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Abstract

This paper considers the problem of matrix completion when the observed entries are noisy

and contain outliers. It begins with introducing a new optimization criterion for which the

recovered matrix is defined as its solution. This criterion uses the celebrated Huber function

from the robust statistics literature to downweigh the effects of outliers. A practical algorithm

is developed to solve the optimization involved. This algorithm is fast, straightforward to

implement, and monotonic convergent. Furthermore, the proposed methodology is theoretically

shown to be stable in a well defined sense. Its promising empirical performance is demonstrated

via a sequence of simulation experiments, including image inpainting.
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1 Introduction

The goal of matrix completion is to impute those missing entries of a large matrix based on the

knowledge of its relatively few observed entries. It has many practical applications, ranging from

collaborative filtering (Rennie and Srebro, 2005) to computer visions (Weinberger and Saul, 2006)

to positioning (Montanari and Oh, 2010). In addition, its application to recommender systems

is perhaps the most well known example, widely made popularized by the so-called Netflix prize

problem (Bennett and Lanning, 2007). In this problem a large matrix of movie ratings is partially

observed. Each row of this matrix consists of ratings from a particular customer while each column

records the ratings on a particular movie. In the Netflix dataset, there are around 5×105 customers

and 2× 104 movies, with less than 1% of the ratings are observed. Without any prior knowledge, a

reasonable full recovery of the matrix is virtually impossible. To overcome this issue, it is common

to assume that the matrix is of low rank, reflecting the belief that the users’ ratings are based on a

relatively small number of factors. This low rank assumption is very sensible in many applications,

although the resulting optimizations are combinatorially hard (Srebro and Jaakkola, 2003). To this

end, various convex relaxations and related optimization algorithms have been proposed to provide

computationally feasible solutions; see, e.g., Candès and Recht (2009); Candès and Plan (2010);

Keshavan et al. (2010a,b); Mazumder et al. (2010); Marjanovic and Solo (2012) and Hastie et al.

(2014).

In addition to computational advances, the theoretical properties of matrix completion using

nuclear norm minimization have also been well studied. For example, when the observed entries

are noiseless, Candès and Recht (2009) show that perfect recovery of a low rank matrix is possible;

see also Keshavan et al. (2010a), Gross (2011) and Recht (2011). This result of Candès and Recht

(2009) has been extended to noisy measurements by Candès and Plan (2010): with high probability,

the recovery is subject to an error bound proportional to the noise level. Techniques that achieve

this desirable property are often referred as stable. See also Keshavan et al. (2010b) and Koltchinskii

et al. (2011) for other theoretical developments of matrix completion from noisy measurements.

The original formulation of matrix completion assumes those observed entries are noiseless, and

is later extended to the more realistic situation where the entries are observed with noise. This paper
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further extend the formulation to simultaneously allow for both noisy entries and outliers. To the

authors knowledge, such an extension has not been considered before, although similar work exists.

In Candès et al. (2011) a method called principal component pursuit (PCP) is developed to recover

a matrix observed with mostly noiseless entries and otherwise a small amount of outliers. This is

done by modeling the observed matrix as a sum of a low rank matrix and a sparse matrix. Zhou

et al. (2010) extend this PCP method to noisy entries but assumes the matrix is fully observed, thus

it does not fall into the class of matrix completion problems. Lastly Chen et al. (2011) extend PCP

to safeguard against special outlying structures, namely outlying columns. However, it works only

on outliers and otherwise noiseless entries. Due to the similarity between the matrix completion and

principal component analysis, it is worthmentioning that there are some related work (Karhunen,

2011; Luttinen et al., 2012) on robust principal component analysis with missing values.

The primary contribution of this paper is the development of a new robust matrix completion

method that can be applied to recover a matrix with missing, noisy and/or outlying entries. This

method is shown to be stable in the sense of Candès and Plan (2010), as discussed above. As opposed

to the above referenced PCP approach that decomposes the matrix into a sum of a low rank and

a sparse matrix, the new approach is motivated by the statistical literature of robust estimation

which modifies the least squares criterion to downweigh the effects of outliers. Particularly, we make

use of the Huber function for this modification. We provide a theoretical result that establishes

an intrinsic link between the two different approaches. To cope with the nonlinearity introduced

by the Huber function, we propose a fast, simple, and easy-to-implement algorithm to perform the

resulting nonlinear optimization problem. This algorithm is motivated by the ES-Algorithm for

robust nonparametric smoothing (Oh et al., 2007). As to be shown below, it can transform a rich

class of (non-robust) matrix completion algorithms into algorithms for robust matrix completion.

The rest of this paper is organized as follows. Section 2 provides further background of matrix

completion and proposes a new optimization criterion for robust matrix recovery. Fast algorithms

are developed in Section 3 for practically computing the robust matrix estimate. Theoretical and

empirical properties of the proposed methodology are studied in Section 4 and Section 5 respectively.

Concluding remarks are given in Section 6, while technical details are relegated to the appendix.

3



2 Matrix Completion with Noisy Observations and Outliers

Suppose X is an n1 × n2 matrix which is observed for only a subset of entries Ωobs ⊆ [n1] × [n2],

where [n] denotes {1, . . . , n}. Let Ω⊥
obs be the complement of Ωobs. Define the projection operator

PΩobs
as PΩobs

B = C, where Cij = Bij if (i, j) ∈ Ωobs and Cij = 0 if (i, j) ̸∈ Ωobs, for any n1 × n2

matrix B = (Bij)i∈[n1],j∈[n2]. The following is a standard formulation for matrix completion using

a low rank assumption:

minimize
Y

rank(Y )

subject to
1

2
∥PΩobs

X − PΩobs
Y ∥2F ≤ e,

where e > 0 and ∥ · ∥F is the Frobenius norm. Carrying out this rank minimization enables a good

recovery of any low rank matrix with missing entries. Note that for the reason of accommodating

noisy measurements, the constraint above allows for a slight discrepancy between the recovered and

the observed matrices.

However, this minimization is combinatorially hard (e.g., Srebro and Jaakkola, 2003). To achieve

fast computation, the following convex relaxation is often used:

minimize
Y

∥Y ∥∗

subject to
1

2
∥PΩobs

X − PΩobs
Y ∥2F ≤ e,

where ∥Y ∥∗ represents the nuclear norm of Y (i.e., the sum of singular values of Y ). The Lagrangian

form of this optimization is

minimize
Y

f(Y |X) ≡ 1

2
∥PΩobs

X − PΩobs
Y ∥2F + γ∥Y ∥∗, (1)

where γ > 0 has a one-to-one correspondence to e. The squared loss in the first term is used to

measure the fitness of the recovered matrix to the observed matrix. It is widely known that such

a squared loss is very sensitive to outliers and often leads to unsatisfactory recovery results if such
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outliers exist. Motivated by the literature of robust statistics (e.g., Huber and Ronchetti, 2011),

we propose replacing this squared loss by the Huber loss function

ρc(x) =

⎧⎪⎪⎨⎪⎪⎩
x2, |x| ≤ c

c(2|x| − c), |x| > c

,

with tuning parameter c. When comparing with the squared loss, the Huber loss downweighs the

effects of extreme measurements. Our proposed solution for robust matrix completion is given by

the following minimization:

minimize
Y

g(Y ) ≡ 1

2

∑
(i,j)∈Ωobs

ρc(Xij − Yij) + γ∥Y ∥∗. (2)

Note that the convexity of ρc guarantees the convexity of the objective criterion (2).

For many robust statistical estimation problems the tuning parameter c is pre-set as c = 1.345σ̂

to achieve a 95% statistical efficiency, where σ̂ is an estimate of the standard deviation of the noise.

For the current problem, however, the choice of c is suggested by Theorem 2 below: c = γ/
√
n(1)p,

where n(1) = max{n1, n2} and p is the percentage of missing entries. This choice of c was used

throughout all our numerical work.

3 Fast Algorithms for Minimization of (2)

Since the gradient of the Huber function is non-linear, (2) is a harder optimization problem when

comparing to many typical matrix completion formulations such as (1). As an example, consider (1)

when X is fully observed; i.e., Ωobs = [n1] × [n2]. Through sub-gradient analysis (e.g., Cai et al.,

2010; Ma et al., 2011), one can derive a closed-form solution to (1), denoted as Sγ(X), where Sγ is

the soft-thresholding operator defined in Mazumder et al. (2010), also given in (6) below. However,

even if X was fully observed, (2) does not have a closed-form solution. The goal of this section is

to develop fast methods for minimizing (2).
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3.1 A General Algorithm

In Oh et al. (2007) a method based on the so-called theoretical construct pseudo data is proposed

for robust wavelet regression. The idea is to transform a Huber-type minimization problem into a

sequence of fast and well understood squared loss minimization problems. This subsection modifies

this idea and proposes an algorithm to minimizing (2).

As similar to Oh et al. (2007), we define a pseudo data matrix as

Z = PΩobs
Ỹ +

1

2
ψc(E), (3)

where Ỹ is the current estimate of the target matrix, E = PΩobs
X − PΩobs

Ỹ is the “residual

matrix”, and ψc = ρ′c is the derivative of ρc. With a slight notation abuse, when ψc is applied to

a matrix, it means ψc is evaluated in an element-wise fashion. Straightforward algebra shows that

the sub-gradient of f(Y |Z) (with respect to Y ) evaluated at Ỹ ,

−(PΩobs
Z − PΩobs

Ỹ ) + γ∂∥Ỹ ∥∗, (4)

is equivalent to the sub-gradient of g(Y ) (with respect to Y ) evaluated at Ỹ ,

−1

2
ψc(PΩobs

X − PΩobs
Ỹ ) + γ∂∥Ỹ ∥∗. (5)

The proposed algorithm iteratively updates Ỹ = arg minY f(Y |Z) and Z using (3). Upon conver-

gence (implied by Proposition 1 below), the sub-gradient (4) contains 0 at the converged Ỹ and

thus the sub-gradient (5) also contains 0 at this converged Ỹ . Therefore this Ỹ is the solution

to (2). Details of this algorithm based on pseudo data matrix are given in Algorithm 1.

Algorithm 1 has several attractive properties. First, it can be paired with any existing (non-

robust) matrix completion algorithm (or software), as can be easily seen in Step 2(c). This is

a huge advantage, as a rich body of existing (non-robust) methods can be made robust against

outliers. Second, once such an (non-robust) algorithm is available, the rest of the implementation

is straightforward and simple, and no expensive matrix operations are required. Lastly, it has
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Algorithm 1 The General Robust Algorithm

1: Perform (non-robust) matrix completion on X and assign Y old ← arg minY f(Y |X). This Y old

is the initial estimate (starting point of the algorithm).
2: Repeat:

(a) Compute E ← PΩobs
X − PΩobs

Y old.

(b) Compute Z ← PΩobs
Y old + 1

2ψc(E).

(c) Perform (non-robust) matrix completion on Z and assign Y new ← arg minY f(Y |Z).
(d) If

∥Y new − Y old∥2F
∥Y old∥2F

< ε,

exit.

(e) Assign Y old ← Y new.

3: Output Y new.

strong theoretical backup, as to be reported in Section 4.

3.2 Further Integration with Existing Matrix Completion Algorithms

Many existing matrix completion algorithms are iterative. A direct application of Algorithm 1

would lead to an algorithm that is iterations-within-iterations. Although our extensive numerical

experience suggests that these direct implementations would typically converge within a few it-

erations to give a reasonably fast execution time, it would still be advantageous to speed up the

overall procedure. Here we show that it is possible to further improve the speed of the overall

robust algorithm by embedding the pseudo data matrix idea directly into a non-robust algorithm.

We shall illustrate this with the Soft-Impute algorithm proposed by Mazumder et al. (2010).

To proceed we first recall the definition of their thresholding operator Sγ : for any matrix Z of rank

r,

Sγ(Z) = UDγV
⊺, (6)

where Z = UDV ⊺ is the singular value decomposition of Z, D = diag[d1, . . . , dr] and Dγ =

diag[(d1 − γ)+, . . . , (dr − γ)+]. Now the main idea is to suitably replace an iterative matrix es-

timate with the pseudo data matrix estimate given by (3). With Soft-Impute, the resulting

robust algorithm is given in Algorithm 2. We shall call this algorithm Robust-Impute. As to be
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shown by the numerical studies below, Robust-Impute is very fast and produces very promising

empirical results. Our algorithm also has the sparse-plus-low-rank structure in the singular value

thresholding step (Step 2a(iii)). This linear algebra structure has positive impact on the computa-

tional complexity. See Section 5 of Mazumder et al. (2010) for details. Moreover, the monotonicity

and convergence of our algorithm is guaranteed by Proposition 1 and Theorem 1.

Algorithm 2 Robust-Impute

1: Initialize Y old = Sγ1(PΩobs
X) and Z = X.

2: Do for γ1 > γ2 > · · · > γK :

(a) Repeat:

(i) Compute E ← PΩobs
X − PΩobs

Y old.

(ii) Compute Z ← PΩobs
Y old + 1

2ψc(E)

(iii) Compute Y new ← Sγk(PΩobs
Z + PΩ⊥

obs
Y old).

(iv) If
∥Y new − Y old∥2F
∥Y old∥2F

< ε,

exit.

(v) Assign Y old ← Y new.

(b) Assign Ŷγk ← Y new.

3: Output the sequence of solutions Ŷγ1 , . . . , ŶγK .

4 Theoretical Properties

This section presents some theoretical backups for the proposed methodology.

4.1 Monotonicity and global convergence

We first present the following proposition concerning the monotonicity of the algorithms. The proof

can be found in Appendix A.1. We also provide an alternative proof suggested by a referee, based

on the idea of alternating minimization, in Appendix A.1

Proposition 1 (Monotonicity). Let Y (k) and Z(k) = PΩobs
Y (k−1) + ψc(PΩobs

X − PΩobs
Y (k−1))/2

be, respectively, the estimate and the pseudo data matrix in the k-th iteration. If Y (k+1) is the next

estimate such that f(Y (k+1)|Z(k+1)) ≤ f(Y (k)|Z(k+1)), then g(Y (k+1)) ≤ g(Y (k)).
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For the general version (Algorithm 1), it is obvious that the condition f(Y (k+1)|Z(k+1)) ≤

f(Y (k)|Z(k+1)) is satisfied as the result of the minimization Y old ← arg minY f(Y |Z). For the spe-

cialized version Robust-Impute (Algorithm 2), this condition is implied by Lemma 2 of Mazumder

et al. (2010). Therefore both versions are monotonic.

As pointed out by a referee, the proposed algorithms can also be viewed as an instance of the

majorization-minimization (MM) algorithm (Lange et al., 2000; Hunter and Lange, 2004). It can

be shown that, for (i, j) ∈ Ωobs,

ρc(Xij − Yij) ≤ ρc(Xij − Y old
ij )− (Yij − Y old

ij )ψc(Xij − Y old
ij ) + 2 · 1

2
(Yij − Y old

ij )2

=

[
Yij − Y old

ij −
1

2
ψc(Xij − Y old

ij )

]2
+ constant

= (Yij − Zij)
2 + constant.

Therefore, subject to an additive constant that does not depend on Y , h(Y |Y old) = f(Y |Z) =

(1/2)
∑

(i,j)∈Ωobs
(Zij − Yij)2 + γ∥Y ∥∗ is a majorization of the objective function g. With this ma-

jorization, Algorithm 1 can be viewed as an MM algorithm. Additionally, one can majorize the

unobserved entries by (Yij−Zij)
2 = (Yij−Y old

ij )2 ≥ 0 and, together with the above majorization of

the observed entries, Algorithm 2 can also be shown as an MM algorithm. Therefore the monotonic-

ity of the proposed algorithms can also be obtained by the general theory of MM algorithm (e.g.,

Lange, 2010). Moreover, the explicit connection to the MM algorithm allows possible extensions of

the current algorithm to other robust loss functions such as Tukey’s biweight loss. However, due

to non-differentiability of the objective function, the typical convergence analysis of MM algorithm

(e.g., Lange, 2010, Ch. 15) does not apply to our case.

We summarize the global convergence rates of both Algorithm 1 and Algorithm 2 in the following

theorem.

Theorem 1. Let Y (k) and Y (0) be, respectively, the estimate in the k-th iteration and the starting
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point of Algorithm 1 or Algorithm 2 Then for any k ≥ 1,

Algorithm 1: g(Y (k))− g(Y ∗) ≤
∥PΩobs

Y (0) − PΩobs
Y ∗∥2F

2k
, ∀Y ∗ ∈ Y,

Algorithm 2: g(Y (k))− g(Y ∗) ≤
∥Y (0) − Y ∗∥2F

2k
, ∀Y ∗ ∈ Y,

where Y be the set of all global minimizers of g (i.e. Y = argminY ∈Rn1×n2 g(Y )).

The global convergence analysis of Algorithm 1 can be carried out similarly as in Beck and

Teboulle (2009) for proximal gradient method, despite that Algorithm 1 is not a proximal gradient

method. For completeness, we give the proof of Theorem 1 for Algorithm 1 in Appendix A.2.

As for Robust-Impute (Algorithm 2), we can rewrite it as an instance of the proximal gradient

method applied to g(Y ) = g1(Y1)+g2(Y2), where g1(Y ) = (1/2)
∑

(i,j)∈Ωobs
ρc(Xij−Yij) and g2(Y ) =

γ∥Y ∥∗. In our case, the proximal gradient method with step size L iterates over Y (k+1) = ξL(Y
(k))

with

ξL(Ỹ ) = argmin
Y

{
g2(Y ) +

L

2

Y − (
Ỹ − 1

L
∇g1(Ỹ )

)2
F

}
,

where L is constant greater than or equal to the Lipstchiz constant of g1. Note that g1 has a

Lipschitz contant 1. If we take L = 1, we have the following simplification.

g2(Y ) +
L

2

Y − (
Ỹ − 1

L
∇g1(Ỹ )

)2
F

= g2(Y ) +
1

2

Y −{
Ỹ +

1

2
ψc(PΩobs

X − PΩobs
Ỹ )

}2
F

= g2(Y ) +
1

2

Y − {
PΩ⊥

obs
Ỹ + PΩobs

Z
}2

F
.

The minimization of ξ1 is equivalent to Step 2a(iii) of Algorithm 2. Therefore, the proximal gradient

method is the same as Robust-Impute. This connection allows us to apply the convergence results

of proximal gradient method to Robust-Impute directly. Theorem 1 for Algorithm 2 follows from

Theorem 3.1 of Beck and Teboulle (2009). Lastly, the Nesterov’s method (Nesterov, 2007) can

be applied directly to accelerate Algorithm 2. The resulted accelerated version is expected to

be faster in terms of convergence. However, the acceleration in the Nesterov’s method ruins the

computationally beneficial sparse-plus-low-rank structure (Mazumder et al., 2010) in the singular

vaue thresholding step (Step 2a(iii)). Hence, for large matrices, the non-accelerated version is still
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preferred in terms of overall computations. The detailed discussion can be found in Section 5 of

Mazumder et al. (2010).

4.2 Stable Recovery

Recall the stable property of Candès and Plan (2010) implies that, with high probability, the

recovered matrix is subject to an error bound proportional to the noise level. This subsection

shows that the robust matrix completion defined by (2) is also stable.

Although the formulation of (2) has its root from classical robust statistics, it is also related to

the more recent principal component pursuit (PCP) proposed by Candès et al. (2011). PCP assumes

that the entries of the observed matrix are noiseless, and that this matrix can be decomposed as

the sum of a low rank matrix and a sparse matrix, where the sparse matrix is treated as the gross

error. In Candès et al. (2011) it is shown that using PCP perfect recovery is possible with or

without missing entries in the observed matrix. Another notable work by Chandrasekaran et al.

(2011) provide completely deterministic conditions for the PCP to succeed under no missing data.

See Section 1.5 of Candès et al. (2011) for a detailed comparison between these two pieces of work.

For the case of noisy measurements without missing entries, Zhou et al. (2010) extend PCP to

stable PCP (SPCP), which is shown to be stable. However, to the best of our knowledge, there is

no existing theoretical results for the case of noisy (and/or outlying) measurements with missing

entries.

Inspired by She and Owen (2011), we first establish an useful link between robust matrix

completion (2) and PCP in the following proposition. The proof can be found in Appendix A.3.

Proposition 2 (Equivalence). The minimization (2) is equivalent to

minimize
L,S

1

2
∥PΩobs

X − PΩobs
(L+ S)∥2F + γ∥L∥∗ + c∥S∥1. (7)

That is, the minimizing Y of (2) and the minimizing L of (7) coincide.
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Minimization (7) has a high degree of similarity to both PCP and SPCP. It is equivalent to

minimize
L,S

∥L∥∗ + λ∥S∥1 (8)

subject to ∥PΩobs
X − PΩobs

(L+ S)∥2F ≤ δ2,

where λ = c/γ and δ > 0 has a one-to-one correspondence to γ. When comparing with PCP, (7)

permits the observed matrix to be different from the recovered matrix (L + S) to allow for noisy

measurements. When comparing with SPCP, (7) permits missing entries, which is necessary for

matrix completion problems.

Proposition 2 has two immediate implications. First, the proposed Algorithm 1 provides a

general methodology to turn a large and well-developed class of matrix completion algorithms into

algorithms for solving SPCP with missing entries. Second, many useful results from PCP can be

borrowed to study the theoretical properties of robust matrix completion (2). In particular, we

show that (2) leads to stable recovery. With Proposition 2, it suffices to show that (7) achieves

stable recovery of (L0, S
′
0) from the data PΩobs

(X) generated by PΩobs
(L0+S0) obeying ∥PΩobs

X−

PΩobs
(L0 + S0)∥F ≤ δ and S′

0 = PΩobs
S0. Note that L0 = X0.

We need some notations to proceed. For simplicity, we assume n = n1 = n2 but our results

can be easily extended to rectangular matrices (n1 ̸= n2). The Euclidean inner product ⟨Q,R⟩ is

defined as trace(Q⊺R). Let p0 be the proportion of observed entries. Write Γ ⊂ Ωobs as the set of

locations where the measurements are noisy (but not outliters), and Ω = Ωobs\Γ as the support

of S′
0 = PΩobs

S0; i.e., locations of outliers. Denote their complements as, respectively, Γ⊥ and Ω⊥.

We define PΓ, PΩ, PΓ⊥ and PΩ⊥ similarly to the definition of PΩobs
. Let r be the rank of L0 and

UDV ⊺ be the corresponding singular value decomposition of L0, where U, V ∈ Rn×r and D ∈ Rr×r.

Similar to Candès et al. (2011), we consider the linear space of matrices

T := {UQ⊺ +RV ⊺ : Q,R ∈ Rn×r}.

Write PT and PT⊥ as the projection operator to T and T⊥ respectively. As in Zhou et al. (2010), we

define a set of notations for any pair of matrices M = (L, S). Here, let ∥M∥F :=
√
∥L∥2F + ∥S∥2F
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and ∥M∥♢ := ∥L∥∗ + λ∥S∥1. We also define the projection operators PT × PΓ⊥ : (L, S) ↦→

(PTL,PΓ⊥S) and PT⊥ × PΓ : (L, S) ↦→ (PT⊥L,PΓS). In our theoretical development, we consider

the following special subspaces

Ψ := {(L, S) : L, S ∈ Rn×n,PΩobs
L = PΩobs

S,PΩ⊥
obs
L = PΩ⊥

obs
S = 0},

Ψ⊥ := {(L, S) : L, S ∈ Rn×n,PΩobs
L+ PΩobs

S = 0}.

And we write the corresponding projection operators as PΨ and PΨ⊥ respectively. Let M0 =

(L0, S
′
0). Lastly, for any linear operatorA, the operator norm, denoted by ∥A∥, is sup{∥Q∥F=1} ∥AQ∥F .

In below, we write that an event occurs with high probability if it holds with probability at least

1−O(n−10).

To avoid certain pathological cases (see, e.g., Candès and Recht, 2009), an incoherence condition

on U and V is usually assumed. To be specific, this condition with the parameter µ is:

max
i
∥U⊺ei∥2 ≤

µr

n1
, max

i
∥V ⊺ei∥2 ≤

µr

n2
, and ∥UV ⊺∥∞ ≤

√
µr

n1n2
, (9)

where ∥Q∥ is the operator norm or 2-norm of matrix Q (i.e., the largest singular value of Q)

and ∥Q∥∞ = maxi,j |Qi.j |. This condition guarantees that, for small µ, the singular vectors are

reasonably spread out.

Theorem 2 (Stable Recovery). Suppose that L0 obeys (9) and Ωobs is uniformly distributed among

all sets of cardinality m = p0n
2 with p0 > 0 being the proportion of observed entries. Further

suppose that each observed entry is grossly corrupted to be an outlier with probability τ independently

of the others. Suppose L0 and S0 satisfy r ≤ ρrnµ
−1(log n)−2 and τ ≤ τs with ρr, τs being positive

numerical constants. Choose λ = 1/
√
np0. Then, with high probability (over the choices of Ω and

Ωobs), for any X obeying ∥PΩobs
X − PΩobs

(L0 + S0)∥F ≤ δ, the solution (L̂, Ŝ) to (8) satisfies

∥L̂− L0∥F ≤
{
2 + 8

√
n

(
1 +

√
8

p0

)}
δ and ∥Ŝ − S′

0∥F ≤
{
2 + 8

√
n

(
1 +

√
8

p0

)}
√
np0δ,

where S′
0 = PΩobs

(S0).
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The proof of this theorem can be found in Appendix A.4.

5 Empirical Performances

Two sets of numerical experiments and a real data application were conducted to evaluate the

practical performances of the proposed methodology. In particular the performance of the pro-

posed procedure Robust-Impute is compared to the performance of Soft-Impute developed by

Mazumder et al. (2010). The reasons Soft-Impute is selected for comparison are that it is one

of the most popular matrix completion methods due to its simplicity and scalability, and that it

is shown by Mazumder et al. (2010) that it generally produces superior results to other common

matrix completion methods such as MMMF of Rennie and Srebro (2005), SVT of Cai et al. (2010)

and OptSpace of Keshavan et al. (2010a)

5.1 Experiment 1: Gaussian Entries

This experiment covers those settings used in Mazumder et al. (2010, Section 9) and additional

settings with different proportions of missing entries and outliers. For each simulated data set, the

target matrix was generated as X0 = UV ⊺, where U and V are random matrices of size 100 × r

with independent standard normal Gaussian entries. Then each entry of X0 is contaminated by

additional independent Gaussian noise with standard deviation σ, which is set to a value such that

the signal-to-noise ratio (SNR) is 1. Here SNR is defined as

SNR = s =

√
Var(X0)

σ2
,

where Var(X0) is the variance over all the entries of X0 conditional on U and V . Next, for each

entry, with probability p yet another independent Gaussian noise with σ/4 is added; these entries

are treated as outliers. We call this contaminated version of X0 as X. Lastly, Ωobs is uniformly

random over the indices of the matrix with missing proportion as q. In this study, we used two

values for r (5, 10), three values for p (0, 0.05, 0.1) and three values for q (0.25, 0.5, 0.75). Thus

in total we have 18 simulation settings. For each setting 200 simulated data sets were generated,
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and both the non-robust method Soft-Impute and the proposed Robust-Impute were applied

to recover X0. We also provide two oracle fittings as references. They are produced by applying

Soft-Impute to the simulated data set with outlying observed entries removed (i.e., treated as

missing entries), and with outlying observed entries replaced by non-outlying contaminated entries

(i.e., contaminated by independent Gaussian noise with standard deivation σ) respectively. The

first oracle fitting is referred to as oracle1 while the second one is called oracle2 in the following.

For the two simulation settings with r = 10 and q = 0.5, and one with p = 0 while the other

with p = 0.1, Figure 1 summarizes the average number of singular value decompositions (SVDs)

used and the average test error. Here test error is defined as

Test error =
∥PΩ⊥

obs
(X0 − X̂)∥2F

∥PΩ⊥
obs
X0∥2F

,

where PΓ is the projection operator to the set of locations of the observed noisy entries (but not

outliers) Γ, and X̂ is an estimate of X0. From Figure 1 (Top), one can see that the performance

of Robust-Impute is slightly inferior to Soft-Impute in the case of no outliers (p = 0), while

Robust-Impute gave significantly better results when outliers were present (p = 0.1). The inferior

performance of Robust-Impute under the absence of outliers is not surprising, as it is widely

known in the statistical literature that a small fraction of statistical efficiency would be lost when

a robust method is applied to a data set without outliers. However, it is also known that the gain

could be substantial if outliers did present.

As for computational requirements, one can see from Figure 1 (Bottom) that Robust-Impute

only used slightly more SVDs on average. For ranks greater than 5, the number of SVDs used by

Robust-Impute only differs from Soft-Impute on average by less than 1. This suggests that

Robust-Impute is slightly more computationally demanding than Soft-Impute.

Similar experimental results were obtained for the remaining 16 simulation settings. For brevity,

the corresponding results are omitted here but can be found in the supplementary document.

From this experiment some empirical conclusions can be drawn. When there is no outlier,

Soft-Impute gives slightly better results, while with outliers, results from Robust-Impute are
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substantially better. Since that in practice one often does not know if outliers are present or not,

and that Robust-Impute is not much more computationally demanding than Soft-Impute, it

seems that Robust-Impute is the choice of method if one wants to be more conservative.

5.2 Experiment 2: Image Inpainting

In this experiment the target matrix is the so-called Lena image that has been used by many authors

in the image processing literature. It consists of 256× 256 pixels and is shown in Figure 2 (Left).

The simulated data sets were generated via contaminating this Lena image by adding Gaussian

noises and/or outliers in the following manner. First independent Gaussian noise was added to

each pixel, where the standard deviation of the noise was set such that the SNR is 3. Next, 10%

of the pixels were selected as outliers, and to them additional independent Gaussian noises with

SNR 3/4 were added. In terms of selecting missing pixels, two mechanisms were considered. In the

first one 40% of the pixels were randomly chosen as missing pixels, while in the second mechanism

only 10% were missing but they were clustered together to form patches. Two typical simulated

data sets are shown in Figure 2 (Middle). Note that Theorem 2 does not cover the second missing

mechanism. For each missing mechanism, 200 data sets were generated and both Soft-Impute

and Robust-Impute were applied to reconstruct Lena.

The average training and testing errors1 of the recovered images of matrix ranks 50, 75, 100

and 125 are reported in Table 1. For both missing mechanisms, Soft-Impute tends to have lower

training errors, but larger testing errors when compared to Robust-Impute. In other words,

Soft-Impute tends to over-fit the data, and Robust-Impute seems to provide better results.

Lastly, for visual evaluation, the recovered image of rank 100 using Robust-Impute is displayed

in Figure 1 (Right). From this one can see that the proposed Robust-Impute provided good

recoveries under both missing mechanisms.

1The solution path (formed by the pre-specified set of γ’s) may not contain any solution of rank 50, 75, 100 and
125. Thus, the average errors were computed over those fittings that contained the corresponding fitted ranks. At
most 2% of these fittings were discarded due to this reason.
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Figure 1: Top: The average test errors with their standard error bands (plus or minus one standard
error). Bottom: The average number of singular value decompositions used with standard error
bands (plus or minus one standard error). Left: results for the simulation setting: r = 10, p = 0
and q = 0.5. Right: results for the simulation setting: r = 10, p = 0.1 and q = 0.5.
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Table 1: The average training and testing errors for the Lena experiment.

training error testing error
rank 50 75 100 125 50 75 100 125

independent Soft-Impute 0.0499 0.0351 0.0221 0.0113 0.0578 0.0565 0.0581 0.0620
missing Robust-Impute 0.0486 0.0371 0.0282 0.0252 0.0546 0.0540 0.0557 0.0571
clustered Soft-Impute 0.0487 0.0386 0.0296 0.0214 0.0756 0.0751 0.0760 0.0781
missing Robust-Impute 0.0468 0.0390 0.0321 0.0268 0.0716 0.0714 0.0723 0.0742

Figure 2: Left: the Lena image. Middle: degraded Lena images by the independent missing
mechanism (Top) and the clustered missing mechanism (Down). Right: corresponding recovered
images of rank 100 via Robust-Impute.
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5.3 Real data application: Landsat Thematic Mapper

In this application the target matrix is an image from a Landsat Thematic Mapper data set publicly

available at http://ternauscover.science.uq.edu.au/. This data set contains 149 multiband

images of 100 × 100 pixels, with each image consists of six bands (blue, green and red with three

infrared bands). The scene is centered on the Tumbarumba flux tower on the western slopes of the

Snowy Mountains in Australia. Due to wild fires or related reasons, some pixels are of value zero

which can be treated as missing. Also, due to detector malfunctioning, some isolated pixels have

values much higher than the remaining pixels, which can be treated as outliers. We selected an

image band with a high missing rate (27.6%) to test our procedure.

To evaluate the recovered matrix, the observed pixels were split into training, validation and

testing sets consisting 80%, 10% and 10% of the observed (nonzero) entries respectively. We used the

validation set to tune γ. The validation errors are computed in two ways: mean squared error (MSE)√∑
(i,j)∈V(Xij − X̂ij)2/|V| and mean absolute deviation (MAD) median{|Xij − X̂ij | : (i, j) ∈ V},

where V represents the validation set. Similarly, we compute the testing errors in terms of MSE

and MAD. Note that the validation and testing sets may contain outliers and therefore MAD serves

as a robust and reliable performance measure. The corresponding results are shown in Table 2.

From this table it can be seen that with the presence of outliers, Robust-Imputeprovided better

results.

Table 2: Rank and testing errors of the real data application.

tuning by MSE tuning by MAD
rank MSE MAD rank MSE MAD

Soft-Impute 24 45.20 31.15 21 45.23 31.15
Robust-Impute 24 44.63 29.00 29 44.57 28.76

6 Concluding remarks

In this paper a classical idea from robust statistics has been brought to the matrix completion

problem. The result is a new matrix completion method that can handle noisy and outlying entries.

This method uses the Huber function to downweigh the effects of outliers. A new algorithm is
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developed to solve the corresponding optimization problem. This algorithm is relatively fast, easy

to implement and monotonic convergent. It can be paired with any existing (non-robust) matrix

completion methods to make such methods robust against outliers. We also developed a specialized

version of this algorithm, called Robust-Impute. Its promising empirical performance has been

illustrated via numerical experiments. Lastly, we have shown that the proposed method is stable;

that is, with high probability, the error of recovered matrix is bounded by a constant proportional

to the noise level.
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A Technical Details

A.1 Proofs of Proposition 1

Proof. By rewriting

∥PΩobs
Z(k+1) − PΩobs

Y (k+1)∥2F = ∥PΩobs
Z(k+1) − PΩobs

Y (k)∥2F + ∥PΩobs
Y (k) − PΩobs

Y (k+1)∥2F

2× trace
[
{PΩobs

Z(k+1) − PΩobs
Y (k)}{PΩobs

Y (k) − PΩobs
Y (k+1)}⊺

]
,

and using f(Y (k+1)|Z(k+1)) ≤ f(Y (k)|Z(k+1)), we have

1

2
∥PΩobs

Y (k) − PΩobs
Y (k+1)∥2F + trace

[
{PΩobs

Z(k+1) − PΩobs
Y (k)}{PΩobs

Y (k) − PΩobs
Y (k+1)}⊺

]
+ γ∥Y (k+1)∥∗ ≤ γ∥Y (k)∥∗.
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Thus, by substituting Z(k+1) = PΩobs
Y (k) + 1

2ρ
′
c(PΩobs

X − PΩobs
Y (k)),

1

2
∥PΩobs

Y (k) − PΩobs
Y (k+1)∥2F +

1

2
trace

[
ρ′c(PΩobs

X − PΩobs
Y (k)){PΩobs

Y (k) − PΩobs
Y (k+1)}⊺

]
+ γ∥Y (k+1)∥∗ ≤ γ∥Y (k)∥∗.

(10)

Here we abuse the notation slightly so that ρ′c of a matrix simply means the matrix formed by

applying ρ′c to its entries. Note that for each (i, j) ∈ Ωobs, by Taylor’s expansion,

ρc(Xij − Y (k+1)
ij ) = ρ(Xij − Y (k)

ij ) + (Y
(k)
ij − Y

(k)
ij )ρ′c(Xij − Y (k)

ij ) +

∫ Xij−Y
(k+1)
ij

Xij−Y
(k)
ij

(Xij − Y (k+1)
ij − t)ρ′′c (t)dt,

and the last integral term is less than or equal to (Y
(k)
ij −Y

(k+1)
ij )2 due to ρ′′c ≤ 2 almost everywhere.

Thus,

∑
(i,j)∈Ωobs

ρc(Xij − Y (k+1)
ij ) ≤

∑
(i,j)∈Ωobs

ρc(Xij − Y (k)
ij )

+ trace
[
ρ′c(PΩobs

X − PΩobs
Y (k)){PΩobs

Y (k) − PΩobs
Y (k+1)}⊺

]
+ ∥PΩobs

Y (k) − PΩobs
Y (k+1)∥2F .

Now, plugging it into (10), we have g(Y (k+1)) ≤ g(Y (k)).

Alternative proof of Proposition 1. Similar to the proof of Proposition 2 in Section A.3, one can

show that

g(Y ) = min
S

1

2
∥PΩobs

X − PΩobs
Y − PΩobs

S∥2F + γ∥Y ∥∗ + c∥S∥1, (11)
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where the minimizer is S(Y ) = (1/2)ψc(PΩobs
X − PΩobs

Y ). Now, one can show that

Z(k+1) = PΩobs
Y (k) + (1/2)ψc(PΩobs

X − PΩobs
Y (k))

= PΩobs
X + (1/2)ψc(PΩobs

Y (k) − PΩobs
X)

= PΩobs
X − (1/2)ψc(PΩobs

X − PΩobs
Y (k))

= PΩobs
X − S(Y (k)).

Now, due to (11),

g(Y (k+1)) = min
S

1

2
∥PΩobs

X − PΩobs
Y (k+1) − PΩobs

S∥2F + γ∥Y (k+1)∥∗ + c∥S∥1

≤ 1

2
∥PΩobs

X − PΩobs
Y (k+1) − PΩobs

S(Y (k))∥2F + γ∥Y (k+1)∥∗ + c∥S(Y (k))∥1

= f(Y (k+1)|X − S(Y (k))) + c∥S(Y (k))∥1

= f(Y (k+1)|PΩobs
X − S(Y (k))) + c∥S(Y (k))∥1

= f(Y (k+1)|Z(k+1)) + c∥S(Y (k))∥1

≤ f(Y (k)|Z(k+1)) + c∥S(Y (k))∥1

=
1

2
∥PΩobs

X − PΩobs
Y (k) − PΩobs

S(Y (k))∥2F + γ∥Y (k)∥∗ + c∥S(Y (k))∥1

= g(Y (k)).

A.2 Proof of Theorem 1 for Algorithm 1

Proof. This proof closely follows the proofs of Lemma 2.3 and Theorem 3.1 in Beck and Teboulle

(2009) by modifying their approximation model to

ζ(Y, Ỹ ) = g1(Ỹ ) + ⟨Y − Ỹ ,∇g1(Ỹ )⟩+ 1

2
∥PΩobs

Y − PΩobs
Ỹ ∥2F + g2(Y )

= g1(Ỹ )− 1

2
⟨Y − Ỹ , ψc(PΩobs

X − PΩobs
Ỹ )⟩+ 1

2
∥PΩobs

Y − PΩobs
Ỹ ∥2F + g2(Y )

= g1(Ỹ )− 1

2
⟨PΩobs

Y − PΩobs
Ỹ , ψc(PΩobs

X − PΩobs
Ỹ )⟩+ 1

2
∥PΩobs

Y − PΩobs
Ỹ ∥2F + g2(Y ),
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where ⟨X,Y ⟩ =
∑

i,j XijYij . It can be shown that argminY ζ(Y, Ỹ ) is the same as argminY f(Y |Z),

where Z = PΩobs
Ỹ + (1/2)ψc(PΩobs

X − PΩobs
Ỹ ), in Steps 2(a)-(c) of Algorithm 1. Let Π(Ỹ ) =

argminY ζ(Y, Ỹ ). Therefore Y (k+1) = Π(Y (k)). Moreover,

g1(Y ) ≤ g1(Ỹ ) + ⟨Y − Ỹ ,∇g1(Ỹ )⟩+ 1

2
∥PΩobs

Y − PΩobs
Ỹ ∥2F ,

for any Y and Ỹ . Therefore, g(Π(Ỹ )) ≤ ζ(Π(Ỹ ), Ỹ ) for any Ỹ ∈ Rn1×n2 .

To proceed, we need a modified version of Lemma 2.3 in Beck and Teboulle (2009).

Lemma 1. For any Ỹ , Y ∈ Rn1×n2,

g(Y )− g(Π(Ỹ )) ≥ 1

2
∥PΩobs

Π(Ỹ )− PΩobs
Ỹ ∥2F + ⟨PΩobs

Ỹ − PΩobs
Y,PΩobs

Π(Ỹ )− PΩobs
Y ⟩.

This lemma is proved as follows. Since Π(Ỹ ) is the minimizer of the convex function ζ(·, Ỹ ),

there exists a b(Ỹ ) ∈ ∂g2(Π(Ỹ )), the subdifferential of g2 at Π(Ỹ ), such that ∇g1(Ỹ )+PΩobs
Π(Ỹ )−

PΩobs
Ỹ + b(Ỹ ) = 0. By the convexity of g1 and g2,

g1(Y ) ≥ g1(Ỹ )− 1

2
⟨Y − Ỹ , ψc(PΩobs

X − PΩobs
Ỹ )⟩

g2(Y ) ≥ g2(Π(Ỹ ))− ⟨Y −Π(Ỹ ), b(Ỹ )⟩.

Therefore,

g(Y ) ≥ g1(Ỹ )− 1

2
⟨Y − Ỹ , ψc(PΩobs

X − PΩobs
Ỹ )⟩+ g2(Π(Ỹ ))− ⟨Y −Π(Ỹ ), b(Ỹ )⟩. (12)

Since g(Π(Ỹ )) ≤ ζ(Π(Ỹ ), Ỹ ), we have g(Y )− g(Π(Ỹ )) ≥ g(Y )− ζ(Π(Ỹ ), Ỹ ). Plugging in (12), the

definition of ζ and the condition for b, the conclusion of the lemma follows.

Using Lemma 1 with Y = Y ∗ and Ỹ = Y (k), we have

2{g(Y ∗)− g(Y (k))} ≥ ∥PΩobs
Y ∗ − PΩobs

Y (k+1)∥2F − ∥PΩobs
Y ∗ − PΩobs

Y (k)∥2F .
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Summing it over k = 0, . . . ,m− 1,

2

{
mg(Y ∗)−

m−1∑
k=0

g(Y (k))

}
≥ ∥PΩobs

Y ∗ − PΩobs
Y (m)∥2F − ∥PΩobs

Y ∗ − PΩobs
Y (0)∥2F . (13)

Applying Lemma 1 with Y = Ỹ = Y (k),

2
{
g(Y (k))− g(Y (k+1))

}
≥ ∥PΩobs

Y (k+1) − PΩobs
Y (k)∥2F .

Multiplying it by k and summing over k = 0, . . . ,m− 1,

2

{
−mg(Y (m)) +

m−1∑
k=0

g(Y (k+1))

}
≥

m−1∑
k=0

k∥PΩobs
Y (k+1) − PΩobs

Y (k)∥2F . (14)

Adding (13) and (14),

2
{
g(Y ∗)− g(Y (m))

}
≥ ∥PΩobs

Y ∗ − PΩobs
Y (m)∥2F − ∥PΩobs

Y ∗ − PΩobs
Y (0)∥2F

+

m−1∑
k=0

k∥PΩobs
Y (k+1) − PΩobs

Y (k)∥2F .

Therefore,

g(Y (m))− g(Y ∗) ≤
∥PΩobs

Y ∗ − PΩobs
Y (0)∥2F

2m
.

A.3 Proof of Proposition 2

Proof. Since both (2) and (7) are convex, we only need to consider the sub-gradients. The sub-

gradient conditions for minimizier of (2) are given as follows:

0 ∈ −1

2
ρ′c(PΩobs

X − PΩobs
Y ) + γ∂∥Y ∥∗, (15)
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where ∂∥ · ∥∗ represents the set of subgradients of the nuclear norm. The sub-gradient conditions

for minimizier of (7) are given as follows:

0 ∈ −PΩobs
(X − L− S) + γ∂∥L∥∗ (16)

0 ∈ −PΩobs
(X − L− S) + c∂∥S∥1, (17)

where ∂∥ · ∥1 represents the set of subgradients of ∥ · ∥1. Here (17) implies, for (i, j) ∈ Ωobs,

Sij =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
Xij − Lij − c, Xij − Lij > c

0, |Xij − Lij | ≤ c

Xij − Lij + c, Xij − Lij < −c

(18)

and Sij = 0 for (i, j) ∈ Ω⊥
obs. Note, for (i, j) ∈ Ωobs, Xij − Lij − Sij = ρ′c(Xij − Lij)/2. Plugging it

into (16), we have (15) and thus this proves the proposition.

A.4 Proof of Theorem 2

To prove Theorem 2, we first show three lemmas and one proposition.

Lemma 2 (Modified Lemma A.2 in (Candès et al., 2011)). Assume that for any matrix Q,

∥PTPΓ⊥Q∥F ≤ n∥PT⊥PΓ⊥Q∥F . Suppose there is a pair (W,F ) obeying

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
PTW = 0, ∥W∥ < 1/2,

PΓ⊥F = 0, ∥F∥∞ < 1/2,

UV ⊺ +W + PTD = λ(sgn(S′
0) + F ) with ∥PTD∥F ≤ n−2.

(19)

Then for any perturbation H = (HL, HS) satisfying PΩobs
HL + PΩobs

HS = 0,

∥M0 −H∥♢ ≥ ∥M0∥♢ +

(
1

2
− 1

n

)
∥PT⊥HL∥∗ +

(
λ

2
− n+ 1

n2

)
∥PΓHL∥1.

The proof of this lemma can be found in Candès et al. (2011). To procced, we write ∥M∥2F,λ =
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∥L∥2F + λ2∥S∥2F for any pair of matrices M = (L, S).

Lemma 3. Let M = (ML,MS) be any pair of matrices. Suppose ∥PΩobs
PTML∥2F ≥ p0∥PTML∥2F /2

and ∥PTPΩ∥2 ≤ p0/8. Then

∥PΨ(PT × PΩ)M∥2F,λ ≥
(1 + λ2)p0

16
∥(PT × PΩ)M∥2F .

Proof of Lemma 3. Note that for any M ′ = (M ′
L,M

′
S),

PΨM ′ =

(
PΩobs

(M ′
L +M ′

S)

2
,
PΩobs

(M ′
L +M ′

S)

2

)
.

Thus

∥PΨ(PT × PΩ)M∥2F,λ =
1 + λ2

4
∥PΩobs

(PTML + PΩMS)∥2F

=
1 + λ2

4

(
∥PΩobs

PTML∥2F + ∥PΩMS∥2F + 2⟨PΩobs
PTML,PΩMS⟩

)
,

where the last equality is due to Ω ⊂ Ωobs. By ∥PTPΩ∥2 ≤ p0/8,

⟨PΩobs
PTML,PΩMS⟩ = ⟨PTML,PΩMS⟩

= ⟨PTML, (PTPΩ)PΩMS⟩

≥ −∥PTPΩ∥∥PTML∥F ∥PΩMS∥F

≥ −
√
p0

2
√
2
∥PTML∥F ∥PΩMS∥F .

Combining with ∥PΩobs
PTML∥2F ≥ p0∥PTML∥2F /2, we have

∥PΨ(PT × PΩ)M∥2F,λ ≥
1 + λ2

4

(
p0
2
∥PTML∥2F + ∥PΩMS∥2F −

√
p0
2
∥PTML∥F ∥PΩMS∥F

)
.

As 2(x2 + y2 − xy) ≥ x2 + y2 for x, y ≥ 0,

∥PΨ(PT × PΩ)M∥2F,λ ≥
1 + λ2

8

(p0
2
∥PTML∥2F + ∥PΩMS∥2F

)
≥ (1 + λ2)p0

16
∥(PT × PΩ)M∥2F .
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Lemma 4. Let M = (ML,MS) be any pair of matrices. Then ∥PΨM∥2F,λ ≤ ∥M∥2F,λ/2.

Proof of Lemma 4. Write MΨ = (MΨ
L ,M

Ψ
S ) = PΨM . Since ∥MΨ

L ∥2F = ∥MΨ
S ∥2F ,

∥PΨM∥2F,λ = ∥MΨ
L ∥2F + λ2∥MΨ

S ∥2F

=
1

2
(∥MΨ

L ∥2F + ∥MΨ
S ∥2F ) +

λ2

2
(∥MΨ

L ∥2F + ∥MΨ
S ∥2F )

=
1

2
∥MΨ∥2F +

λ2

2
∥MΨ∥2F

≤ 1

2
∥M∥2F +

λ2

2
∥M∥2F =

1

2
∥M∥2F,λ.

Proposition 3. Assume that for any matrix Q, ∥PTPΓ⊥Q∥F ≤ n∥PT⊥PΓ⊥Q∥F and ∥PΩobs
PTQ∥F ≥

p0∥PTQ∥F /2. Further suppose 4/n < λ ≤ 1, n ≥ 3, p0 > 0, ∥PTPΩ∥2 ≤ p0/8 and that there exists

a pair (W,F ) obeying (19). Then the solution M̂ = (L̂, Ŝ) to (7) satisfies

∥M̂ −M0∥F,λ ≤
[√

1 + λ2 + 4

(
1 +

√
8

p0

)
(
√
n+ nλ

√
p0)

]
δ.

where M0 = (L0, S
′
0) such that ∥PΩobs

X − PΩobs
(L0 + S0))∥2F ≤ δ and S′

0 = PΩobs
S0. Further, if

λ = 1/
√
np0 (which implies 1/n < p0 < n/16), we obtain

∥L̂− L∥F ≤
{
2 + 8

√
n

(
1 +

√
8

p0

)}
δ and ∥Ŝ − S′

0∥F ≤
{
2 + 8

√
n

(
1 +

√
8

p0

)}
√
np0δ.

Proof of Proposition 3. Write M̂ = M0 +H, where H = (HL, HS), and H
Ψ = (HΨ

L , H
Ψ
S ) = PΨH

and HΨ⊥
= (HΨ⊥

L , HΨ⊥
S ) = PΨ⊥H. We want to bound

∥H∥F,λ = ∥HΨ +HΨ⊥∥F,λ

≤ ∥HΨ∥F,λ + ∥HΨ⊥∥F,λ

≤ ∥HΨ∥F,λ + ∥(PT⊥ × PΓ)HΨ⊥∥F,λ + ∥(PT × PΓ⊥)HΨ⊥∥F,λ. (20)

27



We start with the first term of (20). Since HΨ
L = HΨ

S = (1/2)PΩobs
(HL +HS),

∥HΨ∥F,λ =

√
1 + λ2

2
∥PΩobs

(HL +HS)∥F

=

√
1 + λ2

2
∥PΩobs

(L̂+ Ŝ − L0 − S′
0)∥F

≤
√
1 + λ2

2

(
∥PΩobs

(L̂+ Ŝ −X)∥F + ∥PΩobs
(L0 + S′

0 −X)∥F
)

≤ δ
√
1 + λ2,

where the last inequality is due to the fact that both M0 and M̂ are feasible.

Then we focus on the second term of (20). First, we have

∥M0∥♢ ≥ ∥M̂∥♢ = ∥M0 +H∥♢ ≥ ∥M0 +HΨ⊥∥♢ − ∥HΨ∥♢.

By Lemma 2,

∥M0 +HΨ⊥∥♢ ≥ ∥M0∥♢ + a(n)∥PT⊥HΨ⊥
L ∥∗ + b(n, λ)∥PΓHΨ⊥

L ∥1,

where

a(n) =
1

2
− 1

n
and b(n, λ) =

λ

2
− n+ 1

n2
.

Now, combining the above inequalities,

∥HΨ∥♢ ≥ a(n)∥PT⊥HΨ⊥
L ∥∗ + b(n, λ)∥PΓHΨ⊥

L ∥1. (21)

By the assumption that λ > 4/n and n ≥ 3,

a(n) =
1

2
− 1

n
> 0 and b(n, λ) =

λ

2
− n+ 1

n2
>

2

n
− 1

n
− 1

n2
=

1

n
− 1

n2
> 0.

Therefore (21) implies ∥HΨ∥♢ ≥ a(n)∥PT⊥HΨ⊥
L ∥∗ and ∥HΨ∥♢ ≥ b(n, λ)∥PΓHΨ⊥

L ∥1.
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Now, we are ready to establish a bound for the second term of (20).

∥(PT⊥ × PΓ)HΨ⊥∥F,λ ≤ ∥PT⊥HΨ⊥
L ∥F + λ∥PΓHΨ⊥

S ∥F

≤ ∥PT⊥HΨ⊥
L ∥∗ + λ∥PΓHΨ⊥

S ∥1

≤
{

1

a(n)
+

λ

b(n, λ)

}
∥HΨ∥♢

≤ 4(∥HΨ
L ∥∗ + λ∥HΨ

S ∥1).

As for the third term of (20), we apply Lemma 3 and the bound of the second term in (20). As

PΨHΨ⊥
= 0, PΨ(PT × PΓ⊥)HΨ⊥

+ PΨ(PT⊥ × PΓ)HΨ⊥
= 0. Therefore, due to Lemma 4,

∥PΨ(PT × PΓ⊥)HΨ⊥∥F,λ = ∥PΨ(PT⊥ × PΓ)HΨ⊥∥F,λ ≤
1√
2
∥(PT⊥ × PΓ)HΨ⊥∥F,λ.

As PΩ⊥
obs
HS does not affect the feasibility of M + H and H is chosen such that ∥M + H∥♢ is

minimized, thus PΩ⊥
obs
HΨ⊥

S = PΩ⊥
obs
HS = 0 which implies (PT × PΓ⊥)HΨ⊥

= (PT × PΩ)HΨ⊥
.

Thus, by Lemma 3,

∥(PT × PΓ⊥)HΨ⊥∥F ≤

√
8

(1 + λ2)p0
∥(PT⊥ × PΓ)HΨ⊥∥F,λ ≤

√
8

p0
∥(PT⊥ × PΓ)HΨ⊥∥F,λ.

And ∥(PT × PΓ⊥)HΨ⊥∥F,λ ≤ ∥(PT × PΓ⊥)HΨ⊥∥F as λ ≤ 1.

Collecting all the above bounds for the three terms, we derive the bound for ∥H∥F,λ:

∥H∥F,λ ≤ δ
√

1 + λ2 + 4

(
1 +

√
8

p0

)
(∥HΨ

L ∥∗ + λ∥HΨ
S ∥1).

Finally, ∥HΨ
L ∥∗ ≤

√
n∥HΨ

L ∥F , ∥HΨ
S ∥1 =

√
p0n2∥HΨ

S ∥F (since HΨ
S is supported on Ωobs) and

∥HΨ
L ∥F = ∥HΨ

S ∥ = ∥PΩobs
(HL +HS)∥F /2 ≤ δ. Therefore,

∥H∥F,λ ≤ δ
[√

1 + λ2 + 4

(
1 +

√
8

p0

)
(
√
n+ nλ

√
p0)

]
.

Assume that λ = 1/
√
np0. First we note that, due to λ > 4/n, this condition imposes a reasonable
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coverage of p0: 1/n < p0 < n/16. Now we focus on simplifying the bound for ∥H∥F,λ.

√
1 + λ2 + 4

(
1 +

√
8

p0

)
(
√
n+ nλ

√
p0) ≤ 2 + 8

√
n

(
1 +

√
8

p0

)
.

This implies

∥HL∥F ≤
{
2 + 8

√
n

(
1 +

√
8

p0

)}
δ and ∥HS∥F ≤

{
2 + 8

√
n

(
1 +

√
8

p0

)}
√
np0δ.

To prove Theorem 2, we establish one additional lemma.

Lemma 5. Suppose ∥PT − p−1
0 PTPΩobs

PT ∥ ≤ 1/2. Then for any matrix Q,

∥PΩobs
PTQ∥2F ≥

p0
2
∥PTQ∥2F .

Proof of Lemma 5. By the assumptions, for any matrix Q,

∥PΩobs
PTQ∥2F = ⟨PΩobs

PTQ,PΩobs
PTQ⟩

= ⟨PTQ,PTPΩobs
PTQ⟩

= p0⟨PTQ, p−1
0 PTPΩobs

PTQ⟩

= p0
[
∥PTQ∥2F + ⟨PTQ, (p−1

0 PTPΩobs
PT − PT )Q

]
≤ p0

(
∥PTQ∥2F −

1

2
∥PTQ∥2F

)
=
p0
2
∥PTQ∥2F .

Proof of Theorem 2. Recall that we write that an event occurs with high probability if it holds

with probability at least 1 − O(n−10). Due to the asymptotic nature of Theorem 2, we only

require the conditions of Proposition 3 to hold asymptotically with large probability. By Lemma

A.3 of Candès et al. (2011), ∥PTPΓ⊥Q∥F ≤ n∥PT⊥PΓ⊥Q∥F for all Q, with high probability. By
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Lemma 5 and Theorem 2.6 of Candès et al. (2011) (see also Candès and Recht, 2009, Theorem 4.1),

∥PΩobs
PTQ∥2F ≥

p0
2 ∥PTQ∥

2
F for all Q, with high probability. Further, by Candès and Recht (2009),

∥PTPΩ∥2 ≤ p0/8 occurs with high probability. Candès et al. (2011, pp. 33-35) show that there exist

dual certificates (W,F ) obeying (19) with high probability. For sufficiently large n, the conditions

of λ and p0 in Proposition 3 are fulfilled. Therefore, Theorem 2 follows from Proposition 3.
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