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Abstract. The classical Beardwood-Halton-Hammersly theorem (1959) as-
serts the existence of an asymptotic formula of the form β

√

n for the mini-
mum length of a Traveling Salesperson Tour throuh n random points in the
unit square, and in the decades since it was proved, the existence of such for-
mulas has been shown for other such Euclidean functionals on random points
in the unit square as well. Despite more than 50 years of attention, however,

it remained unknown whether the minimum length TSP through n random
points in [0, 1]2 was asymptotically distinct from its natural lower bounds,

such as the minimum length spanning tree, the minimum length 2-factor, or,
as raised by Goemans and Bertsimas, from its linear programming relaxation.

We prove that the TSP on random points in Euclidean space is indeed
asymptotically distinct from these and other natural lower bounds, and show
that this separation implies that branch-and-bound algorithms based on these

natural lower bounds must take nearly exponential (eΩ̃(n)) time to solve the
TSP to optimality, even in average case. This is the first average-case su-

perpolynomial lower bound for these branch-and-bound algorithms (a lower

bound as strong as eΩ̃(n) was not even been known in worst-case analysis).

1. Introduction

Beardwood, Halton, and Hammersley [3] studied the length of a Traveling Salesper-
son Tour through random points in Euclidean space. In particular, if x1, x2, . . . is a
random sequence of points in [0, 1]d and Xn = {x1, . . . , xn}, their results imply that
there is an absolute constant βd

TSP such that the length TSP(Xn) of a minimum
length tour through Xn satisfies

(1) TSP(Xn) ∼ βd
TSPn

d−1
d a.s.

This result has many extensions; for example, we know that identical asymp-
totic formulas hold for the the cases of the minimum length of a spanning tree
MST(Xn)[3], and the minimum length of a matching MM(Xn) [24]. Steele [28]
provided a general framework which enables fast assertion of identical asymptotic
formulas for these and other suitable Euclidean functionals; we recall his definitions
and theorem in Appendix A.

A major remaining problem in this area is to obtain analytic results regarding
the constants β in such formulas. In particular, the best rigorous bounds on such
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lower upper

β2
TSP .62866 [32] .92116. . . [3, 32]

β2
MST .60082 [2] 1√

2
≈ .707 [12]

2β2
MM .5 [5] .92116

Table 1. Bounds on constants for d = 2.

constants are generally very weak, with known results for d = 2 given in Table 1.
In particular, the bounds on β2

TSP were not improved since 1959, until the paper
[32] of Steinerberger improved the lower bound by 19

5184 ≈ .0036 . . . and the upper

bound by ≈ 10−6 . On the other hand, there was some success as d grows large, as
Bertsimas and Van Ryzen [5] showed that, asymptotically in d,

(2) βd
MST ∼ 2βd

MM ∼
√

d

2πe
,

and conjectured that βd
TSP ∼

√
d

2πe as well. This conjecture was subsequently

verified by Rhee [25].

In the present paper, we will asymptotically separate the TSP from its natural
lower bounds; in particular, we will prove that βd

MST < βd
TSP, β

d
TF < βd

TSP, and
2βd

MM < βd
TSP for all d. Here βd

TF denotes the minimum length of a 2-factor, see
below for more details. These are the first asymptotic separations for Euclidean
functionals where the Euclidean metric is playing an essential role: the only previous
separation was shown (by Bern [4]; see also [18]) for the minimum length rectilinear
Steiner tree vs. the minimum rectilinear length spanning tree, which is equivalent
to asymptotically distinguishing Steiner trees from trees in the L1 norm. (The
rectilinear Steiner tree is also the only case where the asymptotic worst-case length
is known exactly [7].) Finally, we will also asymptotically separate the TSP from
its linear programming relaxation.

We begin by considering the degrees of vertices in the minimum spanning trees
among n random points. Steele, Shepp, and Eddy [31] showed that the number
Λk(Xn) of vertices of degree k satisfies

Λk(Xn) ∼ αk,dn

for constants αk,d, and proved that α1,d > 0. Note that we must have αk,d = 0
when k > τ(d), where τ(d) is the kissing number of d dimensional space (6 in the
case d = 2). Indeed, we must have αk,d = 0 whenever k > τ ′(d), where τ ′(d)
denotes a strict kissing number of d, which we define as the maximum K such
that there exists ε > 0 such that there is, in d dimensions, a configuration of K
disjoint spheres of radius 1 + ε each tangent to a common unit sphere. (Note that
τ ′(d) ≤ τ(d), and in particular, τ ′(2) = 5.) We prove:

Theorem 1.1. αk,d > 0 if and only if k ≤ τ ′(d).

We now consider the Euclidean functionals MSTk(X ) defined as the minimum
length of a spanning tree of X whose vertices all have degree ≤ k. It was shown
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in [27] that MSTk(X ) ∼ βd
MSTk

n
d−1
d for each k, and we prove separation of these

asymptotic formulas as follows:

Theorem 1.2. We have that

(3) βd
TSP = βd

MST2
> βd

MST3
> · · · > βd

MSTτ′(d)
= βd

MST

for all d.

Thus, the MSTk constants are as diverse as are allowed by the simple geometric
constraint of τ ′(d). Note that Theorem 1.2 has consequences for classical TSP
approximation schemes. Christophides’ approximation for the Metric TSP works
by finding a minimum spanning tree and a minimum matching on the odd-degree
vertices of the spanning tree, allowing an Euler circuit among the edge set, which
can be shortcutted to a TSP assuming the triangle inequality. Christophedes’
algorithm always produces a tour within a factor of 3

2 of the optimum length (the
weight of the tree plus the weight of the matching), which remains the best worst-
case approximation ratio for an efficient algorithm for the metric TSP. Theorem 1.2
implies that the approximation ratio is strictly better than 3

2 for random Euclidean
point sets, w.h.p, since the tree used in the construction will be asymptotically

βd
MSTn

d−1
d < TSP(Xn) w.h.p. (Similarly, Theorem 1.2 implies that the double-tree

heuristic has approximation ratio < 2 for random Euclidean configurations, w.h.p.)

Another natural lower bound for the TSP is given by the minimum length 2-factor;
let us recall that a 2-factor is a disjoint set of cycles covering a given set of points.
We verify in Appendix A that the length of the minimum 2-factor has an asymptotic

formula TF(Xn) ∼ βd
TFn

d−1
d for some constant βd

TF. Moreover, if TFg(X) is the
minimum length of a 2-factor through X whose cycles all have length ≥ g, then

TFg(Xn) ∼ βd
TFg

n
d−1
d for constants βd

TFg
. Naturally, we must have βd

TF = βd
TF3

≤
βd
TF4

≤ βd
TF5

≤ · · · . It is not clear a priori whether small cycles are asymptotically
essential to optimum 2-factors in random point sets. The following theorem shows
that they are:

Theorem 1.3. βTFg
is a monotone increasing sequence βd

TF3
< βd

TF4
< βd

TF5
<

· · · . In particular, βd
TFg

< βd
TSP for all g.

On the other hand, we prove that 2-factors with long (but constant) girth require-
ments produce arbitrarily close approximations to the TSP:

Theorem 1.4. lim
g→∞

βd
TFg

= βd
TSP.

Theorem 1.3 stands in contrast to the independent case where the edge lengths

Xe, e ∈
(
[n]
2

)
are independent uniform [0, 1] random variables. In that setting, Frieze

[11] showed that with probability 1 − o(1), the weight of the minimal 2-factor is
asymptotically equal to the minimum length of a tour.

With a bit more work, our method for proving Theorem 1.3 will also allow us to
deduce the following:

Theorem 1.5. 2βd
MM < βd

TSP.
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We continue by mentioning a natural generalization of MM(Xn). Given a fixed
graph H on k vertices, an H-factor of a set of points X is a set of edges isomorphic
to b|X|/kc vertex disjoint copies of H. As a subadditive Euclidean functional, the
minimum length HF(Xn) of an H factor of Xn satisfies

HF(Xn) ∼ βd
Hn

d−1
d .

We pose the following conjecture:

Conjecture 1.6. Given H1, H2 and d ≥ 2, we have that βd
H1

6= βd
H2

unless H1

and H2 are each isomorphic to a disjoint union of copies of some graph H3. In
particular, βd

H1
6= βd

H2
if H1, H2 are connected and non-isomorphic.

We prove at least the following, showing diversity in the constants even for fixed
edge density:

Theorem 1.7. For any fixed d ≥ 2 and rational r ≥ 1, there are infinitely many

distinct constants βd
H over connected graphs H with edge density |E(G)|

|V (G)| = r.

Our final separation result concerns the linear programming relaxation of the TSP.
The TSP through a set of points can be given as the following integer program, on
variables x{ij} (i, j ∈ V, i < j) indicating the presence of an edge between vertices
i and j in the tour, where c{ij} gives the cost of the edge {i, j}:

min
∑

{i,j}⊆V

c{ij}x{ij}

subject to

(∀i)
∑

j 6=i

x{ij} = 2

(∀∅ 6= S ( V )
∑

{i,j}⊆S

x{ij} ≤ |S| − 1

(∀i < j ∈ V ) x{ij} ∈ {0, 1}

The linear programming relaxation of the above integer program replaces the final
constraint with the requirements that 0 ≤ x{ij} ≤ 1 for each x{ij}. It is often
referred to as the Held-Karp relaxation of the TSP, but its origins go back to the
the paper of Dantzig, Fulkerson and Johnson [9]. It should be noted that, although
this LP has an exponential number of constraints, it can be solved in polynomial
time, e.g., using the ellipsoid algorithm [14].

We denote by HK(Xn) the value of a solution to the Held-Karp relaxation on Xn. Of
course, HK(Xn) ≤ TSP(Xn). The Held-Karp bound on the TSP is generally consid-
ered to be a good bound which is algorithmically useful on ‘typical instances’ (see
[6, 15, 19, 26, 34]), including as pruning bound for branch-and-bound algorithms,
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discussed below. With this motivation, Goemans and Bertsimas [13] showed that

HK(Xn) ∼ βHKn
d−1
d for some constant βHK, and asked whether βHK = βTSP. Ex-

perimental evidence has suggested that any gap between the constants would be
less than 1%. [20]

Theorem 1.8. For all d ≥ 2, βd
HK < βd

TSP.

Our separation results have implications for the practical problem of solving the
Euclidean TSP. Branch and bound algorithms are a standard approach to solving
NP-hard problems, in which a bounding estimate is used to prune an exhaustive
search of the solution space. There has been a great deal of success solving real-
world instances of the TSP with branch-and-bound augmented with sophisticated
techniques based on cutting planes for the TSP polytope (see, for example Apple-
gate, Bixby, Chvátal and Cook [1]).

Our results show, however, that several natural approximators are asymptotically
distinct from the TSP. This will be algorithmically relevant as follows:

Theorem 1.9. Suppose that we use branch and bound to solve the TSP on Xn,
using any branching strategy, any tour heuristic, and using TFg or HK as a lower

bound. Then, w.h.p, the algorithm runs in time eΩ(n/ log6 n).

In particular, this gives a rigorous explanation for the observation (see [22], for
example) that branch-and-bound heuristics using the Assignment Problem as a
bounding estimate (even weaker than the 2-factor) perform poorly on Euclidean
instances, and indicates that the success of the Held-Karp bound in branch and
bound algorithms will be limited for sufficiently large Euclidean point sets. We
emphasize that this is the first average-case hardness result (stronger than worst-
case hardness) for the Euclidean TSP of which we aware.

Remark 1.10. Asymptotic formulas are available for subadditive Euclidean func-
tionals in more general settings. If x1, x2, · · · ∈ Rd are independent identically
distributed random variables with bounded support, then the length L(x1, . . . , xn)
of the functional on the points Xn satisfies

L(x1, . . . , xn)/n
d−1
d → βd

L

∫

Rd

f(x)
d−1
d dx,

where f is the absolutely continuous part of the distribution of the xi’s and βd
L is a

constant depending only on d and L (see [3, 28]). Note that this gives an asymptotic
formula for L(x1, . . . , xn) unless the right hand side is zero. The latter case will
happen if the xi’s lie exclusively on some m-dimensional manifold embedded in Rd

where m < d, but the BHH theorem also has a suitable extension to this setting

[8], allowing asymptotic formulas involving n
m−1
m . Our results are all immediately

valid in these more general settings, however: as the constants βd
L depend only on

L and d or m (in particular, not on the distribution or, in the second case, the
particular manifold), it is enough study the constants in the case of points which
are uniformly distributed in the hypercube.



6 ALAN FRIEZE AND WESLEY PEGDEN

2. Separating asymptotic constants

In the following we will use the simplest application of the Azuma-Hoeffding martin-
gale tail inequality: It is often referred to as McDiarmid’s inequality [21]. Suppose
that we have a random variable Z = Z(X1, X2, . . . , XN ) where X1, X2, . . . , XN are
independent. Further, suppose that changing one Xi can only change Z by at most
c in absolute value. Then for any t > 0,

(4) Pr(|Z −EZ| ≥ t) ≤ 2 exp

{
− t2

c2N

}
.

Our method to distinguish constants is based on achieving constant factor improve-
ments to the values of functions via local changes. Given ε,D ∈ R and a finite set
of points S ⊆ Rd and a universe X, we say that T ⊆ X is an (ε,D)-copy of S if
there is a bijection f between T and S such that ||x − f(x)|| < ε for all x ∈ T ,
and such that T is at distance > D from X \ T . Here we will further assume that
||x− y|| > ε for x 6= y ∈ S.

For our purposes, it will be convenient notationally to work with n random points
Yn from [0, t]d where t = n1/d, in place of n random points Xn from [0, 1]d. At
the end, we will scale our results by a factor n−1/d in order to get what is claimed
above.

The underpinning of our separation results is the fact that for any fixed configura-
tion, a linear number of approximations to that configuration appear in a random
point-set with high probability, at the appropriate scale. The intuition for this is
perhaps particularly strong in the case of a Poisson cloud of points, but it holds
just as well for Yn. We capture this essential fact as follows:

Observation 2.1. Given any finite point set S, any ε > 0, and any D, Yn w.h.p
contains at least CS

ε,Dn (ε,D)-copies of S, for some constant CS
ε,D > 0.

Proof of Observation 2.1. Let Z denote the number of (ε,D)-copies of S in Yn.
We divide [0, t]d into n/(3D)d subcubes C1, C2, . . . , of side 3D. Then let C ′

i ⊆ Ci

be a centrally placed subcube of side D. Now choose a set S′ congruent to S
somewhere inside C ′

1 and let B1, B2, . . . , Bs, s = |S| be the collection of balls of
radius ε, centered at each point of S′. Then with probability at least α = αε,D > 0,
each Bi contains exactly one point of Yn and there are no other points of Yn in
C1. Thus EZ ≥ βn where β = α/(3D)d. Now changing the position of one point
in Yn changes the number of (ε,D)-copies of S by at most two and so we can use
McDiarmid’s inequality [21] to show that Z ≥ 1

2 EZ w.h.p. �

Observation 2.1 captures all of the probability theory needed for our separation
results—in fact, the statement EZ ≥ βn from the proof suffices for our separation
proofs. The real work of the paper is now discrete geometry—of varying levels of
difficulty for the various separations we aim to prove.

For Theorem 1.1, Observation 2.1 is almost all we need; let us now complete the
argument.
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Observation 2.2. If Y ⊆ Rd and x lies in the interior of the convex hull of Y ,
then when R is sufficiently large, any point at distance greater than R from Y is
closer to some point of Y than to x. �

If v0, v1, . . . , vk are vectors in Rd with pairwise negative dot-product, then v1, . . . , vk
lie in the half-space v0 ·x < 0, and the projections of v1, . . . , vk onto the hyperplane
v0·x = 0 have pairwise negative dot-products. This gives the following, by induction
on d:

Observation 2.3. If v1, . . . , vd+1 ∈ Rd are vectors with negative pairwise dot-
products, then 0 is a positive linear combination of the vi’s. �

This allows us to prove:

Lemma 2.4. If d + 1 ≤ k ≤ τ ′(d), then there exists a set of points S̄(k) ⊆ Rd

consisting of a single point at the origin, surrounded by a set S(k) of k points on
the unit sphere centered at the origin and separated pairwise by at least some ε′ > 0
more than unit distance, such that S(k) does not lie in an open half-space whose
boundary passes through the origin.

Proof. We first observe that the definition of τ ′ already gives us a set S(k) with
the desired properties, except that it may all lie in some open half-space through
the origin. In this case, however, we can delete a point and replace it with the
point xH on the unit sphere opposite the half-space H, and furthest away from the
halfspace. We do this repeatedly and note that because the above exchange of points
only happens when all points are on one side of a half-space H ′, xH remains as the
unique point which is in the open half-space opposite to H. Furthermore, doing
this repeatedly, we can achieve either a set S(k) with all the desired properties, or
can find after at most k steps a set S(k) of points on the sphere separated pairwise
by at least ε′ > 0 more than unit distance, and whose pairwise dot products as
vectors in Rd are all negative. But then Observation 2.3 and k ≥ d+1 implies that
the points cannot all lie in the interior of some half-space whose boundary passes
through the origin. �

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Given k ≥ 2, we choose any d′ ≤ d such that d′ + 1 ≤
k ≤ τ ′(d′).

We apply Lemma 2.4 with k, d′ to get a set S′(k) ⊆ Rd. Observe first that the origin

must lie in the convex hull X of the set S′(k) given by Lemma 2.4; otherwise, there

would be a supporting half-space H of X not containing the origin, and S′(k) would
lie in the open half-space through the origin which is parallel to H, a contradiction.

Now we take S(k) = S′(k) × {0}d−d′

, and the origin is still in the convex hull of
S(k).
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b bbb
b b b

b b

Figure 1. A configuration for forcing degree 2 in 2-dimensions.

Now, letting ∆d denote a unit simplex centered at the origin (with d + 1 points),
we let

U = {0} ∪ S(k) ∪
⋃

p∈S(k)

{(1.5)p+ .1 ·∆d}.

So U is a set of 1+k+(d+1)k points. (Figure 1 shows U for the case d = 2, k = 2;
note that in this case, d′ = 1.)

We now let Uε,D denote an (ε,D) copy of U , for sufficiently small ε > 0 and

sufficiently large D. Observe that since the origin is in the convex hull of S(k), the
k small copies of the d-simplex in U ensure that the origin is in the interior of the
convex hall of U , and thus also in the interior of Uε,D for sufficiently small ε.

Observe that (for large D) the distance between any pair of points in an Uε,D is
less than the minimum distance between Uε,D and Yn \ Uε,D. In particular, if T
denotes the minimum length spanning tree on Yn, the subgraph T [Uε,D] induced
by the points in Uε,D must be connected (and so a tree), or we could exchange
a long edge for a short edge. Moreover, the minimum length spanning tree on T
must restrict to a minimum length spanning tree on Uε,D, and by construction, the
point of Uε,D corresponding to the origin point in U has degree k in the MST on
U . Finally, no points in Yn \Uε,D can be adjacent to the center of the star when D
is sufficiently large, by Observation 2.2. Thus Observation 2.1 gives that αk,d > 0
for d+ 1 ≤ k ≤ τ ′(d).

Finally, α1,d > 0 is an immediate consequence of α3,d > 0. �

Indeed, Theorem 1.2 follows immediately as well:

Proof of Theorem 1.2. Suppose 2 ≤ k < τ ′(d), and T is a minimum spanning tree
of Yn subject to the restriction that the maximum degree is ≤ k. By Observation
2.1 we have that there are Cn (ε,D) copies of the set U from the previous proof, for
some constant C, and from the argument above we see that each such copy Si will
induce a (connected subtree) T [Si], which will have maximum degree at most k in
an instance of MSTk. Replacing each T [Si] by the optimum (k + 1)-star produces
a spanning tree of maximum degree k + 1, whose length is less by at least some

constant C ′n. Rescaling by t gives that the length difference is at least C ′n
d−1
d . �

Remark 2.5. The same argument allows us to separate βd
MST from βd

Steiner where
the latter corresponds to the minimum length Steiner tree. We just need to use
(ε,D) copies of an equilateral triangle. We remark that adding the Steiner points
corresponding to the Fermat points of the copies will reduce the tree length. The
details can be left to the reader.

We turn our attention now to 2-factors. We begin with two very simple geometric
lemmas:
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Lemma 2.6. Suppose that points p, q, r, s satisfy

||p− q||, ||r − s|| ≥ ∆ and ||q − r|| ≤ δ.

Let θ(x; y, z) denote the angle between the line segments xy and xz. If

π ≥ max {θ(p; q, s), θ(s; p, r)} ≥ ∆−1/3

then

||p− s|| ≤ ||p− q||+ ||r − s||+ δ − ∆1/3

1
2.

Proof. We have

||p− s|| ≤ ||p− q|| cos θ(p; q, s) + δ + ||r − s|| cos θ(s; p, r).
Now use cosx ≤ 1− x2/12 for x ≤ π. �

Lemma 2.7. Suppose that points pi, qi, ri, si, i = 1, 2 satisfy

(5) ||pi − qi||, ||ri − si|| ≥ ∆ for i = 1, 2

and also that q1, r1, q2, r2 are contained in a ball of radius δ. Then there is a
matching on {p1, p2, s1, s2} whose total length is at most

(6) ||p1 − q1||+ ||r1 − s1||+ ||p2 − q2||+ ||r2 − s2||+ 4δ −∆.

Proof. Without loss of generality we let the qi, ri, i = 1, 2 be within distance δ of
the origin. Then points x, y we let θ(x, y) denote the angle between x and y via
the origin that is less than or equal to π. There are three possible pairings of the
points P = {p1, p2, s1, s2}, and for at least one such pairing, θ(x, y) ≤ 1

2π for one
of the pairs.

Let us take {x, y} and {w, z} to be the pairs in such a pairing of P , with θ(x, y) ≤
1
2π. We let T denote the triangle with vertices x, y, 0, let a, b, c denote the side-
lengths, where a is length of the side opposite 0, and s denote the semi-perimeter
(a+ b+ c)/2. Now a ≤ (b2 + c2)1/2 and in fact

b+ c− a ≥ b+ c− (b2 + c2)1/2 ≥ (b+ c)

(
1−

(
1− 2bc

(b+ c)2

))

=
2bc

b+ c
≥ min {b, c} ≥ ∆.

Thus we find a pairing of P for which the total length is at most ||p1|| + ||p2|| +
||s1||+ ||s2|| − 1

2∆, and we will be done after applying the triangle inequality four
times and using the fact that ||qi||, ||ri|| ≤ δ for i = 1, 2. �

Proof of Theorem 1.3. Let Fg+1 be a minimum length 2-factor in Yn whose
cycles all have length ≥ g + 1. We let Uε,D ⊂ Yn denote any set of g points of
radius ε and at distance D from Yn \Uε,D. Note that Lemma 2.1 implies that there
are a linear number of copies of such sets. We now define Vε,D,F as a collection of
three instances U1, U2, U3 of Uε,D, centered at the vertices of an equilateral triangle
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Figure 2. When not all pairs are nearly straight the old 2-factor
(left) can be shortened to a new one (right). (The dashed circle of
radius ε encloses g + 1 = 4 points.)

of sidelength 2D, and lying at distance ∆ from Yn \ Vε,D,∆; we will take D large
relative to ε and ∆ large relative to D.

We call a multiset of edges a 2-matching if every vertex is incident with exactly
2 (not necessarily distinct) edges in the multiset. This is the same as a 2-factor,
except that it can contain “2-cycles”, which consist of a single edge included twice.

We will begin by showing how to give a constant-factor shortening of the 2-factor
Fg+1 to a 2-matching F , without being careful to avoid creating cycles of length
shorter than g. In particular, we prove the following lemma:

Lemma 2.8. There is an absolute constant δ such that for suitable choices of
ε � D � ∆, any instance of V = Vε,D,∆ allows a modification F of Fg+1 so that

(1) F is a 2-matching;
(2) F has weight at least δ less than the length of Fg+1;
(3) Cycles of F lying entirely in V have length ≥ g;
(4) F is a local modification of Fg+1, in the sense that any edges of Fg+1 disjoint

from V are still present in F .

Again, Lemma 2.1 implies that there are a linear number of instances of Vε,D,∆ in
Yn. In particular, this lemma would be sufficient to argue that βTFg

< βTFg+1
,

except that F may not have girth g.

Proof of Lemma 2.8. For Ui = Uε,D in V , there are (at least 2) edges in Fg+1 from
Yn \ Ui to Ui, since g + 1 > g = |Ui|. We can pair these edges so that each pair
lies on a common cycle of Fg+1, and so that the two edges in a pair are joined in
Fg+1 by a path through (possibly just 1 point of) Ui. Similarly, we can pair edges
between V and Yn \ V . (Some pairs for V may also be pairs for a Ui, others may
not.)
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Figure 3. An instance of Vε,D,∆ (here for g = 2, d = 2). When
all pairs of edges entering/leaving Ui’s are nearly straight, we must
have at least 2 pairs of edges entering/leaving V , as shown here.

Now, by choosing D large relative to ε, we can assume that each pair of edges for
a Ui is nearly straight, in the sense that the angle between the endpoints of the
edges in Yn via any point in Uε,D is close to π; otherwise, we can modify Fg+1

by including all edges of some g-cycle through Ui, and shortcutting each pair of
edges between Yn \Ui and Ui with a single edge between the endpoints in Yn \Ui.
(Figure 2.) The result has length smaller by a constant δ = Ω(D1/3), see Lemma
2.6. To ensure condition (3) for F , we must now also shortcut all remaining pairs
of edges between V and Yn \ V , delete any edges in V \ Ui, and then add g-cycles
to the remaining Uj ’s. (This step adds length which can be made arbitrarily small
by decreasing ε.)

We may also assume that each Ui has only a single pair of edges. Otherwise, if
there are two different pairs, we delete the edges in the two pairs, use Lemma 2.7
to add a pair of edges among the 4 outside endpoints of the pairs of total weight
which is less than the total weight of the pairs by a constant (note that we may
have created a 2-cycle if one of these edges was already present, which is why F is
only a 2-matching), shortcut all other remaining pairs between V and Yn, delete
all edges within V , and add g-cycles to each Ui. For sufficiently small ε, we get a
constant length improvement.

Thus we may assume that each Ui in V has a single pair, and that the pair for each
Ui in V is nearly straight. The crucial point is that this implies that there must
be at least two pairs of edges joining V to Yn \ V : since, e.g., edges joining U1 to
U2 and U1 to U3 would not be nearly straight. Therefore at least one of the Ui’s
has no edges to the other Ui’s. (See Figure 3.) We conclude, as in the previous
paragraph, by deleting the edges in the two pairs, using Lemma 2.7 to find a pair
of edges among the 4 outside endpoints of the pairs of total weight which is less
than the total weight of the pairs by a constant, shortcutting all other remaining
pairs between V and Yn, deleting all edges within V , and adding g-cycles to each
Ui. �

We must now address unintentional problems of girth. (Notice that, in shortcutting
edges, we may have left behind short cycles—in particular, any 2-cycles must be
eliminated.) To this end, we say that V = Vε,D,∆ is ε-surrounded if the set NV of
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points of Yn \ V within distance 3∆ of V has the properties that: (1) each x ∈ NV

lies within distance ε of the sphere S of radius 2∆ centered at the center of V ,
and (2) each x ∈ S lies within ε of NV . (Essentially, NV is an approximation
to an ε-net on S, which surrounds V ). Lemma 2.1 implies that there are a linear
number of ε-surrounded V ’s, and additionally, a linear number of ε-surrounded sets
V satisfying the requirements in the previous paragraph (each Ui has a single-pair
of edges to the rest of Yn, etc.).

We now show that if V is ε-surrounded, then there is an constant Cg,ε, which can
be made arbitrarily small by decreasing ε, such that there is a 2-factor F ′ such
that:

(A) F ′ has total weight w(F ′) ≤ w(Fg+1) + Cg,ε,
(B) every cycle in F ′ is still of length ≥ g + 1,
(C) All edges in F ′ incident with V either lie in V or intersect NV .

To produce F ′ from Fg+1, we consider each edge e = {u, v} from V to Yn\(NV ∪V )
which does not intersect NV , and

(1) Locate a point x in NV within distance ε of a point w on the edge e. Let
C = (x = x1, x2, . . . xk, xk+1 = x1) be the cycle of Fg+1 that contains x. If
u = xi for some i, then we choose the cycle orientation so that v = xi−1.

(2) Add the edges {u, x1}, {xk, v} to the 2-factor and delete the edges e and
{x1, xk}.

This ensures (C) and the change in cost for this one substitution is

||x1 − u||+ ||xk − v|| − ||x1 − xk|| − ||v − w|| − ||u− w||
≤||x1 − u||+ ||x1 − w|| − ||u− w||
≤2||x1 − w||.

Thus dealing with all edges from Vε,D,∆ to Yn \Vε,D,∆ increases the cost by at most
12gε, since there are 3g points in V and hence at most 6g edges from Vε,D,∆ to
Yn \ Vε,D,∆.

After this, any cycle in F ′ but not in Fg+1 must contain an edge added in Step
(2). But either u, v /∈ {x1, . . . , xk}, in which case the length of this cycle is at least
k+2 ≥ g+3, or else u = xi, v = xi+1 and this cycle is x1, x2, . . . , xi−1xkxk−1 · · ·xix1

and so has length k ≥ g + 1.

We are now prepared to find a 2-factor Fg whose weight is smaller than Fg+1 by
a constant factor. For some small constant c, we have that there are at least cn
instances of ε-surrounded V = Vε,D,∆’s. We take these instances as V1, V2, . . . , in
any order, and beginning with F = Fg+1 and for each i = 1, 2, . . . , we

(i) Find F ′ for Vi as above (with weight increase Cg,ε which we make arbitrarily
small)
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(ii) Apply Lemma 2.8 to shorten F ′ at Vi to F0 with a constant weight improve-
ment

(iii) At an arbitrarily small cost, modify F0 to a 2-factor F ′
0 which has girth g,

by merging cycles intersecting the net NVi
, and set F = F ′

0 (explanation is
below).

In particular, to carry out Step (iii), note that any cycle C of length < g in F0

includes a point x of NV , and we can merge C with the cycle through a point
y within 2ε of x, at an additional cost of ≤ 2ε: We join x and y, delete edges
{x, x′} and {y, y′} incident with each in the previous 2-factor and replace them by
{x, y} , {x′, y′} at a cost of

||x− y||+ ||x′ − y′|| − ||x− x′|| − ||y − y′|| ≤ 2||x− y||.

After applying Steps (i)–(iii) for each V ∈ V , the result is a 2-factor Fg = F of
girth g, whose total weight is smaller than the total weight of Fg+1 by a constant
factor. �

The proof of the counterpoint Theorem 1.4 will be given in Section 3. For now
we consider matchings. In fact, Theorem 1.5 can be viewed as a consequence of
Theorem 1.8, via Proposition 5 of [13]. However, we also give a short self-contained
proof.

Proof of Theorem 1.5. We define the Euclidean functional 2MM(X) as the
minimum length union of two matchings on X. Note that we make no requirement
of disjointness and that we trivially have that 2MM(X) = 2 · MM(X) for all X.
On the other hand, a TSP through X can be viewed as a (near)-union of two
matchings (alternating edges around the tour, leaving one vertex unmatched if n
is odd). Our aim will be to give a constant factor improvement to the union of a
pair of matchings given by the TSP, to show that 2MM(Yn) is asymptotically less
than TSP(Yn). To this end, we let M1 and M2 denote a pair of matchings derived
from the minimum length TSP.

We let Uε,D denote a set of two points separated by distance at most ε and at
distance at least D from all other points of Yn, and let Vε,D,F denote a collection
of 5 instances U1, . . . , U5 of Uε,D, centered at the vertices of a regular pentagon of
sidelength 2D, such that all other points of Yn are at distance ≥ F from this set.
As before, Lemma 2.1 gives that there are a linear number of instances of Vε,D,F

for any fixed F, D, and ε > 0. Moreover, as before, if we have a linear number of
instances Uε,D in which a pair of edges of a matching leaves Uε,D and is not nearly
straight, then we can make a constant improvement to the matching, by joining
the two points of Uε,D and shortcutting the outside endpoints of the edges leaving
Uε,D with a single edge.

SinceM1 andM2 are disjoint, the pigeonhole principle gives that for some s ∈ {1, 2}
and at least three of the Ui’s in any Vε,D,F , the pair of points in Ui is omitted from
Ms. In particular, we may assume without loss of generality that we have a linear
number of Vε,D,F ’s for which the set I of indices i for which the points in Ui are
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unmatched in M1 has cardinality |I| ≥ 3. Moreover, from the previous paragraph,
there must be a linear number of such Vε,D,F ’s which also have the property that
the pair edges leaving the Ui, i ∈ I is nearly straight. In particular, as the point
sets Ui (i ∈ I) are not nearly collinear, we must have as in the previous proof that
there are (at least) 2 pairs of edges entering and leaving Vε,D,F . We conclude by
applying Lemma 2.7 (with 2ε, say) to get a constant factor improvement a linear
number of times. �

Proof of Theorem 1.7. It suffices to show that for fixed r ≥ 1, there are connected
graphs H with r · |V (H)| edges for which the constant βd

H is arbitrarily large, which
we show by demonstrating that βd

T can be arbitrarily large even just over trees T .
To this end, we let Tk be the tree on k + 1 vertices which has k leaves.

Given any large constant u = t/m for some integer m, we decompose the [0, t]d

cube with md subcubes of side u. Now the number of points in each subcube is
binomially distributed with mean ud. Let a point in Yn be good if the subcube
Sα that it lies in has at least (1 − ε)ud members of Yn and the total number of
points in the ≤ 3d subcubes that touch Sα contain at most (1 + ε)(3u)d members
of Yn, where ε = 1

10k . Assuming that u is sufficiently large, the Chernoff bounds
imply that a member of Yn is good with probability at least 1 − ε/2. Thus the
expected number of good points in Yn is at least (1 − ε/2)n. Now the Chernoff
bounds can be used to show that the number of members of Yn in any subcube is
a.s. O(log n) and therefore, changing one point only changes the number of good
points by O(log n) a.s. A fairly simple modification of McDiarmid’s inequality now
implies that a.s. (1− ε)n of the members of Yn are good.

Since ≈ n/(k + 1) points must have degree k in a Tk factor of Yn, we have that
there are at least n/(2k) good points which have degree k. Now let k = 2(3u)d.

Then a.s. a Tk factor has length at least n
2k · (1−ε)k

2 · u > un
5 .

Rescaling the [0, t]d cube by a factor of t gives that the minimum Tk factor has

length at least 1
5un

d−1
d , and here u

5 is an arbitrarily large constant. �

Proof of Theorem 1.8. We begin with some general observations regarding the
shortest TSP through Euclidean point sets:

Observation 2.9. Suppose that Sε,D is an (ε,D) copy of a fixed set S for fixed ε
and sufficiently large D, and that at least 2 pairs of edges of a shortest TSP tour
L join Sε,D to V \ Sε,D. Then the pairs are nearly straight (i.e., the angle for each
pair is arbitrarily close to π as ε → 0, and k,D → ∞).

(Here the edges of L joining Sε,D to V \ Sε,D are paired such that the endpoints of
the edges in a pair which are inside Sε,D are joined by a portion of L lying entirely
in Sε,D.)

Proof. Otherwise, we shortcut the edge pair which is not nearly straight to obtain
a constant improvement (which, for a fixed angle, can be made large by increasing
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D). The tour portion between one of the other edge pairs is modified to cover any
vertices of Sε,D which are now missed by the tour, at an increased cost which does
not depend on D. �

Observation 2.10. Suppose that Sε,D is an (ε,D) copy of any fixed set S for fixed
ε and sufficiently large D. Then there are at most 2 pairs of edges in a shortest
TSP tour which join Sε,D to V \ Sε,D.

Proof. Let L denote a shortest TSP tour, and suppose there are three pairs (e1, e2)
(f1, f2) and (g1, g2) of edges in L between Sε,D and V ′ = V \ Sε,D. We let
x1, x2, y1, y2, z1, z2 denote the endpoints of the edges e1, e2, f1, f2, g1, g2, respec-
tively, which lie in V ′, and we suppose, without loss of generality, that the pairs
x1, y1, y2, z2, and z1, x2, respectively, are joined by paths in V ′′ ∩ L, for V ′′ =
V \ {x1, x2, y1, y2, z1, z2}.

We now modify L as follows.

(1) We remove the edges e1, e2, f1, f2, g1, g2.
(2) We add new edges between the pairs (x2, y2) and (y1, z1).
(3) We add a path which travels from x1 to the set Sε,D (visiting every vertex

of the set) and then to z2.

Observe that the result is a new TSP tour; it remains to estimate the change in cost.
The path P added in part 3 has Euclidean length `(P ) at most `(e1 − g2)+CS,ε,D,
where we are viewing the edges as vectors from their point in V ′′ to their point in
Sε,D, and where CS,ε is a constant depending only on S, ε. (For example, we can
take CS,ε = TSP(Sε,D) + diam(S).)

Similarly, the edge (x2, y2) has length at most `(e2 − f2) + CS,ε,D, and the edge
(y1, z1) has length at most `(f1 − g1) +CS,ε,D. Applying the triangle inequality to
the three lengths immediately gives that our new tour has length at most TSP(Xn)+
3CS,ε,D. In fact, we should be hoping to do better: If `(e2−f2) is within a constant
of `(e2)+`(f2) as D grows large, then the points x2, y2 are constrained to be nearly
antipodal about center c of the set Sε,D (with angle tending to π as D → ∞).
Similarly, we have that `(f1 − g1) is far from `(f1) + `(g1) unless y1, z1 are nearly
antipodal.

Thus if we have not achieved a contradiction by shortening the tour, then, x2, y2
are nearly antipodal, and y1, z1 are nearly antipodal. Observation 2.9 means that
the pairs {x1, x2}, {y1, y2}, and {z1, z2} are nearly antipodal as well. Thus, in
particular, x1 and z1 are not nearly antipodal, and so we can produce a shortening
of the original TSP tour by instead:

(1) Removing the edges e1, e2, f1, f2, g1, g2;
(2) Adding new edges between the pairs (x1, z1) and (x2, z2);
(3) Adding a path which travels from y1 to the set Sε,D (visiting every vertex

of the set) and then to y2. �
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Figure 4. The set S12. Such sets are good for the HK-bound,
but bad for the tour. (Thick lines have weight 1, while thin lines
have weight 1

2 .)

We now consider the d = 2 case of Theorem 1.8. We let Sk be a set consisting of
k equally spaced points on a unit circle centered at the origin, 2k equally spaced
points at the radius 4 circle centered at the origin, and the points (2, 0) and (−2, 0)
(See Figure 4. The particular ratios 2k : k and 4 : 2 : 1 are chosen just to make a
clean figure.). We will argue that if ε is sufficiently small and D, k are sufficiently
large, each instance of an (ε,D) copy of Sk allows us to locally modify an instance
of the TSP so that it is still a solution to the HK linear program, but is shorter by
some additive constant.

To this end, let L be some shortest tour, and Sk
ε,D be an (ε,D)-copy of Sk. Observa-

tion 2.10 implies that L enters (and leaves) Sk
ε,D either once or twice, for sufficiently

large D.

Case 1: The tour enters Sk
ε,D once. We let x1, x2 denote the vertices in V ′ =

V \ Sk
ε,D which are adjacent to vertices in Sk

ε,D. We let L◦ be the portion of L
between x1 and x2. Then we have that

(7) `(L◦) ≥ dist(x1, S
k
ε,D) + dist(Sk

ε,D, x2) + 10π + 6 +K − o(1),

where we are using o(1) to denote a function which tends to 0 as ε → 0, k → ∞,
and D → ∞ simultaneously, and K is an absolute constant (in fact, K can be 2).
To see this lower bound, observe that the tour must cover the outer circle (≈ 8π),
the inner circle (≈ 2π), and must cross the gap between the inner and outer circles
twice (2 · 3 = 6). Finally, the tour must also spend more (bounded below by some
constant K) to cover one of the two “gap” vertices in Sk

ε,D. To see that the tour
can not cover both gap vertices in gap crossings while crossing the gap only twice,
let a1, a2 denote the first and last vertices of L◦ on the inner circle. Either a1, a2
lie at the two ends of the inner circle close to the gap vertices, in which case the
tour spends an additive constant K more than 2π − o(1) to cover the entire inner
circle, or, say, a1 lies at distance 1 +K from the gap vertex to which it is joined,
incurring an extra cost K again.

We now modify the portion L◦ so that the result is still a solution to the Held-
Karp LP, but is shorter by some additive constant. We let y1, y2 and z1, z2 be
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Figure 5. An example of the set S12 with two passes of a tour.
(Thick lines have weight 1, while thin lines have weight 1

2 .)

pairs of points on the outer circle which are closest to the gap vertices g1 and g2,
respectively, and similarly let a1, a2 and b1, b2 be points of the inner circle which are
closest to the first and second gap vertex, respectively. We join all pairs among each
of the triples y1, y2, g1, a1, a2, g1, z1, z2, g2, b1, b2, g2 by edges of weight 1

2 (Figure 4).
Next, we let α1, α2, α3 be a consecutive triple of points on the outer circle which is
as close as possible to x1 (but disjoint from the set {y1, y2, z1, z2}), and β1, β2, β3

be a consecutive triple of points on the outer circle which is as close as possible to
x2 (but disjoint from the set {y1, y2, z1, z2, α1, α2, α3}). We join all pairs among
each of the triples α1, α2, α3 and β1, β2, β3 with edges of weight 1

2 . We join α2 and
β2 to x1 and x2, respectively, by edges of weight 1. Finally, using edges of weight 1,
we join all consecutive pairs of points on each circle which were not already joined
(by edges of weight 1

2 ). The result for S
12 is shown on the right-hand side of Figure

4. As k,D grow large and ε grows small, the total cost of this is

dist(x1, S
k
ε,D) + dist(Sk

ε,D, x2) + 10π + 6 + o(1),

thus it suffices to check that what we have given is indeed a valid instance of the
Held-Karp LP. We carry out this verification below, after describing the second
case of the construction.

Case 2: The tour enters Sk
ε,D twice. We let x1

1, x
1
2 and x2

1, x
2
2 denote the two pairs

of entry/exit points in V ′ = V \ Sk
ε,D. We let L1 be the portion of L between x1

1

and x2
2, L2 be the portion between x2

1 and x2
2, and let L◦ = L1 ∪L2. Then we have

that

(8) `(L◦) ≥
∑

i=1,2
j=1,2

dist(xi
j , S

k
ε,D) + 10π + 6 +K − o(1),

where K is again an absolute constant (and where again, in fact, K can be 2).
Again, 10π+6 is needed to cover both circles, and transition to the inner circle and
back. If both L1 and L2 visit the inner circle this gives an extra cost of ≈ 6 for the
transitions, so we assume that L1 is the only portion to visit the inner circle. But
the argument from the previous case shows that L1 cannot cover the entire inner
circle and visit both gap vertices without incurring an additive constant extra cost.
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We now modify the portion L◦ so that the result is still a solution to the Held-Karp
LP, as follows. We still let y1, y2 and z1, z2 be pairs of points on the outer circle
which are closest to the gap vertices g1 and g2, respectively, and similarly let a1, a2
and b1, b2 be points of the inner circle which are closest to the first and second gap
vertex, respectively. We join all pairs among each of the triples y1, y2, g1, a1, a2, g1,
z1, z2, g2, b1, b2, g2 by edges of weight 1

2 . Next, we let αi
1, α

i
2, α

i
3 be βi

1, β
i
2, β

i
3 be

consecutive triples of points on the outer circle which are close to the points xi
1 and

xi
2, respectively. (All named points must be distinct) We join all pairs among each

of the triples αi
1, α

i
2, α

i
3 and βi

1, β
i
2, β

i
3 with edges of weight 1

2 for i = 1, 2. We join

αi
2 and βi

2 to xi
1 and xi

2, respectively, for i = 1, 2, by edges of weight 1. Finally,
using edges of weight 1, we join all consecutive pairs of points on each circle which
were not already joined (by edges of weight 1

2 ). The result for S12 is shown on the
right-hand side of Figure 5. As k,D grow large and ε grows small, the total cost of
this is ∑

i=1,2
j=1,2

dist(xi
j , S

k
ε,D) + 10π + 6 + o(1),

and so we have improved the length by an additive constant.

Feasibility of the solutions. We now check that making many local modifications
according to the cases above does not disturb the property that L is a feasible
instance of the Held-Karp LP. It is immediate that all degree-weights

∑
j 6=i x{ij}

are 2; it remains to check the condition that

(9) (∀∅ ( S ( V )
∑

{i,j}⊆S

x{ij} ≤ |S| − 1.

In other words, the total weight of edges in any proper nonempty subset is at least
one less than the number of vertices.

Since the degree-weights are 2 at every vertex, we can show (9) by showing that
any proper nonempty subset S has the property that edges of total weight at least
2 leave the subset; i.e., that

(10) (∀∅ ( S ( V )
∑

i∈S
j 6∈S

x{ij} ≥ 2.

If this fails, there is a cut in the graph of weight< 2. First we consider the possibility
that the cut includes an edge of weight 1

2 . Such edges only occur in triangles, and
a minimum cut in a graph cannot contain exactly one edge of any triangle. But
this already implies that no cut of weight < 2 in our graph can include any edges of
weight 1

2 , since deleting even all the edges of any one triangle does not disconnect
our graph, and since 4 such edges, or 2 such edges plus an edge of weight 1, already
gives weight 2.

But now we are done: since no minimum cut of weight < 2 can include an edge
of weight 1

2 (and all other edges have weight 1), it suffices to note that there is no
single cut edge in our modified graph. This completes the proof for the case d = 2.
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The case d > 2. We cannot use exactly the same point set in higher dimensions.
The only trouble with the previous argument is the lower bound on the tour length.
In particular, if an edge enters a set Sk at a sharp angle to the 2-D plane containing
Sk, then it may join to an inner circle vertex or gap vertex at negligible (or zero)
extra cost over entering at the nearest possible point, and this is not accounted for
in (7) or (8). Our goal now is to create a set out of many copies of Sk, in a way
that allows us to be certain that some copy of Sk must be incident only with edges
nearly parallel to its containing plane, in any optimal tour.

We will let Sk,`
ε,D,R be an (ε,D) copy of a certain elaborate set Sk,`

R . The set Sk,`
R

consists of ` copies of Sk. Each copy of Sk lies in a 2-dimensional hyperplane normal
to some unit vector v, and we orient the copies of Sk so that these hyperplanes are
tangent to the (d− 1)-sphere SR of radius R. Moreover, we ensure that the centers
c1, . . . , c` lie on SR, and are roughly “evenly spaced” in the sense that as ` grows
large, we can ensure that for any given unit vector x ∈ S1, we have that x lies
arbitrarily close to 1

Rci for one of the ci’s.

We now appeal to the following fact:

Lemma 2.11. If X is a subset of the unit (d − 1)-sphere S1 in Rd of cardinality
n, then TSP(X) = o(n).

Proof. We can rescale the sphere and embed it in the hypercube [0, 1]d, and then
appeal to the fact (see e.g., [10, 29]) that the worst-case length of a tour through

n points in [0, 1]d is ≤ Cdn
d−1
d for some constant Cd. (It is also easy to obtain a

bound C ′
dn

d−2
d−1 for the sphere, but this is unnecessary for us.) �

In particular, this lemma implies that if we take R � ` � k, then typical edges

joining pairs of instances of (approximate) Sk’s in the set Sk,`
ε,D,R are of length o(R)

(where the asymptotics are as R → ∞). Furthermore, Observation 2.10 implies

that the tour enters Sk,`
ε,D,R at most twice, and also that it enters each Sk at most

twice. In particular, for sufficient choices R � ` � k, there will necessarily be at

least one set X, which is an approximate Sk in the set Sk,`
ε,D,R such that

(1) All edges entering/leaving X go to other points of Sk,`
ε,D,R, and

(2) All such edges have length o(R).

In particular, the edges entering and leaving X will be nearly parallel to the 2-
dimensional hyperplane in which X (approximately) lies. This is because

(a) the portion of the sphere within o(R) of X will lie within a small angular
distance of X, and moreover,

(b) the portion of the ε-neighborhood of the sphere within distance o(R) of X but
also at distance at least some large constant from X is also within a small

angular distance of X. (Observe that points in Sk,`
ε,D,R \X are a large constant

distance from X by our choice of R � `.)
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But this is now sufficient to ensure that we can modify the tour in X (according to
Case 1 or 2 from above) to obtain a constant additive improvement. �

3. The 2-factor limit

Here we prove Theorem 1.4: limg→∞ βd
TFg

= βd
TSP. Let Fg denote a minimum

length 2-factor of girth g covering Xn. Let the cycles of Fg be C1, C2, . . . , Ck

where k ≤ n/g and let L1 ∼ βd
TFg

n(d−1)/d denote the length of Fg. Now choose

a vertex xi ∈ Ci for i = 1, 2, . . . , k and let C0 be a minimum length tour through
X = {x1, x2, . . . , xk}. It follows from Few [10] and Tóth[33] that Co has length at
most L0 = C(n/g)(d−1)/d for some absolute constant C > 0.

The graph Γ induced by the edges of C0, C1, . . . , Ck is connected and has even
degrees i.e. it is Eulerian. We obtain a tour through Xn of length at most L0 +L1

by traversing an Euler tour through g and short-cutting when a vertex is re-visited.
This gives a tour of length at most (1+o(1))βd

TFg
n(d−1)/d+C(n/g)(d−1)/d. Allowing

g → ∞ proves the theorem. �

4. Branch and Bound Algorithms

In this section we prove Theorem 1.9. Branch-and-bound is a pruning process,
which can be used to search for an optimum TSP tour. Branch-and-bound as we
consider here depends on 3 choices:

(1) A choice of heuristic to find (not always optimal) TSP tours;
(2) A choice of lower bound for the TSP (such as the 2-factor, HK bound, etc.);
(3) A branching strategy (giving a branch-and-bound tree).

As an example, we will consider the case where we use some heuristic for the TSP,
the 2-factor as a lower bound, and use a branching strategy based on the 2-factor
as well.

Given our point-set Xn, we begin by letting B be the value of the tour found
by our TSP heuristic. We let bx be the length of the shortest 2-factor in Xn.
Here x represents the root of the branch-and-bound tree, which we will construct
iteratively; Λx is the set of all TSP tours in Xn. Unless bx ≥ B, we do not know
that B is an optimal tour, so we branch in the following way: we choose some cycle
C in the 2-factor we have found, and, for the edges e1, . . . , ek of C, generate k
children x1, . . . , xk of x, letting

Ix1
= ∅, Ix2

= {e1}, Ix3
= {e1, e2}, . . .

Ox1
= {e1}, Ox2

= {e2}, Ox3
= {e3}, . . .

These are sets of required inclusions and exclusions, respectively. In particular,
for any vertex v of our tree, Λv is the set of tours containing all edges in Iv and
avoiding all edges in Ov. (For the root, we had Ix = Ox = ∅.) Thus, in this
example, the vertex x2 corresponds to the set of TSP tours which do contain e1



SEPARATING SUBADDITIVE EUCLIDEAN FUNCTIONALS 21

but do not contain e2. For each xi, we use our TSP heuristic to find a tour, with
the additional constraints that the tour includes all edges in Ixi

and excludes those
in Oxi

. Whenever we find a TSP tour shorter than the current value of B, we
update B. We also, for each xi, let bxi

be the minimum-length 2-factor subject to
the constraints Ixi

, Oxi
. For any bxi

for which bxi
is at least B, we know that no

shorter tour than B exists subject to Ixi
, Oxi

, and the tree is pruned below xi, so
that xi becomes a leaf of the pruned branch-and-bound tree. For other vertices, we
continue to branch as above, by adding further constraints to kill some other cycle
of the minimum 2-factors found.

This process terminates when the set L of leaves of the pruned branch-and-bound
tree satisfies v ∈ L =⇒ bv ≥ B; such a tree corresponds to a certificate that the
best TSP tour found so far by our heuristic is indeed optimum.

In general, as a branching strategy, we allow any method to produce, given an input
weighted graph, a rooted tree (the branch-and-bound tree) labeled with sets Iv, Ov

of edges from the graph such that:

(1) When v is a child of u, Iv ⊇ Iu and Ov ⊇ Ou.

(2) If the children of u are v1, . . . , vk, then we have Λu =
⋃k

i=1 Λvi
.

(3) The leaves of the (unpruned) branch-and-bound tree satisfy |Λv| = 1.

Following any such branching strategy and pruning when bv ≥ B will eventually
lead to a proof that an optimum tour has been found (assuming a reasonable TSP
heuristic and lower bound), since, in the worst case, the heuristic and lower bound
will match on the leaf v for which Λv contains just the optimum tour. For branch-
and-bound to be efficient, we would hope that all but polynomially many vertices
of the branch-and-bound tree can be pruned because of inequalities bv ≥ B.

We can restate Theorem 1.9 more precisely as follows

Theorem 1.9 (restated). For any TSP heuristic, any branching strategy, and a
lower bound heuristic which is TFg or HK, the pruned branch-and-bound tree will

have eΩ(n/ log6 n) leaves a.s.

In particular, in our proof of Theorem 1.9, we will make the most optimistic assump-
tion regarding the TSP heuristic: we will simply assume that it always returns an
optimum tour (B will always be the true value of the minimum TSP). Theorem 1.9
asserts that even in this case, there can be no polynomially-sized branch-and-bound
tree which certifies optimality w.h.p.

One natural strategy to prove that L is large would be to show that each Λv (v ∈ L)
is small; then, Λ =

⋃
v∈L Λv would give that L must be large. To show that Λv is

small, one can hope to argue that to have LB(Xn|Iv, Ov) ≥ TSP(Xn), either Iv or
Ov must be large, severely restricting the number of tours in Λv. The problem is
that while large Iv does restrict the size of Λv considerably, having a large Ov can
be a rather weak restriction.



22 ALAN FRIEZE AND WESLEY PEGDEN

We will thus modify this basic approach by paying attention to a special set of tours
Λ̄. Given the point set Xn, we will consider the division of [0, 1]d into s = n

K logn

boxes of sidelength
(

K logn
n

) 1
d

where K is at least some sufficiently large constant.

B1, B2, . . . , Bs denote these boxes, taken in some order such that consecutive terms
are adjacent (i.e., sharing a (d− 1)-dimensional face). Note that

|x− y| ≤
√
d

(
K log n

n

) 1
d

if x, y lie in the same box.

We consider Xn = {x1, x2, . . . , xn}, and, for for each 2 ≤ j ≤ s − 1, we let
x1
j , x

2
j , x

3
j , x

4
j denote the four points xi ∈ Xn ∩ Bj of smallest index (this par-

ticular choice is arbitrary, and is just for definiteness). We also choose points
x3
1, x

4
1 ∈ Xn ∩ B1 and x1

s, x
2
s ∈ Xn ∩ Bs, again by simply choosing points of mini-

mum index. Letting

(11) I = {x1
i , x

2
i | 1 < i ≤ s} ∪ {x3

i , x
4
i | 1 ≤ i < s},

the points in I can be viewed as preselected “interface points” between the boxes
Bj . In particular, we let Λ̄ denote the set of TSP tours in Xn with the properties
that, in the tour,

(1) x4
1 is joined to x3

1 by a path lying entirely in B1;
(2) for 1 ≤ j ≤ s− 1, x3

j and x1
j+1 are adjacent;

(3) for 2 ≤ j ≤ s− 1, x1
j is joined to x3

j by a path lying entirely in Bj ;

(4) x1
s is joined to x2

s by a path lying entirely in Bs;
(5) for s ≥ j ≥ 2, x2

j and x4
j−1 are adjacent; and

(6) for s− 1 ≥ j ≥ 2, x2
j is joined to x4

j by a path lying entirely in Bj .

Note that tours in Λ̄ use only edges of length ≤ 2
√
d
(

K logn
n

) 1
d

. Instead of using the

full strength of the condition Λ =
⋃

v∈L Λv, we will use the weaker (but apparently
more useful) condition

Λ̄ =
⋃

v∈L

Λ̄v

where Λ̄v = Λ̄∩Λv. Intuitively, we are focusing our attention on a restricted set of
tours (chosen such that the value of LB at relevant leaves v ∈ L with nonempty Λ̄v

will be close to its typical length), and this restricted set Λ̄ has the property that
the allowable set of edges at each vertex is now small enough that having a large
excluded set Ov really will force Λ̄v = Λ̄ ∩ Λv to be small.

Our proof will require us to analyze the performance of LB conditioned on the
exclusions Iv and exclusions Ov. Thus we begin by proving that some simple
operations preserve the property of being an feasible instance of the Held-Karp LP.

Lemma 4.1. Suppose we are given a feasible instance of the Held-Karp LP on
a set X of cardinality n. Then the following operations will all result in feasible
instances of the Held-Karp LP:
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(1) Downweight all edges by a factor of (1− 1
n ), add a new pair of vertices y, z

joined by an edge of weight 1, and join each of y, z to all vertices in X by
edges of weight 1

n .

(2) For k < n
2 , downweight all edges by a factor of (1− k

n ), add k new vertices

y1, . . . , yk, and join each yi to all vertices in X by edges of weight 2
n .

Proof. It is immediate for both operations that the (weighted) degree of every
vertex is 2; we need to check that

(12) ∀∅ ( S ( V S(S) :=
∑

e⊆S

xe ≤ |S| − 1.

For Operation 1, observe first that if ∅ ( S ( X, we have S(S) ≤ (1− 1
|X| )(|S|−1)

and S(X) = |X| − 1. For ∅ ( S ( X, we have

S(S ∪ {y}) ≤ (1− 1
|X| )(|S| − 1) + |S| 1

|X| = |S|+ 1
|X| − 1 ≤ |S ∪ {y}| − 1.

and

S(S ∪ {y, z}) ≤ (1− 1
|X| )(|S| − 1) + |S| 2

|X| + 1 = |S|+ |S|+1
|X| ≤ |S ∪ {y, z}| − 1.

And S(X ∪ {y}) = S(X ∪ {z}) = |X|.

Finally, for Operation 2, we have that S(S) ≤ (1− k
|X| )(|S| − 1) if ∅ ( S ( X, and

S(X) = (1− k
n )(|X|) = |X| − k. If Y ⊆ {y1, y2, . . . , yk} and ∅ ( S ⊆ X then

(13) S(S ∪ Y ) ≤ (1− k
|X| )(|S| − 1S 6=X) + |S| · |Y | · 2

|X|

= |S|+ (2|Y | − k)|S|
|X| − 1S 6=X

(
1− k

|X|

)

≤ |S|+
(
|Y | − 1|Y |<k

)(
1− 1S 6=X

|X|

)
− 1S 6=X

(
1− k

|X|

)
,

and we see that (Y ( {y1, . . . , yk} ∨ S 6= X) =⇒ S(S ∪ Y ) ≤ |S|+ |Y | − 1. �

To know that the lower bound LB = HK performs well at leaves v ∈ L such that
Λ̄v 6= ∅, we will also want to patch several smaller solutions to the Held-Karp LP
into a single global solution using the same edges which tours in Λ̄ use to cross the
Bi’s:

Lemma 4.2. Suppose we are given feasible solutions to the Held-Karp LP on dis-
joint sets X1, X2, . . . , Xs of cardinalities n1, n2 . . . , ns. Write Xi = {x1

i , . . . , x
ni

i },
and suppose that the edge {x1

i , x
2
i } has weight 1 for all 2 ≤ i ≤ s and that the edge

{x3
i , x

4
i } has weight 1 for all 1 ≤ i ≤ s− 1. Then we can patch these solutions into

a feasible solution on
⋃s

i=1 Xi by

(a) Deleting all the edges {x1
i , x

2
i } (2 ≤ i ≤ s) and {x3

i , x
4
i } (1 ≤ i ≤ s− 1)

(b) Joining x3
i to x1

i+1 and x4
i to x2

i+1 with edges of weight 1, for all 1 ≤ i ≤ s− 1

Proof. By induction on s, it suffices to handle the case s = 2. (For s > 2, first patch
together the X1, . . . , Xs−1, to obtain a Held-Karp solution containing {x1

1, x
2
1} and

{x3
s−1, x

4
s−1} with weight 1, then patch this with Xs.)
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It is apparent that after the patching operation, the degree of every vertex is still
2. Suppose now that ∅ ( S ( X1 ∪ X2 and write Si = S ∩ Xi for i = 1, 2.
Let 0 ≤ ρ ≤ 2 denote the number of edges from among {x3

1, x
1
2}, {x4

1, x
2
2} whose

endpoints are both in the set S. Note that

S(S) = S(S1) + S(S2) + ρ.

We let S̄(Si) denote the weight of the HK instance on Si before the patching
operation (of course, S(Si) ≤ S̄(Si)) and consider cases:
Case 1: ρ = 0
We have Si 6= Xi for some i ∈ {1, 2}. For at least one i, Si 6= ∅, giving

S(S) ≤ S̄(S1) + S̄(S2) ≤ |S1|+ |S2| − 1 = |S| − 1.

Case 2: ρ = 1
Now ρ < 2 implies that S1 6= X1 or S2 6= X2, while ρ > 0 implies that S1 6= ∅ and
S2 6= ∅. If in fact both S1 6= X1 and S2 6= X2, then we have

S(S) ≤ S̄(S1) + S̄(S2) + 1 ≤ |S1| − 1 + |S2| − 1 + 1 = |S| − 1,

while if (without loss of generality) S1 = X1 and S2 6= X2, then the deletion step
(a) implies that S(S1) = S̄(S1)− 1, and so we have

S(S) ≤ S̄(S1)− 1 + S̄(S2) + 1 ≤ |S1| − 1 + |S2| − 1 + 1 = |S| − 1.

Case 3: ρ = 2
In this case, we have that the deletion step (a) implies that S(Si) ≤ S̄(Si)− 1. In
particular, we have

S(S) ≤ S̄(S1)− 1 + S̄(S2)− 1 + 2 = S̄(S1) + S̄(S2)

and thus S(S) ≤ |S|−1 if ∅ 6= S 6= X1∪X2, since we must have either ∅ 6= S1 6= X1

or ∅ 6= S2 6= X2 (Si = ∅ is not possible since ρ > 0). �

Next we prove a concentration lemma, which is a simple modification of what
appears in [30]. This will allow us to argue that modest conditioning does not
significantly alter the value of LB in the leaves of interest.

Let J ⊆ {1, . . . , n} be any fixed set of indices, and let XJ ⊆ Xn = {x1, x2, . . . , xn}
denote the random set {xj | j ∈ J}. Recalling I from (11), we let

LBi(J) = LB ((Bi ∩XJ) \ I) .
In particular, LBi(J) is the value of LB(XJ) restricted to the box Bi, after throwing

away the (two or four) special points xj
i .

Lemma 4.3. For L̂B(J) =
∑

i LBi(J), where LB = TFg or HK, and |J | = η, we
have

(a) E L̂B(J) ≤ βLBη
(d−1)/d + o(η(d−1)/d).

(b) There is an absolute constant c > 0 such that,

Pr(L̂B(J) ≥ E L̂B(J) + t) ≤ exp

{
− ct2

η(d−2)/d log2/d η

}
.
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Proof.
(a) Suppose that XJ ∩Bi contains ni points for i = 1, 2, . . . , s. Then, in particular,
XJ ∩Bi \ I is ni − 2 or ni − 4 for each i, and we have

E L̂B(J) ≤ (1 + o(1))

s∑

j=1

βLBn
(d−1)/d
j

s1/d
≤ (1 + o(1))

βLB

s1/d
× s

(∑s
j=1 nj

s

)(d−1)/d

,

where we have used Jensen’s inequality.

(b) Assume first that LB = TFg. Let J = {j1, j2, . . . , jη}. Let
di = max

ji,ĵi

|L̂B({j1, j2, . . . , ji, . . . , jη)− L̂B({j1, j2, . . . , ĵi, . . . , jη})|.

The Azuma-Hoeffding inequality implies that

(14) Pr(L̂B ≥ E L̂B + t) ≤ exp

{
− t2

2
∑n

i=1 |di|2
}
.

Now fix j1, j2, . . . , jη, ĵi and suppose that ji ∈ Bk and ĵi ∈ Bl. Then let

∆ = |L̂B(j1, j2, . . . , ji, . . . , jη)− L̂B(j1, j2, . . . , ĵi, . . . , jη)|.
Let F = F1 ∪ · · · ∪ Fs where Fi is the optimal 2-factor for (XJ ∩ Bj) \ I, for
i = 1, 2, . . . , s. Suppose that the neighbors of x = xji on its cycle C in F are y, z.
If |C| = g then we cannot simply delete x and replace the path (y, x, z) by (y, z) as
this will produce a 2-factor of girth g − 1. So, let a be the closest point in Bk to x
that is not on C and let b be a neighbor of a on the cycle C ′ of F that contains a.
The first thing we do now is to delete x and merge the points in C ∪ C ′ \ {x} into
one cycle. We delete the edges {x, y} , {x, z} , {a, b} and add the edges {y, a} , {z, b}.
The change in cost is at most 2d1/2

(
K logn

n

) 1
d

. The new cycle has length at least

2g−1 ≥ g. After this we can insert x̂ = x̂i into the cycle D, say, of Fl that contains
the point c of x1, . . . , xi−1, xi+1, . . . , xn closest to x̂. Thus,

(15) di ≤ 4d1/2
(
K log n

n

) 1
d

.

This proves the lemma for LB = TFg.

Assume now that LB = HK. Here we can use the results of Goemans and Bertsimas
[13]. Proposition 3 and Lemma 11 of the same paper shows that di ≤ 2minj 6=i |x̂i−
xj | and the proof goes through as before. �

We are ready to proceed with the proof of Theorem 1.9. We consider the sizes of
Λ̄ and Λ̄v = Λ̄ ∩ Λv. We let βj = |Xn ∩Bj |. Then we have that

|Λ̄| = (β1 − 2)!




s−1∏

j=2

(βj − 3)!


 (βs − 2)!.

Now, given Iv, we let Ijv ⊆ Iv denote those edges in Iv whose endpoints both lie
in Bj , and I ′v ⊆ Iv denote those edges in Iv of the form {x3

j , x
1
j+1} or {x2

j , x
4
j+1}.
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Given Ov, we let O
j
v denote the set of those edges in Ov whose endpoints both lie in

Bj and are not equal to the edges {x1
j , x

2
j}, {x3

j , x
4
j}, {x1

j , x
4
j}, or {x2

j , x
3
j}. Observe

now that Λ̄v = ∅ unless Iv = I ′v ∪ ⋃s
j=1 I

j
v and Ov =

⋃s
j=1 O

j
v. We now observe

that

(16) |Λ̄v| ≤ (β1 − 2− |I1v |)!2|I
1
v |




s−1∏

j=2

(βj − 3− |Ijv |)!2|I
j
v|


 (βs − 2− |Isv |)2|I

s
v |!

and, letting δA = 1 when |A| ≥ 1, and 0 otherwise:
(17)

|Λ̄v| ≤ (β1 − 2− δO1
v
)(β1 − 3)!




s−1∏

j=2

(βj − 3− δOj
v
)(βj − 4)!


 (βs − 2− δOs

v
)(βs − 3)!

since, e.g., the number of ways of covering K[β] with paths from 1 to 3 and 2 to 4,
respectively, while avoiding an edge e which is not {1, 2}, {3, 4}, {1, 4}, or {2, 3} is
exactly either (β − 3)!− (β − 4)! or (β − 3)!− 2(β − 4)!, depending, respectively on
whether or not e is incident with a vertex in {1, 2, 3, 4}.

Observe now that the Chernoff bounds give that w.h.p all βj ’s satisfy βj < 2K log n.

In particular, there must be at least |Ov|
(

1
2K logn

)2
j’s such |Oj

v| ≥ 1, so that (17)

gives

(18) |Λ̄v| ≤ |Λ̄| ·
(
1− 1

2K log n

)|Ōv|( 1
2K log n )

2

≤ e−|Ov|/(2K logn)3

where Ōv =
⋃s

j=1 O
j
v. Also, for Īv =

⋃s
j=1 I

j
v , (16) gives (very crudely) that, say,

(19) |Λ̄v| ≤ |̄Λ| · ( 13 )−|Iv| ≤ Λ̄ · e−|Iv|

Now (18) and (19) establish that large Īv or Ōv forces Λ̄v to be small. (Note that
this part of the argument would have failed if we were working with Λv’s in place
of Λ̄v’s.) Thus, defining L̄ = {v ∈ L | Λ̄v 6= ∅}, we have that Λ̄ =

⋃
v∈L̄ Λ̄v. In

particular, since Λ̄ is large, we can show that the set of leaves L of the branch and
bound tree must be large (in fact, that L̄ ⊆ L is large) by showing that v ∈ L̄
implies that either Īv or Ōv is large. This is where we use separation of constants.
Indeed, we will prove:

Lemma 4.4. Let LB be TFg or HK. We have w.h.p. that for all v ∈ L̄, either
|Īv|+ |Ōv| > n

log3 n
, or else

LB(Xn|Iv, Ov) ≤ βLBn
d−1
d + C(|Īv|+ |Ōv|)

(
logn
n

) 1
d
+ o(n

d−1
d )

for some constant C.

To use the lemma to complete the proof of Theorem 1.9, we observe that v ∈ L̄
implies that LB(Xn) ≥ TSP(Xn) and thus, from Lemma 4.4, that either |Īv|+|Ōv| >

n
log3 n

, or else that

|Īv|+ |Ōv| ≥ (βTSP − βLB)
n

logn − o( n
logn )
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In particular, in the latter case, the separation βTSP > βLB gives that

|Īv|+ |Ōv| = Ω( n
logn )

In either case, (18) and (19) will then give that

|Λ̄v| ≤ |Λ̄|e−Ω(n/ log6 n)

and thus that
L̄ ≥ eΩ(n/ log6 n),

completing the proof of Theorem 1.9. �

Proof of Lemma 4.4. We have that v ∈ L̄ implies that Iv = Īv ∪ I ′v and Ov = Ōv.
Now let

Yv
n = Xn \ (V (Īv) \ V (Ōv)).

Letting J(X) for X ⊆ Xn denote the set such that X = {xj | j ∈ J(X)}, Lemma
4.3 gives that

(20) Pr

(
∃S ⊆ Xn, |S| ≤

n

log3 n
: L̂B(J(Xn \ S)) ≥ (βLB + ε)n(d−1)/d

)

≤
(

n

n/ log3 n

)
exp

{
− cε2n2(d−1)/d

4n(d−2)/d log2/d

}
≤ exp

{
n

log2 n
− cε2n

4 log2/d n

}
= o(1).

Thus, taking, e.g., ε = 1√
logn

we have that w.h.p all leaves v ∈ L̄ satisfy

L̂B(J(Yv
n)) < βLBn

(d−1)/d + o(n(d−1)/d).

Recall that an instance of L̂B consists of independent instances Hj of LB in each
Bj∩Yn\I. Now, for each j, we patch intoHj the edges in Īv∩Bj (using Operation 1
of Lemma 4.1, if LB = HK), the endpoints of the edges in Ōv∩Bj (using Operation
2 of Lemma 4.1, if LB = HK), and the (one or two, depending in j) edges

{x1
j , x

2
j} for 2 ≤ j ≤ s

{x3
j , x

4
j} for 1 ≤ j ≤ s− 1

(again using Operation 1, if LB = HK). In the case where LB = TFg the patching
is simply accomplished by rerouting cycles through the edges and points. Note

that, as the squares Bj have diameter
√
d
(

K logn
n

)1/d
, the total increase in cost

due to this patching is ≤ Cd(|Īv|+ |Ōv|)
(

K logn
n

)1/d
for some constant Cd.

Next, we patch the resulting solutions together at the points xj
i to a global instance

of the LB (using Lemma 4.2, if LB = HK). It is important to note that by beginning

with an instance of L̂B and then patching to this particular instance of LB, we are
guaranteed this instance includes any edges in I ′v. Since there are O( n

logn ) squares of

diameter O(
√
d( logn

n )
1
d ), the total increased cost from this patching is o(n(d−1)/d),

and so we have shown that

(21) LB(Xn|Īv ∪ I ′v, Ov) < L̂B(Yv
n) + Cd(|Īv|+ |Ōv|)

(
logn
n

)1/d
+ o(n(d−1)/d)

< βLBn
(d−1)/d + Cd(|Īv|+ |Ōv|)

(
logn
n

)1/d
+ o(n(d−1)/d),
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as desired. �

5. Final Remarks

Our results lead to many natural directions of inquiry, and here we mention just
a few. Apart from simply increasing the list of separated pairs of constants, the
following seems like a very good challenge:

1. What is the relationship between βd
MST, β

d
TF, 2β

d
MM?

In connection with Theorem 1.4:

2. The minimum length of covering of Xn by paths of lengths at least k is a
Euclidean functional; let βd

P,k denote the constant in its asymptotic formula. Is it

true that lim
k→∞

βd
P,k = βd

TSP?

Short of a full confirmation of Conjecture 1.6, one could warm up with some special
cases:

3. Pick an integer k, and then prove or disprove that distinct unlabeled trees T on
k vertices have distinct asymptotic constants βd

T .

Finally, we note that as our methods for separating constants give only very small
differences, we have not attempted to calculate lower bounds on, say, βd

TSP − βd
HK,

or optimize our techniques for this purpose, though this project could be pursued.

Acknowledgement: The proof of Theorem 1.4 was provided by a referee. It is
much simpler than our original proof. We are happy to acknowledge this.
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Appendix A. Subadditive Euclidean Functionals

In this section, we establish that the functionals TFg(X) and HF(X) have asymp-

totic formulas of the form ∼ βn
d−1
d , as proofs for these two cases seem to be absent

from the literature.

Steele defined a Euclidean functional as a real valued function L on finite subsets
of Rd which is invariant under translation, and scales as L(αX) = αL(X). It is
nearly monotone with respect to addition of points if

(22) L(X ∪ Y ) ≥ L(X)− o(n
d−1
d ) for n = |X|.

It has finite variance if, fixing n, we have

(23) Var(L(Xn)) < ∞
(in particular, if it is bounded for fixed n) and it is subadditive if, for Yn a random
set of n points from [0, t]d, it satisfies

L(Yn) ≤
∑

α∈[m]d

L(Sα ∩ Yn) + Ctmd−1

for some absolute constant C, where here {Sα} (α ∈ [m]d) is a decomposition of
[0, t]d into md subcubes of side length u = t/m.

Steele proved:

Theorem A.1 (Steele [28]). If L is a subadditive Euclidean functional on Rd of
finite variance, x1, x2, . . . is a random sequence of points from [0, 1]d, and Xn =
{x1, x2, . . . , xn}, then there is an absolute constant βd

L s.t.

(24) L(Xn)/n
d−1
d → βd

L a.s.

In particular, we have a.s. that either L(Xn) = o(n
d−1
d ) (if βd

L = 0) or that

(25) L(Xn) ∼ βd
Ln

d−1
d .

This can thus be used to easily give the existence of the simple asymptotic formulas
for many natural structures for Euclidean points. In the present section, we will
carry out the argument for the functionals TFg(X) and HF(X). We note that the
constant βd

L cannot be zero in either of these cases and thus that (24) implies (25),
since for any 1 ≤ i ≤ n,

E( min
x∈Xn

x 6=xi

dist(xi, x)) = Ω(n− 1
d ),

giving a lower bound of Ω(n
d−1
d ) for each functional by Linearity of Expectation.

Proposition A.2. TFg(X) and HF(X) are subadditive Euclidean functionals.

Before writing a proof, we note that for the definition of the 2-factor functionals
TFg(X), we can only require that the 2-factors whose length we minimize cover all
the points when there are at least max(g, 3) points. Similarly, the HF(X) functional
is required just to cover at least n− |H|+ 1 points.



SEPARATING SUBADDITIVE EUCLIDEAN FUNCTIONALS 31

Proof. We begin by noting that for each of these functionals, we can assert an upper

bound Cn
d−1
d for some constant C, even over worst-case arrangements of n points

in [0, 1]d. The analogous statement for the TSP was proved by Toth [33] and by
Few [10], and implies these bounds for the functionals considered here. Indeed, a
tour through n points itself gives a tree of max-degree 2 (after deleting one edge),
and is a 2-factor subject to any constant girth restriction. For H factors, a tour can
be divided into paths of length |H| (except for < |H| remaining vertices) which can
then be completed to instances of H ′ ⊇ H by adding edges. Each added edge has a
cost bounded by the length of the path it lies in and so this construction increases
the total cost by at most a factor equal to the number of edges in H.

Subadditivity of TFg(X), and HF(X) is now a consequence of the fact that a
union of disjoint 2-factors (subject to restrictions on the cycle length, perhaps)
or H-factors is again a 2-factor (subject to the same restrictions) or an H factor,
respectively. In particular, the subadditive error term for these functions comes
just from the fact that points may be uncovered in some of the subcubes Sα, for
the exceptional reasons noted above. Since there are at most (g − 1)md or |H|md

such uncovered points, however, the error is suitably bounded by the minimum cost
factor on a worst-case arrangement of the remaining points.
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