Balanced Allocation Through Random Walk

Alan Frieze* Samantha Pettif

March 4, 2018

Abstract

We consider the allocation problem in which m < (1 — €)dn items are to be allocated to n
bins with capacity d. The items x1, xo, ..., x,, arrive sequentially and when item z; arrives it is
given two possible bin locations p; = hi(x;),¢; = ha(z;) via hash functions hq, he. We consider
a random walk procedure for inserting items and show that the expected time insertion time is

constant provided € = 2 (1 / logd) .

1 Introduction

We consider the following allocation problem. We have m items that are to be allocated to n bins,
where each bin has space for d items. The items z1,xo, ..., T, arrive sequentially and when item x;
arrives it is given two possible bin locations p; = hy(z;), ¢; = ha(z;) via hash functions hi, ha. We
shall for the purpose of this paper assume that p; # ¢; for i € [m] and that (p;, ¢;) is otherwise chosen
uniformly at random from [n]2. This model is explicitly discussed in Dietzfelbinger and Weidling
[2]. Probabilistic bounds on the number of items m so that all m items can be inserted have been
found by Cain, Sanders and Wormald [1] and independently by Fernholtz and Ramachandran [3].

Algorithmically, if m < d(1 — &)n where m,n grow arbitrarily large and ¢ > 0 is small and
independent of n, then [2] prove the following;:

1. Ifd>1+ lff(kl)gz) then w.h.p.! all the items can placed into bins.

2. If d > 90log(1/e) then the expected time for a Breadth First Search (BFS) procedure to
log d)

insert an item is at most (1/g)°(.
This model is related to a d-ary version of Cuckoo Hashing (Pagh and Rodler [9]) that was discussed
in Fotakis, Pagh, Sanders and Spirakis [4]. Here there are d hash functions and the bins are of size
one. This latter paper also uses BFS to insert items.
Item insertion in both of these models can also be tackled via random walk. For d-ary Cuckoo
Hashing, Frieze, Mitzenmacher and Melsted [8] and Fountoulakis, Panagiotou and Steger [5] gave

*Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh PA15213. Research supported in
part by NSF grant DMS0753472

TSchool of Mathematics, Georgia Tech., Atlanta, GA30313. This material is based upon work supported by the
National Science Foundation Graduate Research Fellowship under Grant No. DGE-1650044.

LA sequence of events (En,n > 0) is said to occur with high probability (w.h.p.) if lim, . Pr[€,] = 1.

O((logn)°M) time bounds for random walk insertion and more recently Frieze and Johansson [6]
proved an O(1) time bound on random walk insertion, for d sufficently large.

The authors of [2] ask for an analysis of a random walk procedure for inserting an item. They
ask for bounds of O(log1/e) insertion time while maintaining d = O(log1/e). While we cannot
satisfy these demanding criteria, in this note we are able to establish constant expected time bounds
with a larger value of d. We first describe the insertion algorithm. We say a bin is saturated if it
contains d items.

Random Walk Insertion: RWI

for i =1 tom do
begin
Generate p;, ¢; randomly from [n]
if either of bins p;, ¢; are not saturated, then assign item x; arbitrarily to one of them.
if both bins p;, ¢; are saturated then do
begin
Choose b randomly from {p;,q;}; y — ;.
A repeat
Let x be a randomly chosen item from bin b.
Remove z from bin b and replace it with item y.
Let ¢ be the other bin choice of item z.
Y x
b+ c
until bin b is unsaturated.
Place item x in bin b.
end
end

Let r; denote the number of steps in loop A of algorithm RWI. Then,

Theorem 1. Let m < (1 —e)dn. Then for some absolute constant M > 0,

M M (log(4d) + 1
Elri] < =) w.h.p. for i € [m] provided € > \/ (Og(d) +) (1)

In the analysis below, we take M = 96. It goes without saying that we have not tried to optimze
M here.

There are two sources of randomness here. The random choice of the hash functions and the
random choices by the algorithm. The w.h.p. concerns the assignment of items to bins by the hash
functions and the E[r;] is then the conditional expectation given these choices.

2 Graphical Description

We use a digraph D’ to represent the assignment of items to bins. Each bin is represented as a
vertex in D’ and item i is represented as a directed edge (p;, ¢;) or (¢;, p;) that is oriented toward its
assigned bin. We say a vertex is saturated if its in-degree in D’ is d. As the algorithm is executed,
we in fact build two digraphs D and D’ simultaneously.

We now describe the insertion of an item in terms of D, D’. Let x and y denote the two randomly
selected bins for an item. We place a randomly oriented edge between x and y in D. If x and y are
unsaturated in D’, then we place the edge in the same orientation as in D. If x or y is saturated in
D', then we place the edge in D" according to the algorithm RWI, which may require flipping edges
in D’. This is repeated for all items. Note that D is a random directed graph with (1 —¢&)dn edges.
The undirected degree of each vertex in D is the same as in D’. However, the directed degrees will
vary. Let Dy and Dj denote the respective graphs after ¢ edges have been inserted.

We compute the expected insertion time after (1 —e)dn items have been added by analyzing D’.
The expected time to add the next item is equal to the expected length of the following random
walk in D’. Select two vertices z and y. If either is unsaturated no walk is taken, so we say the
walk has length zero. Otherwise, pick a vertex at random from {z,y} and walk “backwards” along
edges oriented into the current vertex until an unsaturated vertex is reached. We call this the
“replacement walk.” As usual in a random walk, vertices may be revisited during a replacement
walk. On the other hand, edges are crossed in a direction opposite to their orientation, which is
unusual. Note also that after a vertex is visited for the second time, two of its edges will have the
opposite direction to what they had originally. This small observation is crucial for the analysis
below.

Let G denote the common underlying graph of D, D’ obtained by ignoring orientation. In
order to compute the expected length of the replacement walk, we analyze the the structure of the
subgraph Gg of GG induced by a set .S which contains all saturated vertices in G. In Section 3,
we show that the expected number of connected components of size £ among saturated vertices
decays geometrically with £ and that each component is a tree or contains precisely one cycle. In
Section 4 we show that since the components of Gg are sparse and the number of components
decays geometrically with size, the expected length of a replacement walk is constant.

3 Saturated Vertices

In this section we describe the structure induced by G on the set of saturated vertices. Throughout
this section, our observations rely only on information about the digraph D, and therefore are
independent of the RWI algorithm. First we define a set S that is a superset of all saturated
vertices.

Definition 1. Let A be the set of vertices of D with in-degree at least d—1 in D and Ty = . Given
A, To, ... Ty, let Tpyq be all the vertices of V\ (AUTyUTy U---UTy) with at least two neighbors
in AUTy,UT U UTy. Let T=T; and S=AUT.

Alternatively, let S be the smallest set of vertices that contains A and is closed under adding nodes
that have two neighbors in S.

Lemma 2. The set S defined above contains all saturated vertices.

Proof. We prove the statement by induction on S; the set of saturated vertices after the t** edge

is added. Since Sy = 0, Sy C S vacuously. Assume S; C S. Note that the addition of a single
edge can cause at most one vertex to become saturated. If S; = Sy41, Sg1 C S trivially. For the
other case, let v be the vertex that became saturated as a result of the addition of the (¢ + 1)
edge. If v has in-degree at least d — 1 in D then v € A C S. Otherwise, there must exist two edges
{u,v} and {w, v} that are oriented out of v in D and are oriented into v in D’ at time ¢+ 1. Since

the orientation of an edge differs in D and D’ only if one of its ends is saturated, it follows that u
and w must be saturated at time t. By the inductive hypothesis, u,w € S. Therefore, since v is
adjacent to two vertices of S, v € S. It follows S;y+1 = S U {v} C S. O

Next we analyze the structure that G induces on S. Let Gg be the subgraph of G induced by
S. The following lemma states that at least half of the vertices of each connected component of
Gg are in A. This fact is crucial for proving Lemma 4, which gives an upper bound on the number
of components of Gg of size k that decays geometrically with k.

Lemma 3. Let S = AUT as in Definition 1 and let Gg be the graph on S induced by G. Fach
spanning tree of a component in Gg has the following form:

1. A set K of k vertices.

2. A set L=KnNA of size {. We suppose that L induces a forest with s components and £ — s
edges.

3. Aset K\L=KNT ={vy,vs,...,05_¢} where v; is saturated by the algorithm after v;_1, v;
has s; > 2 neighbors in L U {v1,va,...,v;—1}, and s1+s2+ -+ spp=k—1— (£ —s).
k+2

Proof. As described in the proof of Lemma 2 each vertex in T is adjacent to at least two vertices
in S. Therefore (1), (2), (3) hold. For (4), note

2k —0) <sy+sa+-+spkp=k—1—(L—5)
which implies
k—0<s—1</0-2,
and (4) follows directly. O
Lemma 4. Let S be as in Definition 1 and let M = 96. When
M (log(;ld) +1) <el

the expected number of components of Gg of size k is bounded above by

n e2dk
2P\)

Proof. We use an upper bound on the expected number of spanning trees of size k in Gg as an
upper bound on the number of components of Gg of size k.

Let T be an undirected tree on a specified labeled set of k vertices, and let L be a specified
subset of vertices of V(T') of size {. Let Az 1, be the event that the T is present in G and all vertices
in L are in S. Let I(L) be the sum of the in-degrees of the vertices in L in D, and let I*(L) be
I(L) minus the number of edges in T oriented into a vertex in L in D. We compute

PrlAr 1] < Pr[T appears in G| Pr[I(L) > ¢(d — 1) | T appears in G]
< Pr[T appears in G| Pr[I*(L) > ¢(d—1) — (k—1) | T appears in G] (2)

() ()

Explanation of (2). If the tree T' is present in G, then I(L) — I*(L) is at most k — 1. Therefore
I*(L) must be at least £(d — 1) — (k —1).

Explanation of (3). The term (%‘i)k_1 can be explained as follows: Let m = (1 — ¢)dn be the
number of pairs offered to algorithm RWI. Each pair has probability 1/ (g) of being a particular
edge. The probability that G contains k — 1 given edges is then at most

) () ()

edk) can be explained as follows: I*(L) is dominated by the sum of ¢(n — /)

96
independent Bernouilli random variables, &, ,, each of which corresponds to an ordered pair (u,v)
where u ¢ L,v € L and {u,v} ¢ T. There are at most {(n — 1) — (k — 1) such pairs. Here

. _ (1—e)d
Pri€us=1] < 2@) = Tn—1
from u to v in D. The events that edges exist are negatively correlated since the number of edges

is bounded above. Therefore, I*(L) is dominated by X. ~ Bin (f(n - 1), (1_E)d>. See for example

n—1

The term exp (—

bounds the probability that the edge {u,v} exists in G and oriented

[7], Chapter 21.9 for the definition of dominance and for a background in the basic theory of random
graphs.
Thus if
p*=Pr[I*(L) > ¥(d—1)— (k—1)| T appears in G]
then
p* <Pr[X;>4(d—-1)— (k—1)]
< Pr[X: > {(d - 3)]

< Pr[X: > (1+60)E[X.]],
where 6 = (’i”:?d. Note that # < 1 if and only if ¢ < g9 = d%d‘g.
The Chernoff bounds then imply that if ¢ < 1/2 < &(then

p* <exp ez 2£d (1—¢) | < ectd/12 < g=e*kd/24
- 3 \(1—e)d = =

since ed > 6. When ¢ > 1/2 we see that X, is dominated by X/, and then replacing €2 by (¢/2)?,
we have (3).

We now compute the expected number of trees of size k by applying (3). Let Zj denote the
number of spanning trees in Gg with k vertices. Then

E[Z] < <Z) A @) Pr[Ar]

>k/2

(ne) ., (2d*! e2dk
< k-1 (=2 e
=R n) P\ o6

n e2d
=13 &P (k: (log(4d) +1- 96>)

n e2dk
Sﬁexp)

Finally, we give a high probability bound on the size of the maximum component in Gg and
show that with high probability each component of Gg contains at most one cycle.
Lemma 5. Lete > %
a component of Gg is at most

and S be as in Definition 1. Then, w.h.p., the mazimum size of

M
ko = alogn where a = 24
and each component contains at most one cycle.

Proof. Let Z;, be the expected number of components of Gg of size k. We use Lemma 4 to compute

2
. —92 e“dk .
Pr[3 a component of size > kg | < g E[Zk] <n g k™" exp <— > =o(1).
ko<k<n ko<k<n

It follows that w.h.p. the maximum size of a component of Gg is at most kg.

Next we show that w.h.p. each component of Gg contains at most one cycle. Let Y3 be the
number of sets @) of size k with e(Q) > |Q| 4+ 1. We bound the number of structures on k vertices
consisting of a tree plus two edges by k**2 and compute

Pr3Q: |Q| < ko, e(Q) > Q| +1] <) E[V}]

k<kg

2 ()

k<ko

< 2 > K (2de)*
n k<kg
=o0(1).

4 Expected insertion time

Recall from Section 2 the definition of a replacement walk. To bound the expected length of the
replacement walk, we first show that a random walk on G’ that starts in a size k component of Gg
will remain in the component for at most 2k steps in expectation.

Lemma 6. Let G satisfy the conditions of Lemma 5, and let S be as in Definition 1. Consider
a random walk on G’ begining in a size k component of Gg. Then expected number of steps this
random walk takes before leaving Gg is bounded above by 2k.

Proof. Consider a random walk on G’ beginning in a size k component C of Gg. Note the edges of
G’ are oriented, so the walk does not backtrack. Therefore, if C' is a tree, a random walk can take
at most k steps in C before leaving C.

Next suppose C has a cycle of length ¢. Since C has only one cycle, in any walk in C' all edges
of the cycle must be visited consecutively (i.e. it is not possible to take a walk on the cycle, leave

the cycle, and then return to the cycle). Let v be the first vertex visited by the walk that is on the
cycle. The expected number of times the walk completes the entire cycle at this point is

() ()= ot

i=1

Since the walk cannot return to the cycle after the walk leaves the cycle, the expected length of
the walk before it leaves C' is at most

< 2k.

k—l_df—l_

Finally, we prove Theorem 1.

Proof. (of Theorem 1). The expected insertion time is the probability that two randomly selected
vertices z and y of G’ are saturated times the expected length of a replacement walk in the graph G’
starting a random saturated vertex. Since the replacement walk ends once an unsaturated vertex
is reached, Lemma 6 implies that the expected length of a replacement walk starting at a vertex in
a component of size k is bounded above by 2k. We compute

ko
E[insertion time | < 2 Z Pr[z € S]Prly in component of size k in Gg |k
1=1
ko kel exp =5k
|S| Fxz €XP (M
<2y — k
o ; n n
o0 2
e“dk
<2 Z exp (—)
1=1 M
B 2
l—e /M
4M
-2

5 Conclusion

We have proved an O(1) bound on the expected insertion time of a natural random walk insertion
algorithm. The next step in the analysis of this algorithm is to reduce the dependence of d on €.
It would also be of interest to see the effect of deletions of items on the algorithm.

References

[1] J. Cain, P. Sanders and N. Wormald, The random graph threshold for k-orientiability and a
fast algorithm for optimal multiple-choice allocation, Proceedings of 18th Annual ACM-SIAM
SODA (2007) 469-476.

2]

[3]

[9]

M. Dietzfelbinger and C. Weidling, Balanced Allocation and Dictionaries with Tightly Packed
Constant Sized Bins, Theoretical Computer Science 380 (2007) 47—68.

D. Fernholz and V. Ramachandran, The k-orientability thresholds for Gy, ,, Proceedings of
18th Annual ACM-SIAM SODA Conference (2007) 459-468.

D. Fotakis, R. Pagh, P. Sanders, and P. Spirakis, Space Efficient Hash Tables With Worst
Case Constant Access Time, Theory of Computing Systems 8 (2005) 229-248.

N. Fountoulakis, K. Panagiotou and A. Steger, On the Insertion Time of Cuckoo Hashing,
SIAM Journal on Computing 42 (2013) 2156-2181.

A .M. Frieze and T. Johansson, On the insertion time of random walk cuckoo hashing, Pro-
ceedings of 28th Annual ACM-SIAM SODA Conference (2017) 1497-1502.

A .M. Frieze and M. Karonski, Introduction to Random Graphs, Cambridge University Press,
2015.

A .M. Frieze, P. Melsted and M. Mitzenmacher, An Analysis of Random-Walk Cuckoo Hashing,
SIAM Journal on Computing 40 (2011) 291-308.

R. Pagh and F. Rodler. Cuckoo Hashing, Journal of Algorithms 51 (2004) 122-144.

