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Abstract—Non-recurring traffic congestion is caused by tem-
porary disruptions, such as accidents, sports games, adverse
weather, etc. We use data related to real-time traffic speed,
jam factors (a traffic congestion indicator), and events collected
over a year from Nashville, TN to train a multi-layered deep
neural network. The traffic dataset contains over 900 million
data records. The network is thereafter used to classify the real-
time data and identify anomalous operations. Compared with
traditional approaches of using statistical or machine learning
techniques, our model reaches an accuracy of 98.73 percent
when identifying traffic congestion caused by football games. Our
approach first encodes the traffic across a region as a scaled
image. After that the image data from different timestamps
is fused with event- and time-related data. Then a crossover
operator is used as a data augmentation method to generate
training datasets with more balanced classes. Finally, we use
the receiver operating characteristic (ROC) analysis to tune the
sensitivity of the classifier. We present the analysis of the training
time and the inference time separately.
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I. INTRODUCTION

Emerging Trends. Traffic congestion in urban areas has
become a significant issue in recent years. Because of traffic
congestion, people in the United States traveled an extra 6.9
billion hours and purchased an extra 3.1 billion gallons of
fuel in 2014. The extra time and fuel cost were valued up to
160 billion dollars [1]. Congestion that is caused by accidents,
roadwork, special events, or adverse weather is called non-
recurring congestion (NRC) [2]. Compared with the recurring
congestion that happens repeatedly at particular times in the
day, weekday and peak hours, NRC makes people unprepared
and has a significant impact on urban mobility. For example,
in the US, NRC accounts for two-thirds of the overall traffic
delay in urban areas with a population of over one million [3].

Driven by the concepts of the Internet of Things (IoT)
and smart cities, various traffic sensors have been deployed
in urban environments on a large scale. A number of tech-
niques have been developed for knowledge discovery and data
mining by integrating and utilizing the sensor data. Traffic
data is widely available by using static sensors (e.g., loop
detectors, radars, cameras, etc.) as well as mobile sensors (e.g.,
in-vehicle GPS and other crowdsensing techniques that use
mobile phones). The fast development of sensor techniques

enables the possibility of in-depth analysis of congestion and
causes.

The problem of finding anomalous traffic patterns is called
traffic anomaly detection. Understanding and analyzing traffic
anomalies, especially congestion patterns, is critical to help-
ing city planners make better decisions to optimize urban
transportation systems and reduce congestion conditions. To
identify faulty sensors, many data-driven and model-driven
methods have been proposed to incorporate historical and real-
time data [4], [5], [6], [7]. Some researchers [8], [9], [10], [11]
have worked on detecting traffic events such as car accidents
and congestion using videos, traffic, and vehicular ad hoc data.
There are also researchers who have explored the root causes
of anomalous traffic [12], [13], [14], [15], [16], [17].

Most existing work still mainly focuses on a road section
or a small network region to identify traffic congestion, but
few studies explore non-recurring congestion and its causes
for a large urban area. Recently, deep learning techniques
have gained great success in many research fields (including
image processing, speech recognition, bioinformatics, etc.),
and provide a great opportunity to potentially solve the NRC
identification and classification problem. There are still many
open problems: (1) using feature vectors to represent traffic
conditions loses the spatial information of the road segments,
(2) using small and unbalanced dataset (traffic data with event
labels is limited) to train neural networks downgrades the
performance, a proper data augmentation mechanism is needed
to balance the training data with different class labels, (3)
building deep neural networks to model the traffic conditions
of both recurring and non-recurring congestion.

Contributions. In this paper, we propose DxNAT, a deep
neural network model to identify non-recurring traffic conges-
tion and explain its causes. To the best of our knowledge,
our work is one of the first efforts to utilize deep learning
techniques to study traffic congestion patterns and explain non-
recurring congestion using events. The main contributions of
our research are summarized as follows:

e We present an algorithm to efficiently convert traffic data
in Traffic Message Channel (TMC) format to images

e We introduce a crossover operator as a data augmentation
method for training class balancing.

e A convolutional neural network (CNN) is proposed to
identify non-recurring traffic anomalies that are caused
by events.

e We create three scenarios to evaluate the performance



of the proposed model by using real-world data of three
events types (football games, hockey games, and traffic
incidents).

Paper Organization. The remainder of this paper is orga-
nized as follows: Section II compares our work with related
work; Section III presents the dataset and a motivating example
that explores the impact of football games on traffic conges-
tion; Section IV formulates the problem; Section V presents
the solution approach; Section VI evaluates the performance
of our model; Section VII gives concluding remarks;

II. RELATED WORK AND CHALLENGES

This section presents an overview of the related work on
traffic anomaly detection, which includes studies about faulty
traffic sensor detection, traffic event detection, and congestion
cause indication. Three key research challenges and our con-
tributions for detecting NRC are discussed in the end.

Faulty Traffic Sensor Detection. Robinson et al. [4]
proposed an approach that used data from inductive loop
detectors to estimate travel time on road segments. His ap-
proach included a data cleaning method to clean the collected
traffic data. Lu et al. [5] reviewed previous work on faulty
inductive loops data analysis. Widhalm et al. [18] presented a
traffic anomaly detection method that used Floating-Car Data
(FCD) as an independent information source. They developed
a non-linear regression model to fit the traffic sensor data and
FCD data. Zygouras et al. [6] proposed a method comparing
correlations among nearby sensors to identify faulty sensor
readings. Their system was based on MapReduce paradigm to
work for crowdsourcing data. Ghafouri et al. [7] presented
a faulty traffic sensor detection model based on Gaussian
Processes. Particularly, they provided an effective approach for
computing the parameters of detectors to minimize the loss due
to false-positive and false-negative errors.

Event Detection Using Traffic Data. Monitoring traffic
flow at intersections is important in the traffic event detection
research. Kamijo et al. [8] developed an algorithm based on
spatiotemporal Markov random field (MRF) for processing
traffic images and tracking vehicles at intersections. Using the
timeseries observed behaviors of vehicles, a hidden Markov
model for accident detection is then proposed. Veeraraghavan
et al. [9] presented a multiple cue-based approach combined
with a switching Kalman filter for detecting vehicle events
such as turning, stopping and slow moving. Terroso-Senz et
al. [19] presented an event-driven architecture (EDA) that
used vehicular ad hoc network and external data sources like
weather conditions to detect traffic congestions. Yang et al.
[10] proposed a coupled Bayesian RPCA (BRPCA) model for
detecting traffic events that used multiple traffic data streams.
Kong et al. [11] proposed LoTAD to explore anomalous
regions with long-term poor traffic situations. To model the
traffic condition, crowd-sourced bus data is grouped into
spatiotemporal segments. The segments with high anomaly
indexes were combined to get anomalous regions. Wang et
al. [20] proposed a two-stage solution to detect road traffic
anomalies: (1) a Collaborative Path Inference (CPI) model
that performs path inference incorporating static and dynamic

features into a Conditional Random Field (CRF); (2) a road
Anomaly Test (RAT) model calculates the anomalous degree
for each road segment.

Congestion Cause Indication. Liu et al. [12] studied both
known (planned) and unknown (unplanned) events behaving
differently from daily network traffics as anomalies, and pro-
posed algorithms that construct outlier causality trees based
on temporal and spatial properties of detected outliers. Xu et
al. [13] introduced an approach to identify urban congestion
patterns based on the data cube. They proposed a multi-
dimensional data analysis method for data cube. Chow et al.
[14] presented an automatic number plate recognition technol-
ogy to analyze urban traffic congestions and introduced a linear
regression model to indicate the causes of the congestions.
Kwoczek et al. [16] proposed an Artificial Neural Network
(ANN) based classifier to detect the road segments affected by
planned events. Mallah et al. [17] evaluated the performance
of machine learning techniques for classifying congestions into
different causes.

A. Research Challenge 1: Representing Heterogeneous Traffic
Data and Event Labels Using Multi-Dimensional Images

A feature vector is an n-dimensional vector and is the
most popular representation of data objects. Besides numerical
values, feature vectors can also represent texts and images.
However, feature vectors may not be the best solutions for
representing traffic and corresponding event labels.

Traffic conditions are highly affected by different influ-
encing factors [21], such as incidents, sports games, road
work, weather, etc. The events and their physical locations
are used as the labels. But since feature vectors have fixed
length, it is not practical to manually encode the labels to
a specific fixed length feature vector. More importantly, in
pattern recognition and machine learning, features matter the
most. When converting an image to a feature vector, you
can directly convert the two-dimensional pixels to a one-
dimensional vector, or you can first take the histogram of the
image and then construct a feature vector that has several
comparison metrics, such as mean, standard deviation, etc.
Both methods will lose some relative spatial information in
the original images.

In contrast to feature vectors, images can preserve the
original spatial relations by locating points on different pixels
and can integrate multiple data sources by simply adding
layers. Kwoczek et al. [16] showed a factor representation
that integrates multiple features like event and weather into
different layers in a data cube. However, though they men-
tioned the idea as a possible future work, they did not present
any concrete solution to it. Ma et al. [22] proposed a CNN-
based approach for traffic prediction. They represented the
traffic speed and time using a time-space matrix. The problem
with the time-space matrix is that the spatial information
between segments is lost, which is important in detecting traffic
patterns because nearby roads usually show similar or related
patterns. Additionally, their model simply considered traffic
data, but there are many other factors affecting the future
traffic conditions. Thus representing heterogeneous traffic and



corresponding event labels using images remains a research
gap.

One of the key differences between our proposed approach
and the existing ones is that we are trying to visualize the
wide area sensor data distribution as Traffic Condition Images
(TCIs), so that we can use CNN and other deep learning
techniques for analyses.

B. Research Challenge 2: Training Deep Learning Models
Using Limited Data Instances

The performance of deep learning techniques highly relies
on the quality of training data instances. However, the collected
urban data may not provide enough data for training because of
the data sampling rates. For example, our proposed model first
converts traffic data to Traffic Condition Images (TCIs) and
then trains different models using these images. But the traffic
data we obtain from HERE [23] is requested every minute.
So for a day that consists of 1440 minutes, we will only have
1440 traffic images, which are too few for effective training
purposes. The availability issue of data instances becomes
worse considering there is also limited label data. It remains
a research challenge of getting more training data using the
existing data.

Traditional ways of solving this problem are: (1) waiting and
collecting until enough training data is collected, (2) manually
labeling the data, (3) adding data sources, e.g., collecting more
data from social media. Our solution uses the idea of crossover
from the genetic algorithm. We assume that traffic conditions
within a short time range are associated with the same events.
So we can apply a crossover operator on the TCIs to generate
more TCIs with the same event label.

C. Research Challenge 3: Modeling Traffic Patterns of Non-
Recurring Events

The existing work on traffic event detection focused on
analyzing traffic videos or traffic sensor data streams to detect
events that are directly related to traffic, such as vehicle
stopping, car accidents, and road congestion. But few studies
explored the contextual non-recurrent events whose impacts
are also highly associated with certain traffic patterns.

Recently there has been an explosion in research of using
deep neural networks. But still, few have applied deep learning
on studying traffic patterns. Deep learning techniques have
gained great success in research fields like image processing,
speech recognition, bioinformatics, etc. Convolutional neural
networks are similar to original neural networks but convo-
lutional layers are added in the front of the model to learn
patterns in the original images. If traffic and label data can be
converted to images, then CNN can be employed to learn their
labeled patterns. It is still a research gap of how to develop
an effective and efficient deep learning network for identifying
and classifying traffic patterns of non-recurring events.

We formulate the problem of identifying the specific traffic
patterns associated with events in Section V-A, and then
present the details of our proposed approach that uses con-
volutional neural networks in Section V-C.

TABLE 1L DATA

Traffic Sports Game Accident
Format | TMC JSON JSON
Source | HERE API | ESPN, Fire

[23] hockey- Department

reference.com

Update | Every Minute | Manually Manually
Size 155 GB 28 Games 387 MB
Range | 10/2016 - | 1072016 - | 03/2014 -

Present 12/2016 03/2017

III. DATA AND MOTIVATING EXAMPLE

This section first introduces the datasets that we have
integrated into the system, and then describes a motivating
example in which we use the collected datasets to study the
impact of football games on the traffic congestion in the city.

A. Datasets

Since October 2016, we have been continuously collecting
and storing real-time traffic data from HERE API [23] for
all major roads in the Nashville area. In order to explore the
impact of contextual events on urban mobility, we also collect
the data about incidents and sports games. We cooperate with
the Nashville Fire Department [24] to access their incident
datasets, and manually collect the information about sports
games from the web. As illustrated in Table I, the details of the
datasets that we have integrated into the system are as follows:

e The traffic dataset provides the real-time traffic infor-
mation on road segments, such as speed limit, real-time
speed, jam factor (JF), etc. The dataset contains historical
traffic data for 3049 TMC road segments in the Nashville
area.

e The sports game dataset contains the operation informa-
tion about sports games, such as game type, start and end
time, attendance, location, etc.

e The incident dataset provides the detailed records of
incidents and the responding vehicles. For each incident,
it provides the coordinates, incident type, alert time,
vehicle arrival and departure time, weather condition, etc.

B. Motivating Example

The motivation for our research comes from a brief experi-
ment, in which we study the impact of football games on the
traffic congestion in the city.

During the studied period between Sept. 1, 2016 and Jan.
1, 2017, there were eight football games (as listed in Table II)
at the Nissan Stadium at downtown Nashville. During this
time we collected data related to traffic (speed limit, real-
time speed) and the football games (date, start time, duration,
location)!.

To indicate the congestion condition, HERE [23] provides
a jam factor (JF) that ranges between 0.0 and 10.0 for each

'Our dataset is larger. However, in this study we are focusing on these 4
months
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TABLE II. THE INFORMATION OF THE EIGHT FOOTBALL GAMES
STUDIED IN THE MOTIVATING EXAMPLE

Date Start Stadium | Attendance| Duration
Time
(CST)

1/1/17 12:00 Nissan 65205 3:11
PM Stadium

12/11/16 | 12:00 Nissan 68780 3:02
PM Stadium

11/13/16 | 12:00 Nissan 69116 3:36
PM Stadium

10/27/16 | 7:26 Nissan 61619 3:08
PM Stadium

10/23/16 | 12:02 Nissan 65470 3:21
PM Stadium

10/16/16 | 12:02 Nissan 60897 3:12
PM Stadium

9/25/16 12:02 Nissan 62370 3:03
PM Stadium

9/11/16 12:05 Nissan 63816 2:57
PM Stadium

TMC road segment. In this study we compare the JF between
the days when there is a football game and the days when
there is no football game, during four one-hour time window
directly before the games: [—4,—3], [-3, —2], [-2, —1], and
[—1,0] relative to the time when the game was scheduled?.

As shown in Figure 1, the results of the JF difference on road
segments in different time windows are visualized using heat
maps. In the figure, colors ranging from green to red are used
to indicate the small and big JF differences. The results show
that the impact of football games on traffic congestion begins
to increase from 4 hours before games. We have observed this
pattern across several game events in the city. Our hypothesis
is that every event has a unique pattern and we can learn that
pattern over time and use it to identify if a current congestion
pattern matches with the expected pattern. If the pattern does
not match then we can classify it as an anomaly.

2 Most football games are scheduled at 1 PM.

Aiport

Impact of football games on traffic congestion in four one-hour time windows before football games: (a) from 4 hours to 3 hours, (b) from 3 hours to

IV. PROBLEM FORMULATION

In this section, we first provide a formal definition of the
problem and then describe the assumptions for solving the
problem.

A. Definition

The goal of this research is to model traffic patterns around
the locations of non-recurrent events so that we can use the
model to identify non-recurring congestion and its causes. The
traffic pattern that we use here refers to the spatiotemporal
relations of traffic speeds on many road segments in an area,
which can be modeled and detected by a classifier. The
definitions of all relative notions can be found in Table III.

The inputs to the system are data about traffic and events.
Since the traffic data that we collected from HERE API is
defined using Traffic Message Channel Location Code [25]
format (a standard for encoding geographic information), the
road segments used in this study are also defined using the
same TMC location codes. Event data is categorized with
labels for training and validating purposes. The labels used
are as follows:

e Event-related: event indicator /., en¢, time window relative
to the event tepent,
e Time-related: time in the day 44y, weekday tyecer

One of the key differences between our approach and the
existing ones is that we are trying to visualize the wide area
sensor data distribution as Traffic Condition Images (TCI), so
that we can use CNN and other deep learning techniques to
analyze and model the spatiotemporal relations. TCI is a I,, by
I, pixels image. Each pixel p corresponds to a road segment in
the real world and the grayscale value of each pixel represents
the real-time traffic speed v, of the road segment r.

Formulation of the Non-recurring Congestion Identifica-
tion Problem. Given a set of traffic data .S; that contains speed
limit and real-time speed for a set of road segments S, at a
specific time t4,, on weekday t,ccx, and a set of event labels
Se, the model should determine l.,,; that indicates whether
the given traffic data contains congestion caused by a subset
Sé of event set S.. If lopent 1S true, the model should also



TABLE III.  SYMBOLS USED IN THE FORMULATED PROBLEM

T a timestamp

Lday time in the day in seconds

tweek weekdays encoded using integers (e.g., 0 for
Sunday, 1 for Monday, etc.)

tevent time windows relative to events (e.g., 1 for
the 1-hour time window before events)

levent indicator of whether the current time i1s within
a time window near the occurrence of an
event

Se a set of events in the city

r a road segment

Sy a set of road segments defined by TMC
location codes

S a set of traffic data that contains speed limit
and real-time speed for a set of road segments
Sy

TMCrey | a string representing a road segment in .S,

TCI traffic Condition Image, a gray-scale image to
represent traffic conditions in a bounding box

1, the width of a TCI

P a pixel in TCI. Its value shows the normalized
traffic speed on a road segment

Uy the real-time traffic speed (miles per hour) on
a road segment r

TH a threshold for the classifier to determine
whether the input traffic data contains recur-
ring or non-recurring congestion

provide the time window ..., relative to events (i.e. teyent
can be used to estimate the event occurrence time).

Figure 2 illustrates an example of the problem. Given raw
traffic data at a specific time, the model should identify
the possible non-recurring congestion and also provide an
estimation of the event occurrence time.

B. Assumptions

The following assumptions are made when we design and
formulate the non-recurring traffic congestion identification
system:

e We assume the availability of both traffic speed data and

event information for the studied area and period.

e We assume the traffic condition on a short road segment
in a direction is the same anywhere on the segment.

e We assume that an event happening in the urban envi-
ronment will affect the traffic conditions of nearby road
segments.

e We assume that there is a robust correlation between the
road segments affected by an event, and that the patterns
can be identified by the image classification techniques
of deep learning.

V. OUR APPROACH

In order to identify the specific traffic patterns associated
with non-recurring events as defined in Section IV, we present

the details of our proposed approach in this section. The
overall workflow of the system is shown in Figure 2. There
are three key components in the system: (1) an algorithm that
converts raw traffic data to images, (2) a convolutional neural
network that classifies the traffic condition images, (3) ROC
analysis that tunes the classification threshold to reduce the
false positive and false negative rates.

A. Feature Extraction by Mapping Traffic Data to Images

Research challenge 1 describes the problem that feature
vectors have limitations when representing urban data. To solve
this issue, the first step is to convert the collected traffic data
into images. We have been collecting real-time traffic data of
Nashville area from Here Traffic API [23] since Oct. 2016.
The traffic data is encoded in TMC location codes. Since the
TMC database is not open to the public, here we present an
algorithm to convert traffic data for a specific time 7" coded by
TMC locations to traffic images. In order to project the traffic
conditions to the pixels of images, we first initialize a gridded
map and then re-sample the road segments defined by TMC
location codes to the grids. The algorithm’s input, output, and
step details are as follows (for a set of road segments S,, step
1 and 2 will run only once, but step 3 will run once for each
timestamp):

Input: Traffic dataset Sy, road segment set S,, and times-
tamp 7. The raw traffic data of road segments S,. for timestamp
T is queried from Traffic dataset S; in the database.

Output: A Traffic Condition Image (TCI).

Step 1: Map grid initialization. The map of the area
containing the road segment set S, is divided into a map grid
of squares. The length of each square is about 8.97 meters, so
each grid cell covers about 80.51 square meters on the map.

Step 2: Road segment path re-sampling and smoothing.
The points from road segments are re-sampled to the centers
of grid cells if the points are covered by the cell. Also, if
the distance between two original points is large enough that
there are blank cells between the two cells projected by the two
points, then points will be interpolated to fill the blank cells.
After this step, we get a two-dimensional array, in which each
cell contains a list of TMC keys T'M Cy., corresponding to
points from road segments.

Step 3: Traffic data projection to the images. The two-
dimensional array acts as a projecting table from original road
segments to the image pixels. Now we can fill the images with
traffic data by querying the traffic data using segment keys
TMCley and timestamp T'. We use the following equation to
convert a traffic speed to a pixel value:

t
b d T 0l <80
0, otherwise

ey

where p denotes the pixel value (0-255) and v’ denotes the
real-time speed (miles per hour).

After getting initial projected TCI, simple image processing
techniques are used to resize TCI to the desired size (I, by
Ly).
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Fig. 2. Overall workflow of the non-recurring congestion identification system

B. Data Augmentation by Crossover Operations

TCI is our image representation of traffic speeds on road
segments. Since traffic data is collected every minute, without
data augmentation we can only get 1440 (the number of
minutes in a day) TCIs for one day, which is usually not
enough for training deep learning image processing models.
To address research challenge 2 (i.e., the lack of enough traffic
data with labels), we create a crossover operator to generate
more labeled traffic condition images for training deep learning
models. Crossover is originally a genetic operator from genetic
algorithms to vary the chromosomes of individuals from one
generation to another. We are motivated by a similar idea and
present the crossover operator for our system:

1) Getting TCI candidates. For a given timestamp 7', instead
of only getting one TCI for 7', we generate n TCIs for
time range [T"— ¢, T (¢ denotes a time length to extend
T, e.g., 3 minutes). While these TCIs are the same in
image size, they differ in the pixel values because they
correspond to traffic speeds at different times.

2) Generating new labeled TCIs. While looping through the
pixels in TCI, for each pixel row there is a probability
D, that its values will mutate and randomly select a new
row from the same corresponding pixels in other TCI
candidates. After the second step, we get a new TCI.
Because we assume traffic conditions within a small time
range are caused by the same events, we can give the new
TCI the same event label.

The crossover operator can be executed for many times to
generate many new data instances. Through crossover, we not
only have more labeled data, but also reduce the probability
of over-fitting in the training phase.

C. Classifying Non-Recurring Congestion

In the previous section, we have described an algorithm
that converts raw traffic data to TCI. Since the inputs contain
images, it makes sense to apply convolutional neural networks.
This section introduces our CNN model to classify the TCI
using event labels. CNN is a class of deep and feed-forward
artificial neural networks that have shown great success in
image analysis tasks. Here we apply CNN to our problem that
assigns event and congestion labels to a TCIL.

CNN. The architecture of the proposed CNN is shown in
Figure 3. Generally, the model consists of a stack of convolu-
tional, fully-connected neural, dropout and max-pooling layers.
Dropout layers are used throughout the model to prevent over
fitting. Max pooling layers are used for spatial down-sampling.
In the middle of the CNN, feature vectors that represent
time of day and day of week that correspond to the TCI
are concatenated to be input into the CNN to help it make
better decisions. Details of the layer configuration, such as
dimension, activation function, and dropout rate, can be found
in the Figure 3. Since we use one-hot encoding and the vectors
are in categorical format (i.e., dimensional vector is all-zeros
except for a one at the index corresponding to the class of the
sample), categorical cross entropy is used as the loss function
to train the model.

One-hot Encoding. In the proposed CNN model, the input
feature vectors are time in the day and weekday, and output
labels are (1) whether the congestion in input TCI is recurring
or non-recurring (2) the relative time windows that the TCI
belongs to if it is non-recurring congestion. We use one-hot
encoding to convert both input and output vectors to binary
class matrix. The input matrix has 31 classes, in which 24
classes correspond to 24 hours and 7 classes correspond to
7 days of the week. As illustrated in Figure 4, the output
matrix has several classes, of which the first class represents
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congestion, the next 8 digits represent 8 time windows before and after events.

whether the traffic condition belongs to recurring congestion or
non-recurring congestion, and the next classes represent time
windows before and after events. The first class is tunable
since it directly determines whether the input traffic condition
contains non-recurring congestion or not. If the value of the
first class output is higher than a predefined threshold T'H,
then the classifier will output that the input traffic data does
not contain non-recurring congestion (even if the values of
other classes are higher than the first class). The details of the
tuning steps are presented in the following section.

D. Tuning the Model Sensitivity by ROC Analysis

Our approach uses receiver operating characteristic (ROC)
analysis to tune the sensitivity of the CNN classifier. ROC
is a statistical plot that illustrates the diagnostic ability of a
classifier system [26]. The ROC curve is a fundamental tool for
diagnostic test evaluation. In an ROC curve, the true positive
rate (TPR) is plotted in a function of the false positive rate
(FPR). In machine learning, TPR represents sensitivity, recall
or probability of detection, and FPR represents fall-out or false
alarm [27]. By choosing a point from the curve, corresponding
classification threshold can be decided.

In our model, the non-recurring congestion is considered as
positive output and the recurring congestion is negative output.

We use the ROC analysis to tune the classification threshold
that decides whether the traffic congestion in the input traffic
data is recurring congestion or non-recurring congestion. We
choose thresholds that range from 0.01 to 1.00 and the corre-
sponding FPR and TPR of the training dataset are plotted (an
example is shown in Figure 5). The curve’s nearest point to
the point (FPR: 0.0, TPR: 1.0) will be selected.
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Fig. 5.  Receiver operating characteristics (ROC) curve analysis on the

prediction threshold.

VI. EXPERIMENTS

In this section, we evaluate the proposed deep neural net-
work’s ability to identify non-recurring traffic anomalies by
using real-world data of three event types: football games,
hockey games, and traffic incidents. Keras [28] Python deep
learning library is used to construct the models and TensorFlow
[29] is selected as the tensor manipulation library.

A. Scenarios

As illustrated in Figure 6, we create three scenarios to test
the performance of the proposed model. In each scenario, we
consider one of the three event categories for training and
validating the proposed model:

e Football Games. Between Oct. 11, 2016, and Jan. 1, 2017,

there were 8 NFL football games at the Nissan Stadium in
Nashville. The traffic data in the bounding box (latitude
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range: [36.1120, 36.2052], longitude range: [-86.8475, -
86.7543]) is used.

e Hockey Games. Between Oct. 14, 2016, and Jan. 03, 2017,
there were 20 NHL hockey games at the Bridgestone
Arena in Nashville. The traffic data in the bounding box
(latitude range: [36.1237, 36.1936], longitude range: -
86.8359, -86.7660]) is used.

o Traffic Accidents. Between Oct. 15, 2016, and Mar. 10,
2017, there were 23 traffic accidents at the selected
block area. The traffic data in the bounding box (latitude
range: [36.1470, 36.1586], longitude range: [-86.8126, -
86.8009]) is used.

The traffic and event datasets are divided into two subsets
for training and validation. The event and time information is
encoded using one-hot encoding as described in Section V.
An example of the output of our model is shown in Figure 4.
Particularly, the following metrics are used to define if an
output is positive or negative: (1) an output is considered to
be positive if it determines that the input TCI contains non-
recurring congestion, (2) an output is negative if it determines
the input TCI only contains recurring congestion.

B. Experiment 1: Identifying NRC Caused by Football Games

As shown in the motivating example in Section III-B, the
8 selected NFL football games have an average attendance of

TABLE IV. EXPERIMENT RESULTS IN SCENARIO 1: TRAINING DXNAT
FOR IDENTIFYING NRC CAUSED BY FOOTBALL GAMES

Accuracy | FPR FNR
DxNAT 98.73% 1.57% | 0.17%
Random Forest | 84.06% | 6.25% | 2.17%

TABLE V. EXPERIMENT RESULTS IN SCENARIO 2: TRAINING DXNAT

FOR IDENTIFYING NRC CAUSED BY HOCKEY GAMES

FPR FNR
8.11% | 23.19%

Accuracy
90.76%

DxNAT

over 60,000 people, which shows a great impact on causing
non-recurring traffic congestion. In the first scenario, we use
the traffic data collected in 1-minute intervals between Oct. 11,
2016 and Jan. 1, 2017. Traffic data of 5 non-game days and two
game days are used as the training dataset, and one non-game
day and one game day are used as the validating dataset. As a
comparison with the traditional machine learning techniques,
we build a random forest model that uses the same training and
validating dataset. Because random forests cannot use images
directly as input, we first convert the traffic condition images
to one-dimensional vectors, and then concentrate the traffic
vectors with time of the day and day of the week vectors, and
finally use the combined feature vector as input to the random
forest model.

The accuracy, false positive rate (FPR) and false negative
rate (FNR) of our model and the random forest model are
shown in Table VI. Our model outperforms the random forest
model with higher accuracy and lower FPR and FNR.

C. Experiment 2: Identifying NRC Caused by Hockey Games

Compared with NFL football games, NHL hockey games in
Nashville usually have less attendance (NHL 10,000 v.s. NFL
60,000). So we assume that an NHL hockey game has less
impact on traffic conditions and it will be more difficult to
detect the NRC related to hockey games.

In Scenario 2, we use traffic and hockey games data between
Oct. 14, 2016, and Nov. 30, 2016, as the training dataset, and
data of Dec. 15, 2016 (game day) and Dec. 16, 2016 (non-game
day) as the validating dataset. The accuracy, FPR and FNR
results are shown in Table V. Compared with the results in
Scenario 1, the model has lower accuracy and higher FNR. Our
assumption is validated that the NRC associated with hockey
games with less attendance is harder to be detected.

D. Experiment 3: Identifying NRC Caused by Traffic Accidents

In scenario 3, we explore the model’s ability to detect NRC
caused by road accidents. For the selected block area, there
were eight traffic accidents on 7 different days between Oct.
18, 2016, and Dec. 13, 2016. We use six days with accidents
as the training dataset and one day with an accident as the
validating dataset. The DxNet model archives an accuracy of
86.59% with FPR of 13.71% and FNR of 4.44%



TABLE VI EXPERIMENT RESULTS IN SCENARIO 3: TRAINING DXNAT
FOR IDENTIFYING NRC CAUSED BY TRAFFIC ACCIDENTS

Accuracy FPR FNR
DxNAT | 86.59% | 13.71% | 4.44%

TABLE VII.  SUMMARY OF ARCHITECTURAL DECISIONS
Challenge Approach Section
Representing Using Multi- | II-A
Heterogeneous dimensional Images

Traffic Data and
Event Labels
Training Deep | Developing II-B
Learning Models | crossover  operator
Using Limited Data | on original data

Instances

Modeling Traffic | Employing II-C
Patterns of Non- | convolutional neural
Recurring Events networks

VII. CONCLUSION

In this paper, we propose a deep neural network model
to identify non-recurring traffic congestion and explain its
causes. To our best knowledge, our work is one of the first
efforts to utilize deep learning techniques to study traffic
congestion patterns and explain non-recurring congestion using
events. Our main contributions are listed in Table VII. We
present an algorithm to efficiently convert traffic data in Traffic
Message Channel (TMC) format to images, as well as a
crossover operator as a data augmentation mechanism for
class balancing. A convolutional neural network is proposed
to identify non-recurring traffic anomalies that are caused by
events. We evaluate the proposed model by using three types
of events (football games, hockey games, and traffic incidents).

The future work to extend the current proposed model
includes:

e [ntegrating more contextual features. Existing work usu-
ally focuses just on traffic data, but there are many types
of urban data available to help identify traffic patterns,
like real-time bus travel time, speed, and weather. Be-
sides events, traffic conditions are affected by multiple
environmental factors. The current work only considers
time of day and day of week as the environmental training
features. In the next step, we will include various features
about weather conditions (such as humidity, nearest storm
distance, visibility, etc.).

o Identifying sizes of block areas and length of time win-
dows. For each event type (e.g., sports games, accidents),
the size of impacting block areas as well as the number
of impacting time windows in the experimental scenarios
are selected arbitrarily. A mechanism is needed to au-
tomatically select the best impacting area size and time
windows for each event type.
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