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1. Introduction and statement of results

1.1. Historical perspective

An important problem in reduction theory of integral quadratic forms is to decide to 
what extent one can simplify a given integral quadratic form by taking an equivalent 
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form. In this context an explicit question is given an integral quadratic form, how small 
can the coefficients of an equivalent form be? Let Q be a quadratic form and A = (aij) the 
symmetric matrix of Q. Sometimes we will use Q = (aij) with abuse of notation. Recall 
that the quadratic form Q is called integral if the entries A are integers. To measure the 
complexity of Q we will consider detA the determinant of Q and

ht(Q) := max(|aij |)

the height of Q. Two integral quadratic forms are said to be equivalent if their symmetric 
matrices A and B satisfy A = γtBγ for some γ ∈ GLn(Z).

An early achievement in reduction theory, due to Lagrange, is that any non-degenerate 
binary integral quadratic form Q is equivalent to a form ax2+bxy+cy2 with |b| ≤ |a| ≤ |c|. 
This implies

ht(ax2 + bxy + cy2) = |c| ≤ 4
3 · |ac− b2

4 | = 4| detQ|/3. (1)

In other words, any binary quadratic form is equivalent to a form whose coefficients are 
all small. Since equivalent integral quadratic forms have the same determinant we have, 
by the finiteness of the choice of a, b and c, for any integer D > 0 there are only finitely 
many equivalence classes of binary quadratic forms with the determinant equal to D. 
Historically, an important application of reduction theory was to prove the finiteness for 
the number of equivalence classes of integral quadratic forms of a given determinant, in 
any number of variables.

1.2. Statement of results on quadratic forms

The goal of the present paper is to prove some new and improved estimates for re-
duction of indefinite ternary integral quadratic forms, using an approach based on the 
theory of homogeneous flows. For the dynamical setting we let, throughout the paper, 
G stand for SL3(R) and Γ for SL3(Z). We will fix the indefinite ternary integral quadratic 
form

Q0(w) = 2w1w3 − w2
2 (w ∈ R

3),

and denote by H = SO(Q0)◦R the identity component of the real points of the special 
orthogonal group of Q0. We shall also fix a right invariant Riemannian metric on G
which induces a G-invariant probability measure on G/Γ. The metric restricts to the 
closed subgroup H of G and gives rise a Haar measure mH on H. For any indefinite 
ternary real quadratic form Q, there exists an element g ∈ G such that

Q(·) = (detQ) 1
3 ·Q0(g·). (2)
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Recall that if Q is integral, then the subgroup H∩gΓg−1 is a lattice in H. The covolume 
of this lattice has been used by people to measure the complexity of an integral quadratic 
form, besides height and determinant.

Definition 1.1. Let Q be an indefinite ternary integral quadratic form. The volume of Q, 
denoted by vol(Q), is by definition the co-volume of H ∩ gΓg−1 in H with respect to the 
Haar measure mH .

The reader may readily verify that (1) the value vol(Q) does not depend on the choice 
of g ∈ G; (2) vol(Q) = vol(kQ) for any integer k; and (3) equivalent integral quadratic 
forms have the same volume. We are now in a position of stating our main results.

Theorem 1.2. There is a constant C > 0 such that for any indefinite ternary integral 
quadratic form Q1 and ξ ∈ (−1, 1), there exists a quadratic form Q = (aij) equivalent to 
Q1 and satisfying

∣∣∣ a11

(detQ1)
1
3
− ξ

∣∣∣ < C · vol(Q1)−
1
80 , (3)

ht(Q) < C · |detQ1|
1
3 . (4)

We note that the estimate in (4) is optimal, up to a multiplicative constant C, because 
plainly one has ht(Q) � | detQ| 13 = | detQ1|

1
3 . Notice also that such estimate is not valid 

for definite forms, as the height of any quadratic form equivalent to x2
1+x2

2 +Dx2
3, where 

D > 0, must be at least D.
It is also well known (see for instance [7, 2.6] and [2, Sect. 17.3]) that the determinant of 

any primitive form is bounded above by a polynomial of vol(Q). In view of Theorem 1.2, 
it might be of interest to give an explicit exponent for such estimate. Hence we have the 
following result.

Proposition 1.3. There exists a constant C > 0, such that for every primitive indefinite 
ternary integral quadratic form Q,

| detQ| < C · vol(Q)39. (5)

It is necessary to assume the quadratic form to be primitive in the above proposition 
because vol(Q) = vol(kQ) but det(Q) = k3 det(Q), for any integer k.

The following corollary is an easy consequence of Theorem 1.2 and Proposition 1.3.

Corollary 1.4. There is a constant C > 0 such that for any primitive indefinite ternary 
integral quadratic form Q1, there exists a quadratic form Q = (aij), which is equivalent 
to Q1, satisfying

0 < |a11| < C · |detQ1|
1
3− 1

80·39 , ht(Q) < C · |detQ1|
1
3 .
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Another direct consequence of Theorem 1.2 is the existence of many equivalent forms 
of small height.

Corollary 1.5. There exist constants C, c > 0 such that for every indefinite integral 
quadratic form Q1,

#
{
Q equivalent to Q1 : ht(Q) < C · |detQ1|

1
3

}
> c · vol(Q1)

1
80 .

The asymptotics of # {Q equivalent to Q1 : ht(Q) < T} (T → ∞) can be analyzed 
by the lattice point counting theory. The readers are referred to a nice survey of Oh [10]
for more information on this topic. However, Corollary 1.5 is mainly concerned with the 
number of forms whose height are relatively small.

Finally, a result of Siegel [12] asserts that one can effectively determine the equivalence 
of two given integral quadratic forms (see also a recent paper of the authors [6] for 
polynomially effective results). Hence for any given indefinite ternary integral quadratic 
form Q1, one can in principle effectively find all quadratic forms Q satisfying Theorem 1.2, 
Corollary 1.4 and Corollary 1.5.

1.3. Outline of the paper

Section 2 introduces the preliminaries for later sections. In Section 3 we will state the 
main dynamical result Theorem 3.2 and use it to prove Theorem 1.2 combining a result in 
the geometry of numbers Lemma 3.1. The proof of Theorem 3.2 will be given in Section 6. 
It involves the study of the transversal behavior of closed H-orbits in G/Γ which will be 
carried out in Section 4 and the spectral theory of automorphic representations which 
will be discussed in Section 5. Section 7 is devoted to the proof of Proposition 1.3.

2. Preliminaries

2.1. Notations and basic facts

Let G = SL3(R), Γ = SL3(Z), X = G/Γ and H = SO(Q0)◦R be as in Section 1.2. For 
any element g ∈ G we will denote by [g] the element gΓ ∈ X which can be naturally 
identified with the unimodular lattice gZ3 in R3.

In the sequel ‖ · ‖ will be a fixed matrix norm on G. For any r > 0 we denote by

BG(r) := {g ∈ G : ‖g − 1G‖ < r}, BH(r) := H ∩BG(r).

They are identity neighborhoods of G and H, respectively. We will make frequent use of 
the matrices

D(λ) =
(
λ 0 0
0 1 0

−1

)
∈ H, V (s) =

(1 0 s
0 1 0

)
∈ G.
0 0 λ 0 0 1
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Let g = Lie(G) and h = Lie(H) be the Lie algebras. Under the adjoint action of H, 
the vector space g is decomposed into irreducible H-modules g = h � h′. Let Eij be the 
matrix whose ijth entry is 1 and 0 otherwise. We shall fix a Euclidean norm ‖ · ‖ on g
such that it gives rise to a G-invariant probability measure on X, and that E13, E31, 
E12−E23, E21−E32, E11−2E22 +E33 form an orthonormal basis of h′. Thus the vector 
space h′ has an orthogonal decomposition

h′ = h′0 + h′1, where h′0 = RE13. (6)

We are interested in this decomposition because for the adjoint of action of D(λ) with 
λ > 1, h′0 is the subspace of h′ with the maximal expansion. We will write r = r0 + r1
for any r ∈ h′ according to (6).

The group K = exp(R(E12 +E23 −E21 −E32)) is a maximal compact subgroup of H. 
It will be useful to keep in mind the following fact.

There does not exist a nonzero linear subspace of h′1
that is invariant under the adjoint action of K. (7)

2.2. Invariant measures

Let H.x be a closed orbit in X with x = [g]. Then H ∩ gΓg−1 is a lattice in H. 
The orbit H.x supports a unique H-invariant probability measure which will be denoted 
as μx. We will also consider the measure volH on H.x induced by the Haar measure mH

(see Section 1.2). The two H-invariant measures are related in such a way that for any 
Borel subset Y ⊂ H.x

volH(H.x) · μx(Y ) = volH(Y ).

2.3. Compact subsets of X

Let α1 be the function on X defined as α1([g]) = max{‖w‖−1 : w ∈ gZ3\{0}}. By 
Mahler’s criterion S(R) = {x ∈ X : α1(x) ≤ R} is a compact subset in X for every 
R > 0. By [2, Lemma 3.2] we can fix a large number R0 > 0 such that for every closed 
orbit H.x in X

μx(H.x ∩S(R0)) > 1 − 10−11. (8)

For later use (in Proposition 4.4), we will consider an enlarged K-invariant compact 
subset of S(R0)

Xcpt = {k.x : k ∈ K,x ∈ S(R0)} ⊆ X.
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For technical reason we shall fix some other constants related to Xcpt whose existence 
can be easily seen by compactness argument: a positive constant R1 > 0 such that

Xcpt ⊆ BG(R1)[1G]; (9)

and positive constants ε0, R′
0 > 0 such that BG(ε0)Xcpt ⊂ S(R′

0) and the map g �→ g.x

is injective on BG(ε0) for every x ∈ S(R′
0).

2.4. Effective constants and their dependencies

In the sequel, the notation c1, c2, · · · will stand for positive constants which are in 
principle effectively computable and may depend on G, H, X, and the choice of R0, ε0, 
R1, R′

0 in Section 2.3; we also allow cj depends on the choice of c1, · · · , cj−1. We will use 
A � B to represent the inequalities A < ηB for some sufficiently large and effectively 
computable multiplicative constant η > 0, which might depend on the choice of R0, ε0, 
R1, R′

0, c1, c2, · · · .

3. The main dynamical result and proof of Theorem 1.2

3.1. A result in geometry of numbers

Lemma 3.1. Let R1 be as defined in Section 2.3 and g ∈ BG(R1). Then there exists 
a primitive vector w ∈ gZ3 (that is, w = gv for some v ∈ Z

3 with the g.c.d. of the 
coordinates of v equal to 1) satisfying

‖w‖ � 1, Q0(V (1)w) < −1, Q0(V (4)w) > 1.

Proof. Let V =
{
v ∈ R

3 : Q0(V (1)v) < −1, Q0(V (4)v) > 1
}
. First we notice that there 

exists t1 > 0 such that for any t > t1,

BG(R1)BR3((−t, t, t), t/32) ⊆ BR3((−t, t, t), t/16) ⊆ V,

where BR3(v, r) = {x ∈ R
3 : ‖x − v‖ ≤ r}. Let D = BR3((−1, 1, 1), 1/32). It is well 

known that

#{v ∈ Z
3 ∩ tD : v primitive} ∼ vol(tD)

ζ(3) .

Therefore, there exists t2 > 0 such that for any t > t2 the ball tD = BR3((−t, t, t), t/32) ⊆
R

3 contains a primitive lattice point in Z3. Let us fix a t0 which is larger than both t1
and t2. We see from the above that there exists a primitive lattice point v0 ∈ Z

3 satis-
fying

BG(R1)v0 ⊆ BG(R1)BR3((−t0, t0, t0), t0/32) ⊆ BR3((−t0, t0, t0), t0/16) ⊆ V.

Hence the primitive vector w = gv0 satisfies the lemma. �
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3.2. The main dynamical theorem

We are now in a position of stating our main dynamical result.

Theorem 3.2. Let H.x be a closed orbit in X with volH(H.x) = M . Then, there exists 
y ∈ Xcpt such that for any t ∈ (1, 4) there exists u ∈ G satisfying

uV (t).y ∈ H.x, ‖u− 1G‖ � M− 1
80 .

Roughly speaking, the theorem says that any closed H-orbit has some concentration 
in the compact part of X which can be seen in the direction of {V (t) : 1 < t < 4}
that is transversal to the direction of H. The proof of Theorem 3.2 will be postponed to 
Section 6. We now deduce Theorem 1.2 from Theorem 3.2.

3.3. Proof of Theorem 1.2

Proof. As Q1 is integral, there exists g1 ∈ G such that Q1 = (detQ1)
1
3Q0(g1·) and the 

orbit H.[g1] is closed. By Theorem 3.2, there exists [g] ∈ Xcpt such that for any t ∈ (1, 4)
there exists u ∈ G satisfying

uV (t).[g] ∈ H.[g1], ‖u− 1G‖ � M− 1
80 (10)

where M = volH(H.[g1]). Moreover, by (9), we can choose g ∈ G such that g ∈ BG(R1).
By Lemma 3.1, there exists a primitive vector w ∈ gZ3 satisfying

‖w‖ � 1, Q0(V (1)w) < −1, Q0(V (4)w) > 1.

Let ξ ∈ (−1, 1) be given. Since Q0(V (s)w) = Q0(w) +2sw2
3, there exists tξ ∈ (1, 4) such 

that Q0(V (tξ)w) = ξ. For t = tξ, let uξ be the element u satisfying (10). Consider the 
quadratic form

Q2(·) = (detQ1)
1
3Q0(uξV (tξ)g·).

First, as uξV (tξ).[g] ∈ H.[g1], the quadratic form Q2 is integral and equivalent to Q1. 
Second, letting v = g−1w ∈ Z

3 and since ‖w‖ � 1 and ‖V (tξ)‖ � 1, we have

∣∣∣ Q2(v)
(detQ1)

1
3
− ξ

∣∣∣ =
∣∣∣Q0(uξV (tξ).w) −Q0(V (tξ).w)

∣∣∣ � ‖uξ − 1G‖ � M− 1
80 .

Finally, as ‖uξV (tξ)g‖ � 1, the height of the quadratic form Q2 satisfies

ht(Q2) � | detQ1|
1
3 .
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We proceed to find a form Q satisfying our theorem. Notice that the vector v ∈ Z
3 is 

primitive and

‖v‖ � ‖g−1‖ · ‖w‖ � 1.

Let e = (1, 0, 0)t. From the above we conclude that there exists γ ∈ Γ such that γ.e = v

and ‖γ‖ � 1. We shall prove that Q = Q2 ◦ γ satisfies Theorem 1.2. Obviously Q is 
equivalent to Q1. Since ‖γ‖ � 1, we have ht(Q2 ◦ γ) � (detQ1)

1
3 and thus Q satisfies 

the height bound (4) for the theorem. Finally to check (3), with Q = (aij) we have

∣∣∣ a11

(detQ1)
1
3
− ξ

∣∣∣ =
∣∣∣ Q(e)
(detQ1)

1
3
− ξ

∣∣∣ =
∣∣∣Q2 ◦ γ(e)
(detQ1)

1
3
− ξ

∣∣∣ =
∣∣∣ Q2(v)
(detQ1)

1
3
− ξ

∣∣∣ � M− 1
80 . �

4. Recurrence properties of closed H-orbits

4.1. The drift of transversally nearby points on closed H-orbits

We now state some basic facts concerning the drift of nearby points on closed H-orbits 
under the translates of D(λ) (see [8,2,9]). Suppose H.x1, H.x2 are (not necessarily dis-
tinct) closed orbits in X, and assume that exp(r).x1 = x2 for some r ∈ h′. Then

D(λ).x2 = D(λ) exp(r).x1 = exp(Ad(D(λ))r)D(λ).x1. (11)

That is, the drift of x1 and x2 is given by exp(Ad(D(λ))r). Writing r = r0 + r1 as (6), 
we have

Ad(D(λ))r = λ2r0 + Ad(D(λ))r1, ‖Ad(D(λ))r1‖ � λ‖r1‖. (12)

Lemma 4.1. The following two statements are valid.

1. Let mK be the Haar measure on K as in Sect. 1.2. There exists c1 > 0 such that for 
any r ∈ h′\{0}

mK

({
k ∈ K : ‖(Ad(k)r)0‖

‖Ad(k)r‖ > c1

})
> 0.99mK(K). (13)

2. Let r ∈ h′\{0} be such that ‖r0‖ > c1‖r‖. Then for any λ > 0 with λ2‖r0‖ < 4 we 
have

‖ exp(Ad(D(λ)r)) − exp(λ2r0)‖ � λ−1 (14)

Remark. See also [9, Proposition 3.2, 3.3].
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Proof. For (13) we only need to work with ‖r‖ = 1. By (7), for every unit vector 
r ∈ h′\{0} we can find c = c(r) for which (13) holds. Since the unit sphere in Euclidean 
space is compact, we can choose a constant c1 > 0 which satisfies (1). The assertion (2) 
follows directly from (12). �
4.2. Transversal injectivity radius for points on closed H-orbits

Definition 4.2. Let ε0 be as defined in Section 2.3, and Bh′(t) := {r ∈ h′ : ‖r‖ < t}. We 
fix ε1 > 0 so that exp(Bh′(ε1)) ⊂ BG(ε0/2) and exp(Bh′(ε1)) ∩H = {e}. Let H.[g] be a 
closed orbit in X. By definition the transversal injectivity radius of x ∈ H.[g] is

σ(x) = sup {0 < ε < ε1 : exp(Bh′(ε))x ∩H.[g] = {x}} .

Roughly speaking, transversal injectivity radius measures how close an H-orbit can 
approach itself at a given point from transversal direction.

The following lemma concerns polynomially quantitative isolation of closed H-orbits.

Lemma 4.3. [2, Lemma 10.1] There are constants c2, c3 > 0, so that for any closed orbit 
H.[g] ⊆ X and x ∈ H.[g] ∩Xcpt, we have σ(x) > c2M

−c3 .

Our next result provides for a large fraction of points on a closed H-orbit an upper 
bound on their transversal injectitivity radius.

Proposition 4.4. There exists c4 > 0 such that, for any closed orbit H.x in X, the subset

B = {y ∈ H.x ∩Xcpt : ∃ r ∈ h′ such that exp(r)y ∈ H.x,

‖r‖ < min(c−1
1 ‖r0‖, c4M−0.2)}

satisfies μx(B) > 0.9. Here the decomposition r = r0 + r1 is as (6).

Remark. The fact that B is nonempty for large enough constant c4 is proved in [2, 
Proposition 14.2] (see also [9, Proposition 3.3]). Here we show in our setting that B
consumes a large portion.

Proof. (Step I) We begin by fixing some notation. Let ε1 be as in Definition 4.2, A =
H.x ∩Xcpt and Aδ = {y ∈ A : σ(y) < δ} where 0 < δ < ε1. We first show that

volH(A− Aδ) � δ−5.

Notice that there is a constant κ > 0 such that m(exp(Bh′(δ))Ω) ≥ κδ5 vol(Ω) for any 
0 < δ < ε1 and Borel set Ω ⊂ BH(ε0/2). The compact set A − Aδ can be covered by 
finitely many sets of the form BH(δ).xi (xi ∈ A −Aδ) with multiplicity 4 since dimH = 3. 
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Because the map ϕ : Bh′(δ/2) × (A −Aδ) → X, ϕ(r, x) = exp(r).x is injective (recall this 
assumption for Xcpt from Sect. 2.3), it follows that

4 >
∑
i

mG

(
{exp(r).y : r ∈ Bh′(δ/2), y ∈ (A− Aδ) ∩ (BH(δ)xi)}

)

> κδ5 volH(A− Aδ). (15)

(Step II) Let M = volH(H.x). Recall from Sect. 2.3 that volH(A) > M(1 − 10−11). Let 
c > 0 be such that κc5 > 400. By (15), volH(A − A

cM− 1
5
) < 0.01M . So if the volume 

M = volH(H.x) of the orbit H.x is so large that cM− 1
5 < ε1, then

volH(A
cM− 1

5
) > 0.98M. (16)

(Step III) We are ready to prove our proposition. Let

l0 = min {l : ‖Ad(k)r‖ ≤ l‖r‖, ∀ k ∈ K, r ∈ h′} ,

and set the constant c4 = c max(l0, 1). We shall now prove that for any closed orbit 
H.x such that c4M−0.2 < ε1, the constant c4 satisfies the proposition. As there are only 
finitely many closed H-orbits for which c4M−0.2 ≥ ε1, by enlarge c4 if necessary, the 
proposition will be proved for any closed orbit.

Recall that Xcpt is K-invariant, and notice that k exp(r)k−1k.y ∈ A whenever 
exp(r).y ∈ A. By (1) of Lemma 4.1, for any y ∈ A

cM− 1
5

we have

mK

(
{k ∈ K : kx ∈ B}

)
> 0.99mK(K).

By Fubini and (16)

volH(B)
M

=
∫

H.x

( 1
mK(K)

∫
K

χB(kz)dk
)
dμx(z) > 0.99 × 0.98 > 0.9. �

4.3. An effective result on recurrence of closed H-orbits

Proposition 4.5. There are constants c5, n0 with the following properties. Let H.x be 
a closed orbit in X with volH(H.x) = M and suppose n > n0. Then there ex-
ist A ⊆ H.x and λi � M

1
10 , such that μx(A) � (n logM)−1, and that for every 

y ∈ BH( c5n )D(λi)BH( c5n )A, at least one of the following holds

d(V (4 i
n ).y,H.x) � (n−1 + M− 1

10 ), for any i = 1, · · · , n; (17)

d(V (−4 i
n ).y,H.x) � (n−1 + M− 1

10 ), for any i = 1, · · · , n. (18)

Proof. Lemma 4.3 and Proposition 4.4 assert that there exists B ⊆ H.x such that 
volH(B) > 0.9M , and for any y ∈ B there exists r = r0 + r1 ∈ h′ (as in (6)) satisfying
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(a1) exp(r).y ∈ H.x, ‖r0‖ > c1‖r‖,
(b1) c1c2M

−c3 < ‖r0‖ < c4M
− 1

5 .

For every r0 ∈ h0 we write r0 = p(r0)E13. Hence, without loss of generality, we assume 
that there exists B′ ⊆ B so that volH(B′) > 0.45M , and for every y ∈ B′ there exists 
r ∈ h′ satisfying (a) and

(b2) c1c2M
−c3 < p(r0) < c4M

− 1
5 .

By the Pigeonhole principle (for the values of p(r0)), there exist A ⊂ H.x and 0 <
a < c4M

− 1
5 such that μx(A) � (n logM)−1, and for every y ∈ A there is an r ∈ h′

satisfying (a1) and

(b3) a4− 1
2n < p(r0) < a.

Notice that if exp(r)x ∈ H.x and h ∈ H, then exp(Ad(h)r)hx ∈ H.x. Hence there 
exists c5 > 0 such that for every y ∈ BH( c5n )A, there exists r ∈ h′ with

(a2) exp(r).y ∈ H.x, ‖r0‖ > 1
2c1‖r‖,

(b4) a(1 − 1
5n )4− 1

2n < p(r0) < (1 + 1
5n )a.

Let n0 be the smallest natural number with 5n+1
5n−1 < 4 1

2n . We have, for any n > n0, 
(b4) can be replaced by: a′4− 1

n < p(r0) < a′, where a′ = (1 + 1
5n )a.

Let λi be such that λ2
i a

′ = 4 i
n (1 ≤ i ≤ n). Clearly λi > 1

2c4M
1
10 . If y ∈

BH( c5n )D(λi)BH( c5n )A, then

V (4 i
n ).y ∈ V (4 i

n )BH(c5
n

)V (−4 i
n )V (4 i

n )D(λi)BH(c5
n

)A,

⊆ BG(16c5
n

)V (4 i
n )D(λi)BH(c5

n
)A

For every z ∈ BH( c5n )A, let r = r0 + r1 ∈ h′ which satisfies condition (a2) and (b4). 
We have D(λi) exp(r).z ∈ H.x. Notice that 4

i
n−1 < p(λ2

i r0) < 4 i
n . It follows from (2) of 

Lemma 4.1 that

d(V (4 i
n )D(λi).z,H.x) � n−1 + M− 1

10 .

Hence (17) holds. Regrading the cases for which (b2) is c1c2M−c3 < −p(r0) < c4M
− 1

5 , 
the same proof will lead to conclusion (18) instead of (17). �
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5. Uniform spectral gap for closed H-orbits

Let H, K, X be as before. We say a unitary representation (π, H) of H is strongly Lp

if for a dense subset V ⊂ H, the matrix coefficient < π(·)u, v >∈ Lp(H, mH) for every 
u, v ∈ V. We say that (π, H) is strongly Lp+ε if it is strongly Lq for every q > p.

Let H.x be a closed H-orbit in X. The H action on H.x is ergodic with respect to μx. 
Let L2

0(H.x) be the orthogonal complement of the constant functions in L2(H.x). By a 
result of Kim–Sarnak ([5]) combined with Jacquet–Langlands correspondence ([4]), the 
unitary representation of H on L2

0(H.x) is strongly L
64
25+ε for every closed orbit H.x. Let 

Ω be an element in the Lie algebra of K of norm one, and consider for any f ∈ C∞(H.x)
the Sobolev norm along K:

S(f) := ‖Ω(f)‖2 + ‖f‖2, where Ω(f)(z) := lim
t→0

f(exp(tΩ)z) − f(z)
t

∀ z ∈ H.x.

The next lemma, whose proof can be found in [11, Theorem 2.1] or [2, 6.2.1], shows that 
the correlations of H-actions on its closed orbits have exponential decay whose rates are 
related to Sobolev norm.

Lemma 5.1. For every closed orbit H.x in X, smooth functions ψ, φ ∈ C∞(H.x) and 
λ > 1, we have

| < D(λ)ψ, φ > −μx(ψ)μx(φ)| � λ− 5
13S(ψ)S(φ).

Smooth approximations of indicator functions are essential in our approach. To es-
tablish this we shall now fix for every 0 < ε < 1 a function θε ∈ C∞(H) such that

1. supp(θε) ⊂ BH(ε);
2. θε ≥ 0, and 

∫
θε = 1;

3. ‖Ω(θε)‖L1 � ε−1.

Lemma 5.2. Let H.x be a closed orbit in X and f ∈ L2(H.x). Define

θε � f(z) :=
∫
H

f(h−1z)θε(h) dmH(h), ∀ z ∈ H.x.

Then θε � f ∈ C∞(H.x) ∩ L2(H.x), and

S(θε � f) � (‖Ω(θε)‖L1 + ‖θε‖L1) · ‖f‖2 � ε−1 · ‖f‖2.

Proof. For any element Y ∈ h we have Y (θε � f) = Y (θε) � f . Hence θε � f is smooth, 
and is square integrability and the norm estimate of θε � f follow from the Minkowski’s 
inequality. �
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Proposition 5.3. Let H.x be a closed orbit in X, and A ⊆ H.x be a subset with μx(A) > 0. 
Then for every ε > 0 and λ > 1 the subset A′ = H.x\

(
BH(ε)D(λ)BH(ε)A

)
⊆ H.x

satisfies

μx(A′) � λ− 10
13μx(A)−1ε−4.

Remark: The result says that D(λ) translates of BH(ε)A become equidistributed in H.x

in the sense that the measure of BH(ε)D(λ)BH(ε)A, the ε-thickening of the translated 
image D(λ)BH(ε)A, is close to 1.

Proof. Let ψ = θε � χA and φ = θε � χA′ with χA and χA′ are the indicator functions. 
Notice that < D(λ)ψ, φ >= 0 because D(λ)supp(ψ) ∩ supp(φ) = ∅. By Lemma 5.1
and 5.2 we have

μx(A)μx(A′) � λ− 5
13μx(A)1/2ε−1μx(A′)1/2ε−1,

which directly implies our proposition. �
6. Proof of Theorem 3.2

Proof. It suffices to show that there exists an absolute constant M0 > 0, such that 
Theorem 3.2 holds for any closed orbit H.x with M = volH(H.x) > M0.

We first deal with the case of (17). Applying Proposition 4.5 with n = [M 1
80 ], there 

exists A ⊆ H.x and λi � M
1
10 , such that μx(A) � (n logM)−1 and for every z ∈

BH( c5n )D(λi)BH( c5n )A

d(V (4 i
n ).z,H.x) � M− 1

80 + M− 1
10 � M− 1

80 (i = 1, · · · , n).

By Proposition 5.3, for every i = 1, · · · , n

μx

(
H.x\

(
BH(c5

n
)D(λi)BH(c5

n
)A

))
� M− 1

78 .

Hence

μx

(
H.x\

( n⋂
i=1

BH(c5
n

)D(λi)BH(c5
n

)A
))

� M− 1
78+ 1

80 .

Comparing this with (8), we get that there exists M0 > 0 such that if volH(H.x) =
M > M0, then

( n⋂
BH(c5

n
)D(λi)BH(c5

n
)A

)⋂
Xcpt �= ∅. (19)
i=1
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Because |4 i+1
n − 4 i

n | � 1/n � M− 1
80 , any element y in the intersection of (19) satisfies 

Theorem 3.2.
To finish the proof of the theorem, it remains to deal with the case of (18). The same 

argument as above produces a point y1 ∈ Xcpt such that for any t ∈ (−4, −1) there 
exists u = u(t) ∈ G satisfying

uV (t).y1 ∈ H.x, ‖u− 1G‖ � M− 1
80 .

Therefore y = V (−5).y1 satisfies the theorem. �
7. Proof of Proposition 1.3

Proof. Recall from (8) that for every closed H-orbit in X, a large proportion lies in Xcpt. 
Let Q be a primitive indefinite ternary integral quadratic form. Then there exists g ∈ G

such that Q(·) = (detQ) 1
3 ·Q0(g·) and ‖g‖ � 1. For later use let us record that g−1Hg

is the identity component of SOQ(R); and g−1Hg ∩ Γ is a lattice of g−1Hg.
As Xcpt is compact there exists δ > 0 such that, for any x ∈ Xcpt the map BH(δ) → X

given by h �→ h.x is injective. Then there exists, by Proposition 5.3, |λ| � vol(Q) 13
5 such 

that

D(λ)BH(δ)y ∩BH(δ)y �= ∅

for any point y ∈ Xcpt with H.y closed in X. Hence, by Anosov’s closing lemma (see [3]) 
there exist |λ1| � vol(Q) 13

5 and z ∈ BH(δ)g, such that D(λ1).[z] = [z]. We have thus 
found a hyperbolic element γ = z−1D(λ1)z such that

γ ∈ g−1Hg ∩ Γ, ‖γ‖ � vol(Q) 13
5 .

Notice that the only connected, two-dimensional, algebraic subgroup of SOQ is the Borel 
subgroup. Using the same argument with g replaced by elements in BH(1)g, we see that 
there exist two hyperbolic elements γ1, γ2 ∈ g−1Hg ∩ Γ generating a Zariski dense 
subgroup of SOQ and satisfying

‖γ1‖ � vol(Q) 13
5 , ‖γ2‖ � vol(Q) 13

5 .

On the other hand, the matrix equations

Xt = X, γt
1Xγ1 = X, γt

2Xγ2 = X (20)

have integral solutions kA, where k is any integer and A the symmetric matrix of Q. 
So the rank of (20), as a system of linear Diophantine equations, is at most 5. By [1] it 
has a small solution with ‖X‖ � vol(Q)13. Because Q is primitive and γ1, γ2 generate a 
Zariski dense subgroup of SOQ, we have ‖A‖ � vol(Q)13. Therefore | detQ| = | detA| �
vol(Q)39. �
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