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1. Introduction and statement of results
1.1. Historical perspective

An important problem in reduction theory of integral quadratic forms is to decide to
what extent one can simplify a given integral quadratic form by taking an equivalent
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form. In this context an explicit question is given an integral quadratic form, how small
can the coefficients of an equivalent form be? Let @) be a quadratic form and A = (a;;) the
symmetric matrix of ). Sometimes we will use @ = (a;;) with abuse of notation. Recall
that the quadratic form @ is called integral if the entries A are integers. To measure the
complexity of @ we will consider det A the determinant of @) and

ht(Q) := max(|ai;|)

the height of Q). Two integral quadratic forms are said to be equivalent if their symmetric
matrices A and B satisfy A = ~!'B~ for some v € GL,(Z).

An early achievement in reduction theory, due to Lagrange, is that any non-degenerate
binary integral quadratic form @ is equivalent to a form az?+bxy+cy? with [b| < |a| < |c|.
This implies

4 b?
ht(az? + bry + cy?) = |¢| < 3 lac — Z| = 4|det Q|/3. (1)

In other words, any binary quadratic form is equivalent to a form whose coeflicients are
all small. Since equivalent integral quadratic forms have the same determinant we have,
by the finiteness of the choice of a, b and ¢, for any integer D > 0 there are only finitely
many equivalence classes of binary quadratic forms with the determinant equal to D.
Historically, an important application of reduction theory was to prove the finiteness for
the number of equivalence classes of integral quadratic forms of a given determinant, in
any number of variables.

1.2. Statement of results on quadratic forms

The goal of the present paper is to prove some new and improved estimates for re-
duction of indefinite ternary integral quadratic forms, using an approach based on the
theory of homogeneous flows. For the dynamical setting we let, throughout the paper,
G stand for SL3(R) and T" for SL3(Z). We will fix the indefinite ternary integral quadratic
form

Qo(w) = 2w wz — w% (we RB),

and denote by H = SO(Qo)x the identity component of the real points of the special
orthogonal group of Qg. We shall also fix a right invariant Riemannian metric on G
which induces a G-invariant probability measure on G/T'. The metric restricts to the
closed subgroup H of G and gives rise a Haar measure my on H. For any indefinite
ternary real quadratic form @, there exists an element g € G such that

Q() = (det Q)3 - Qo(g-). (2)
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Recall that if Q is integral, then the subgroup HNgl'g~! is a lattice in H. The covolume
of this lattice has been used by people to measure the complexity of an integral quadratic
form, besides height and determinant.

Definition 1.1. Let @@ be an indefinite ternary integral quadratic form. The volume of @,
denoted by vol(Q), is by definition the co-volume of HNgl'g~! in H with respect to the
Haar measure mpg.

The reader may readily verify that (1) the value vol(Q) does not depend on the choice
of g € G; (2) vol(Q) = vol(kQ) for any integer k; and (3) equivalent integral quadratic
forms have the same volume. We are now in a position of stating our main results.

Theorem 1.2. There is a constant C > 0 such that for any indefinite ternary integral
quadratic form Q1 and £ € (—1,1), there exists a quadratic form Q = (a;;) equivalent to
Q1 and satisfying

a11 _ 1
m =& < C-vol(Qy) ) (3)
ht(Q) < C - | det Q5. (4)

We note that the estimate in (4) is optimal, up to a multiplicative constant C', because
plainly one has ht(Q) > | det Q|3 = |det Q1]3. Notice also that such estimate is not valid
for definite forms, as the height of any quadratic form equivalent to 2 + 3+ D3, where
D > 0, must be at least D.

It is also well known (see for instance [7, 2.6] and [2, Sect. 17.3]) that the determinant of
any primitive form is bounded above by a polynomial of vol(Q). In view of Theorem 1.2,
it might be of interest to give an explicit exponent for such estimate. Hence we have the
following result.

Proposition 1.3. There exists a constant C > 0, such that for every primitive indefinite
ternary integral quadratic form @,

|det Q| < C - vol(Q)*°. (5)

It is necessary to assume the quadratic form to be primitive in the above proposition
because vol(Q) = vol(kQ) but det(Q) = k* det(Q), for any integer k.
The following corollary is an easy consequence of Theorem 1.2 and Proposition 1.3.

Corollary 1.4. There is a constant C > 0 such that for any primitive indefinite ternary
integral quadratic form Q1, there exists a quadratic form Q = (a;;), which is equivalent
to Q1, satisfying

0<lan| < C-|det@q|3 =3,  ht(Q) < C-|det Q5.
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Another direct consequence of Theorem 1.2 is the existence of many equivalent forms
of small height.

Corollary 1.5. There exist constants C, ¢ > 0 such that for every indefinite integral
quadratic form Qq,

# {Q equivalent to Q1 : ht(Q) < C - | det Q1|%} >c- vol(Ql)ﬁ.

The asymptotics of # {Q equivalent to Q1 : ht(Q) < T} (T — o0) can be analyzed
by the lattice point counting theory. The readers are referred to a nice survey of Oh [10]
for more information on this topic. However, Corollary 1.5 is mainly concerned with the
number of forms whose height are relatively small.

Finally, a result of Siegel [12] asserts that one can effectively determine the equivalence
of two given integral quadratic forms (see also a recent paper of the authors [6] for
polynomially effective results). Hence for any given indefinite ternary integral quadratic
form ()1, one can in principle effectively find all quadratic forms @ satisfying Theorem 1.2,
Corollary 1.4 and Corollary 1.5.

1.8. Outline of the paper

Section 2 introduces the preliminaries for later sections. In Section 3 we will state the
main dynamical result Theorem 3.2 and use it to prove Theorem 1.2 combining a result in
the geometry of numbers Lemma 3.1. The proof of Theorem 3.2 will be given in Section 6.
It involves the study of the transversal behavior of closed H-orbits in G/T" which will be
carried out in Section 4 and the spectral theory of automorphic representations which
will be discussed in Section 5. Section 7 is devoted to the proof of Proposition 1.3.

2. Preliminaries

2.1. Notations and basic facts

Let G = SL3(R), I = SL3(Z), X = G/T and H = SO(Qo)x be as in Section 1.2. For
any element g € G we will denote by [g] the element gT" € X which can be naturally
identified with the unimodular lattice gZ3 in R3.

In the sequel || - || will be a fixed matrix norm on G. For any r > 0 we denote by

Bg(r):={9ge€G:|g—1¢g| <7}, By (r) := HN Bg(r).
They are identity neighborhoods of G and H, respectively. We will make frequent use of

A0 0 10 s
D(/\):<O 1 O)eH, V(s):<0 1 0>6G.
0 0 Al 00 1

the matrices
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Let g = Lie(G) and b = Lie(H) be the Lie algebras. Under the adjoint action of H,
the vector space g is decomposed into irreducible H-modules g = h + h’. Let E;; be the
matrix whose ijth entry is 1 and 0 otherwise. We shall fix a Euclidean norm || - || on g
such that it gives rise to a G-invariant probability measure on X, and that F3, Fs1,
Ei19 — Es3, Ey1 — E39, E11 — 2E99 + FE33 form an orthonormal basis of i’. Thus the vector
space b’ has an orthogonal decomposition

f)/ = f)lo + r]ll, where h6 = RElg. (6)

We are interested in this decomposition because for the adjoint of action of D(A) with
A > 1, b is the subspace of h’ with the maximal expansion. We will write r = g + r;
for any r € i’ according to (6).

The group K = exp(R(E12 + E23 — E21 — E32)) is a maximal compact subgroup of H.
It will be useful to keep in mind the following fact.

There does not exist a nonzero linear subspace of b

that is invariant under the adjoint action of K. (7)
2.2. Invariant measures

Let H.z be a closed orbit in X with = [g]. Then H N gl'g~! is a lattice in H.
The orbit H.x supports a unique H-invariant probability measure which will be denoted
as .. We will also consider the measure voly on H.x induced by the Haar measure mpy
(see Section 1.2). The two H-invariant measures are related in such a way that for any

Borel subset Y C H.x
voly (H.z) - i (Y) = volg (V).
2.8. Compact subsets of X

Let a; be the function on X defined as a;([g]) = max{|lw|~! : w € gZ3\{0}}. By
Mabhler’s criterion G(R) = {z € X : a1(x) < R} is a compact subset in X for every
R > 0. By [2, Lemma 3.2] we can fix a large number Ry > 0 such that for every closed
orbit H.xz in X

po(Hx N &(Ry)) >1—107" (8)

For later use (in Proposition 4.4), we will consider an enlarged K-invariant compact
subset of G(Ry)

Xept ={kx: ke K,z € 6(Ry)} C X.
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For technical reason we shall fix some other constants related to X, whose existence
can be easily seen by compactness argument: a positive constant R; > 0 such that

cht Cc BG(Rl)[lG]; (9)

and positive constants ey, R > 0 such that Bg(eg)Xcps C S(R)) and the map g — g.x
is injective on Bg(eg) for every z € G(Ry).

2.4. Effective constants and their dependencies

In the sequel, the notation cq,cg,--- will stand for positive constants which are in
principle effectively computable and may depend on G, H, X, and the choice of Ry, €,
Ry, Rj in Section 2.3; we also allow ¢; depends on the choice of ¢y, - -, ¢;—1. We will use
A < B to represent the inequalities A < nB for some sufficiently large and effectively
computable multiplicative constant 1 > 0, which might depend on the choice of Ry, €,
Rl, R67 C1, Coy ="

3. The main dynamical result and proof of Theorem 1.2
3.1. A result in geometry of numbers

Lemma 3.1. Let Ry be as defined in Section 2.3 and g € Bg(Ry). Then there exists
a primitive vector w € gZ> (that is, w = gv for some v € Z> with the g.c.d. of the
coordinates of v equal to 1) satisfying

Jwl| <1, Qu(V(Dw) < -1, Qo(V(4)w)> 1.
Proof. Let V = {v € R?: Qo(V(1)v) < —1, Qo(V(4)v) > 1}. First we notice that there
exists t; > 0 such that for any ¢ > t1,
BG(Rl)BR3 ((_ta t, t)v t/32) c BR3 ((_ta t, t)v t/16) c V}

where Brs(v,7) = {z € R? : ||z —v|| < r}. Let D = Bgs((—1,1,1),1/32). It is well
known that

vol(tD)
¢(3)

Therefore, there exists to > 0 such that for any ¢ > ¢5 the ball tD = Bgs((—t,t,t),t/32) C
R3 contains a primitive lattice point in Z3. Let us fix a to which is larger than both ¢;

#{v € Z° NtD : v primitive} ~

and to. We see from the above that there exists a primitive lattice point vo € Z> satis-
fying
Bg(R1)vo € Bg(R1)Bgs((—to, to, o), to/32) C Brs((—to,to,t0),t0/16) C V.

Hence the primitive vector w = gvg satisfies the lemma. O
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3.2. The main dynamical theorem

We are now in a position of stating our main dynamical result.

Theorem 3.2. Let H.x be a closed orbit in X with voly(H.x) = M. Then, there exists
y € Xepy such that for any t € (1,4) there exists u € G satisfying

Wty € Ha, |u—lg| < M .

Roughly speaking, the theorem says that any closed H-orbit has some concentration
in the compact part of X which can be seen in the direction of {V(¢) : 1 < ¢t < 4}
that is transversal to the direction of H. The proof of Theorem 3.2 will be postponed to
Section 6. We now deduce Theorem 1.2 from Theorem 3.2.

3.3. Proof of Theorem 1.2

Proof. As Q; is integral, there exists g, € G such that Q1 = (det Q1)3Qo(g1-) and the
orbit H.[¢g1] is closed. By Theorem 3.2, there exists [g] € X¢py such that for any ¢ € (1,4)
there exists u € G satisfying

uV(t).lgl € Hg],  Ju—lg| < M™% (10)

where M = voly (H.[g1]). Moreover, by (9), we can choose g € G such that g € Bg(Ry).
By Lemma 3.1, there exists a primitive vector w € gZ? satisfying

lw] <« 1, Qo(V(Hw) < —1, Qo(V(4)w) > 1.
Let € € (—1,1) be given. Since Qo(V (s)w) = Qo(w) + 2sw?3, there exists t¢ € (1,4) such

that Qo(V (te)w) = &. For t = t¢, let ug be the element u satisfying (10). Consider the
quadratic form

Q2() = (det Q1) Qo(ueV (te)g-).

First, as ueV (t¢).[g] € H.[g1], the quadratic form @, is integral and equivalent to Q.
Second, letting v = g~ 'w € Z3 and since |[w|| < 1 and ||V (¢¢)|| < 1, we have

_Qa(v) g‘ _ ’Qo(u5V(t5).w) — Qo(V(te)w)| < |lue — 1| < M~%0.

(det Q)3

Finally, as ||ugV (t¢)g|| < 1, the height of the quadratic form @, satisfies

ht(Q2) < | det Q13
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We proceed to find a form @ satisfying our theorem. Notice that the vector v € Z?2 is
primitive and

o]l < llg™ I - ]l < 1.

Let e = (1,0, 0). From the above we conclude that there exists v € I" such that v.e = v
and ||| < 1. We shall prove that @ = Q2 o v satisfies Theorem 1.2. Obviously @ is
equivalent to Qy. Since ||| < 1, we have ht(Qz 0 ) < (det Q1) and thus Q satisfies
the height bound (4) for the theorem. Finally to check (3), with Q = (a;;) we have

Q2(v)

T —& < M~ w0, O
(det@1)3

-2y

‘ Q207(e)
(deth)% %

(det Q1) 5‘ :’

(det Ql )i
4. Recurrence properties of closed H-orbits
4.1. The drift of transversally nearby points on closed H-orbits

We now state some basic facts concerning the drift of nearby points on closed H-orbits
under the translates of D()\) (see [8,2,9]). Suppose H.x1, H.zo are (not necessarily dis-
tinct) closed orbits in X, and assume that exp(r).z1 = x2 for some r € i’. Then

D(N).x2 = D(A) exp(r).x1 = exp(Ad(D(X))r)D(N).x1. (11)

That is, the drift of x; and x5 is given by exp(Ad(D(X))r). Writing r = rg + 1 as (6),
we have

Ad(D\)r = A%rg + Ad(D(\)r1,  [|AA(DN)r1 ]| < Al (12)
Lemma 4.1. The following two statements are valid.

1. Let mg be the Haar measure on K as in Sect. 1.2. There exists ¢c1 > 0 such that for
any r € h'\{0}

mK({keK:W >c1}) > 0.99mx (K). (13)

2. Let v € B'\{0} be such that ||ro|| > ci||7||. Then for any X\ > 0 with A\?||ro|| < 4 we
have

| exp(Ad(D(N)r)) — exp(Aro)|| < A7 (14)

Remark. See also [9, Proposition 3.2, 3.3].
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Proof. For (13) we only need to work with ||r|| = 1. By (7), for every unit vector
r € h’\{0} we can find ¢ = ¢(r) for which (13) holds. Since the unit sphere in Euclidean
space is compact, we can choose a constant ¢; > 0 which satisfies (1). The assertion (2)
follows directly from (12). O

4.2. Transversal injectivity radius for points on closed H-orbits

Definition 4.2. Let ¢y be as defined in Section 2.3, and By (t) := {r € b/ : ||r|| < t}. We
fix 1 > 0 so that exp(Bp(€1)) C Bg(eo/2) and exp(By (e1)) N H = {e}. Let H.[g] be a
closed orbit in X. By definition the transversal injectivity radius of = € H.[g] is

o(z) =sup{0 < e < € : exp(By (€))x N H.[g] = {z}}.
Roughly speaking, transversal injectivity radius measures how close an H-orbit can
approach itself at a given point from transversal direction.

The following lemma concerns polynomially quantitative isolation of closed H-orbits.

Lemma 4.3. /2, Lemma 10.1] There are constants ca,c3 > 0, so that for any closed orbit
H.[g] € X and x € H.[g] N Xcpt, we have o(x) > coM ™.

Our next result provides for a large fraction of points on a closed H-orbit an upper
bound on their transversal injectitivity radius.

Proposition 4.4. There exists ¢y > 0 such that, for any closed orbit H.x in X, the subset

B={ye HrNXep:3 7€ such that exp(r)y € H.x,
7]l < min(ey *flroll, csd=2)}
satisfies p1(B) > 0.9. Here the decomposition r = 1o + 11 s as (6).
Remark. The fact that % is nonempty for large enough constant ¢4 is proved in |2,
Proposition 14.2] (see also [9, Proposition 3.3]). Here we show in our setting that B

consumes a large portion.

Proof. (Step I) We begin by fixing some notation. Let €; be as in Definition 4.2, 2 =
H.axNXep and As = {y € A: o(y) < §} where 0 < 6 < 1. We first show that

VOIH(Ql — 9(5) < 675,
Notice that there is a constant x > 0 such that m(exp(By(8))$2) > £6° vol() for any

0 < 0 < €1 and Borel set Q C By (ep/2). The compact set A — 2s can be covered by
finitely many sets of the form By (§).x; (z; € A—2Us) with multiplicity 4 since dim H = 3.
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Because the map ¢ : By/(0/2) x (A—Us) — X, o(r, ) = exp(r).x is injective (recall this
assumption for X, from Sect. 2.3), it follows that

4> ng({exp(r).y S € By(6/2),y € (A —As) N (BH(5)9:Z-)}>
> k65 voly (A — As). (15)

(Step II) Let M = voly(H.x). Recall from Sect. 2.3 that voly () > M (1 —10711). Let
¢ > 0 be such that xc® > 400. By (15), voly (2 — QlCM,%) < 0.01M. So if the volume

M = voly (H.z) of the orbit H.z is so large that ¢M~5 < e, then
volH(QlCM_%) > 0.98M. (16)
(Step III) We are ready to prove our proposition. Let
lo =min{l: |[Ad(k)r| <l||r|,Y k € K,r € b’}

and set the constant ¢4 = cmax(lp,1). We shall now prove that for any closed orbit
H.z such that ¢4 M ~%2 < ¢, the constant c4 satisfies the proposition. As there are only
finitely many closed H-orbits for which csM %2 > ¢, by enlarge c4 if necessary, the
proposition will be proved for any closed orbit.

Recall that X ¢ is K-invariant, and notice that kexp(r)k~'k.y € 2 whenever

exp(r).y € A. By (1) of Lemma 4.1, for any y € /A -1 we have
mi ({k € K : kz € B}) > 0.99m (K).

By Fubini and (16)

%(m - / (mKl(K) /m(kz)dk)dux(z) >0.99x098>09. O
H.x K

4.3. An effective result on recurrence of closed H-orbits

Proposition 4.5. There are constants cs,ng with the following properties. Let H.x be
a closed orbit in X with voly(H.x) = M and suppose n > ng. Then there ex-
ist A C Hax and \; > M1, such that pz(A) > (nlog M)~ and that for every
y € Bu(2)D(Ni)Bu(%)A, at least one of the following holds

d(V(4n)y, Hx) < (n~! + M*%), foranyi=1,--- n; (17)
d(V(—4%).y,H.x) < (nt+ M~1), foranyi=1,-- n. (18)

Proof. Lemma 4.3 and Proposition 4.4 assert that there exists 8 C H.z such that
voly (B) > 0.9M, and for any y € B there exists r =19 + 71 € b’ (as in (6)) satisfying
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(al) exp(r).y € H.z, ||ro|| > e1]|7]],
(b1) creaM = < ||rol| < caM 5.

For every ro € ho we write g = p(r9)E13. Hence, without loss of generality, we assume
that there exists B’ C B so that volgy (B’) > 0.45M, and for every y € B’ there exists
r € b’ satisfying (a) and

(b2) c1eoM 3 < p(To) < C4M7%.

By the Pigeonhole principle (for the values of p(rp)), there exist A C H.x and 0 <
a < c4M~5 such that g, (A) > (nlog M)™L, and for every y € A there is an r € b’
satisfying (al) and

(b3) ad~ 2 < p(ry) < a.

Notice that if exp(r)z € H.z and h € H, then exp(Ad(h)r)he € H.x. Hence there
exists c5 > 0 such that for every y € By (52)A, there exists r € b’ with

(a2) exp(r).y € H.lm, lroll > %cl||r||,
(b4) a(l — £)4720 <p(ro) < (1+ L)a.

5n+1
5n—1

(b4) can be replaced by: a/4~% < p(ro) < a’, where o’ = (1 + =)a.
Let \; be such that M\2a’ = 4» (1 < i < n). Clearly \; > %c;;Mﬁ. If y €
B (2)D(X)Bu(%)A, then

Let ng be the smallest natural number with < 477, We have, for any n > ng,

Vdr)y e V(4%)BH(%)V(—4%)V(4_)D<)\i)BH(%)A’
C BG(M%)VM%)D(M)BH(%)A

For every z € Bu(52)A, let r = ro + 71 € b’ which satisfies condition (a2) and (b4).

We have D(\;) exp(r).z € H.z. Notice that 477 < p(A\2rg) < 4w . It follows from (2) of
Lemma 4.1 that

i

d(V(4%)D(\;).z, Ha) < n~ '+ M~ 10,

Hence (17) holds. Regrading the cases for which (b2) is ciea M~ < —p(ro) < c4M ™5,
the same proof will lead to conclusion (18) instead of (17). O
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5. Uniform spectral gap for closed H-orbits

Let H, K, X be as before. We say a unitary representation (7, H) of H is strongly LP
if for a dense subset V C H, the matrix coefficient < w(-)u,v >€ LP(H, my) for every
u,v € V. We say that (m,H) is strongly LPT€ if it is strongly L4 for every q > p.

Let H.x be a closed H-orbit in X. The H action on H.z is ergodic with respect to pi,.
Let LZ(H.x) be the orthogonal complement of the constant functions in L?(H.z). By a
result of Kim—Sarnak ([5]) combined with Jacquet—Langlands correspondence ([4]), the
unitary representation of H on LZ(H.z) is strongly L% ¢ for every closed orbit H.z. Let
) be an element in the Lie algebra of K of norm one, and consider for any f € C*°(H.x)
the Sobolev norm along K:

S(f) =119z + I fll2,  where Q(f)(2) := lim Vze Hua.

t—0

fexp(t)z) — f(2)
t

The next lemma, whose proof can be found in [11, Theorem 2.1] or [2, 6.2.1], shows that
the correlations of H-actions on its closed orbits have exponential decay whose rates are
related to Sobolev norm.

Lemma 5.1. For every closed orbit H.x in X, smooth functions ¢,¢ € C*°(H.xz) and
A > 1, we have

| < DO, ¢ > —pa () (6)] < A7T5.8(4)S ().

Smooth approximations of indicator functions are essential in our approach. To es-
tablish this we shall now fix for every 0 < € < 1 a function 8, € C*°(H) such that

1. supp(fe) C Bru(e);
2. 0.>0,and [6.=1;
3. 10| < e

Lemma 5.2. Let H.x be a closed orbit in X and f € L?>(H.z). Define

0% f(2) = /f(h‘lz)HE(h) dmu(h), ¥ ze Ha.

Then 0. x f € C*°(H.x) N L*(H.x), and
SO £) < (120l + 10ell ) - [1Fll2 < €7 - || fl2-

Proof. For any element Y € h we have Y (0.« f) = Y (0.) » f. Hence 0.  f is smooth,
and is square integrability and the norm estimate of 6. x f follow from the Minkowski’s
inequality. O
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Proposition 5.3. Let H.x be a closed orbit in X, and A C H.x be a subset with p,,(A) > 0.
Then for every € > 0 and X > 1 the subset A’ = H.:E\(BH(E)D()\)BH(E)A) C Hx
satisfies

pa(AT) K AT g (A) e

Remark: The result says that D()\) translates of By (e)A become equidistributed in H.x
in the sense that the measure of By (e)D(A)Bg(€)A, the e-thickening of the translated
image D(A\)Bpg(e)A, is close to 1.

Proof. Let v = 0. x x4 and ¢ = 0. x x4 with x4 and x4 are the indicator functions.
Notice that < D(A),¢ >= 0 because D(A)supp(¥)) N supp(¢) = @. By Lemma 5.1
and 5.2 we have

(A (A') < X775 1 (A) 26 i (A2,
which directly implies our proposition. 0O
6. Proof of Theorem 3.2

Proof. It suffices to show that there exists an absolute constant My > 0, such that
Theorem 3.2 holds for any closed orbit H.x with M = voly (H.z) > M.

We first deal with the case of (17). Applying Proposition 4.5 with n = [M 0], there
exists A C H.x and \; > M0, such that pz(A) > (nlogM)~! and for every z €
By (2)D(N)Bu(2)A

A(V(A").z, Ha) < M™% + M~ < M™8  (i=1,--- n).
By Proposition 5.3, for every i =1,--- ,n
o (Ha\ (B (C) DO Bu(©)A) ) < M.

Hence
[ (Hac\( ﬁ BH(%)D()\i)BH(%)A)) < M-+

i=1

Comparing this with (8), we get that there exists My > 0 such that if voly(H.z) =
M > My, then

(N B (2D Ba () A) () X #0. (19)
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Because |4% — 4%| < 1/n < M™%, any element y in the intersection of (19) satisfies
Theorem 3.2.

To finish the proof of the theorem, it remains to deal with the case of (18). The same
argument as above produces a point y; € Xcpy such that for any ¢t € (—4,—1) there
exists u = u(t) € G satisfying

W)y € Ha,  |u—lg| < M™%,
Therefore y = V(—5).y; satisfies the theorem. 0O
7. Proof of Proposition 1.3

Proof. Recall from (8) that for every closed H-orbit in X, a large proportion lies in Xcps.
Let @ be a primitive indefinite ternary integral quadratic form. Then there exists g € G
such that Q(-) = (det Q)% - Qo(g-) and ||g|| < 1. For later use let us record that g~1Hyg
is the identity component of SOg(R); and g~ HgNT is a lattice of g~ *Hyg.

As Xp¢ is compact there exists § > 0 such that, for any € Xcp the map By (6) — X
given by h — h.x is injective. Then there exists, by Proposition 5.3, || < vol(Q) % such
that

D(A\)Br(8)y N Bu(d)y # 0

for any point y € X¢py with H.y closed in X. Hence, by Anosov’s closing lemma (see [3])
there exist [A;| < vol(Q)® and z € By (d)g, such that D(A1).[z] = [z]. We have thus
found a hyperbolic element v = z=1D(\;)z such that

- 13

veg tHgNT, Iyl < vol(Q)

Notice that the only connected, two-dimensional, algebraic subgroup of SO is the Borel
subgroup. Using the same argument with g replaced by elements in By (1)g, we see that
there exist two hyperbolic elements v, 72 € g 'Hg N T generating a Zariski dense
subgroup of SO¢ and satisfying

13
5

13
[yl < vol(@) 7, lv2]] < vol(Q)
On the other hand, the matrix equations

X'=X, nXn=X, 9pXp=X (20)
have integral solutions kA, where k is any integer and A the symmetric matrix of Q.
So the rank of (20), as a system of linear Diophantine equations, is at most 5. By [1] it
has a small solution with || X|| < vol(Q)'3. Because Q is primitive and 71, 7, generate a
Zariski dense subgroup of SOg, we have || A|| < vol(Q)*. Therefore |det Q| = |det A] <
vol(Q)*°. O
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