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Abstract

This paper considers the problem of matrix completion when the observed entries are noisy
and contain outliers. It begins with introducing a new optimization criterion for which the
recovered matrix is defined as its solution. This criterion uses the celebrated Huber function
from the robust statistics literature to downweigh the effects of outliers. A practical algorithm
is developed to solve the optimization involved. This algorithm is fast, straightforward to
implement, and monotonic convergent. Furthermore, the proposed methodology is theoretically
shown to be stable in a well defined sense. Its promising empirical performance is demonstrated

via a sequence of simulation experiments, including image inpainting.
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1 Introduction

The goal of matrix completion is to impute those missing entries of a large matrix based on the

knowledge of its relatively few observed entries. It has many practical applications, ranging from

collaborative filtering (Rennie and Srebro, 2005) to computer visions (Weinberger and Saul, 2006)

to positioning (Montanari and Oh, [2010). In addition, its application to recommender systems

is perhaps the most well known example, widely made popularized by the so-called Netflix prize

problem (Bennett and Lanning), 2007)). In this problem a large matrix of movie ratings is partially

observed. Each row of this matrix consists of ratings from a particular customer while each column
records the ratings on a particular movie. In the Netflix dataset, there are around 5 x 10° customers
and 2 x 10 movies, with less than 1% of the ratings are observed. Without any prior knowledge, a
reasonable full recovery of the matrix is virtually impossible. To overcome this issue, it is common
to assume that the matrix is of low rank, reflecting the belief that the users’ ratings are based on a

relatively small number of factors. This low rank assumption is very sensible in many applications,

although the resulting optimizations are combinatorially hard (Srebro and Jaakkolal 2003)). To this

end, various convex relaxations and related optimization algorithms have been proposed to provide

computationally feasible solutions; see, e.g., Candes and Recht| (2009); (Candes and Plan (2010);
Keshavan et al| (2010alb)); Mazumder et al| (2010); Marjanovic and Solo| (2012) and
(2014).

In addition to computational advances, the theoretical properties of matrix completion using

nuclear norm minimization have also been well studied. For example, when the observed entries

are noiseless, |(Candes and Recht| (2009)) show that perfect recovery of a low rank matrix is possible;

see also [Keshavan et al. (2010a), Gross (2011) and (2011). This result of |Candes and Recht|

(2009) has been extended to noisy measurements by Candes and Plan|(2010): with high probability,

the recovery is subject to an error bound proportional to the noise level. Techniques that achieve

this desirable property are often referred as stable. See also Keshavan et al.| (2010b]) and Koltchinskii

(2011)) for other theoretical developments of matrix completion from noisy measurements.
The original formulation of matrix completion assumes those observed entries are noiseless, and

is later extended to the more realistic situation where the entries are observed with noise. This paper



further extend the formulation to simultaneously allow for both noisy entries and outliers. To the
authors knowledge, such an extension has not been considered before, although similar work exists.
In|Candes et al. (2011) a method called principal component pursuit (PCP) is developed to recover
a matrix observed with mostly noiseless entries and otherwise a small amount of outliers. This is
done by modeling the observed matrix as a sum of a low rank matrix and a sparse matrix. |Zhou
et al.| (2010)) extend this PCP method to noisy entries but assumes the matrix is fully observed, thus
it does not fall into the class of matrix completion problems. Lastly |Chen et al.[(2011) extend PCP
to safeguard against special outlying structures, namely outlying columns. However, it works only
on outliers and otherwise noiseless entries. Due to the similarity between the matrix completion and
principal component analysis, it is worthmentioning that there are some related work (Karhunen)
2011; Luttinen et al., [2012) on robust principal component analysis with missing values.

The primary contribution of this paper is the development of a new robust matrix completion
method that can be applied to recover a matrix with missing, noisy and/or outlying entries. This
method is shown to be stable in the sense of|Candes and Plan| (2010)), as discussed above. As opposed
to the above referenced PCP approach that decomposes the matrix into a sum of a low rank and
a sparse matrix, the new approach is motivated by the statistical literature of robust estimation
which modifies the least squares criterion to downweigh the effects of outliers. Particularly, we make
use of the Huber function for this modification. We provide a theoretical result that establishes
an intrinsic link between the two different approaches. To cope with the nonlinearity introduced
by the Huber function, we propose a fast, simple, and easy-to-implement algorithm to perform the
resulting nonlinear optimization problem. This algorithm is motivated by the ES-Algorithm for
robust nonparametric smoothing (Oh et al., 2007). As to be shown below, it can transform a rich
class of (non-robust) matrix completion algorithms into algorithms for robust matrix completion.

The rest of this paper is organized as follows. Section [2] provides further background of matrix
completion and proposes a new optimization criterion for robust matrix recovery. Fast algorithms
are developed in Section [3| for practically computing the robust matrix estimate. Theoretical and
empirical properties of the proposed methodology are studied in Section[dland Section [f|respectively.

Concluding remarks are given in Section [6] while technical details are relegated to the appendix.



2 Matrix Completion with Noisy Observations and Outliers

Suppose X is an ny X ng matrix which is observed for only a subset of entries Qqps C [n1] X [n2],

where [n] denotes {1,...,n}. Let QL be the complement of 5. Define the projection operator

Pa,,. as Pa,,.B = C, where Cj; = By; if (4, ) € Qops and Cj; = 0 if (4, 7) & Qobs, for any ny x ng

matrix B = (Bij)ie[m],je[ The following is a standard formulation for matrix completion using

na|*
a low rank assumption:
min%;nize rank(Y")
: 1 2
subject to inﬂobsX —Pa,.Yr <e,
where e > 0 and || - || 7 is the Frobenius norm. Carrying out this rank minimization enables a good

recovery of any low rank matrix with missing entries. Note that for the reason of accommodating
noisy measurements, the constraint above allows for a slight discrepancy between the recovered and
the observed matrices.

However, this minimization is combinatorially hard (e.g.,|Srebro and Jaakkola, |2003). To achieve

fast computation, the following convex relaxation is often used:

minimize ||Y||.
Y

1
subject to 5”7’9 X —Pa,.Y# <e,

obs obs

where ||Y'||« represents the nuclear norm of Y (i.e., the sum of singular values of Y'). The Lagrangian

form of this optimization is

X = Pay Y g+ 1Y, (1)

obs obs

1
inimi Y|X) ==
minjmize  f(Y]X) = 3P

where v > 0 has a one-to-one correspondence to e. The squared loss in the first term is used to
measure the fitness of the recovered matrix to the observed matrix. It is widely known that such

a squared loss is very sensitive to outliers and often leads to unsatisfactory recovery results if such



outliers exist. Motivated by the literature of robust statistics (e.g., Huber and Ronchetti, 2011,

we propose replacing this squared loss by the Huber loss function

22, lz| < ¢

pe(x) = )
c2lx] —¢), |x|>c

with tuning parameter c. When comparing with the squared loss, the Huber loss downweighs the
effects of extreme measurements. Our proposed solution for robust matrix completion is given by

the following minimization:

pe(Xij = Yij) + Y[l (2)
(ivj)eﬂobs

min%;nize g(Y) =

Note that the convexity of p. guarantees the convexity of the objective criterion (|2)).

For many robust statistical estimation problems the tuning parameter c is pre-set as ¢ = 1.3456
to achieve a 95% statistical efficiency, where & is an estimate of the standard deviation of the noise.
For the current problem, however, the choice of ¢ is suggested by Theorem [2[ below: ¢ = 7/ V)P,
where n) = max{ni,n2} and p is the percentage of missing entries. This choice of ¢ was used

throughout all our numerical work.

3 Fast Algorithms for Minimization of

Since the gradient of the Huber function is non-linear, is a harder optimization problem when
comparing to many typical matrix completion formulations such as . As an example, consider (|1
when X is fully observed; i.e., Qops = [n1] X [n2]. Through sub-gradient analysis (e.g., [Cai et al.,
2010; Ma et al., |2011)), one can derive a closed-form solution to , denoted as Sy (X), where S, is
the soft-thresholding operator defined in Mazumder et al.| (2010)), also given in @ below. However,
even if X was fully observed, does not have a closed-form solution. The goal of this section is

to develop fast methods for minimizing .



3.1 A General Algorithm

In |Oh et al.| (2007) a method based on the so-called theoretical construct pseudo data is proposed
for robust wavelet regression. The idea is to transform a Huber-type minimization problem into a
sequence of fast and well understood squared loss minimization problems. This subsection modifies
this idea and proposes an algorithm to minimizing .

As similar to|Oh et al.| (2007), we define a pseudo data matriz as
~ 1
Z = PQObSY + §¢C(E)? (3)

where Y is the current estimate of the target matrix, £ = Pq_ X — Pgobsff is the “residual
matrix”, and ¢, = pl. is the derivative of p.. With a slight notation abuse, when 1), is applied to
a matrix, it means v, is evaluated in an element-wise fashion. Straightforward algebra shows that

the sub-gradient of f(Y'|Z) (with respect to Y) evaluated at Y,

~(Pog.Z = Pay,Y) +10[Y ., (4)

obs

is equivalent to the sub-gradient of g(Y") (with respect to Y') evaluated at Y,
1 ~ -
_§’llz)c(7)QobsX - 7DQobs}/) + 78||YH* (5)

The proposed algorithm iteratively updates Y = arg miny f(Y|Z) and Z using . Upon conver-
gence (implied by Proposition || below), the sub-gradient contains 0 at the converged Y and
thus the sub-gradient also contains 0 at this converged Y. Therefore this Y is the solution
to . Details of this algorithm based on pseudo data matrix are given in Algorithm
Algorithm (1| has several attractive properties. First, it can be paired with any existing (non-
robust) matrix completion algorithm (or software), as can be easily seen in Step 2(c). This is
a huge advantage, as a rich body of existing (non-robust) methods can be made robust against
outliers. Second, once such an (non-robust) algorithm is available, the rest of the implementation

is straightforward and simple, and no expensive matrix operations are required. Lastly, it has



Algorithm 1 The General Robust Algorithm

1: Perform (non-robust) matrix completion on X and assign Y°!9 < arg miny f(Y|X). This Y°d
is the initial estimate (starting point of the algorithm).
2: Repeat:

(a) Compute E + Pq_, X — PQObSYOId-
(b) Compute Z <+ PgobsYdd + %%Z)c(E)
(

)
¢) Perform (non-robust) matrix completion on Z and assign Y™V <— arg miny f(Y|Z).
)

d) If

1d
Hynew —_Yo° ||%7
[y e[|,

<e,

exit.
(e) Assign Yold ¢ ymnew,
3: Output Y™V,

strong theoretical backup, as to be reported in Section

3.2 Further Integration with Existing Matrix Completion Algorithms

Many existing matrix completion algorithms are iterative. A direct application of Algorithm
would lead to an algorithm that is iterations-within-iterations. Although our extensive numerical
experience suggests that these direct implementations would typically converge within a few it-
erations to give a reasonably fast execution time, it would still be advantageous to speed up the
overall procedure. Here we show that it is possible to further improve the speed of the overall
robust algorithm by embedding the pseudo data matrix idea directly into a non-robust algorithm.

We shall illustrate this with the SOFT-IMPUTE algorithm proposed by [Mazumder et al.| (2010).
To proceed we first recall the definition of their thresholding operator S,: for any matrix Z of rank
T,

S.(Z) = UD.,VT, (6)

where Z = UDVT is the singular value decomposition of Z, D = diag[di,...,d,| and D, =
diag[(d1 — ¥)+,...,(dr — ¥)+]. Now the main idea is to suitably replace an iterative matrix es-
timate with the pseudo data matrix estimate given by . With SOFT-IMPUTE, the resulting

robust algorithm is given in Algorithm [2l We shall call this algorithm ROBUST-IMPUTE. As to be



shown by the numerical studies below, ROBUST-IMPUTE is very fast and produces very promising
empirical results. Our algorithm also has the sparse-plus-low-rank structure in the singular value
thresholding step (Step 2a(iii)). This linear algebra structure has positive impact on the computa-
tional complexity. See Section 5 of Mazumder et al. (2010]) for details. Moreover, the monotonicity

and convergence of our algorithm is guaranteed by Proposition [I| and Theorem

Algorithm 2 ROBUST-IMPUTE

1: Initialize Yo = S (Pq,,.X) and Z = X.

2: Do for y4 > 2 > -+ > g

(a) Repeat:
(i) Compute E < Pq_, X — Pq,, Y.
) Compute Z <+ PgobsY(’ld + %@DC(E)
(iii) Compute YV « S, (Pq.,.Z + Pﬂibsyold).
)

obs

If
|lynew _ Yold”%
[Yold 2,

<e,

exit.
(v) Assign Yold ¢ ymew,
(b) Assign }A/,Yk  ymew,

3: Output the sequence of solutions Yh, LY

N

K

4 Theoretical Properties

This section presents some theoretical backups for the proposed methodology.

4.1 Monotonicity and global convergence

We first present the following proposition concerning the monotonicity of the algorithms. The proof
can be found in Appendix We also provide an alternative proof suggested by a referee, based

on the idea of alternating minimization, in Appendix

Proposition 1 (Monotonicity). Let Y¥) and Z*) = Pq , Y+~ 4 4. (Pq,, . X — Pq,, .Y *)/2

obs

be, respectively, the estimate and the pseudo data matriz in the k-th iteration. If Y+ s the next

estimate such that f(Y* )| ZzG6+0) < (v 8| Z2KHD) | then g(YEHD) < g(Y#).



For the general version (Algorithm , it is obvious that the condition f(Y*+D|z(k+1)) <
f(Y®)| z(E+1)) is satisfied as the result of the minimization Y°4 « arg miny f(Y'|Z). For the spe-
cialized version ROBUST-IMPUTE (Algorithm, this condition is implied by Lemma 2 of Mazumder
et al.| (2010). Therefore both versions are monotonic.

As pointed out by a referee, the proposed algorithms can also be viewed as an instance of the

majorization-minimization (MM) algorithm (Lange et al., 2000; Hunter and Lange, 2004). It can

be shown that, for (i, j) € Qops,

1
pe(Xiy = Yig) < pe(Xyy = Vi) = (Yig = Vi Dwe( Xy = Y5 + 2 5y — ¥i3)?
2

1
= |V — ngld — §?/)c(Xij — Yig?ld) + constant

= (Yij — Zij)? + constant.

Therefore, subject to an additive constant that does not depend on Y, h(Y|Y°d) = f(V|Z) =
(1/2) 226 jeau. (Zij — Y;i)? + 7Y |« is a majorization of the objective function g. With this ma-
jorization, Algorithm [I] can be viewed as an MM algorithm. Additionally, one can majorize the
unobserved entries by (Y;; — Z;;)? = (Vi; — ifig?ld)Q > 0 and, together with the above majorization of
the observed entries, Algorithm [2]can also be shown as an MM algorithm. Therefore the monotonic-
ity of the proposed algorithms can also be obtained by the general theory of MM algorithm (e.g.,
Lange, 2010). Moreover, the explicit connection to the MM algorithm allows possible extensions of
the current algorithm to other robust loss functions such as Tukey’s biweight loss. However, due
to non-differentiability of the objective function, the typical convergence analysis of MM algorithm
(e.g., Lange, 2010, Ch. 15) does not apply to our case.

We summarize the global convergence rates of both Algorithm [[]and Algorithm[2]in the following

theorem.

Theorem 1. Let Y*®) and YO pe, respectively, the estimate in the k-th iteration and the starting



point of Algorithm[1] or Algorithm[4 Then for any k > 1,

Y(O) — PﬂobsY*H%

2k '
YO — v
— 2k 9y

Algorithm [1): g(Y(k)) —g(Y*) < P2

YY* e,

Algorithm[3: g(Y®)) — g(v*) YY* ey,

where ) be the set of all global minimizers of g (i.e. Y = arg miny cgn;xny g(Y)).

The global convergence analysis of Algorithm [I] can be carried out similarly as in [Beck and
Teboulle (2009) for proximal gradient method, despite that Algorithm [I{is not a proximal gradient
method. For completeness, we give the proof of Theorem [I] for Algorithm [I] in Appendix [A-2]

As for ROBUST-IMPUTE (Algorithm, we can rewrite it as an instance of the proximal gradient
method applied to g(Y) = g1(Y1)+g2(Y2), where g1(Y) = (1/2) 3_; j)eq,,. Pe(Xij—Yi;) and g2(Y) =

Y|V« In our case, the proximal gradient method with step size L iterates over Y k1) = ¢, (Y(¥)

2
)
F

where L is constant greater than or equal to the Lipstchiz constant of g;. Note that g; has a

with

€4(¥) = argmin {gm 5 - (7 - gvam)

Lipschitz contant 1. If we take L = 1, we have the following simplification.

2 2

@(Y) + % HY - (f/ — ngﬂ?))

1 1 §
— )+ 5 [V = {F 4 JuPo, X - o, 1)
F

1 ~ 2
= g2(1) + 3 HY . {P%SY + PgobSZ}HF.

F

The minimization of &; is equivalent to Step 2a(iii) of Algorithm Therefore, the proximal gradient
method is the same as ROBUST-IMPUTE. This connection allows us to apply the convergence results
of proximal gradient method to ROBUST-IMPUTE directly. Theorem [I] for Algorithm [2] follows from
Theorem 3.1 of Beck and Teboulle| (2009). Lastly, the Nesterov’s method (Nesterov), 2007)) can
be applied directly to accelerate Algorithm 2. The resulted accelerated version is expected to
be faster in terms of convergence. However, the acceleration in the Nesterov’s method ruins the
computationally beneficial sparse-plus-low-rank structure (Mazumder et al., 2010) in the singular

vaue thresholding step (Step 2a(iii)). Hence, for large matrices, the non-accelerated version is still

10



preferred in terms of overall computations. The detailed discussion can be found in Section 5 of

Mazumder et al.| (2010).

4.2 Stable Recovery

Recall the stable property of |Candes and Plan| (2010) implies that, with high probability, the
recovered matrix is subject to an error bound proportional to the noise level. This subsection
shows that the robust matrix completion defined by is also stable.

Although the formulation of has its root from classical robust statistics, it is also related to
the more recent principal component pursuit (PCP) proposed by Candes et al.|(2011]). PCP assumes
that the entries of the observed matrix are noiseless, and that this matrix can be decomposed as
the sum of a low rank matrix and a sparse matrix, where the sparse matrix is treated as the gross
error. In (Candes et al. (2011)) it is shown that using PCP perfect recovery is possible with or
without missing entries in the observed matrix. Another notable work by |Chandrasekaran et al.
(2011)) provide completely deterministic conditions for the PCP to succeed under no missing data.
See Section 1.5 of |Candes et al.| (2011)) for a detailed comparison between these two pieces of work.
For the case of noisy measurements without missing entries, |Zhou et al. (2010) extend PCP to
stable PCP (SPCP), which is shown to be stable. However, to the best of our knowledge, there is
no existing theoretical results for the case of noisy (and/or outlying) measurements with missing
entries.

Inspired by |She and Owen| (2011), we first establish an useful link between robust matrix
completion and PCP in the following proposition. The proof can be found in Appendix

Proposition 2 (Equivalence). The minimization (@ is equivalent to

X = Pag (L + S)|F + L]« + cll Sl (7)

obs

1
nimize [P
minitiz 2|| 0

)

That is, the minimizing Y of @ and the minimizing L of @ coincide.

11



Minimization has a high degree of similarity to both PCP and SPCP. It is equivalent to

R
minimize |[Z]], + S| (8)

)

subject to  ||Pq,,. X — Pa,,. (L + 9z < 6%

obs

where A = ¢/v and § > 0 has a one-to-one correspondence to v. When comparing with PCP, ([7)
permits the observed matrix to be different from the recovered matrix (L + S) to allow for noisy
measurements. When comparing with SPCP, permits missing entries, which is necessary for
matrix completion problems.

Proposition 2] has two immediate implications. First, the proposed Algorithm [I| provides a
general methodology to turn a large and well-developed class of matrix completion algorithms into
algorithms for solving SPCP with missing entries. Second, many useful results from PCP can be
borrowed to study the theoretical properties of robust matrix completion . In particular, we
show that leads to stable recovery. With Proposition [2| it suffices to show that achieves

stable recovery of (Lo, Sj)) from the data Pq_,_(X) generated by Pq,,. (Lo + So) obeying ||Pq,, . X —

obs
Pao. (Lo + So)||r < 6 and S|, = Pq,,.So. Note that Ly = Xj.

We need some notations to proceed. For simplicity, we assume n = n; = ng but our results
can be easily extended to rectangular matrices (ny # ng). The Euclidean inner product (@, R) is
defined as trace(QTR). Let pp be the proportion of observed entries. Write I' C Qqps as the set of
locations where the measurements are noisy (but not outliters), and 2 = Qups\I' as the support
of S}, = Pq

So; i.e., locations of outliers. Denote their complements as, respectively, I't and Q.

obs

We define Pr, Pq, Pr. and Pq. similarly to the definition of Pq Let r be the rank of Ly and

obs *

UDVT be the corresponding singular value decomposition of Ly, where U,V € R™*" and D € R™*".

Similar to (Candes et al.| (2011]), we consider the linear space of matrices
T:={UQT+ RVT:Q,ReR""}.

Write Pr and Pp. as the projection operator to 7' and T+ respectively. As in|Zhou et al.| (2010), we

define a set of notations for any pair of matrices M = (L, S). Here, let ||M|/F := /|| L||% + ||S||%

12



and ||[M|lo = ||L]|« + AllS|li- We also define the projection operators Pr x Pr. : (L,S) —
(PrL,Pr.S) and Ppi x Pr: (L,S) — (PpLL,PrS). In our theoretical development, we consider

the following special subspaces

U:={(L,S):L,SeR"”" Pq,L="Pq

obs obs

S, PﬂibsL - Pﬂibss - 0}7

Ut = {(L,S): L,S e RV Pq. L+Pq, S=0}

obs obs

And we write the corresponding projection operators as Py and Py respectively. Let My =
(Lo, Sp)- Lastly, for any linear operator A, the operator norm, denoted by ||.Al], is supy| | ,=1} [ AQ|/F-
In below, we write that an event occurs with high probability if it holds with probability at least
1—-0(n= 1),

To avoid certain pathological cases (see, e.g., Candes and Recht, [2009), an incoherence condition

on U and V is usually assumed. To be specific, this condition with the parameter y is:

B max Ve |2 <25 and UVl < /-2 9)
ny I3 ny

n1n27

max [[UTe;|* <
(2

where [|@Q|| is the operator norm or 2-norm of matrix @ (i.e., the largest singular value of Q)

and [|Q|loc = max;;|Q;;|. This condition guarantees that, for small y, the singular vectors are

reasonably spread out.

Theorem 2 (Stable Recovery). Suppose that Lo obeys (@ and Qops 18 uniformly distributed among
all sets of cardinality m = pon? with py > 0 being the proportion of observed entries. Further
suppose that each observed entry is grossly corrupted to be an outlier with probability T independently
of the others. Suppose Lo and Sy satisfy r < p,nu~'(logn)=2 and 7 < 75 with p,,Ts being positive
numerical constants. Choose X = 1/,/npg. Then, with high probability (over the choices of 2 and
Qobs ), for any X obeying | Pa,,. X — Pa,,. (Lo + So)||r < 6, the solution (L, S) to (@ satisfies

|1AL—L0|F§{2—|—8\/5<1+1/§>}5 and HS—S{)HFS{2+8\/ﬁ<1+,/;>},/np06,
0 0

where S{, = Pq,,.(S0).

13



The proof of this theorem can be found in Appendix [A.4]

5 Empirical Performances

Two sets of numerical experiments and a real data application were conducted to evaluate the
practical performances of the proposed methodology. In particular the performance of the pro-
posed procedure ROBUST-IMPUTE is compared to the performance of SOFT-IMPUTE developed by
Mazumder et al. (2010)). The reasons SOFT-IMPUTE is selected for comparison are that it is one
of the most popular matrix completion methods due to its simplicity and scalability, and that it
is shown by [Mazumder et al. (2010) that it generally produces superior results to other common
matrix completion methods such as MMMF of Rennie and Srebro| (2005), SVT of (Cai et al.| (2010)

and OPTSPACE of [Keshavan et al. (2010a)

5.1 Experiment 1: Gaussian Entries

This experiment covers those settings used in Mazumder et al. (2010, Section 9) and additional
settings with different proportions of missing entries and outliers. For each simulated data set, the
target matrix was generated as Xg = UVT, where U and V are random matrices of size 100 x r
with independent standard normal Gaussian entries. Then each entry of Xg is contaminated by
additional independent Gaussian noise with standard deviation o, which is set to a value such that

the signal-to-noise ratio (SNR) is 1. Here SNR is defined as

SNR = s = mj(o)’
o
where Var(Xj) is the variance over all the entries of Xy conditional on U and V. Next, for each
entry, with probability p yet another independent Gaussian noise with ¢/4 is added; these entries
are treated as outliers. We call this contaminated version of Xy as X. Lastly, Qs is uniformly
random over the indices of the matrix with missing proportion as ¢. In this study, we used two

values for r (5, 10), three values for p (0, 0.05, 0.1) and three values for ¢ (0.25, 0.5, 0.75). Thus

in total we have 18 simulation settings. For each setting 200 simulated data sets were generated,

14



and both the non-robust method SOFT-IMPUTE and the proposed ROBUST-IMPUTE were applied
to recover Xg. We also provide two oracle fittings as references. They are produced by applying
SOFT-IMPUTE to the simulated data set with outlying observed entries removed (i.e., treated as
missing entries), and with outlying observed entries replaced by non-outlying contaminated entries
(i.e., contaminated by independent Gaussian noise with standard deivation o) respectively. The
first oracle fitting is referred to as oraclel while the second one is called oracle2 in the following.
For the two simulation settings with » = 10 and ¢ = 0.5, and one with p = 0 while the other
with p = 0.1, Figure [l| summarizes the average number of singular value decompositions (SVDs)

used and the average test error. Here test error is defined as

IPas (Xo - X)II%

IPor Xollp

Test error =

where Pr is the projection operator to the set of locations of the observed noisy entries (but not
outliers) I', and X is an estimate of Xy. From Figure (Top), one can see that the performance
of ROBUST-IMPUTE is slightly inferior to SOFT-IMPUTE in the case of no outliers (p = 0), while
ROBUST-IMPUTE gave significantly better results when outliers were present (p = 0.1). The inferior
performance of ROBUST-IMPUTE under the absence of outliers is not surprising, as it is widely
known in the statistical literature that a small fraction of statistical efficiency would be lost when
a robust method is applied to a data set without outliers. However, it is also known that the gain
could be substantial if outliers did present.

As for computational requirements, one can see from Figure [I| (Bottom) that ROBUST-IMPUTE
only used slightly more SVDs on average. For ranks greater than 5, the number of SVDs used by
RoBUST-IMPUTE only differs from SOFT-IMPUTE on average by less than 1. This suggests that
ROBUST-IMPUTE is slightly more computationally demanding than SOFT-IMPUTE.

Similar experimental results were obtained for the remaining 16 simulation settings. For brevity,
the corresponding results are omitted here but can be found in the supplementary document.

From this experiment some empirical conclusions can be drawn. When there is no outlier,

SOFT-IMPUTE gives slightly better results, while with outliers, results from ROBUST-IMPUTE are

15



substantially better. Since that in practice one often does not know if outliers are present or not,
and that ROBUST-IMPUTE is not much more computationally demanding than SOFT-IMPUTE, it

seems that ROBUST-IMPUTE is the choice of method if one wants to be more conservative.

5.2 Experiment 2: Image Inpainting

In this experiment the target matrix is the so-called Lena image that has been used by many authors
in the image processing literature. It consists of 256 x 256 pixels and is shown in Figure [2| (Left).
The simulated data sets were generated via contaminating this Lena image by adding Gaussian
noises and/or outliers in the following manner. First independent Gaussian noise was added to
each pixel, where the standard deviation of the noise was set such that the SNR is 3. Next, 10%
of the pixels were selected as outliers, and to them additional independent Gaussian noises with
SNR 3/4 were added. In terms of selecting missing pixels, two mechanisms were considered. In the
first one 40% of the pixels were randomly chosen as missing pixels, while in the second mechanism
only 10% were missing but they were clustered together to form patches. Two typical simulated
data sets are shown in Figure [2| (Middle). Note that Theorem [2| does not cover the second missing
mechanism. For each missing mechanism, 200 data sets were generated and both SOFT-IMPUTE
and ROBUST-IMPUTE were applied to reconstruct Lena.

The average training and testing errorsﬂ of the recovered images of matrix ranks 50, 75, 100
and 125 are reported in Table [l For both missing mechanisms, SOFT-IMPUTE tends to have lower
training errors, but larger testing errors when compared to ROBUST-IMPUTE. In other words,
SOFT-IMPUTE tends to over-fit the data, and ROBUST-IMPUTE seems to provide better results.
Lastly, for visual evaluation, the recovered image of rank 100 using ROBUST-IMPUTE is displayed
in Figure [1] (Right). From this one can see that the proposed ROBUST-IMPUTE provided good

recoveries under both missing mechanisms.

!The solution path (formed by the pre-specified set of 4’s) may not contain any solution of rank 50, 75, 100 and
125. Thus, the average errors were computed over those fittings that contained the corresponding fitted ranks. At
most 2% of these fittings were discarded due to this reason.
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Figure 1: Top: The average test errors with their standard error bands (plus or minus one standard
error). Bottom: The average number of singular value decompositions used with standard error
bands (plus or minus one standard error). Left: results for the simulation setting: r = 10, p = 0
and ¢ = 0.5. Right: results for the simulation setting: » = 10, p = 0.1 and ¢ = 0.5.
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Table 1: The average training and testing errors for the Lena experiment.

training error testing error
rank 50 75 100 125 50 75 100 125

independent SOFT-IMPUTE 0.0499 0.0351 0.0221 0.0113 | 0.0578 0.0565 0.0581 0.0620
missing RoBUST-IMPUTE | 0.0486 0.0371 0.0282 0.0252 | 0.0546 0.0540 0.0557 0.0571
clustered SOFT-IMPUTE 0.0487 0.0386 0.0296 0.0214 | 0.0756 0.0751 0.0760 0.0781
missing RoBusT-IMPUTE | 0.0468 0.0390 0.0321 0.0268 | 0.0716 0.0714 0.0723 0.0742

Figure 2: Left: the Lena image. Middle: degraded Lena images by the independent missing
mechanism (Top) and the clustered missing mechanism (Down). Right: corresponding recovered
images of rank 100 via ROBUST-IMPUTE.
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5.3 Real data application: Landsat Thematic Mapper

In this application the target matrix is an image from a Landsat Thematic Mapper data set publicly
available at http://ternauscover.science.uq.edu.au/. This data set contains 149 multiband
images of 100 x 100 pixels, with each image consists of six bands (blue, green and red with three
infrared bands). The scene is centered on the Tumbarumba flux tower on the western slopes of the
Snowy Mountains in Australia. Due to wild fires or related reasons, some pixels are of value zero
which can be treated as missing. Also, due to detector malfunctioning, some isolated pixels have
values much higher than the remaining pixels, which can be treated as outliers. We selected an
image band with a high missing rate (27.6%) to test our procedure.

To evaluate the recovered matrix, the observed pixels were split into training, validation and
testing sets consisting 80%, 10% and 10% of the observed (nonzero) entries respectively. We used the

validation set to tune . The validation errors are computed in two ways: mean squared error (MSE)

\/Z(i,j)eV(Xij — X;;)2/|V| and mean absolute deviation (MAD) median{|X;; — X;;| : (4,5) € V},
where V represents the validation set. Similarly, we compute the testing errors in terms of MSE
and MAD. Note that the validation and testing sets may contain outliers and therefore MAD serves
as a robust and reliable performance measure. The corresponding results are shown in Table
From this table it can be seen that with the presence of outliers, ROBUST-IMPUTEprovided better

results.

Table 2: Rank and testing errors of the real data application.

tuning by MSE tuning by MAD
rank MSE MAD | rank MSE MAD
SOFT-IMPUTE 24 45.20 31.15 21 45.23 31.15
RoBUST-IMPUTE 24 44.63 29.00 29 44.57  28.76

6 Concluding remarks

In this paper a classical idea from robust statistics has been brought to the matrix completion
problem. The result is a new matrix completion method that can handle noisy and outlying entries.

This method uses the Huber function to downweigh the effects of outliers. A new algorithm is
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developed to solve the corresponding optimization problem. This algorithm is relatively fast, easy
to implement and monotonic convergent. It can be paired with any existing (non-robust) matrix
completion methods to make such methods robust against outliers. We also developed a specialized
version of this algorithm, called ROBUST-IMPUTE. Its promising empirical performance has been
illustrated via numerical experiments. Lastly, we have shown that the proposed method is stable;
that is, with high probability, the error of recovered matrix is bounded by a constant proportional

to the noise level.
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A Technical Detalils

A.1 Proofs of Proposition

Proof. By rewriting

o, 2050 = Py, YOV = [Pa, 204D = Po, YO + |[Pa,, Y ®) = Po, YD)

obs obs obs obs

obs

2 X trace [{PQOI)SZ(k+1) - Pﬂobsy(k)}{PQ Y(k) - PQObSY(k+1)}T:| 5

and using f(Y | z*+1)y < £y ®)| Z(¢+D) | we have

1
5 ||PQobsY(k) - PQobsY(k+1) H%‘ + trace [{Pﬂobsz(k—‘rl) - PQobsY(k)}{PQobsY(k) - PQobsY(kJrl)}T]

+ Y E L <Ally W)
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Thus, by substituting Zk+1) — Pa Yk 4 Qpc(PQobe Pa

obs

y®),

obs

1 1
5 HonbGY(k) - ,PQObQY(kJ’_l) H%’ + itrace |:p/c<PQObsX - 7DS)()bs}/(k)){,]DQobsyv(k‘) - PQobqY(k+1)}T:|

+ [ YEIIL < 4)ly 9.,

(10)

Here we abuse the notation slightly so that p!. of a matrix simply means the matrix formed by

applying p/, to its entries. Note that for each (i,j) € Qobs, by Taylor’s expansion,

Pl Xy = Vi) = oy = V) () =¥ = vy [0 =Y — ot
-

(k) —}/;gkﬂ)) due to p! < 2 almost everywhere.

and the last integral term is less than or equal to (Y] ;

Thus,
k+1 k
> Xy - YT < 3T pelXiy - V)
(ivj)eQObS (ivj)erbs
+ trace [pL(PﬂobsX — Pag,Y ) {Pa,, YV - PgobSY(’f“)}T]
+ HPQobs ( ) 7DQobs (k+1)||%
Now, plugging it into (10}, we have g(Y *+1) < g(v *)). =

Alternative proof of Proposition [l Similar to the proof of Proposition 2] in Section [A.3] one can
show that

9(Y) = min 5 IIPQ X = Pag.Y = Py, SIE + Y|l + ¢l S|, (11)

obs obs
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where the minimizer is S(Y') = (1/2)¢c(Pa,,. X — Pa,,.Y ). Now, one can show that

200 = P, YO 4 (1/2)e(Pay, X — Pa,, Y®)

obs obs

= PQ X + (1/2)1/)C(Pgobsy(k) - PﬂobsX)

obs

= Py X — (1/2)6(Poy, X — P, Y )

obs

=Pq., X — Sy W),

obs

Now, due to ,

X = Po,, Y*D —Po | S|I% + ][y ED[, + ¢S]

obs

1
(k+1)Y — min =
g(y ) = min = P

X = Po,, Y =P, SYE)|[5 4+ 7Y EV| 4 ellSY W)

obs

< éHPQ
= FYEDIX — S ®) + oSy P,

= P, X = S(YH) + ¢Sy )
= FYED 1 ZEED) 4 Sy )y

< FY®ZE) el S(Y W),

1
= 5IPag,. X — Pa, Y™ = P, SCO)|F+ 7Y P + el Sy 9)|y

obs

= g(Y®).

A.2 Proof of Theorem [1] for Algorithm

Proof. This proof closely follows the proofs of Lemma 2.3 and Theorem 3.1 in [Beck and Teboulle

(2009) by modifying their approximation model to

(V7Y = a(V) + (V= V. V(7)) + 5P, Y — Pay VIE+ oa(Y)

obs

~ 1 ~ ~ 1 -
= gl (Y) - §<Y - Y7 wC(PQobsX - Pﬂobsy)> + §||PﬂobsY - PQobsYH% + QQ(Y)
~ 1 ~ - 1 -
= gl(Y) - §<PQobsY - PQobsY7 wc(PﬂobsX - PQobsY)> + §H,PQObSY - PﬂobsYH%‘ + 92(Y)’
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where (X,Y) = >, ; X;;Yj;. It can be shown that arg miny ((Y, Y) is the same as arg miny f(Y|Z),
where Z = Paq,, Y + (1/2)¢e(Pa,,. X — Pa,,.Y), in Steps 2(a)-(c) of Algorithm |1} Let II(Y) =
argminy ((Y,Y). Therefore Y #*t1) = I1(Y(#)). Moreover,

- - - 1 -
(V) £ (V) + (Y = ¥, Var(V)) + 5 1Pa,Y = Pas, VI3

obs

for any Y and Y. Therefore, g(H(f/)) < C(H(f/),f/) for any Y € R "2,

To proceed, we need a modified version of Lemma 2.3 in Beck and Teboulle (2009).

Lemma 1. For any 17, Y € Rmxnz,

g(Y) - g(]'_‘[(f/)) ||Pﬂobs ( ) obsY”F + <PQ bs Y Pﬂobsy PQObb ( ) PQobs >

This lemma is proved as follows. Since II(Y) is the minimizer of the convex function ¢(-,Y),
there exists a b(Y) € dgo(II(Y)), the subdifferential of g at II(Y), such that Vg, (Y)+Pq
Po

I(Y) -

obs

Y +b(Y) = 0. By the convexity of g; and go,

obs

aY)=>gq(Y) - *<Y Y wC(Pﬂobe Pag,.Y )>

92(Y) = g2(II(Y)) — (¥ = IL(Y'), b(Y)).

Therefore,

9(Y)Zq(Y) - %(Y — Y, 9e(Pag, X — P, Y)) + g2(II(Y)) — (Y —II(Y),b(Y)).  (12)

obs

Since g(TI(Y)) < ¢(TI(Y),Y), we have g(Y) — g(TI(Y)) > g(Y) — ((TI(Y),Y). Plugging in (12), the
definition of ¢ and the condition for b, the conclusion of the lemma follows.

Using Lemma [1f with Y = Y* and Y = Y*) | we have

2{g(Y") —g(Y )} > ||Pa,, V" = Pa,, Y EHV|F — [P, Y™ — Pa,, Y V7.
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Summing it over kK =0,...,m — 1,
m—1
{mg Y* Z g Y(k } Z HPQObsY* - ,PQonY(m)H%‘ - H,]DQobs}/v>|< - ,PQobqY(O)”% (13)
k=0
Applying Lemma [l with Y = Yy =y®),
2{g(r®) — g(r D)} = P, Y+ — Py YO

Multiplying it by k£ and summing over k =0,...,m — 1,

m—1 m—
2 {—mg(Y(m)) +> g(Y(k“))} > Z k[ Pay, Y * Y = Po,, Y |3 (14)
k=0 k=0
Adding and ,

2 {g(Y*) - g(Y(m))} Z ||PQobsY* - 7Dgzobsif(’rn) ||F ||7DQobs PﬂobsY(O) H%‘

m—1
+ Y klPa,, Y — P, Y3
k=0
Therefore,
Po,,.Y* = Pa,, Y OI2
Y(m) _ Y* < H obs obs F.
g(y(m) — g(v*) < =

A.3 Proof of Proposition

Proof. Since both and are convex, we only need to consider the sub-gradients. The sub-

gradient conditions for minimizier of are given as follows:

1
0€ 50 (Pay, X = Pa,Y) + 0|V ., (15)

obs obs
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where 0| - ||« represents the set of subgradients of the nuclear norm. The sub-gradient conditions

for minimizier of are given as follows:

0€ —Po, (X —L—S)+~9|L]. (16)

obs

0 € =Pa,, (X = L = 5) + cd||S], (17)
where 9| - ||1 represents the set of subgradients of || - ||;. Here implies, for (i, j) € Qops,

Xij _Lij —C, Xij _Lij > cC

Sij =40, |X¢j — Lij’ <c (18)

kXi' — Lij +c, Xij — Lij < —c

and SZ']' =0 for (Z,]) € QJ‘ Note, for (Z,j) S Qobsa Xz — Lij — Sij = ,O/C(X,L] — LU)/Q Plugging it

obs*

into , we have and thus this proves the proposition. ]

A.4 Proof of Theorem [2

To prove Theorem [2 we first show three lemmas and one proposition.
Lemma 2 (Modified Lemma A.2 in (Candes et al., |2011)). Assume that for any matriz Q,

|PrPriQllr < n||PpiPriQllp. Suppose there is a pair (W, F) obeying

PrWw =0, |[[W] <1/2,

PriF =0, [|Fllo<1/2, (19)

UVT+W +PrD = Asgn(S)) + F) with | PrD|lr < n~2
\

Then for any perturbation H = (Hp,, Hg) satisfying Pa., Hr, + Pa,,.Hs =0,

obs

1 1 A n+1
1Mo = il > Wl + (5 = = ) IPrs Hull + (5 = " ) IPeH

The proof of this lemma can be found in |Candes et al.| (2011). To procced, we write ||M||% , =
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|L||% + A2?||S||% for any pair of matrices M = (L, S).

Lemma 3. Let M = (Mp, Mg) be any pair of matrices. Suppose ||Pa,,.PrMr|l% > pol/PrML|%/2
and |PrPal* < po/8. Then

(L+X)po

[P (Pr x Pa)M|7 ) >

Proof of Lemma[3 Note that for any M’ = (M}, M),

Py’ = (Pnobs<M’L + M) Pay, (M} + Mé>)
2 ’ 2 '

Thus

14 )2
[P (Pr x Pa)M|F ) = 1

IR
4

[Payy. (Pr M + PoMs)||

(H’PQObG,PTMLH% + HPQMS”% + 2<PQobsPTML7 PQMS)) I
where the last equality is due to Q C Qqps. By ||PrPall? < po/S,

(Pa.,. PrMr, PaMs) = (PrMrp, PaMsg)

obs
= (PrMp, (PrPa)PaMs)
> —PrPalllPrML||rl/PaMs| r

v/ Po
> Y ||PrM PoM .
> 2\/§H M| Fl|PaMs| F

Combining with ||Pq,, PrML||% > pol|PrMg||%/2, we have

obs

14 A2
[P (Pr x Po)M|7y >

p p
(BUPeaLlE + Padsly - 2 IPrau oMl )

As 2(2? +y? — xy) > 2% + y? for z,y > 0,
1+ A2 (1 + )\2)]90

Po
IPu(Pr x Pa) M|, > (BIPraLlf + [Pads|}) =
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Lemma 4. Let M = (M, Mg) be any pair of matrices. Then HP@MHQF/\ < \|MH2FA/2

Proof of Lemmal[fl Write MY = (M}, MJ) = Py M. Since | M}|% = |MJ|%,

[PuM |7y = [IML |7+ N[ Mg |7
1 A2
= §(HME’II% +|MS17) + 3(IIME’II% + 1M N1%)
1 A2
= SIMYIE+ S 1M E

1 A2 1
< Z|\IM||%+ = |M||% = Z||M
_2|| |7+ 2 | M| 7 2H |

2
F

O]

Proposition 3. Assume that for any matriz Q, ||PrPriQ||r < n||PriPriQllr and ||Pq,, . PrQ|r >
pol|PrQ||r/2. Further suppose 4/n < A <1, n >3, pg >0, |PrPall? < po/8 and that there exists

a pair (W, F) obeying (@ Then the solution M = (L, S) to (@ satisfies

1M — Mol g < [me 4 <1 + \/j() (Vn + n/\\/zTo)} 5.

where Mo = (Lo, S}) such that ||Pq,, . X — Pa,,.(Lo + So))||% < 6 and S, = Pq,,.So. Further, if
A =1/\/npo (which implies 1/n < py < n/16), we obtain

\ﬁ—LHFg{2+8\/H<1+\/Z>}6 and HS—S{)HF§{2+8\/H<1+\/§)>}\/%&

Proof of Proposition[3. Write M = My + H, where H = (Hp, Hs), and HY = (HY HE) = PyH
and HY" = (HE’L,ngl) = Py1 H. We want to bound

1
[H|px=HY + HY || px

< [1HY]

€1
A+ IHY [Ipa

<NHY | pa + |(Pre x PRYHY |lpa + |(Pr x Pro)HY | (20)
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We start with the first term of (20)). Since HY = HY = (1/2)Pq,,.(HL + Hs),

V14 A2
IHY | g = TIIPQObS(HL + Hs)|lF

where the last inequality is due to the fact that both My and M are feasible.

Then we focus on the second term of . First, we have

~ 1
1Mollo > | Mllo = 1Mo + Hllo > 1Mo + H™ [lo — [1H"lo.-

By Lemma [2]
1 1 1
1Mo+ HY lo > [|Mollo + a(m)[Pra HE ||« + b(n, V[PeHE |1,
where
1 1 A n+1
a(n):i—g and b(n’/\):§_7'
Now, combining the above inequalities,
1 €
1HY [lo > a(m)|[PraHE ||« + b(n, V[PrHE 1. (21)
By the assumption that A > 4/n and n > 3,
1 1 A n+1 2 1 1 1 1
=———>0 d b(n,\)==— —————==——=—=>0.
a(n) 2 no 0 (n, A) 2 2 n n m on om

Therefore implies |[HY||¢ > a(n)|PprHY " ||, and |[HY || > b(n, )| PrHY 1.
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Now, we are ready to establish a bound for the second term of .

€L €1 €
|(Pro x Pr)HY ||p < |ProHY |lp + MN|[PrHS ||F

4 4
< |/ProHE s+ MPrHS |

1 A
<d—+—=_4gY
< (a1
< A+ A )

As for the third term of , we apply Lemma [3|and the bound of the second term in . As
PyHY =0, Py(Pp x Pri)HY + Py(Ppe x Pr)HY" = 0. Therefore, due to Lemma

1

€L
ﬁ”(PTJ- x Pr)HY" |

[Py (Pr x Ppo)HY ||pa = [|Po(Pro x Pr)HY ||y <

F\-

As Pqi Hs does not affect the feasibility of M + H and H is chosen such that |M + Hl|p is
minimized, thus Poi HY" = Poi Hg = 0 which implies (Pr x Ppo)HY" = (Pr x Po)H"".

Thus, by Lemma

8

HY ||p < 4| ———
Prx P B e <\ [

8
|(Pre x Pr)HY || < w/p—onmm x Pr)HY | pa-

And ||(Pr x Ppo)HY ||y < |(Pr x Pro)HY ||p as A < 1.

Collecting all the above bounds for the three terms, we derive the bound for || H||fx:

8
I H s < 0v/T4 A2 4 4 (1 i ,/po) UEY | + AEE ).

Finally, ||H} ||«

IN

VillHY | F, HHng = \/p0n2HH:gI’HF (since Hg’ is supported on Qgs) and

I |7 = 1 H | = [[Pagy,, (Hr + Hs)|[F/2 < 6. Therefore,

|H || px < 6 [m+ 4 <1 + \/j) (v + nA\/pT))} .

Assume that A = 1/,/npg. First we note that, due to A > 4/n, this condition imposes a reasonable
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coverage of pg: 1/n < py < n/16. Now we focus on simplifying the bound for ||H||fx.

m+4<1+\/§)> (ﬁ+nA\/zTo)§2+8\/ﬁ(1+ 8>.

bo

This implies

IHy|p < {2 +8vn <1 + \/j() } 5 and  ||Hgllp < {2 +8vn (1 + \/jo) } N

To prove Theorem [2| we establish one additional lemma.

Lemma 5. Suppose ||Pr —palpTPQ Pr| <1/2. Then for any matriz Q,

obs

1P, PrQll% > 22 1PrQ| 2.

Proof of Lemmalj By the assumptions, for any matrix @Q,

1P, PrQlE = (Pay, PrQ, Pay, PrQ)
= (PrQ, PrPq,,. PrQ)
= po(PrQ. py  PrPo,, . PrQ)
=po [IPrQII% + (PrQ, (b, ' PrPa,,. Pr — Pr)Q)]

1
< po (HPTQH% - 2|73TQ||%’>

Do
=S IPral.

O

Proof of Theorem[3. Recall that we write that an event occurs with high probability if it holds
with probability at least 1 — O(n~'%). Due to the asymptotic nature of Theorem we only
require the conditions of Proposition [3| to hold asymptotically with large probability. By Lemma
A.3 of (Candes et al.| (2011), ||PrPr.Qllr < n||PriPriQ|F for all @, with high probability. By
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Lemma 5| and Theorem 2.6 of [Candes et al| (2011)) (see also|Candes and Recht, 2009, Theorem 4.1),
[P PrQll% = B ||PrQ|% for all @, with high probability. Further, by |Candes and Recht| (2009),
|PrPal* < po/8 occurs with high probability. (Candes et al.| (2011} pp. 33-35) show that there exist
dual certificates (W, F') obeying with high probability. For sufficiently large n, the conditions
of A and pg in Proposition [3| are fulfilled. Therefore, Theorem [2| follows from Proposition ]
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