
Balanced Allocation Through Random Walk

Alan Frieze∗ Samantha Petti†

March 4, 2018

Abstract

We consider the allocation problem in which m ≤ (1 − ε)dn items are to be allocated to n
bins with capacity d. The items x1, x2, . . . , xm arrive sequentially and when item xi arrives it is
given two possible bin locations pi = h1(xi), qi = h2(xi) via hash functions h1, h2. We consider
a random walk procedure for inserting items and show that the expected time insertion time is

constant provided ε = Ω

(

√

log d

d

)

.

1 Introduction

We consider the following allocation problem. We have m items that are to be allocated to n bins,
where each bin has space for d items. The items x1, x2, . . . , xm arrive sequentially and when item xi
arrives it is given two possible bin locations pi = h1(xi), qi = h2(xi) via hash functions h1, h2. We
shall for the purpose of this paper assume that pi 6= qi for i ∈ [m] and that (pi, qi) is otherwise chosen
uniformly at random from [n]2. This model is explicitly discussed in Dietzfelbinger and Weidling
[2]. Probabilistic bounds on the number of items m so that all m items can be inserted have been
found by Cain, Sanders and Wormald [1] and independently by Fernholtz and Ramachandran [3].

Algorithmically, if m ≤ d(1 − ε)n where m,n grow arbitrarily large and ε > 0 is small and
independent of n, then [2] prove the following:

1. If d ≥ 1 + log(1/ε)
1−log 2 then w.h.p.1 all the items can placed into bins.

2. If d > 90 log(1/ε) then the expected time for a Breadth First Search (BFS) procedure to
insert an item is at most (1/ε)O(log d).

This model is related to a d-ary version of Cuckoo Hashing (Pagh and Rodler [9]) that was discussed
in Fotakis, Pagh, Sanders and Spirakis [4]. Here there are d hash functions and the bins are of size
one. This latter paper also uses BFS to insert items.

Item insertion in both of these models can also be tackled via random walk. For d-ary Cuckoo
Hashing, Frieze, Mitzenmacher and Melsted [8] and Fountoulakis, Panagiotou and Steger [5] gave

∗Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh PA15213. Research supported in
part by NSF grant DMS0753472

†School of Mathematics, Georgia Tech., Atlanta, GA30313. This material is based upon work supported by the
National Science Foundation Graduate Research Fellowship under Grant No. DGE-1650044.

1A sequence of events (En, n ≥ 0) is said to occur with high probability (w.h.p.) if limn→∞ Pr[En] = 1.

1

O((log n)O(1)) time bounds for random walk insertion and more recently Frieze and Johansson [6]
proved an O(1) time bound on random walk insertion, for d sufficently large.

The authors of [2] ask for an analysis of a random walk procedure for inserting an item. They
ask for bounds of O(log 1/ε) insertion time while maintaining d = O(log 1/ε). While we cannot
satisfy these demanding criteria, in this note we are able to establish constant expected time bounds
with a larger value of d. We first describe the insertion algorithm. We say a bin is saturated if it
contains d items.

Random Walk Insertion: RWI

for i = 1 to m do
begin

Generate pi, qi randomly from [n]
if either of bins pi, qi are not saturated, then assign item xi arbitrarily to one of them.
if both bins pi, qi are saturated then do

begin
Choose b randomly from {pi, qi}; y → xi.
repeatA

Let x be a randomly chosen item from bin b.
Remove x from bin b and replace it with item y.
Let c be the other bin choice of item x.
y ← x
b← c.

until bin b is unsaturated.
Place item x in bin b.
end

end

Let ri denote the number of steps in loop A of algorithm RWI. Then,

Theorem 1. Let m ≤ (1− ε)dn. Then for some absolute constant M > 0,

E[ri] ≤
4M

ε2
w.h.p. for i ∈ [m] provided ε ≥

√

M (log(4d) + 1)

d
. (1)

In the analysis below, we take M = 96. It goes without saying that we have not tried to optimze
M here.

There are two sources of randomness here. The random choice of the hash functions and the
random choices by the algorithm. The w.h.p. concerns the assignment of items to bins by the hash
functions and the E[ri] is then the conditional expectation given these choices.

2 Graphical Description

We use a digraph D′ to represent the assignment of items to bins. Each bin is represented as a
vertex in D′ and item i is represented as a directed edge (pi, qi) or (qi, pi) that is oriented toward its
assigned bin. We say a vertex is saturated if its in-degree in D′ is d. As the algorithm is executed,
we in fact build two digraphs D and D′ simultaneously.

2

We now describe the insertion of an item in terms ofD,D′. Let x and y denote the two randomly
selected bins for an item. We place a randomly oriented edge between x and y in D. If x and y are
unsaturated in D′, then we place the edge in the same orientation as in D. If x or y is saturated in
D′, then we place the edge in D′ according to the algorithm RWI, which may require flipping edges
in D′. This is repeated for all items. Note that D is a random directed graph with (1− ε)dn edges.
The undirected degree of each vertex in D is the same as in D′. However, the directed degrees will
vary. Let Dt and D′

t denote the respective graphs after t edges have been inserted.
We compute the expected insertion time after (1−ε)dn items have been added by analyzing D′.

The expected time to add the next item is equal to the expected length of the following random
walk in D′. Select two vertices x and y. If either is unsaturated no walk is taken, so we say the
walk has length zero. Otherwise, pick a vertex at random from {x, y} and walk “backwards” along
edges oriented into the current vertex until an unsaturated vertex is reached. We call this the
“replacement walk.” As usual in a random walk, vertices may be revisited during a replacement
walk. On the other hand, edges are crossed in a direction opposite to their orientation, which is
unusual. Note also that after a vertex is visited for the second time, two of its edges will have the
opposite direction to what they had originally. This small observation is crucial for the analysis
below.

Let G denote the common underlying graph of D,D′ obtained by ignoring orientation. In
order to compute the expected length of the replacement walk, we analyze the the structure of the
subgraph GS of G induced by a set S which contains all saturated vertices in G. In Section 3,
we show that the expected number of connected components of size k among saturated vertices
decays geometrically with k and that each component is a tree or contains precisely one cycle. In
Section 4 we show that since the components of GS are sparse and the number of components
decays geometrically with size, the expected length of a replacement walk is constant.

3 Saturated Vertices

In this section we describe the structure induced by G on the set of saturated vertices. Throughout
this section, our observations rely only on information about the digraph D, and therefore are
independent of the RWI algorithm. First we define a set S that is a superset of all saturated
vertices.

Definition 1. Let A be the set of vertices of D with in-degree at least d−1 in D and T0 = ∅. Given

A, T0, . . . Tk, let Tk+1 be all the vertices of V \ (A ∪ T0 ∪ T1 ∪ · · · ∪ Tk) with at least two neighbors

in A ∪ T0 ∪ T1 ∪ · · · ∪ Tk. Let T =
⋃

Ti and S = A ∪ T .
Alternatively, let S be the smallest set of vertices that contains A and is closed under adding nodes

that have two neighbors in S.

Lemma 2. The set S defined above contains all saturated vertices.

Proof. We prove the statement by induction on St the set of saturated vertices after the tth edge
is added. Since S0 = ∅, S0 ⊆ S vacuously. Assume St ⊆ S. Note that the addition of a single
edge can cause at most one vertex to become saturated. If St = St+1, St+1 ⊆ S trivially. For the
other case, let v be the vertex that became saturated as a result of the addition of the (t + 1)st

edge. If v has in-degree at least d− 1 in D then v ∈ A ⊆ S. Otherwise, there must exist two edges
{u, v} and {w, v} that are oriented out of v in D and are oriented into v in D′ at time t+ 1. Since

3

the orientation of an edge differs in D and D′ only if one of its ends is saturated, it follows that u
and w must be saturated at time t. By the inductive hypothesis, u,w ∈ S. Therefore, since v is
adjacent to two vertices of S, v ∈ S. It follows St+1 = St ∪ {v} ⊆ S.

Next we analyze the structure that G induces on S. Let GS be the subgraph of G induced by
S. The following lemma states that at least half of the vertices of each connected component of
GS are in A. This fact is crucial for proving Lemma 4, which gives an upper bound on the number
of components of GS of size k that decays geometrically with k.

Lemma 3. Let S = A ∪ T as in Definition 1 and let GS be the graph on S induced by G. Each

spanning tree of a component in GS has the following form:

1. A set K of k vertices.

2. A set L = K ∩ A of size `. We suppose that L induces a forest with s components and `− s
edges.

3. A set K \L = K ∩ T = {v1, v2, . . . , vk−`} where vi is saturated by the algorithm after vi−1, vi
has si ≥ 2 neighbors in L ∪ {v1, v2, . . . , vi−1}, and s1 + s2 + · · ·+ sk−` = k − 1− (`− s).

4. ` ≥ k+2
2 .

Proof. As described in the proof of Lemma 2 each vertex in T is adjacent to at least two vertices
in S. Therefore (1), (2), (3) hold. For (4), note

2(k − `) ≤ s1 + s2 + · · ·+ sk−` = k − 1− (`− s)

which implies
k − ` ≤ s− 1 ≤ `− 2,

and (4) follows directly.

Lemma 4. Let S be as in Definition 1 and let M = 96. When
√

M (log(4d) + 1)

d
≤ ε,

the expected number of components of GS of size k is bounded above by

n

k2
exp

(

−
ε2dk

M

)

.

Proof. We use an upper bound on the expected number of spanning trees of size k in GS as an
upper bound on the number of components of GS of size k.

Let T be an undirected tree on a specified labeled set of k vertices, and let L be a specified
subset of vertices of V (T) of size `. Let AT,L be the event that the T is present in G and all vertices
in L are in S. Let I(L) be the sum of the in-degrees of the vertices in L in D, and let I∗(L) be
I(L) minus the number of edges in T oriented into a vertex in L in D. We compute

Pr[AT,L] ≤ Pr[T appears in G]Pr[I(L) ≥ `(d− 1) | T appears in G]

≤ Pr[T appears in G]Pr[I∗(L) ≥ `(d− 1)− (k − 1) | T appears in G] (2)

≤

(

2d

n

)k−1

exp

(

−
ε2dk

96

)

(3)

4

Explanation of (2). If the tree T is present in G, then I(L)− I∗(L) is at most k − 1. Therefore
I∗(L) must be at least `(d− 1)− (k − 1).

Explanation of (3). The term
(

2d
n

)k−1
can be explained as follows: Let m = (1 − ε)dn be the

number of pairs offered to algorithm RWI. Each pair has probability 1/
(

n
2

)

of being a particular
edge. The probability that G contains k − 1 given edges is then at most

mk−1

(

2

n(n− 1)

)k−1

=

(

2(1− ε)d

n− 1

)k−1

≤

(

2d

n

)k−1

.

The term exp

(

− ε2dk
96

)

can be explained as follows: I∗(L) is dominated by the sum of `(n − `)

independent Bernouilli random variables, ξu,v, each of which corresponds to an ordered pair (u, v)
where u /∈ L, v ∈ L and {u, v} 6∈ T . There are at most `(n − 1) − (k − 1) such pairs. Here

Pr[ξu,v = 1] ≤ m
2(n

2
)
= (1−ε)d

n−1 bounds the probability that the edge {u, v} exists in G and oriented

from u to v in D. The events that edges exist are negatively correlated since the number of edges

is bounded above. Therefore, I∗(L) is dominated by Xε ∼ Bin
(

`(n− 1), (1−ε)d
n−1

)

. See for example

[7], Chapter 21.9 for the definition of dominance and for a background in the basic theory of random
graphs.

Thus if
p∗ = Pr[I∗(L) ≥ `(d− 1)− (k − 1) | T appears in G]

then

p∗ ≤ Pr[Xε ≥ `(d− 1)− (k − 1)]

≤ Pr[Xε ≥ ` (d− 3)]

≤ Pr[Xε ≥ (1 + θ)E[Xε]],

where θ = εd−3
(1−ε)d . Note that θ ≤ 1 if and only if ε ≤ ε0 =

d+3
2d .

The Chernoff bounds then imply that if ε ≤ 1/2 ≤ ε0 then

p∗ ≤ exp

(

−
1

3
·

(

εd− 3

(1− ε)d

)2

`d (1− ε)

)

≤ e−ε2`d/12 ≤ e−ε2kd/24

since εd ≥ 6. When ε > 1/2 we see that Xε is dominated by X1/2 and then replacing ε2 by (ε/2)2,
we have (3).

We now compute the expected number of trees of size k by applying (3). Let Zk denote the
number of spanning trees in GS with k vertices. Then

E[Zk] ≤

(

n

k

)

kk−2
∑

`≥k/2

(

k

`

)

Pr[AT,L]

≤
(ne)k

k2
2k−1

(

2d

n

)k−1

exp

(

−
ε2dk

96

)

=
n

k2
exp

(

k

(

log(4d) + 1−
ε2d

96

))

≤
n

k2
exp

(

−
ε2dk

M

)

.

5

Finally, we give a high probability bound on the size of the maximum component in GS and
show that with high probability each component of GS contains at most one cycle.

Lemma 5. Let ε ≥
√

M(log(4d)+1)
d and S be as in Definition 1. Then, w.h.p., the maximum size of

a component of GS is at most

k0 = α log n where α =
M

ε2d
,

and each component contains at most one cycle.

Proof. Let Zk be the expected number of components of GS of size k. We use Lemma 4 to compute

Pr[∃ a component of size > k0] ≤
∑

k0<k<n

E[Zk] ≤ n
∑

k0<k<n

k−2 exp

(

−
ε2dk

M

)

= o(1).

It follows that w.h.p. the maximum size of a component of GS is at most k0.
Next we show that w.h.p. each component of GS contains at most one cycle. Let Yk be the

number of sets Q of size k with e(Q) ≥ |Q|+ 1. We bound the number of structures on k vertices
consisting of a tree plus two edges by kk+2 and compute

Pr[∃Q: |Q| ≤ k0, e(Q) ≥ |Q|+ 1] ≤
∑

k≤k0

E[Yk]

≤
∑

k≤k0

(

n

k

)

kk+2

(

2d

n

)k+1

≤
2d

n

∑

k≤k0

k2(2de)k

= o(1).

4 Expected insertion time

Recall from Section 2 the definition of a replacement walk. To bound the expected length of the
replacement walk, we first show that a random walk on G′ that starts in a size k component of GS

will remain in the component for at most 2k steps in expectation.

Lemma 6. Let G satisfy the conditions of Lemma 5, and let S be as in Definition 1. Consider

a random walk on G′ begining in a size k component of GS. Then expected number of steps this

random walk takes before leaving GS is bounded above by 2k.

Proof. Consider a random walk on G′ beginning in a size k component C of GS . Note the edges of
G′ are oriented, so the walk does not backtrack. Therefore, if C is a tree, a random walk can take
at most k steps in C before leaving C.

Next suppose C has a cycle of length `. Since C has only one cycle, in any walk in C all edges
of the cycle must be visited consecutively (i.e. it is not possible to take a walk on the cycle, leave

6

the cycle, and then return to the cycle). Let v be the first vertex visited by the walk that is on the
cycle. The expected number of times the walk completes the entire cycle at this point is

∞
∑

i=1

(

1

d`

)i(

1−
1

d`

)

i =
1

d` − 1
.

Since the walk cannot return to the cycle after the walk leaves the cycle, the expected length of
the walk before it leaves C is at most

k +
`

d` − 1
≤ 2k.

Finally, we prove Theorem 1.

Proof. (of Theorem 1). The expected insertion time is the probability that two randomly selected
vertices x and y of G′ are saturated times the expected length of a replacement walk in the graph G′

starting a random saturated vertex. Since the replacement walk ends once an unsaturated vertex
is reached, Lemma 6 implies that the expected length of a replacement walk starting at a vertex in
a component of size k is bounded above by 2k. We compute

E[insertion time] ≤ 2

k0
∑

i=1

Pr[x ∈ S]Pr[y in component of size k in GS]k

≤ 2

k0
∑

i=1

|S|

n

k n
k2

exp

(

−ε2dk
M

)

n
k

≤ 2

∞
∑

i=1

exp

(

−
ε2dk

M

)

=
2

1− e−ε2/M

≤
4M

ε2
.

5 Conclusion

We have proved an O(1) bound on the expected insertion time of a natural random walk insertion
algorithm. The next step in the analysis of this algorithm is to reduce the dependence of d on ε.
It would also be of interest to see the effect of deletions of items on the algorithm.

References

[1] J. Cain, P. Sanders and N. Wormald, The random graph threshold for k-orientiability and a
fast algorithm for optimal multiple-choice allocation, Proceedings of 18th Annual ACM-SIAM

SODA (2007) 469–476.

7

[2] M. Dietzfelbinger and C. Weidling, Balanced Allocation and Dictionaries with Tightly Packed
Constant Sized Bins, Theoretical Computer Science 380 (2007) 47–68.

[3] D. Fernholz and V. Ramachandran, The k-orientability thresholds for Gn,p, Proceedings of

18th Annual ACM-SIAM SODA Conference (2007) 459–468.

[4] D. Fotakis, R. Pagh, P. Sanders, and P. Spirakis, Space Efficient Hash Tables With Worst
Case Constant Access Time, Theory of Computing Systems 8 (2005) 229–248.

[5] N. Fountoulakis, K. Panagiotou and A. Steger, On the Insertion Time of Cuckoo Hashing,
SIAM Journal on Computing 42 (2013) 2156–2181.

[6] A.M. Frieze and T. Johansson, On the insertion time of random walk cuckoo hashing, Pro-
ceedings of 28th Annual ACM-SIAM SODA Conference (2017) 1497–1502.

[7] A.M. Frieze and M. Karoński, Introduction to Random Graphs, Cambridge University Press,
2015.

[8] A.M. Frieze, P. Melsted and M. Mitzenmacher, An Analysis of Random-Walk Cuckoo Hashing,
SIAM Journal on Computing 40 (2011) 291–308.

[9] R. Pagh and F. Rodler. Cuckoo Hashing, Journal of Algorithms 51 (2004) 122–144.

8

