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Abstract

An infinitely smooth convex body in Rn is called polynomially integrable of degree
N if its parallel section functions are polynomials of degree N . We prove that the only
smooth convex bodies with this property in odd dimensions are ellipsoids, if N ≥ n−1.
This is in contrast with the case of even dimensions and the case of odd dimensions with
N < n− 1, where such bodies do not exist, as it was recently shown by Agranovsky.

1 Introduction

Let K be an infinitely smooth convex body in Rn. The parallel section function of K in the
direction ξ ∈ Sn−1 is defined by

AK,ξ(t) = voln−1(K ∩ {(x, ξ) = t}) =

∫
(x,ξ)=t

χK(x)dx, t ∈ R,

where χK is the indicator function of K, and (x, ξ) is the scalar product in Rn.
It is clear that if B is the Euclidean ball of radius r centered at the origin, then

AB,ξ(t) = cn(r2 − t2)(n−1)/2,

for |t| ≤ r, where cn is a constant depending on n only. In particular, if n is odd then the
parallel section function of B is a polynomial of t for every ξ ∈ Sn−1 and every t for which
K ∩ {x : (x, ξ) = t} is non-empty. This property also holds for ellipsoids.

Definition 1.1. A convex body K (or more generally, a bounded domain) in Rn is called
polynomially integrable (of degree N) if

(1.1) AK,ξ(t) =
N∑
k=0

ak(ξ) t
k

for some integer N , all ξ ∈ Sn−1 and all t for which the set K ∩{x : (x, ξ) = t} is non-empty.
Here, ak are functions on the sphere. We assume that the function aN is not identically zero.
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This concept was introduced by Agranovsky in [1]. He also established a number of
properties of such bodies. In particular, he showed that there are no bounded polynomially
integrable domains with smooth boundaries in Euclidean spaces of even dimensions. In odd
dimensions he proved that polynomially integrable bounded domains with smooth boundaries
are convex, and that there are no polynomially integrable bounded domains in Rn with
smooth boundaries of degree strictly less than n−1, while every such body with degree n−1
is an ellipsoid. For polynomially integrable domains of higher degrees Agranovsky asks the
following.

Problem 1.2. Is it true that in the odd-dimensional space the only polynomially integrable
domains are ellipsoids?

Problems of this kind go back to Newton [11]. Consider the volume of the “halves” of
the body cut off by the hyperplane (x, ξ) = t, that is V +

K,ξ(t) =
∫∞
t
AK,ξ(z)dz and V −K,ξ(t) =∫ t

−∞AK,ξ(z)dz. A body K is called algebraically integrable if there is a polynomial F such

that F (ξ1, . . . , ξn, t, V
±
K,ξ(t)) = 0 for every choice of parameters ξ and t. Newton showed that

in R2 there are no algebraically integrable convex bodies with infinitely smooth boundaries.
Arnold asked for extensions of Newton’s result to other dimensions and general domains; see
problems 1987-14, 1988-13, and 1990-27 in [2]. Vassiliev [14] generalized Newton’s result by
showing that there are no algebraically integrable bounded domains with infinitely smooth
boundary in Rn for even n.

Although Agranovsky’s question stated above (Problem 1.2) has a lot in common with
these types of problems, yet it is different. While for each ξ the parallel section function is
assumed to be polynomial, there are no conditions on the coefficients ak. Thus, it is not a
particular case of Arnold’s question.

Here we consider the following question.

Problem 1.3. Suppose that K is an infinitely smooth convex body in Rn, containing the
origin in its interior, and suppose there exists N ∈ N such that for every even integer
m ≥ N and every ξ ∈ Sn−1 we have

A
(m)
K,ξ(0) = 0.

Is it true that the body K is necessarily an ellipsoid if n is odd and N ≥ n, and that such
bodies do not exist in all other cases?

In this paper we give an affirmative answer to Problem 1.3, thus solving Problem 1.2,
since convexity follows from the condition (1.1), as it was shown in [1, Theorem 5]. Also
the condition that K contains the origin is not restrictive because polynomial integrability
is invariant with respect to shifts. Note that the number N in Problem 1.3 differs by one
from that in Definition 1.1.
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2 Preliminaries

We say that K is a star body in Rn if it is compact, star-shaped with respect to the origin,
and the Minkowski functional of K defined by

‖x‖K = min{a ≥ 0 : x ∈ aK}, x ∈ Rn.

is a positive continuous function on Rn \ {0}.
K is said to be infinitely smooth if its Minkowski functional is a C∞-function on Rn\{0}.

K is origin-symmetric if K = −K, which also means that the Minkowski functional of K is
an even function on Rn.

Most of the time we will assume that K is a convex body in Rn, i.e. a compact convex
set with non-empty interior.

In this paper we will be working with the Fourier transform of distributions; we refer to
[8], [9], and [5] for details. Let S(Rn) be the Schwartz space of infinitely differentiable rapidly
decreasing functions on Rn, called test functions. The Fourier transform of φ ∈ S(Rn) is a

test function φ̂ defined by

φ̂(x) =

∫
Rn

φ(y)e−i(x,y) dy, x ∈ Rn.

By S ′(Rn) we denote the space of continuous linear functionals on S(Rn). Elements of
S ′(Rn) are referred to as distributions. We write 〈f, φ〉 for the action of f ∈ S ′(Rn) on a
test function φ.

The Fourier transform of f is a distribution f̂ defined by

〈f̂ , φ〉 = 〈f, φ̂〉, ∀φ ∈ S(Rn).

If a distribution f is supported in the origin, i.e. 〈f, φ〉 = 0 for any test function φ supported
in Rn\{0}, then f is a finite sum of derivatives of the delta function, and its Fourier transform

f̂ is a polynomial.
If K ⊂ Rn is a convex body, containing the origin in its interior, and p > −n, then ‖ · ‖pK

is a locally integrable function on Rn and therefore can be thought of as a distribution that
acts on test functions by integration,

〈‖ · ‖pK , φ〉 =

∫
Rn

‖x‖pKφ(x) dx, ∀φ ∈ S(Rn).

If K is an infinitely smooth convex body, containing the origin in its interior, p > −n,
and p 6= 0, then the Fourier transform of ‖ · ‖pK is given by a homogeneous of degree −n− p
continuous function on Rn \ {0}; see [8, Lemma 3.16]. We write (‖x‖pK)∧(ξ) meaning the
value of this continuous function at the point ξ ∈ Sn−1. Moreover, this function can be
computed in terms of fractional derivatives of the parallel section function of K.

Let h be an integrable function on R that is C∞-smooth in a neighborhood of the origin.
The fractional derivative of the function h of order q ∈ C at zero is defined by

h(q)(0) = 〈 t
−1−q
+

Γ(−q)
, h(t)〉,
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where t+ = max{0, t}.
In particular, if q is not an integer and −1 < <q < m for some integer m, then

h(q)(0) =
1

Γ(−q)

∫ 1

0

t−1−q
(
h(t)− h(0)− · · · − h(m−1)(0)

tm−1

(m− 1)!

)
dt

+
1

Γ(−q)

∫ ∞
1

t−1−qh(t)dt+
1

Γ(−q)

m−1∑
k=0

h(k)(0)

k!(k − q)
.

If k ≥ 0 is an integer, the fractional derivative of the order k is given as the limit of the
latter expression as q → k. That is

h(k)(0) = (−1)k
dk

dtk
h(t)

∣∣∣
t=0
,

i.e. fractional derivatives of integral orders coincide up to a sign with ordinary derivatives.
Note that h(q)(0) is an entire function of the variable q ∈ C.

If K is an infinitely smooth convex body, then AK,ξ is infinitely smooth in a neighborhood
of t = 0 which is uniform with respect to ξ ∈ Sn−1; see [8, Lemma 2.4] (note that the proof
there works without the symmetry assumption). In [13] (see the proof of Theorem 1.2 there)
the following formula is proved:

A
(q)
K,ξ(0) =

cos(qπ/2)

2π(n− 1− q)
(
‖x‖−n+1+q

K + ‖ − x‖−n+1+q
K

)∧
(ξ)(2.1)

− i sin(qπ/2)

2π(n− 1− q)
(
‖x‖−n+1+q

K − ‖ − x‖−n+1+q
K

)∧
(ξ).

In [13] this formula is stated only for −1 < q < n− 1, but a standard analytic continuation
argument yields a larger range of q, namely q ∈ (−1,∞), q 6= n− 1. In the symmetric case
formula (2.1) was established in [4], see also [8, Th 3.18] and a different proof in [3].

In particular, for integers we get the usual derivatives. If k ≥ 0 is an even integer,
k 6= n− 1, then

(2.2) A
(k)
K, ξ(0) =

(−1)k/2

2π(n− k − 1)

(
‖x‖−n+1+k

K + ‖ − x‖−n+1+k
K

)∧
(ξ),

and if k > 0 is an odd integer, k 6= n− 1, then

(2.3) A
(k)
K, ξ(0) =

i(−1)(k−1)/2

2π(n− k − 1)

(
‖x‖−n+1+k

K − ‖ − x‖−n+1+k
K

)∧
(ξ),

A formula for the derivative of the order n− 1 can be obtained precisely as in [7] (where
this was done for origin-symmetric bodies) by taking the limit in (2.1) as q → n − 1. In
particular, if n is odd, then

(2.4) A
(n−1)
K, ξ (0) =

(−1)(n−1)/2

2π

(
ln ‖x‖K + ln ‖ − x‖K

)∧
(ξ),

for every ξ ∈ Sn−1.
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3 Main results

First we prove a version of Agranovsky’s result in the setting of Problem 1.3.

Proposition 3.1. There are no infinitely smooth convex bodies in Rn for even n satisfying
the condition of Problem 1.3.

Proof. Let K be an infinitely smooth convex body in Rn satisfying the condition of Problem
1.3. Take an even m ≥ max{N, n}. Then using (2.2) we have(

‖x‖−n+1+m
K + ‖ − x‖−n+1+m

K

)∧
(ξ) = (−1)m/22π(n−m− 1)A

(m)
K, ξ(0) = 0,

for every ξ ∈ Sn−1.
Thus the Fourier transform of f(x) = ‖x‖−n+1+m

K + ‖ − x‖−n+1+m
K is zero outside of the

origin, implying that f(x) can only be a polynomial; see [12, Thm. 6.25]. This polynomial
has to be even, since the function f(x) is even. On the other hand, since −n+ 1 + m is an
odd number, f(x) has to be an odd polynomial. Thus f(x) is zero for all x ∈ Rn, which is
impossible.

Note that in the proof we needed only one derivative of the parallel section function.

Proposition 3.2. For odd n, there are no smooth bodies in Rn satisfying the condition of
Problem 1.3 with N < n.

Proof. Suppose such a body K exists. If N ≤ n− 3, we let m = n− 3 so that m is an even
integer. The distribution (‖x‖−n+m+1

K +‖−x‖−n+m+1
K )∧ = (‖x‖−2

K +‖−x‖−2
K )∧ is an extension

of a continuous function on the sphere to a homogeneous function of degree −n + 2 on the
whole of Rn. Since −n + 2 > −n, this function is locally integrable, and as a distribution
acts on test functions by integration. On the other hand, by (2.2) and the hypothesis of the
proposition, this homogeneous function is equal to zero on the sphere. So the distribution
(‖x‖−2

K +‖−x‖−2
K )∧ is equal to zero on all test functions, and ‖x‖−2

K +‖−x‖−2
K = 0 everywhere,

which is impossible.
If N = n− 2 or N = n− 1, the argument is similar. We let m = n− 1 and use formula

(2.4) to get (
ln ‖x‖K + ln ‖ − x‖K

)∧
(ξ) = 0,

for every ξ ∈ Sn−1.
Since (ln ‖x‖K + ln ‖ − x‖K)∧ is homogeneous of degree −n, this Fourier transform can

only be a multiple of the delta function supported at the origin. So ln ‖x‖K + ln ‖ − x‖K
must be a constant for all x ∈ Rn, which is impossible.

For the reader’s convenience we will first settle the case N = n in odd dimensions, since
the argument here is much simpler than that for N > n.
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Proposition 3.3. Let K be an infinitely smooth convex body in Rn, n is odd, satisfying the
condition of Problem 1.3 with N = n. Then K is an ellipsoid.

Proof. Using formulas (2.3) and (2.2) with k = n and k = n+ 1 correspondingly, we get

(‖x‖K − ‖ − x‖K)∧ (ξ) = 0

and (
‖x‖2K + ‖ − x‖2K

)∧
(ξ) = 0,

for all x ∈ Sn−1. This implies that ‖x‖K − ‖− x‖K = P (x) and ‖x‖2K + ‖ − x‖2K = Q(x) for
some homogeneous polynomials P and Q of degrees 1 and 2 correspondingly. Solving this
system of two equations, we get

‖x‖K =
1

2

(
P (x) +

√
2Q(x)− P 2(x)

)
.

Note that when solving the quadratic equation we kept only the plus sign, since the Minkowski
functional cannot be negative. To see that the latter equation defines an ellipsoid, we let x
be a point on the boundary of K. Then ‖x‖K = 1 and therefore

2− P (x) =
√

2Q(x)− P 2(x).

Squaring both sides, we get an equation of a quadric surface. This can only be the surface
of an ellipsoid, since the boundary of K is a complete bounded surface.

Now we will treat the case N > n. We will need the following auxiliary results.

Lemma 3.4. Let L be an origin-symmetric star body in Rn. Suppose that for some positive
even k there are homogeneous polynomials P and Q so that ‖x‖kL = P (x) and ‖x‖k+2

L = Q(x)
for all x ∈ Rn. Then L is an ellipsoid.

Proof. By the hypothesis of the lemma we have (P (x))k+2 = (Q(x))k for all x. Now let
us consider any two-dimensional subspace H of Rn. The restrictions of P and Q to H are
again homogeneous polynomials of degrees k and k + 2 correspondingly. Abusing notation,
we will denote these restrictions by P (u, v) and Q(u, v), where (u, v) ∈ R2. Thus we have
(P (u, v))k+2 = (Q(u, v))k for all (u, v) ∈ R2. Since both P and Q are homogeneous, the
latter is equivalent to

(P (u, 1))k+2 = (Q(u, 1))k, ∀u ∈ R.

We have the equality of two polynomials of the real variable u, therefore these polynomials
are equal for all u ∈ C. Let u0 be a complex root of P (u, 1) of multiplicity α ≤ k. Then u0

is also a root of Q(u, 1) of some multiplicity β ≤ k + 2. Hence we have

α(k + 2) = βk,

α

β
=

k

k + 2
.
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Recall that k is even, say k = 2l, l ∈ N. Thus

α

β
=

l

l + 1
.

Since l and l + 1 are co-prime, there are only two possibilities for α and β: either α = l,
β = l + 1, or α = 2l, β = 2l + 2. The latter is impossible since it implies that

‖(u, v)‖kL∩H = P (u, v) = c(u− vu0)
k,

for some constant c. So the remaining possibility is that P (u, 1) has two complex roots, say
a and b of multiplicity l. Therefore,

‖(u, 1)‖kL∩H = P (u, 1) = c[(u− a)(u− b)]l = c[u2 − (a+ b)u+ ab]l

= c[u2l − l(a+ b)u2l−1 +

((
l

2

)
(a+ b)2 + lab

)
u2l−2 + · · · ].

Since the restriction of this polynomial to R has real coefficients, it follows that a + b and
ab are real numbers. Since a and b cannot be real, we conclude that they are complex
conjugates of each other. Therefore, ‖(u, v)‖2K∩H = c̄[u2−(a+b)uv+abv2] is a nondegenerate
quadratic form. Thus L ∩H is an ellipse. Since every 2-dimensional central section of L is
an ellipse, L has to be an ellipsoid. The latter is a consequence of the Jordan - von Neumann
characterization of inner product spaces by the parallelogram equality; see [6].

Note that the previous lemma solves Problem 1.3 in the case of origin-symmetric bodies.
Moreover, one only needs two derivatives of even orders.

We will use the following notation. A is the ring of polynomial real functions on Rn, F
is the field of rational real functions, i.e., functions of the form g/h, where g and h are in A.
The ring A is a factorial ring, i.e., every nonzero polynomial factors uniquely into a product
of irreducible polynomials (see [10, Chapter IV, Corollary 2.4]). The field F is the quotient
field of A.

Lemma 3.5. Let P, P ′, Q,Q′ ∈ A be such that Q and Q′ are non-negative and Q′ is not a
square in A. If P +

√
Q = P ′ +

√
Q′, then P = P ′ and Q = Q′.

Proof. We have

Q = (P ′ − P +
√
Q′)2 = (P ′ − P )2 + 2(P ′ − P )

√
Q′ +Q′.

If P ′ 6= P , then
√
Q′ ∈ F , hence Q′ is a square in F and therefore, Q′ is a square in A, a

contradiction. It follows that P ′ = P and hence Q′ = Q.

Theorem 3.6. Let f be a positive homogeneous function on Rn, n ≥ 2, of degree 1, and
m0 be a positive integer such that f(x)m = Pm(x) +

√
Qm(x) for all odd m ≥ m0, where

Pm are degree m polynomials, and Qm are positive degree 2m polynomials. Then f(x) =
P (x) +

√
Q(x), where P is a linear polynomial and Q is a positive quadratic polynomial.
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Proof. We claim that all polynomials Qm are not squares in A and F . For if Qm = S2
m for

some odd m and a polynomial Sm, we have f(x)m = Pm(x) + |Sm(x)|. As n ≥ 2, there is a
nontrivial zero x of the polynomial Pm−Sm. Changing sign if necessary, we may assume that
Pm(x) = Sm(x) ≤ 0. Then f(x)m = Pm(x)− Sm(x) = 0. But f is positive, a contradiction.
The claim is proved.

Let m and m′ be two large odd integers. We have

Pmm′ +
√
Qmm′ = fmm

′
=
(
Pm +

√
Qm

)m′

= Km + Lm
√
Qm

for some polynomials Km and Lm. By Lemma 3.5, Qmm′ = L2
mQm. Similarly, Qmm′ =

L2
m′Qm′ for a polynomial Lm′ . It follows that the ratio Qm/Qm′ is a square in F for all large

odd m and m′. Moreover, there is a polynomial D such that Qm = S2
mD for a polynomial

Sm for all large odd m. In particular, D is not a square in A and F .
Consider the ring F (

√
D) of all functions of the form A + B

√
D, where A,B ∈ F . As

D is not a square in F , the ring F (
√
D) is a quadratic field extension of F with F -basis

{1,
√
D}. Note that fm ∈ F (

√
D) for all large odd m. It follows that f ∈ F (

√
D).

Write
f = P + S

√
D

for some rational functions P, S ∈ F .
Let B be the set of all functions s ∈ F (

√
D) that are integral over A, i.e., s is a root of

a monic polynomial in one variable with coefficients in A. By [10, Chapter VII, Proposition
1.4], B is a subring of F (

√
D) containing A. Since

√
D ∈ B, we have

fm = Pm +
√
Qm = Pm + Sm

√
D ∈ B

for an odd m. It follows that f ∈ B.
Similarly, f̄ := P − S

√
D ∈ B since

f̄m = (P − S
√
D)m = Pm − Sm

√
D ∈ B.

Therefore, the functions P = 1
2
(f+f̄) and S2D = 1

4
(f−f̄)2 belong to B. Since A is a factorial

ring, all rational functions in F that are integral over A belong to A, i.e., F ∩B = A by [10,
Chapter VII, Proposition 1.7]. Thus, f = P +

√
Q, where P and Q := S2D are polynomials.

As f is a positive homogeneous function of degree 1, for every positive real number a,

P (x) +
√
Q(x) = f(x) = af(a−1x) = aP (a−1x) +

√
a2Q(a−1x)

for all x. By Lemma 3.5, P (x) = aP (a−1x) and Q(x) = a2Q(a−1x). It follows that the
polynomial P is linear and Q is quadratic.

Theorem 3.7. Let n be an odd positive integer. Let K be an infinitely smooth convex body
in Rn, containing the origin as its interior point, and suppose there exists a number N ≥ n
such that for every ξ ∈ Sn−1 and every m ≥ N we have

A
(m)
K,ξ(0) = 0.

Then K is an ellipsoid.
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Proof. By formula (2.2), the Fourier transform of ‖x‖−n+m+1
K + ‖ − x‖−n+m+1

K , for even
m ≥ N , is zero outside of the origin. The part supported in the origin is a derivative of
the delta function, so ‖x‖−n+m+1

K + ‖ − x‖−n+m+1
K is a polynomial. Similarly, if m ≥ N is

odd, then (2.2) implies that ‖x‖−n+m+1
K − ‖ − x‖−n+m+1

K is also a polynomial. Thus for any
k ≥ (N − n+ 1)/2 we have

‖x‖2kK + ‖ − x‖2kK = Q1(x),

‖x‖2k+1
K − ‖ − x‖2k+1

K = Q2(x),

‖x‖4kK + ‖ − x‖4kK = Q3(x),

‖x‖4k+2
K + ‖ − x‖4k+2

K = Q4(x),

where Q1, Q2, Q3, Q4 are homogeneous polynomials of degrees 2k, 2k + 1, 4k, 4k + 2
correspondingly.

Squaring the first two of these equalities and subtracting the second two equalities, we
get

(‖x‖K‖ − x‖K)2k = P1(x),

(‖x‖K‖ − x‖K)2k+1 = P2(x),

for some homogeneous polynomials P1 and P2.
Defining a star body L by the formula ‖x‖L =

√
‖x‖K‖ − x‖K and appying Lemma 3.4,

we obtain that L is an ellipsoid. Thus, there is a positive quadratic polynomial B such that

(3.1) ‖x‖K‖ − x‖K = B(x), ∀x ∈ Rn.

Furthermore, equation (3.1) together with

‖x‖2k+1
K − ‖ − x‖2k+1

K = Tk(x),

for every k ≥ (N − n)/2 and for some odd polynomials Tk, yield a quadratic equation that
gives

‖x‖2k+1
K =

1

2

(
Tk +

√
T 2
k (x) + 4[B(x)]2k+1

)
.

Using Theorem 3.6, we conclude that the Minkowski functional of K is of the form

‖x‖K = P (x) +
√
Q(x),

where P is a polynomial of degree 1, and Q is a positive polynomial of degree 2. Thus, K is
an ellipsoid.
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