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Abstract—Visualization of medical organs and biological structures is a challenging task because of their complex geometry and the

resultant occlusions. Global spherical and planar mapping techniques simplify the complex geometry and resolve the occlusions to aid

in visualization. However, while resolving the occlusions these techniques do not preserve the geometric context, making them less

suitable for mission-critical biomedical visualization tasks. In this paper, we present a shape-preserving local mapping technique for

resolving occlusions locally while preserving the overall geometric context. More specifically, we present a novel visualization

algorithm, LMap, for conformally parameterizing and deforming a selected local region-of-interest (ROI) on an arbitrary surface. The

resultant shape-preserving local mappings help to visualize complex surfaces while preserving the overall geometric context. The

algorithm is based on the robust and efficient extrinsic Ricci flow technique, and uses the dynamic Ricci flow algorithm to guarantee the

existence of a local map for a selected ROI on an arbitrary surface. We show the effectiveness and efficacy of our method in three

challenging use cases: (1) multimodal brain visualization, (2) optimal coverage of virtual colonoscopy centerline flythrough, and (3)

molecular surface visualization.

Index Terms—Biomedical visualization, virtual colonoscopy, multimodal brain visualization, molecular surface visualization,

shape-preserving mapping

✦

1 INTRODUCTION

Visualization is critical for diagnosing various medical conditions

(e.g., different types of cancer) through non-invasive imaging.

However, 3D visualization of medical organs and various bio-

logical structures is challenging because of their complex 3D

geometry and the resultant occlusions. For example, deep folds

in the brain are occluded by the gyri (ridges) on the brain cortical

surface (Figure 1a). Global spherical and planar mapping tech-

niques help to resolve these occlusions by mapping the complex

3D geometry to a canonical representation such as a sphere or

a plane, respectively, with minimal angle and/or area distortions.

The removal of both occlusions and the geometric context makes

it difficult to correlate the features between the original and the

mapped surfaces (Figure 1b), making these techniques less useful

for mission-critical biomedical visualization tasks.

In effect, spherical and planar mesh mapping techniques are

mostly restricted or relegated to segmentation, registration, and

classification tasks. Moreover, these techniques assume a certain

topology for the input surface, for example, spherical mapping

techniques mandate a genus 0 closed surface input, whereas

planar mapping techniques require a genus 0 surface with a

boundary. These restrictions force the users to conform the data

to the assumed input requirements via pre-processing (e.g., hole-

filling, handle removal, feature extraction, etc.) to make these

techniques work. For example, Krone et al. [18] had to remove

important channel information from the molecular surfaces for

their spherical mapping technique to work, and Zeng et al. [35] had

to perform topological denoising (removal of fake handles) on the

colon surface and extract consistent teniae coli (often not possible
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due to collapsed regions or segmentation artifacts [21]) for their

flattening approach. Similar problems underline the multimodal

domain where the information from all the modalities is computed

in the native space and transformation of the original geometry (to

a sphere or a plane) requires re-computation of all the modalities

in the mapped space [20].

Ideally, a local mapping algorithm is required to deal with

the shortcomings of the global mapping techniques. We prescribe

the following desirable properties for our local mapping algorithm

(modified from the ones outlined in Rocha et al. [26] for local

parameterization): (1) it should be independent of the surface

parameterization since many scientific datasets are not represented

parameterically; (2) it should not rely on any global information

from the underlying mesh since this is expensive to compute and

depends on the mesh type; (3) it should be efficient since we can

require a large number of parameterizations and deformations of

several regions-of-interest (ROIs) on the surface; (4) it should be

angle-preserving (conformal) for the selected ROI and should not

affect the rest of the surface; and (5) it should work for arbitrary

surfaces (open/closed, smooth/convoluted, arbitrary-genus).

In this work, we present a technique, LMap, to parameterize

and conformally deform local ROIs on arbitrary surfaces for

occlusion-free visualization while preserving the overall geometric

context (Figure 1d). More specifically, for a selected ROI on

a mesh, LMap uses a novel extrinsic Ricci flow algorithm for

parameterizing and conformally deforming this selected ROI. The

presented extrinsic Ricci flow algorithm entails the following

steps: (1) compute local Gaussian curvature on the selected ROI,

(2) obtain new edge lengths for the computed Gaussian curvature

using dynamic Ricci flow [22], and (3) deform the position of

each ROI vertex on the mesh, according to the new edge lengths,

to obtain the conformally flattened ROI on the given mesh.

The resultant output mesh resolves occlusions for selected ROIs

while keeping the rest of the surface intact and untouched. Two



2

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 1: Spherical and local mappings for brain cortical surface overlaid with mean curvature. (a) Front and (e) back of the brain cortical

surface overlaid with mean curvature. (b) Front and (f) back of the angle-area preserving spherical mapping [22]. (c) Front and (g)

back selected regions-of-interest, colored in green. (d) Front and (h) back of the local mapping result from our algorithm. The dark

blue lines in locally mapped surfaces (d) and (h) correspond to the sulcal fundi which have been shown to be robust and reproducible

cortical landmarks for registration and group-level analysis. LMap computation for the selected ROIs (78952 vertices for the front ROI

and 82291 vertices for the back ROI) took 2.7 seconds.

important implications of the presented LMap algorithm are as

follows: (1) the use of dynamic Ricci flow guarantees the existence

of a stable (robust to perturbations in the selected ROIs) local map

for a selected ROI on an arbitrary surface, and (2) the use of

Gaussian curvature for the local ROI results in a stable local map,

as opposed to the use of mean curvature for local ROIs which can

lead to self-intersections (as shown in Figure 2h).

In essence, LMap does not require any global information from

the underlying mesh to deform the selected ROIs, and LMap is

not dependent on the underlying topology or the type of the mesh.

Moreover, unlike recent approaches which can only parameterize

sphere-masked smooth local regions on arbitrary surfaces [26],

LMap is applicable for smooth as well as convoluted local (sharp

bend) ROIs on arbitrary surfaces. It also does not require any

prior hole-filling or topological denoising of the input surface.

Intuitively, LMap acts like a magic lens for selected ROIs on

arbitrary surfaces, where it can be used to locally parameterize,

and overlay textures and different types of information from

multimodal and multivariate data. LMap also allows for local

shape-preserving deformations for better visualization of complex

ROIs.

We show the efficacy and effectiveness of LMap in three

challenging use cases: (1) multimodal brain visualization, (2) op-

timal coverage in virtual colonoscopy centerline flythroughs, and

(3) molecular surface visualization. In the context of multimodal

brain visualization, neuroscientists want to study specific cortical

structures (which are highly convoluted and difficult to visualize

in their original form) and the connectivity patterns between these

structures. Unlike previous spherical parameterization methods

[20], [22] which mandate the transformation of the all the modali-

ties to the underlying spherical space, LMap allows the simplified

visualization of these specific structures and the connectivity

patterns in the native space while preserving the overall geometric

context. For virtual colonoscopy use case, radiologists want to

localize and study the polyps (precursors of colon cancer) as

accurately as possible. Current angle-preserving colon flattening

approaches [19], [21], [35] induce considerable area distortion,

require tenaie coli extraction (for cutting) and distort the geometry

significantly, making the polyp localization difficult. In contrast,

LMap can be used to only deform the detected haustral folds [21]

in place while leaving the original geometry of the polyps and the

overall colon intact, thus allowing for accurate polyp localization

and measurements. Finally, in the context of molecular surface

visualization, different cavities on the boundary and in the interior

of the molecules need to be visualized as potential binding sites

for other molecules. Current simplification approaches [18], in this

context, use spherical parameterization to visualize the individual

boundary cavities at the expense of removing the critical interior

cavities and filling the resultant holes which induces considerable

angle and area distortion during the parameterization; higher genus

surfaces can induce considerably higher angle and area distortion

due to higher loss in interior information. LMap, on the other

hand, can be used for conformally deforming only the boundary

cavities without removing the critical interior cavities and without

affecting the rest of the molecular surface.

The main contributions of this paper are summarized as

follows:

• We present a novel local mapping algorithm, LMap, for

visualizing local regions-of-interest on arbitrary genus

closed/open surfaces. LMap deforms local regions effi-

ciently with minimal angular distortion using robust and

theoretically-sound extrinsic Ricci flow. Moreover, the

use of established dynamic discrete surface Ricci flow

guarantees the existence of the local for the prescribed

Gaussian curvature, and greatly improves the stability of

the algorithm.

• We show the efficacy and effectiveness of LMap in three

challenging use cases: (1) multimodal brain visualization,
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(2) optimal coverage in virtual colonoscopy centerline

flythroughs, and (3) molecular surface visualization. We

also compare the LMap results with the state-of-the-art

visualization algorithms in these domains.

2 RELATED WORK

Various global mapping techniques have been proposed in the

past for medical visualizations, especially for colon, brain, and

molecular surfaces. Most of these techniques require removal

of segmentation artifacts, topological denoising (e.g., removal of

fake handles), hole-filling (e.g., removal of channels mandates

hole-filling in parameterized molecular surface visualization), and

extraction of difficult-to-find features (e.g., consistent teniae coli

extraction for colon flattening).

Colon flattening is a method in which the entire inner surface

of the colon is displayed as a 2D image and thus all the occlusions

are resolved but the geometric context is not preserved. The flat-

tening requires the consistent teniae coli extraction which is often

not possible and the folds in the resultant 2D image are cut at sharp

bends [21], reducing the overall usefulness of this flattened result

in the medical visualization context. Initial attempts to flatten

the colon surface include iterative methods based on electrical

field lines [31], cartographic [23], and cylindrical projections [3],

[4]. However, most of these methods do not preserve the local

shape. Conformal mapping, an approach where the local angles

are preserved, has recently been used for colon flattening with

promising results [11], [12], [14], [35]. The conformally flattened

colon was used in the detection of colonic folds [14] and for

supine-prone colon registration [35]. To overcome the need of

topological denoising for conformal colon flattening, Gurijala et

al. [11] used a heat diffusion metric and obtained promising

results. A geometric context-preserving colon flattening approach

was presented by Marino et al. [19] which was angle-preserving

but induced large area distortion; however, the approach could

not handle topological noise and required the prior consistent

teniae coli extraction, mostly done manually. In our earlier work

[21], we presented an automatic method to segment folds and

extract consistent teniae coli for flattening, doing away with the

tedious cutting process. However, segmentation artifacts remain

a problem since it is difficult to find a consistent cutting loop

through the collapsed regions of the colon. Moreover, current

colon flattening approaches are only angle-preserving and hence,

the induced area-distortion can be large, making them less useful

for polyp visualization on the resultant 2D flattened images. LMap

can be used to only deform the detected haustral folds [21] in

place while leaving the original geometry of the polyps and the

overall colon intact, thus allowing for accurate polyp localization

and measurements.

Conformal mapping techniques have also been used for brain

visualization, such as the circle packing-based method [15], finite

element method [2], [16], [29], and spherical harmonic map

method [6], [10], [32]. Zhao et al. [36] presented an angle-area

preserving planar brain flattening approach using optimal mass

transport. In our earlier work [22], we developed an angle-area

preserving 3D spherical mapping technique for the brain and

other genus 0 surfaces. The problem with these approaches is

that because of the loss in geometric context, they are primarily

used for registration, segmentation and classification tasks but

not for brain visualization. In contrast, LMap allows simplified

visualization of the local regions of interest while preserving the

overall geometric context

In computational chemistry, molecules are often visually com-

pared based on local surface attributes. However, to the best of our

knowledge all the previous work for making this local comparison

rely on global mapping techniques, which do not preserve the

overall geometric context, and hence can make it difficult to make

a finer comparison in the case of large regions with uniform

attribute values. Previous works leveraged spherical mapping via

deformable models [24], spherical coordinates [25], conformal

mapping [13], surface projections [17], and map projections [18].

Krone et al. [18] presented a hole-filling technique to reduce the n

genus surface to genus 0 and map the resultant genus 0 surface to a

sphere for visualization. Unfortunately, the simplification to genus

0 surface was done at the expense of removing critical channel

information and filling the resultant holes, which induces signif-

icantly high angle and area distortion; higher genus surfaces can

induce considerably higher angle and area distortion due to higher

loss in interior information. LMap, on the other hand, can be used

for conformally deforming only the boundary cavities without

removing the critical interior cavities and without affecting the

rest of the molecular surface.

The method closest to our LMap algorithm is spin trans-

formations [7]. Spin transformations require global information,

i.e. mean curvature computation for the entire mesh, to allow

for conformal deformations for selected ROIs on this mesh;

restricting the mean curvature computation to a local region while

ignoring the rest of the surface leads to self-intersections (as shown

in Figure 2h). In contrast, LMap only requires local Gaussian

curvature information to parameterize and conformally deform

selected ROIs, and does not affect the rest of the surface, hence

making it more useful for biomedical visualization tasks than the

previous methods. Simple smoothing constrained to the boundary

of the selected ROI does not preserve shape and hence, is not

useful in the present context. LMap is inspired from the recent

works in conformal parameterization domain ( [1], [28]).

3 COMPUTATIONAL ALGORITHM

This section introduces the computational algorithm for the in-

trinsic and extrinsic Ricci flow. The intrinsic Ricci flow [22] is

used to obtain the new lengths for the target Gaussian curvature

and the extrinsic Ricci flow is used to compute the corresponding

deformed mesh. More details on the intrinsic Ricci flow can be

found in our previous paper [22].

3.1 Intrinsic Surface Ricci Flow

In practice, surfaces are represented as triangular meshes. A

discrete metric on a mesh is the edge length function, denoted

as l : E → R
+, which satisfies the triangle inequality. The dis-

crete Gauss curvature is the angle deficit, defined on vertices,

K : V → R,

K(v) =

{

2π−∑ jk θ
jk

i , v 6∈ ∂M

π−∑ jk θ
jk

i , v ∈ ∂M
, (1)

where θ
jk

i is the corner angle at vi in the face [vi,v j,vk], and ∂M

represents the boundary of the mesh.

The discrete Gaussian curvature is determined by the discrete

Riemannian metric via the cosine law,

l2
i = l2

j + l2
k −2l jlk cosθi. (2)
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According to the Gauss-Bonnet theorem, the total Gaussian cur-

vature is a topological invariant and equals the product of 2π and

the Euler characteristic number χ ,

∑
v6∈∂Σ

K(v)+ ∑
v∈∂Σ

K(v) = 2πχ(Σ). (3)

The cotangent edge weight plays an important role. Given an

interior edge [vi,v j] adjacent to two faces [vi,v j,vk] and [v j,vi,vl ],
the cotangent weight is defined as

wi j = cotθ
i j

k + cotθ
ji

l . (4)

If the edge is on the boundary, adjacent to the face [vi,v j,vk], then

the cotangent weight is

wi j = cotθ
i j

k . (5)

A triangulation of the mesh is called Delaunay if all cotangent

edge weights are non-negative.

Given a triangular mesh M, the discrete conformal factor is a

function defined on each vertex u : V → R, the length of an edge

[vi,v j] is given by

li j = eui βi je
u j , (6)

where βi j is the initial edge length.

Discrete Surface Ricci Flow: The discrete surface Ricci flow is

defined as
dui(t)

dt
= K̄i−Ki(t), (7)

where K̄i is the target curvature at the vertex vi, and the discrete

metric is given by Eqn. (6).

Furthermore, the discrete Ricci flow is the negative gradient

flow of the discrete Ricci energy:

EΣ(u) =
∫ u n

∑
i=1

(K̄i−Ki)dui. (8)

The gradient of the Ricci energy is (K̄i−Ki)
T , the Hessian

matrix consists of cotangent edge weights, given in Eqn. (4),

∂Ki

∂u j

=
∂K j

∂ui

= wi j, (9)

and the diagonal elements are

∂Ki

∂ui

=−∑
j

wi j. (10)

Dynamic Surface Ricci Flow [22]: Given a target curvature K̄ :

V → R, satisfying the Gauss-Bonnet condition (3), conventional

Ricci flow does not guarantee the existence of the solution. During

the conventional discrete surface Ricci flow, some triangles may

become degenerated; namely the triangle inequality does not hold

on some faces, hence the flow terminates. In order to overcome

the instability of conventional surface Ricci flow, we use dynamic

surface Ricci flow [22]: during the Ricci flow, the triangulation of

the mesh is updated to be Delaunay with respect to the current

Riemannian metric.

The Delaunay triangulation can be obtained by a finite number

of edge flipping operations: for each edge, we flatten the two

adjacent faces to form a planar quadrilateral, then swap the edge

to the shorter diagonal. During the optimization, the triangulation

is updated to be Delaunay at each step; details can be found

in Algorithm 1. Preserving Delaunay triangulation is crucial to

ensure the existence of the solution to the dynamic Ricci flow.

Given a target curvature K̄ satisfying the Gauss-Bonnet condition

in Eqn. (3), and for each vertex K̄i ∈ (−∞,2π), there exists a

solution to the dynamic Ricci flow [9]. The solution is unique up

to a constant.

Algorithm 1: Intrinsic Surface Ricci Flow

Require: The input mesh M, target curvature K̄, threshold ε
Ensure: The edge length which realizes the target curvature

Compute the initial edge lengths {βi j};
Initialize the conformal factor to be zeros;

while true do

Compute the edge lengths using Eqn. (6);

Update the triangulation to be Delaunay by edge flipping;

Compute the corner angles using Eqn. (2);

Compute the cotangent edge weights using Eqns. (4) and

(5);

Compute the vertex curvature using Eqn. (1);

if ∀|K̄i−Ki(h)|< ε then

Break;

end if

Compute the gradient of the Ricci flow using Eqn. (7);

Compute the Hessian of the Ricci energy using Eqns. (9)

and (10);

Solve the linear system

Hess(u)δu = ∇E(u)

u← u+δu;

end while

return the edge length {li j}

3.2 Extrinsic Surface Ricci Flow

Given a triangle mesh M = (V,E,F), we select a region of interest

(ROI) Ω ⊂ M. We choose the step length as 1/n, where n is a

positive integer. At the k-th step, we set the target curvatures for

vertices inside Ω,

K̄(vi) =

(

1−
k

n

)

K(vi), ∀vi ∈Ω, (11)

where K(vi) is the initial discrete Gaussian curvature. We use the

intrinsic discrete surface Ricci flow algorithm (Algorithm 1) to

compute the corresponding edge length, denoted as lk : E→ R>0.

Then we adjust the positions of the vertices to satisfy the edge

length constraints.

At the k-th step, the mesh is Mk, the position for the vertex

vi is pk
i , and the deformation is along the normal field of the

surface. Let λ k : V → R be a function defined on the vertex set,

the deformation of vi is represented as

pk+1
i ← pk

i +λ k
i nk

i , (12)

where nk
i is the normal to the mesh Mk at the vertex vi. The area

of the face [vi,v j,vk] is given by

sk
i jl =

1

2
|(pk

j− pk
i )× (pk

l − pk
i )|.

The normal to the face can be computed as

nk
i jl =

1

2sk
i jl

(pk
j− pk

i )× (pk
l − pk

i ).
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(i) (j) (k) (l)

Fig. 2: Spin transformations comparison for the molecular surface in Figure 9a. (a) Mean curvature and global spin transformations with

varying scale factors (b) 2, (c) 6, and (d) 10. (e) Mean curvature is set to zero everywhere except the selected ROI and corresponding

local spin transformations with varying scale factors (f) 2, (g) 6, and (h) 10. (h) Surface self-intersects (black bounding box). (i) Selected

ROI and the corresponding LMap deformations (using Gaussian curvature) after (j) 1, (k) 2, and (l) 5 steps.

The normal to the vertex vi is given by

dk
i = ∑

jl

sk
i jln

k
i jl , nk

i =
dk

i

|dk
i |
. (13)

The edge length of an edge [vi,v j] is lk
i j, the square of the length

is Lk
i j, then the energy for the optimization is given by

E(λ k) := ∑
[vi,v j ]∈E

[

〈pk+1
i − pk+1

j , pk+1
i − pk+1

j 〉−Lk
i j

]2

. (14)

By direct computation, the gradient of the energy can be calculated

as
∂E(λ k)

∂λ k
i

= ∑
vi∼v j

(Lk+1
i j −Lk

i j)〈n
k
i , pk

i − pk
j〉 (15)

The algorithmic details can be found in Algorithm 2. The vertices

outside the selected ROI are fixed in place and hence, are not

affected by the local mapping of the given ROI.

3.3 Evaluation Method

The LMap algorithm was developed using generic C++ on the

Windows 7 platform. The Matlab C++ library was used for solving

the linear system. All of the experiments are conducted on a

workstation with a Core 2 Quad 2.50 GHz CPU with 8GB RAM.

We compare LMap against the spin transformations technique

[7]. We refer to the spin transformations with mean curvature for

the whole input surface as global spin transformations and the

Algorithm 2: Extrinsic Surface Ricci Flow

Require: The input mesh M and the ROI Ω⊂M

Ensure: The deformed mesh M such that Ω is flat

k← 0

while k < n do

Set the target curvature for vertex in Ω using Eqn. (11)

Use Alg. 1 to compute the edge lengths lk

Minimize the energy in Eqn. (14) using gradient descent

method, using the formula Eqn. (15)

Deform the position of each vertex in Ω using Eqn. (12)

k← k+1;

end while

return the deformed mesh

ones with mean curvature restricted to the selected ROI as local

spin transformations. For a selected ROI on the molecular surface

shown in Figure 9b, we compute the corresponding local spin

transformations where mean curvature is set to zero everywhere

except the selected ROI (Figures 2e–2h) and global spin trans-

formations (Figures 2a–2d) with varying scale factors. We can

observe that the local spin transformations for a selected ROI can

significantly distort the scale of the rest of the surface and can lead

to self-intersections with larger scale factors. In contrast, LMap

does not affect the rest of the surface while parameterizing and

deforming the selected ROI, as shown in Figures 2i–2l. Moreover,
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(a) (b)

(c) (d)

Fig. 3: Stability of LMap with ROI perturbations. Selected ROIs,

(a) and (c), and their corresponding local mappings, (b) and (d).

(a) (b)

Fig. 4: Sharp Bends. (a) Selected ROIs and the (b) corresponding

local mappings with normal mapped shading from (a).

the LMap is stable to perturbations of ROI, as shown in Figure 3.

LMap can also handle sharp bends, as demonstrated in Figure 4.

In theory, the Ricci flow method induces a conformal mapping.

A conformal map preserves angles and local shapes. The shape-

preserving property is crucial for visualization purposes. In order

to evaluate the conformality of the mapping result, we compute

both angle and area distortions. The area distortion is computed

as follows. Assume the parameterization is φ : M→ S. For each

vertex vi, the area distortion is defined as

εi := log
∑ j,k A([φ(vi),φ(v j),φ(vk)])

∑ j,k A([vi,v j,vk])

where A(.) represents the area of a triangle, and [vi,v j,vk] is the

triangle formed by vi,v j,vk. We then plot the histograms of εi.

Similarly the angle distortion at a corner angle is given by

ηi jk := log
∠φ(vi)φ(v j)φ(vk)

∠viv jvk

,

we then plot the histograms of ηi jk.

The angle-preserving (conformal) mapping should ideally be

close to zero angle distortions everywhere, whereas the area-

preserving mapping should be close to zero area distortions every-

where. We compute the area and angle distortion histograms for

the local selected ROI (Figure 9b) on mapped molecular surfaces

computed using LMap (Figure 9b), global spin transformation

(a) Angle Distortion LMap (b) Area Distortion LMap

(c) Angle Distortion Local (d) Area Distortion Local

Spin Transformation Spin Transformation

(e) Angle Distortion Global (f) Area Distortion Global

Spin Transformation Spin Transformation

Fig. 5: Area and angle distortion histograms. (a) Angle and (b)

area distortion histograms for LMap on the selected ROI in

Figure 2l. (c) Angle and (d) area distortion histograms for local

spin transformation on the same ROI with scale factor 6, as shown

in Figure 2g. (e) Angle and (f) area distortion histograms for global

spin transformation on the same ROI with scale factor 6, as shown

in Figure 2c.

with scale factor 6 (Figure 2c) and local spin transformation with

scale factor 6 (Figure 2g). As shown in Figure 5, for a given ROI,

LMap preserves angle and area better than both global and local

spin transformations.

4 CASE STUDIES

We present the following three challenging case studies for our

LMap algorithm.

4.1 Multimodal Brain Visualization

The human brain is complex in its shape and connectivity, even

at scales at which magnetic resonance imaging can measure.

Visualization is used for exploring possible relationships between

various brain structures across scan types (multimodal data) or

statistical variables (multivariate data). However, the convoluted
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 6: Multimodal brain visualizations using local mappings. (a) Brain cortical surface overlaid with cortical parcellation. The same

color regions on the left and right hemispheres represent the counterparts on the respective hemispheres. (b) Structural connectivity

from the diffusion MRI data is represented as fiber tracts, seeded at the corpus callosum. Left hemisphere (c) original surface and the

locally mapped surface at the selected region (d) using standard surface shading and (e) using normal mapped shading from the original

mesh. (f) The longest structural fiber connections to this selected region are shown in yellow with corresponding locally mapped

left hemisphere surface. (g) The corresponding connections and the locally mapped surfaces on the right hemisphere. (h) Functional

connectivity data is overlaid on the locally mapped surfaces, with white representing the most functionally-activated regions and black

indicating the least; the seed region is the upper white region on the left locally mapped surface. LMap computation for the two ROIs

took 1.7 secs.

(a) (b)

Fig. 7: Multimodal brain visualizations comparison. (a) Angle-

and area-preserving spherical parameterization [22] of brain corti-

cal surface in Figure 6a; the red curve represents the conformally

welded boundaries of the left and right hemispheres. (b) The

longest structural fiber connections to the same selected regions,

as shown in Figure 6h.

brain cortical structures induce considerable occlusions making it

difficult to visualize these structures in their original form.

Current global brain mapping techniques resolve these occlu-

sions [22] and allow for exploration of multiple modalities on a

brain surface [20] but at the expense of loosing the geometric

context. Moreover, the biggest problem with the global brain

mapping techniques is that all the modalities have to be mapped

to the common simplified representation and this can be a major

bottleneck. An example of the multimodal brain visualization [20]

based on angle- and area-preserving spherical parameterization is

presented in Figure 7.

In contrast, LMap overcomes these limitations by locally map-

ping selected ROIs while preserving the overall geometric context

and allowing for simultaneous visualization of cortical features,

along with structural and functional connectivity information from

diffusion and functional magnetic resonance imaging (MRI) data

respectively in the native space, as shown in Figure 6. We used

the Human Connectome Project (HCP) data [30] along with DSI

Studio [34] to obtain the highest fidelity structural, functional, and

diffusion data for our visualizations.

We also consulted a neuroscientist for feedback on our mul-

timodal brain visualizations. Since the neuroscientists want to

study specific cortical structures and the connectivity patterns
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i) (j)

(k) (l)

Fig. 8: Optimal coverage in virtual colonoscopy. (a) Virtual colonsocopy mesh with two polyps, one in view and another one occluded

by a far fold. (b) Highlighted folds between the near and the far polyps are conformally deformed via LMap and (c) the far polyp is

exposed (highlighted with a yellow bounding box) while preserving the overall geometric context. The coverage of this colon segment

increased from 72% in (a) and (b) to 94% using LMap in (c). (d) Polyp occluded by the far fold and the corresponding LMap on the

(e) highlighted folds in green remove the occlusion and (f) exposes the polyp (highlighted with a yellow bounding box). The coverage

of this colon segment is increased from 76% in (d) and (e) to 91% in (f). (g) Polyp on the fold. (h) Highlighted polyp in green and

the corresponding fold are conformally deformed via LMap (and pushed towards the colon wall) to increase coverage and the result

is shown (i) using standard surface shading and (j) using normal mapped shading from the original mesh. The shape of the polyp is

preserved in (j), owing to the angle-preserving property of LMap. The folds in (b), (e), and (h) are automatically detected using the

method presented in our earlier work [21]. (k) Angle-preserving flattening [21] of colon segment in (f) with the polyp highlighted with

a yellow bounding box. (l) Flattened colon segment in (g) with the polyp highlighted with a yellow bounding box. LMap computation

for ROIs in (b), (e), and (h) took 1.8, 2.3, and 1.2 secs, respectively.

between them, the ability of LMap to focus on the simplification

of these specific structures while preserving the overall geometric

context was highly appreciated. Moreover, the local mappings for

arbitrary-sized ROIs in the native space were also acknowledged,

along with the possibility of visualizing subcortical features in the

native space, and accurately overlaying the multimodal informa-

tion from the resting-state and task-based functional MRI data, and

multivariate information from geometric measures (travel depth,

curvature, area, thickness) and important landmarks such as sulcal

pits and fundi (Figure 1). Currently, neuroscientists visualize deep

folds on brain hemispheres by using inflated cortical surfaces or

via planar transformation by removing the software-added tiling

(shown in Figure 1e) and manually cutting along the cortical

surface to lay out the brain on a plane in the original superior
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 9: Molecular surface local mappings. (a) A small protein (genus 0) colored by temperature factor (PDB ID: 1RWE), with red the

highest and blue the lowest temperature factors. Local mapping for a selected ROI (b) using standard surface shading (c) and using

normal mapped shading from the original mesh (d). (e) Protein (genus 1) with a channel (PDB ID: 2BT9). The coloring shows the

three amino acid chains that form the protein. Local mapping for selected ROIs (f) using standard surface shading (g) and using normal

mapped shading from the original mesh (h). (g) Protein (genus 65) with an intricate network of channels (PDB ID: 1GKI). The coloring

shows the six amino acid chains that form the protein. Local mapping for selected ROIs (j) using standard surface shading (k) and

using normal mapped shading from the original mesh (l). LMap computation for ROIs in (b), (f), and (j) took 1.3, 2.0, and 3.8 secs,

respectively.

view (shown in Figure 1a). We can achieve the tedious planar

transformation by just selecting a larger region without requiring

any further input.

4.2 Optimal Coverage in Virtual Colonoscopy

Virtual colonsocopy (VC), or CT colonoscopy, is a non-invasive

cancer screening technique to navigate and inspect a 3D recon-

structed colon surface for polyps (precursors of colon cancer)

and if found, to localize and accurately measure these polyps.

As part of the standard VC protocol, a radiologist inspects the

surface while flying through the colon along the centerline from

rectum to cecum and back in both supine (face up) and prone (face

down) patient colon datasets. These four centerline flythroughs

provide the optimal coverage of the colon surface and hence,

minimize the probability of missing a polyp occluded by a fold.

In total, a radiologist can spend between 15-30 minutes on these

four flythroughs. With the deluge of non-invasive imaging, this

interpretation time is a major bottleneck for these radiologists.

Global planar parameterization (or flattening approaches) can

be used to completely resolve the occlusions in this context [21]

and maximize the coverage. However, the problem with these

approaches is that the resultant surface completely looses the

geometric context and induces significant areal distortion since

all these approaches are only angle-preserving (Figures 8k and

8l), making these approaches less suitable for polyp localization

and visualization tasks; it is for this reason that these flattening

approaches are only used for registration purposes. Moreover,

these approaches require teniae coli extraction (for boundary

mapping) which might not be possible in most cases [21] where

the colon is under-distended (a common occurrence).

We show the effectiveness of LMap in this context by deform-

ing only the detected haustral folds [21] in place while leaving

the original geometry of the polyps and the overall colon intact,

thus allowing for accurate polyp localization and measurements,

as shown in Figure 8. The coverage of the colon segment,

shown in Figure 8a, increased from 72% to 94% using LMap

on the detected folds, in Figure 8c. The coverage of the colon
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(a) (b) (c)

(d) (e) (f)

Fig. 10: Molecular surface maps [18] comparison. (a) A protein (PDB ID: 1RWE) is mapped to (b) a sphere using the force-directed

method and (c) projected using the Lambert equal-area projection (as outlined in Krone et al. [18]). (d) A protein (PDB ID: 2BT9),

with channel removed and the resultant holes filled (shown in black), is mapped to (e) a sphere with the parameter-based method and

(f) projected using the Plate Carrée projection (as done in Krone et al. [18]).

(a) (b)

(c) (d)

Fig. 11: Molecular surface local mappings for cavities (a) and (c),

colored in green. The corresponding local mappings are shown in

(b) and (d).

segment, shown in Figure 8d, is increased from 76% to 91%

using LMap on the detected folds, in Figure 8f. The polyps on

the colon wall are left intact (distortion-free), making the polyp

localization, visualization and diagnosis in the resultant maps as

accurate as possible. The polyps can be located on both the colon

wall and the folds and hence, shape-preservation during the local

mapping is critical to avoid loss of such important information.

As demonstrated in Figure 8g, a fold is detected with a polyp

located on it using our algorithm [21]. The detected fold and the

polyp located on it are locally deformed using LMap, as shown

in Figure 8h. Due to the angle-preservation and local deformation

properties of LMap, we can visualize the true shape of the locally

mapped polyp with minimal possible area distortion, as shown

in Figure 8i. The optimal coverage in a single flythrough has a

potential to significantly reduce the interpretation time and the

associated costs.

We conducted an interview with a VC expert to receive feed-

back on our current LMap colon visualizations. The expert found

the current visualizations with geometric context preservation very

promising, especially for training new radiologists on VC systems.

The expert reiterated our concern about the current state-of-the-

art colon flattening approaches being angle-preserving only which

can induce a large area distortion on the flattened surface, making

them less desirable for polyp diagnosis. Since LMap only maps

local ROIs (folds in the case of VC) the area distortion is much

smaller than that induced with a completely flattened colon.

We use real CT colon data from the publicly available National

Institute of Biomedical Imaging and Bioengineering (NIBIB)

Image and Clinical Data Repository provided by National Institute

of Health (NIH). We perform electronic cleansing incorporating

the partial volume effect [33], segmentation with topological

simplification [14], and reconstruction of the colon surface as a

triangular mesh via surface nets [8] on the original CT images

in a pre-processing step. Though the size and resolution of each

CT volume varies between clinical datasets, the general data

size is approximately 512x512x450 voxels with a resolution of

approximately 0.7x0.7x1.0mm.

4.3 Molecular Surface Visualization

Solvent excluded molecular surfaces are among the most prevalent

visual representations for analyzing molecules, especially in bio-

chemistry and structural biology molecular simulations. Different

surface models represent different properties of the molecule and

additional information can be overlaid on the surface, for example,

to show physico-chemical properties of the underlying atoms [18].
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The cavities on the boundary and in the interior of the molecule

represent important information about the potential binding sites

for other molecules making these cavities critical to study via

visualization.

We demonstrate the effectiveness of LMap on three molecular

surface datasets from Protein Data Bank [5], courtesy Krone et al.

[18]. The two genus 0 (Figure 9a) and genus 1 (Figure 9e) surface

datasets were used by Krone et al. [18] but the third genus 65

(Figure 9i) surface dataset was not; Krone et al. [18] computed

the solvent excluded triangular mesh surfaces using the MSMS

software by Sanner et al. [27]. LMap results for the corresponding

ROIs (Figures 9b, 9f and 9j) using standard surface shading and

using normal mapped shading from the original mesh are shown in

Figure 9. LMap does not require the removal of interior cavities.

It locally parameterizes and deforms only selected ROIs (e.g.,

boundary cavities) for visualization with minimal angle and area

distortion while preserving the overall geometric context.

In contrast, current state-of-the-art molecular surface visual-

ization techniques [18] remove critical information such as chan-

nels and fill the resultant holes for using spherical parameterization

algorithms which can induce considerable angle and area distor-

tion; higher genus surfaces can induce considerably higher area

and angle distortion due to higher loss of interior information. We

implemented the two force-directed and parameter-based spherical

parameterization algorithms, and the two Lambert equal-area and

Plate Carrée map projection algorithms, presented in Krone et al.

[18]. The results on two molecular genus 0 and genus 1 (with

channel removal and hole-filling) surface datasets are shown in

Figure 10. The map projections in Figures 10c and 10f were

used to create space time cube visualizations [18] to visualize the

cavities on the boundaries without the need for animation. LMap

can similarly be used to visualize the cavities while preserving

the geometric context and without removing the critical channel

information, as shown in Figure 11.

5 CONCLUSION AND FUTURE WORK

In this work, we presented LMap, a technique to conformally pa-

rameterize and deform selected regions of interest on an arbitrary

surface. We achieved this using the robust and theoretically-sound

extrinsic Ricci flow. We also guarantee the existence of a local

map for a selected ROI on an arbitrary surface via the use of the

dynamic Ricci flow. The effectiveness and efficacy of our LMap

technique was then demonstrated in three challenging use cases:

(1) multimodal brain visualization, (2) optimal coverage of virtual

colonoscopy flythroughs, and (3) molecular surface visualization.

In the future, we will incorporate area-preserving techniques

into LMap using optimal mass transport for balancing the resul-

tant area- and angle-distortions. Quasi-conformal parameterization

[35] allows bounded conformality distortion. In this direction, we

will explore extending LMap to quasi-conformal LMaps. Since

we can locally parameterize a selected ROI without requiring any

global information or spherical constraints [26], we will also val-

idate our approach in the context of decal mapping. Since LMap

allows multimodal brain visualization in the native space, we will

integrate subcortical structures into these LMap visualizations for

a more comprehensive picture of the brain. In the context of

VC, we will conduct a formal study with expert radiologists to

test LMap in VC. For molecular surface visualization, we will

introduce visualizations to study the evolution of the boundary

cavities in place with exploded LMap views of these cavities, and

will combine these with context-preserving maps [19] to visualize

the interior cavities, simultaneously.
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