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Abstract—We study the propagation of electromechanical os-
cillation waves across an interconnected power system using am-
bient synchrophasor measurements. Leveraging recent advances
in seismology and earth sciences, we propose to estimate the
system impulse response from one location to another by cross-
correlating the corresponding ambient frequency data. We have
presented initial analytical results to demonstrate the validity
of this approach for undamped stable systems, corroborated by
numerical tests on small (and even damped) systems. Additional
validations have been performed using two dynamic test cases
representing realistic power systems. By comparing the cross-
correlation results to the model-based solutions, we have identi-
fied several cases of successful recovery, and also a few cases of
visible mismatches that need further investigations.

I. INTRODUCTION

Electromechanical oscillations in interconnected power sys-
tem are complex in nature and can cause severe problems
in power system operations. The root causes of these os-
cillations can be attributed to fast excitation systems and
to weak tie lines between different areas [1, Ch. 1]. As
long as well damped, oscillations are generally acceptable
in the interconnected grids. However, existence of poorly
damped oscillations are not uncommon. Even worse, for some
poorly damped oscillation modes, even a small disturbance
event would trigger growing level of oscillations and system
instability issues. This was exactly the cause of the August
1996 blackout at the US/Canada Western Interconnection, with
thousands of megawatts of load and generation outaged [2].

Studying the oscillation phenomena has traditionally re-
lied on analyzing the corresponding system dynamic system
models. Building these dynamic models, typically nonlin-
ear, require the complete and accurate information regard-
ing synchronous generators, fast/slow exciters, and network
information; see e.g., [3]-[5]. By linearizing the dynamic
models, one can perform the small-signal analysis to study
the oscillation mode frequency/damping and identify coher-
ent generator groups. However, this model-based framework
would experience issues such as outdated model information,
frequent topology changes, or high computational complexity.
All of these issues could challenge the performance fidelity of
the model-based stability analysis results.

Over the past decades, high-resolution synchronized mea-
surements provided by phasor measurement units (PMUs)
have been advocated for a measurement-based framework
for power system analysis, including the oscillation related

dynamics analysis. Synchronized frequency/angle and voltage
data at high sampling rates could reveal important charac-
teristics of the power system dynamics and require little
information of the underlying models. A classical problem
is to estimate the oscillation modes and mode shapes using
either ambient data, ring-down signals, or probing responses;
see e.g., [6]-[9]. More recently, it has been shown that the
statistical information in ambient synchrophasor data can be
used to estimate the system Jacobian matrix [10] or analyze
the sustained oscillations [11].

The present work aims to develop a data-driven framework
to estimate the generator’s frequency response due to any
input disturbance to better understand the oscillation behaviors
of an interconnected system. This impulse response can be
obtained by the small-signal analysis of the linearized dynamic
model. Albeit focused on the linearize system regime, it can
provide valuable information regarding inherent dynamic char-
acteristics such as system stability and generator coherency.
In addition, with the time-scale separation in power system
dynamics [4][Ch. 1], the initial behavior of generator response
can well approximate the very fast system response due to a
disturbance.

The frequency deviation at different locations across an
interconnected power system after occurrence of a big distur-
bance can be closely related to the propagation of electrome-
chanical (EM) waves over continuum medium; see e.g., [12],
[13]. Under this framework, the angular variation across an
interconnected system can be modeled as a two-dimensional
planar wave. Although the perspective of EM wave prop-
agation fails to capture the full spectrum of actual grid
behaviors, it offers the macroscopic insights into disturbance
response over a large-scale interconnection. For example, the
propagation speed has been approximately computed to be
at ~ 1000 km/sec [12]. Interestingly, the EM wave model
for grid disturbance propagation has inspired the adoption of
data processing techniques that have been developed for other
types of waves in natural systems. Specifically, earth scientists
and seismologists have discovered that some of the wave
propagation properties can be extracted by cross-correlating
high-resolution ambient measurements at any two locations.
The relation between the cross-correlation of time-history
responses of two record points and the impulse response, or
the Green’s function has been established for uncorrelated
diffusive field [14]. The condition of this relation was later



extended in the view of scattered waves [15], energy flux [16],
and reciprocity theorem [17]. More detailed discussions can
be also found in [18]-[20] regarding why seismic ambient
noise may give good estimate of Green’s function even when
the conditions are not strictly satisfied. This cross-correlation
method has been successfully validated by seismic coda waves
[21], long time Rayleigh waves [22], and crustal body waves
[23]. It has been proposed to divide the data processing scheme
into multiple phases as summarized in [24]. Most recently, this
method has also been used to predict the strong ground motion
under “virtual earthquakes” [25].

We propose to leverage these advancements of wave stud-
ies in seismology to estimate the grid frequency response
by cross-correlating ambient PMU measurements. Such an
approach has been pioneered in [26], however, the estimated
Green’s function therein corresponds to a disturbance in terms
of step function change in frequency. Moreover, although [26]
has presented preliminary results on real data validation, it
has not provided any insights to justify the adoption of the
cross-correlation approach based on power system dynamic
modeling. Compared to [26], we present some initial analytical
results to better understand the applicability and potential
limitations of the cross-correlation approach. Specifically, we
have shown the equivalence relation between the impulse
response and the cross-correlation of frequency data for un-
damped stable systems under random white noise inputs.
Moreover, we have tested the cross-correlation approach on
two power system dynamic cases: the Western System Coor-
dinating Council (WSCC) 9-bus system [27] and the Northeast
Power Coordinating Council (NPCC) 48-machine system [28].
With the benchmark impulse response obtained by the model-
based method, we have identified several success cases where
the cross-correlation can accurately recover the disturbance
response. Our numerical simulation results also point out the
potential to generalize the validation of the proposed cross-
correlation method to certain types of damped systems.

II. POWER SYSTEM DYNAMIC MODELING

Dynamics of a power system can be modeled by a set
of differential and algebraic equations (DAEs). To this end,
consider the following set of DAESs that can be used to describe
a general non-linear dynamical system

=f(x,y,u)

X

0 =g(xYy)
with dynamics of the state vector x depending on the algebraic
variables in y and the input variables in u. In the context of
power systems, vector x contains the internal angle and speed
of generators and status of their connected equipments such
as exciters and governors. Also, vector y constitutes of the
voltage magnitudes and angles at all buses to establish the
power flow equations, while the input u typically includes
the mechanical power injected to all generators. The set of
DAE:s in (1) can be linearized around an operating point, i.e.,
a solution to the steady-state power flow equations, in order to
perform the small-signal stability analysis. Furthermore, one

(D

can eliminate the vector y from the resultant linearized model
to obtain a set of ordinary differential equations (ODEs) for
the state vector x.

We adopt the classical model for synchronous genera-
tors [4, Sec. 6.6] to make the dynamic model in (1) more
specific. Under this simplified generator model, the system
states only involve the angle and speed of all the syn-
chronous generators. For a system of n generators with a
given operating point, one can partition X into the angle
deviation vector § = [61,52,--- ,én]T and the speed de-

. T .
viation one w = [wl,wg, e ,wn] . Meanwhile, the vector

u=[uy,up, - ,u"]T stands for deviation from the nominal
mechanical power input values at all the generators. After
linearization and elimination of algebraic variables, the system
dynamical model is given by the so-called swing equations [4,
Sec. 6.6]:

b =w @
& =-M"'K§-M~'Dw+M'u
where M = diag{M;,M5,--- ,M,} and D =
diag{D1, Do, -+ ,D,} are the positive diagonal matrices

containing the generator moment of inertia and damping
coefficients, respectively. Also, matrix K := 28" is the
partial derivative for the generator electrical power output
P¢ = [P}, P5,- - ,P,ﬂT with respect to &. The relation of
the two is based on the power flow equations. Clearly, one
can construct the linearized model (2) with given generator
parameters and network information. There also exist several
simulation tools that can automate this process such as the
Power System Toolbox [28] and Power System Analysis
Toolbox (PSAT) [27].

The rest of this paper will develop a model-free approach
for estimating the impulse response Ty, from any input wuy
to any speed state wy by using only ambient synchrophasor
frequency data collected at the two nodes. The ensuing section
will present this cross-correlation based approach using the
swing equation model in (2).

III. IMPULSE RESPONSE ESTIMATION USING
CROSS-CORRELATION

We propose to estimate the impulse response by cross-
correlating the ambient frequency measurements under small
perturbation inputs. It can be shown that the impulse response
between any two locations is related to the cross-correlation
of corresponding ambient generator speed responses. For
simplicity, here we establish this relation for an undamped
and stable system, resulting in an orthogonal transformation to
the oscillation modes. Extension to the more realistic damped
systems is possible under orthogonal transformation condition,
which will be explored in future.

To this end, the system in (2) can be represented as a linear
combination of its n modes associated with the 2n eigenvalues
of the state transition matrix. For undamped system with
D = 0, each eigenvalue \; can be found by solving the
generalized eigenvalue problem Kc; = —\?Mc; for given



M and K, with c; denoting the corresponding eigenvector. To
ensure stability, we can assume that the matrices M and K
are symmetric and positive definite. This way, we have A\? < 0
and every eigenvalue is purely imaginary; i.e., A; = +jf; as
characterized by the oscillation frequency (;. Accordingly, the
normalized eigenvectors are also orthogonal to each other, as
given by the following conditions [29, Chap. 15]

_
cZMcjz{O’ ifisJ 3)

1, ifi=j

The orthogonality of the modes can simplify the analysis of
the full system (2) by projecting it to each mode, denoted by
z;. The response of each mode is determined by the second-
order dynamics:

% =Mz +clu 4

Under zero initial condition at time ¢ = 0, the time derivative
of z;’s trajectory is given by

t
(t) :/ cos(B;T)cju(t — 1)dr, t> 0. 6))
0
Inverting the projection, the trajectory of wy is recovered as

we(t) = ceiZi(t)
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where cy; is the /-th entry of eigenvector c;. With a slight
abuse of notation, use §(¢) to denote the Dirac delta function.
Under an impulse input uy = §(¢) with the other inputs kept

as zero, the impulse response at wy for any k,¢ € {1,--- ,n}
becomes
Tre(t) = Z cricei cos(Bit), t>0. 7
i=1

To generate the ambient response data, assume there exist
small system perturbations due to e.g., random load variations
and thus the input u is modeled by zero-mean white-noise
process with covariance matrix equals to 3. Using (6), the
normalized cross-correlation between wy(t) and wy(t) over a
duration of 71" seconds becomes

™+T
Ck-g(’r) = l/ " wk(t)Wg(th)dt

T Ty
1 /T1+T { i /t -

= — Chi cos(Bim)c; u(t — 1)dm
T Jr, - 0
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where 77 > 0 is a sufficiently large time after zero initializa-
tion. Under the white-noise input condition, we have

1 (DT

7/ {cTu(t - Tl)}{C}-ll(t — 7 — 1)} dt

= ¢/ Bc;d(r — 7 — 1), 9)

recalling that §(¢) is the Dirac delta function. To capitalize the
orthogonal condition in (3), we assume the variance of input
perturbation per node scales proportionally with the inertia
of the generator; i.e., 3 = pM. This assumption can be
justified as higher inertia value would have been allocated to
areas at larger disturbance level at the system planning phase.
Interestingly, this assumption simplifies the cross-correlation
in (9) as

c] Bejd(r — 7 —72) = pe] Me;d(n —7 =),  (10)

which is only non-zero when ¢ = j [recalling (3)]. Under the
orthogonality of (10) and sufficiently long system response
(17 > 0), the cross-correlation in (8) can be further simplified
as

n s
Cre(T) = Z /,I/Ckicgi/ cos(B;71) cos (Bi(m1 — 7)) dmy
i=1 0

- Ty 1 [h
= Zuckic&- > cos(fBiT) + 3 cos(2B;m1 — BiT)dm |-
i=1 0
(1D

The second summand of (11) can be easily bounded by 1 and
becomes negligible compared to the first one as 77 grows, and
thus the cross-correlation becomes

T,
Chrelr) = %Tkg(’r). (12)

This establishes the equivalence between the cross-correlation
of ambient data and the system impulse response, up to a
scaling difference. Several key assumptions have been made,
especially regarding the perturbation inputs. Although these
assumptions like the covariance condition in (10) may seem
restrictive, they are equivalent to having homogeneous excita-
tion inputs across the system, which should hold for large-scale
interconnected power grid.

To quickly verify our analysis, we will test it on a two-
node toy undamped case. Consider the system (2) with the
following parameters:

M:[0.25 0]’ K:{ 1 —05

0 05 05 1 ] D=0. {3

The generalized eigenvalues are given by —\? = {4.73,1.27}.
Hence, the system is stable with oscillation frequency at
B; = {2.18,1.13}. We compute the cross-correlation using
the response of w to white-noise input. The system response
is generated with 77 = 500 seconds from the zero initial
condition at time step of d¢ = 0.01 second.

Fig. 1 plots the comparison between the cross-correlation
result and the impulse response for input-output pair 7o;.
Based on (12), the two are different by a scaling factor at
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Fig. 1: Impulse response versus cross-correlation from uy to
w; for the two-node undamped case.

TABLE I: Dissimilarity scores for the two-node undamped
case.

Ski Uy U
w1 0.008 0.010
w2 0.010 | 0.015

“TTI. To account for the scaling difference, we perform the
normalization using the maximum absolute value and compare
the two using the following dissimilarity score

Sy = 1 Tke — Crell2
| The||2

where T}, (Cr¢) is the normalized impulse response (cross-
correlation) from input uy, to speed state wy, while ||-||2 denotes
the L? norm of the vector corresponding to the discrete-time
response. Hence, perfect similarity would correspond to a zero
score. The similarity scores for each input-output pair are
listed in Table I. The extremely small values verify that the
two time series are very similar up to a scaling difference.

As mentioned earlier, the equivalence analysis can be po-
tentially extended to damped system. To demonstrate this
possibility, we have slightly modified the system in (13) by
changing the damping matrix to

D =0.75M.

(14)

15)

For this modified damped case, the dissimilarity scores are
updated in Table II, and the comparison corresponding to the
pair (uj,wo) with the highest dissimilarity score is plotted
in Fig. 2. Again, the updated dissimilarity scores are close
to zero, suggesting that the cross-correlation method works in
estimating the impulse response for a system that has damping
matrix D proportional to the mass matrix M.
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Fig. 2: Impulse response versus cross-correlation from u; to
wo for the two-node damped case.

TABLE II: Dissimilarity scores for the two-node damped case.

Ski Ui uz
w1 0.045 | 0.052
w2 0.083 | 0.051

The analysis and the examples so far shows for undamped
stable systems and certain damped systems, the impulse re-
sponse between any input-output pair can be recovered by
the cross-correlation of the generator speed responses under
ambient conditions. Lacking of direct measurements of gener-
ator internal speed in practical implementations, one can use
the synchrophasor frequency data at the closest bus as the
surrogate.

IV. CASE STUDIES

This section will test the proposed cross-correlation based
approach the WSCC 9-bus system (modified from the one
provided in [27]) and the NPCC 48-machine system (as given
in [28]). Although our analysis in Section III is limited to
several simplification assumptions such as undamped and
symmetric systems, we demonstrate the effectiveness of the
cross-correlation approach for practical systems with damping
and even governor/exciter controls. Specifically, for the WSCC
9-bus case, we compare the model-based impulse response
and the estimated one for every pair of generators. As for
the NPCC 48-machine case, we have identified some local
or inter-area oscillation scenarios where the proposed method
is more effective. Other less successful scenarios are also
presented to better understand the applicability of the proposed
method.
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Fig. 3: WSCC 9-bus system: model-based impulse responses (solid red lines) versus the estimated ones using cross-correlation

(dash blue lines) for each input-generator pair.

A. WSCC 9-bus system

We first test on the WSCC 9-bus system, popular for power
system dynamics analysis. Following from the approach in
[10], we modify the WSCC 9-bus case in [27] by only
consider the classical synchronous generator models without
exciters or governors. The parameter values are as follow:
My = 0.63, My = 0.34, M3 = 0.16, and D; = 0.63, Dy =
0.34, D3 = 0.16. Under these parameter values, the K matrix
in synchronous reference frame is given by

2.819 —1.523 -1.294
K=|-1611 2723 -—-1.112 (16)
—1.338 —1.108  2.447

Clearly, matrix K is not perfectly symmetric for this system,
which may affect the validity of the condition on vectors {c;}
in (3). After obtaining the linearized model (2), we can directly
compute the model-based impulse response. To obtain the
ambient frequency measurements, we generate random white
Gaussian processes of inertia proportional variance as the
input to the linearized system. The speed responses are cross-
correlated to estimate the corresponding impulse response.
Figure 3 plots the modeled-based impulse responses along
with the estimated counterparts for every input to every
generator output. To tackle the scaling ambiguity between the
two, we have normalized each time series to be of unit peak
value. High consistency has been observed for each input-
generator pair, demonstrating the effectiveness of the proposed
approach. We also calculate the dissimilarity scores to quantify

TABLE III: Dissimilarity scores between the model-based and
estimated impulse responses for WSCC 9-bus case.

Ske uy u2 u3

w1 0.095 | 0.107 | 0.182
w2 0.123 | 0.103 | 0.188
w3 0.120 | 0.166 | 0.100

the similarity using equation (14). The numerical values are
listed in Table III.

Overall speaking, the reconstructed impulse responses
match well with the actual ones for the WSCC 9-bus case. The
best match turns out to be from u; to wy, with dissimilarity
score at 0.095. The least similar one appears to be from us
to wy, with dissimilarly score of 0.188. Even at the highest
dissimilarity, the two time series are still shown to be very
close, as illustrated in the right middle plot in Figure 3. The
comparisons again verify the effectiveness of the proposed
data-driven approach in estimating the actual system impulse
responses.

B. NPCC 48-machine system

We further test the proposed method on the NPCC 48-
machine system with 140 buses, the detailed case information
of which is available from [28]. Generators in this case
are equipped with governors and exciters. They could be
partitioned into 17 areas, as discussed in [30]. Using the
area partition information therein, we can categorize the local
or inter-area oscillations for this system. We use the same
techniques to generate the ambient frequency measurements
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Fig. 4: NPCC 48-machine system: model-based and estimated
impulse responses for selected input-generator pairs under
local or inter-area oscillations.

everywhere in the system for performing the cross-correlation
analysis.

We compare some selected pairs of model-based and es-
timated impulse responses in Figures 4 and 5. Figures 4(a)-
(b) correspond to those from the input at generator 43 or 38
to itself, respectively. These two self-impulse responses are
perfectly reconstructed. Figures 4(c)-(d) plot two selected pairs
corresponding to local area oscillation at area 11 and area 9,
respectively. Both also show good estimation accuracy. Figures
4(e)-(f) illustrate two inter-area oscillations, one from area 11
to area 4 and the other from area 12 to area 6. For the selected
pairs, the impulse responses are well estimated by the cross-
correlation.

Although the proposed approach has been successfully
validated for a majority of input-generator pairs, there also
exists some high level of mismatch for several pairs. Some
of these example cases are plotted in Figure 5. Since our
analysis has been focused on very simple system models using
swing equations, we have provided certain characteristics of
real systems that may have led to the observed mismatches.
One factor could be the fact that in real power systems not all
lines are purely inductive, as some lines have resistance even
comparable to its inductance. Therefore, the from-end and to-
end power flows do not equal to each other, affecting the
symmetric property of matrix K. This asymmetry has already
been observed by the WSCC 9-bus system, as illustrated in
(16). For the example pairs with high level of mismatch in
Fig. 5, we notice that most of the generator buses are directly
connected to highly-resistive transmission lines. For example,
generator 11 at bus 47 is connected to bus 46 by a line whose
resistance value is at more than half of the inductance value.

Another factor that could cause the mismatch is the ex-
istence of controllers (exciters, turbine governors and power
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Fig. 5: NPCC 48-machine system: model-based and estimated
impulse responses for example input-generator pairs at high
level of mismatch.

system stabilizers) for improved voltage or frequency stability.
The additional controllers affect the validity of the swing
equations based dynamic model. From the simulation results,
we observe that cross-correlation usually works better if
the associated generators are equipped with less complicated
controllers . For example in Fig. 4(a)-(d), the generators 34,
35, 37, 38, 42, 43 neither have exciter or turbine governor
only. If both types of controllers exist, the cross-correlation
results are typically different from the model-based ones. As
in Fig. 5(b)-(c), the generators 1, 6, 10, 11 are all equipped
with both exciter and turbine governor. We suspect the higher-
order dynamics due to these control actions have affected the
performance of the proposed data-based method.

V. CONCLUDING REMARKS

This paper studied the electromechanical disturbance prop-
agation phenomenon, a long-standing problem for bulk in-
terconnected power grids, from a new data-driven perspec-
tive. Our approach leverages the increasing volume of high-
resolution synchrophasor data available to understand the im-
pact of an input disturbance at one location to another location
in the interconnected power system. To estimate this impulse
response, we proposed to cross-correlate ambient frequency
measurements at the two locations without requiring any
model information. The estimated impulse responses could be
used to further determine the modes and mode shapes, as well
the generator participation factor for a particular mode. Albeit
successfully validated by the WSCC 9-bus case, the proposed
data-driven method turns out to be at visibly high level of
mismatch for selected input-generator pairs for the NPCC 48-
machine system. Certain factors have been identified, such
as the existence of highly-resistive transmission lines and
generator control actions. It is crucial to perform real data
based validations and to further understand the applicability
of the proposed cross-correlation approach for large-scale
interconnected systems.
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