for the Vis-DCNN (i.e., visible face
image), and x?"l is the input for the Pol-DCNN (i.e., po-
larimetric face images). ¥con: is a binary label, L, and
L;mp represent the partial loss functions for the genuine and

impostor pairs, respectively, and D (21 (xV*), 2o (:r;g"’l)) in-
dicates the Euclidean distance between the embedded data
in the common feature subspace. The binary label, ycont,
is assigned a value of 0 when both modalities, i.e., visible
and polarimetric, form a genuine pair, or, equivalently, the
inputs are from the same class. On the contrary, when the
inputs are from different classes, which means they form
an impostor pair, Yeon: is equal to 1. In addition, Ly, and

L are defined as follows:

Lgen(D(21(27™), 22(x§01))) :%D(Zl(xgis), Zz(mpol))z

)

Limp(D(21(}"), 22(25™))) = ®)

1 'U'LS 0
3 maz(0,m — D (21 ("), zo(2 M2 for y; # Yj -



Therefore, the loss function can be written as:

N N
L= 1/N2 Z Z Econt(zl (J";jis)a 22 (x§0l)7 ycont) ) (9)

i=1 j=1

where [V is the number of samples and z; and z, are the
deep convolutional neural network based embedding func-
tions, which transform xfis and x?oz into a common la-
tent embedding subspace, respectively. It should be noted
that the contrastive loss function [6] inherently considers
the subjects’ labels inherently. Therefore, it has the abil-
ity to find a discriminative embedding space by employing
the data labels in contrast to some other metrics such as
Euclidean distance. This discriminative embedding space
would be useful in identifying a polarimetric probe photo
against a gallery of visible photos.

To visualize the latent embedding subspace of the Pol-
DCNN network for the polarization dataset trained accord-
ing to (9), we reduced its dimension using Principal Com-
ponent Analysis (PCA) [14]. Afterwards, the t-Distributed
Stochastic Neighbor Embedding [20] is employed to project
the transformed common features into two dimensions for
visualization. The final two dimensional embedding fea-
tures are depicted in Figure 4. The plots related to the Pol-
DCNN network which is trained in our CpDCNN frame-
work using (9) shows a discriminative embedding space.
This emphasizes the effectiveness of our proposed coupling
network.

During the testing phase, for a given test probe ¥ °l the
proposed CpDCNN is used to transform it to the common
latent embedding domain, zo(zF”"). In fact, after training
our deep coupled network model, it has the ability to trans-
form the visible and polarimetric face images into a com-
mon discriminative embedding space. Therefore, the galley
of the face visible images is transformed to the mentioned
embedding space. Eventually, the identification of face po-
larimetric image is done, by calculating the minimum Eu-
clidean distance between the transformed polarimetric prob
and visible gallery images as follows:

x?i = argmin D(z1 (z0%), zo(zPh)) | (10)

I,?LS
where ¥ °lis the polarimetric probe face image and x?% is
the selected matching visible face image within the gallery

of face images.

4. Experiments and results

Experiment is performed using three main datasets, such
that the first two datasets (CMU Multi-PIE and Notre Dame
LWIR Face datasets) were used for initializing and pre-
training a CpDCNN network, and the third one (Polarimet-
ric Thermal Face dataset) which is the main objective of the
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Figure 4. Common embedding subspace of Pol-DCNN in our pro-
posed CpDCNN network for four different groups of 5 subjects.

network is used for the final fine-tuning and testing the net-
work.

CMU Multi-PIE dataset [8] consists of 337 identities, from
15 different view points and 19 illumination conditions.
This dataset contains 750,000 images collected in four dif-
ferent sessions. We used the frontal view face images to
train our DCNNSs to obtain the initial weights for Vis-DCNN
and Pol-DCNN.

Notre Dame LWIR Face dataset [4] contains LWIR and
visible images related to 159 subjects with different varia-
tion in lighting, expression and time lapse.

Polarimethric Thermal Face dataset [12] comprises pol-
rimetric LWIR face images and their corresponding visible
spectrum related to 60 subjects. Data was collected at three
different distances: Range 1 (2.5 m), Range 2 (5 m), and
Range 3 (7.5 m). At each range two different conditions,
including baseline and expression are considered. In the
baseline condition the subject is asked to keep a neutral ex-
pression looking at the polarimetric thermal sensor. On the
other hand, in the expression condition the subject is asked
to count out numerically from one upwards which results in
different expressions in the mouth and to the eyes and con-
sequently different variations in the facial imagery. Each
subject has 16 images of visible and 16 polarimetric LWIR
images in which four images are related to the baseline con-
dition and the remaining 12 images are related to the expres-
sion condition.



The network for visible face images (Vis-DCNN) com-
posed of 13 convolutional layers of VGG-16 (Figure 2), pre-
trained on the Imagenet dataset [19], followed by three fully
connected layers with output sizes of 512, 512, and 337. All
the convolutional and fully connected layers, except the last
fully connected layer, are equipped with the Relu activa-
tion function. For the sake of classification, softmax activa-
tion is used for the last fully connected layer. After training
Vis-DCNN with CMU-Multi PIE dataset, the polarimetric
thermal network (Pol-DCNN) was initialized with the Vis-
DCNN weights. Afterwards, both networks (Vis-DCNN
and Pol-DCNN) are coupled via contrastive loss function
which is applied on the output of the global pooling from
each network to construct the CpDCNN framework. Since
the final goal of the CpDCNN network was not the clas-
sification, we exclude the last three fully connected lay-
ers from the Vis-DCNN and Pol-DCNN. This also helps to
overcome the problem of overfitting for this dataset due to
the reduced number of trainable parameters. The proposed
network structure (CpDCNN) is depicted in Figure 3.

After initializing each network (Vis-DCNN and Pol-
DCNN) with the CMU Multi-PIE, the CpDCNN network
was fine-tuned by the Notre Dame face dataset. To increase
the correlation between the two modalities of visible and
thermal, each modality was preprocessed. We applied a
band-pass filter so called difference of Gaussians (DoG), to
emphasize the edges in addition to removing high and low
frequency noise. The DoG filter which is the difference of
two Gaussian kernels with different o is defined as follows:

D(I700701) = [G(xvyago) - G(xvyval)] *I(IE,y) )
(11)

where D is the DoG filtered image, * is the convolution
operator, and G is the Gaussian kernel which is defined in:

2 + y2
L o2 (12)
V2mo? .

To increase the number of training patterns and prevent
overfitting each face image was partitioned into the 40 x 40
cropped patches with stride of 10. The same preprocessing
procedure (DoG filtering and 40 x 40 cropping) was applied
to the Polarimetric Thermal Face images dataset. Among
the 60 total subjects in the dataset, 25 subjects were used
to train the network and the remaining 35 subjects were
used for testing. The training set was used to transform
the visible and polarimetric thermal features to the com-
mon latent embedding subspace. For each modality there
are four baseline and 12 expression images at three different
ranges. After partitioning each image into 40 x 40 patches,
the genuine and impostor pairs were constructed. For each
patch, we consider the corresponding location patch from
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Figure 5. Overall CMC curves from testing PLS, DPM, CpNN,
and CpDCNN using polarimetric and thermal probe samples,
matching against a visible spectrum gallery.

another modality of the same subject but in different do-
main as the genuine pair. For the impostor pair, the same
location patches from different modalities but from differ-
ent subjects were selected. Therefore, the number of the
generated impostor pairs were significantly larger than the
genuine pairs. For the sake of balancing the training set, we
considered the same number of genuine and impostor pair.

For the Polarimetric Thermal Face dataset, we consid-
ered the same CpDCNN architecture that was trained on the
Notre Dame LWIR Face dataset. We passed Sy, S1, and Sy
to the Pol-DCNN’s three channels as the input . However,
since, the Vis-DCNN and Pol-DCNN have already learned
useful features of face in visible and LWIR modalities, and
to prevent the problem of overfitting, all the layers of the
network were not trained on this dataset. We conducted
different experiments such that in each experiment differ-
ent layers of the CpDCNN were trained and the remaining
layers were fixed. The best results belong to the condition
when the last three convolutional layers of each network
(Vis-DCNN and Pol-DCNN) were trained and the remain-
ing convolutional layers were frozen and kept the weights
of the network which was trained on the Notre Dame LWIR
Face dataset. In this way, the network extracts the ther-
mal and visible low-level features (i.e.,edges and corners)
to some extent in the first convolutional layers and learns
the complementary information related to polarimetric ther-
mal images (57, .S2) in the last three convolutional layers.
It should be noted that we applied global pooling on the
feature map related to the last convolutional layer. This
tweak helped the network to reduce the number of param-



Scenario Rank-1 Identification Rate

Probe ‘ PLS ‘ DPM ‘ CpNN ‘ PLSoDPM ‘ PLSoCpNN ‘ CpDCNN

Overall Polar | 0.5867 | 0.8054 | 0.8290 0.8979 0.9045 0.9408

Therm | 0.5305 | 0.7531 | 0.7872 0.8409 0.8452 0.8857

Expressions Polar | 0.5658 | 0.8324 | 0.8597 0.9565 0.9559 0.9637

Therm | 0.6276 | 0.7887 | 0.8213 0.8898 0.8907 0.9124

Range 1 Baseline | Polar | 0.7410 | 0.9092 | 0.9207 0.9646 0.9646 0.9721

Therm | 0.6211 | 0.8778 | 0.9102 0.9417 0.9388 0.9534

Range 2 Baseline | Polar | 0.5570 | 0.8229 | 0.8489 0.9105 0.9187 0.9317

Therm | 0.5197 | 0.7532 | 0.7904 0.8578 0.8586 0.8868

Range 3 Baseline | Polar | 0.3396 | 0.6033 | 0.6253 0.6445 0.6739 0.8346

Therm | 0.3448 | 0.5219 | 0.5588 0.5768 0.6014 0.7754

Table 1. Rank-1 identification rate for cross-spectrum face recognition using polarimetric thermal and thermal probe imagery.

eters and keep the global information from the last feature
maps. Reducing the number of parameters led us to over-
come the problem of overfitting which was one of the main
challenges in this work.

In each experiment the dataset was partitioned to train
and test randomly. The experiment was repeated 100 times
and the same set of train and test was used to evaluate
PLS, DPM, CpNN, PLSoDPM, and PLSoCpNN and the
proposed CpDCNN network, and the results were averaged
over the 100 trials. Figure 5 shows the overall cumula-
tive matching characteristics (CMC) curves for our pro-
posed method and the other state-of-the-art methods over
all the three different ranges as well as the expressions data
at Range 1. For the sake of comparison, in addition to po-
larimetric thermal-to-visible face recognition performance,
Figure 5 also shows the results for the conventional thermal-
to-visible face recognition. In the conventional thermal-to-
visible face recognition, all the mentioned methods exactly
follow the same procedure as before, with only using Sy
modality. Figure 5 shows that exploiting the polarization in-
formation of the thermal spectrum improves cross-spectrum
face recognition performance compared to the conventional
one. Figure 5 also shows the superior performance of our
approach compared to the state-of-the-art methods. In ad-
dition, our method could achieve prefect accuracy of 1 at
Rank-6 and above.

Table 1 tabulates the Rank-1 identification rates for five
different scenarios: overall (which corresponds to Figure 5),
Range 1 expressions, Range 1 baseline, Range 2 baseline,
and Range 3 baseline. In our framework, exploiting polar-
ization information enhance the Rank-1 identification rate
by 1.87%, 5.13%, 4.49%, and 5.92% for Range 1 baseline,
Range 1 expression, Range 2 baseline, and Range 3 baseline
compared to the conventional thermal-to-visible face recog-
nition. This table shows the effectiveness of our method
in utilizing polarization information to enhance the cross-
spectrum face recognition problem. It also reveals that us-

ing deep coupled convolutional neural network techniques
with contrastive loss function to transform different modal-
ities into the distinctive common embedding space is supe-
rior to the other embedding techniques such as PLSoCpNN.

5. Conclusion

We have introduced a novel approach to exploit polari-
metric information for the purpose of thermal-to-visible
face recognition. We have proposed to use coupled convo-
lutional neural network to learn deep global discriminative
features. The proposed network is capable of transforming
the visible and polarimetric thermal modalities into a com-
mon discriminative embedding space. We prevented over-
fitting by training the network on relatively large datasets
and fine-tune it with the polarimetric dataset. We com-
pared our method with state-of-the-art thermal to visible
face recognition methods and showed the superiority of our
method over them. The results also revealed that the po-
larimetric thermal information can be exploited to boost
the conventional thermal-to-visible face recognition perfor-
mance.
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