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Abstract

In this paper, we aim at solving the Biot model under stabilized finite element

discretizations. To solve the resulting generalized saddle point linear systems, some

iterative methods are proposed and compared. In the first method, we apply the GM-

RES algorithm as the outer iteration. In the second method, the Uzawa method with

variable relaxation parameters is employed as the outer iteration method. In the third

approach, Uzawa method is treated as a fixed-point iteration, the outer solver is the

so-called Anderson acceleration. In all these methods, the inner solvers are precon-

ditioners for the generalized saddle point problem. In the preconditioners, the Schur

complement approximation is derived by using Fourier analysis approach. These pre-

conditioners are implemented exactly or inexactly. Extensive experiments are given to

justify the performance of the proposed preconditioners and to compare all the algo-

rithms.
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1. Introduction

Biot’s equations, which describe the deformation of poroelastic material under saturated

fluids, have many wide applications in geosciences and biomechanics. For example, Biot

model is frequently used in simulating brain swelling model to quantify brain edema as-

sessment. Combined with image data and patient-specific data such as cerebral blood flow

conditions, numerical methods are applied for simulating brain swelling under ischemic

conditions or after traumatic brain injury. In practical applications, numerical methods such

as Finite Element methods and Finite Difference methods are normally used in simulations.
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As the model contains several physical parameters, numerical study for this model is very

challenging. To capture the correct behavior of the numerical solution, the discretization

schemes usually require extremely fine grids which will lead to large-scale generalized sad-

dle point discrete linear systems. This paper aims at providing efficient numerical methods

for solving the resulting linear system of the Biot model under stabilized Finite Element

discretizations.

For simplicity, we assume that the domain Ω is a unit square or a unit cube so that we

can avoid the rescaling of the spatial variables. The (quasi-static) Biot equations is

{

−div(2µε(u))−∇λdivu + α∇p = f , ∀x ∈ Ω,
∂
∂t

(sp + αdivu) − div(κ∇p) = g, ∀x ∈ Ω.
(1)

In the above equations, u is the displacement of the elastic deformable medium,

ε(u) =
1

2

[

∇u + ∇T u
]

,

p is the pressure of fluid, f is the body force, g is a source term for fluid, λ and µ are Lamé

constants, which can be expressed as

λ =
Eν

(1 + ν)(1 − 2ν)
, µ =

E

2(1 + ν)
, (2)

s ≥ 0, is the constrained specific storage coefficient, κ > 0 represents the permeability, α

is the Biot constant which is close to 1. In (2), E is the Young’s module, ν is the Poisson

ratio. When ν approaches to 0.5, the elastic material is almost incompressible. Note that

α is close to 1 and one can rescale αp = p̃, for simplicity and without loss of generality,

we assume α = 1 so that the final system is symmetric. For the boundary condition, one

can apply different types of boundary conditions. For simplicity, we will apply the typical

homogeneous Dirchlet boundary condition for both the displacement and pressure [15, 16].

The initial condition should satisfy the Stokes equations [22, 25, 14]. Except specifically

pointing out, we will focus on the discussions on pure Dirichlet boundary conditions. Other

type of boundary conditions like mixed Dirichlet and Neumann boundary condition [25]

will also be discussed when necessary.

For the second equation of (1), we apply the backward Euler scheme:

−(divun+1 − divun) − s(pn+1 − pn) + ∆tdiv(κ∇pn+1) = −∆tgn+1. (3)

By the backward Euler scheme (3), the resulting differential operator is

M =

[

−div(2µε(·)) grad

−div −(sI − θ∆)

]

. (4)

Here, θ = κ∆t.

For spatial discretization, we consider to use the stabilized Mini element [27] or sta-

bilized P1-P1 (or Q1 − Q1) discretization. In the literature, Gaspar et. al. develop finite

difference discretizations [15, 16, 26], Lipnikov uses P 1 elements for displacement and a

lowest-order Raviart-Thomas elements for pressure [23], Lee et. al apply the conforming

and nonconforming finite elements [21, 22]. We adopt the stabilized Finite Element method
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proposed in [27] because this method leads to monotone scheme which is very important

to suppress the pressure approximation errors. After the discretization, the resulting linear

system is of the form:

M

[

u

p

]

=

[

A Bt

B −D

][

u

p

]

=

[

f

g

]

. (5)

In designing fast solvers for such a generalized saddle point problem, there are two main

ingredients: preconditioners and iterative methods. In the following, we highlight the con-

tribution of this paper on both the preconditioning aspect and the iterative method aspect.

For preconditioning the Biot system, the main focus of this paper is the approxima-

tion of the Schur complement based on a Fourier analysis approach. In a recent paper

[22], the authors consider to introduce an intermediate variable (one can call it ”total pres-

sure”, which is a linear combination of divu and the fluid pressure), and reformulate the

2-by-2 saddle point operator (4) into a 3-by-3 saddle point problem, then they use the

conforming Finite Element method to approximate the weak form in the functional space

(H1
0 (Ω))d × L2(Ω) × H1

0 (Ω). Their arguments are based on that proper functional spaces

can be naturally introduced which correspond to the new prime variables and uniform inf-

sup stability conditions hold naturally true on both continuous and discrete levels. We note

that introducing one more variable will increase the problem size and approximating the

boundary condition for the intermediate variable is sophisticated (cf. [22] for the details).

In contrast, we keep the original 2-by2 saddle point form and apply the stabilized finite ele-

ment discretizations [27]. Moreover, in investigating the robustness of the proposed method

with respect to parameters, the number of parameters involved in is as less as possible.

For the iterative methods, we will consider three different approaches: a) a precon-

ditioned GMRES method [28, 29] applied to the generalized saddle point systems; b) a

variable relaxation parameter Uzawa algorithm [18], in which the relaxation parameters are

selected for minimizing the energy-norm errors of each substep; c) an Anderson accelera-

tion algorithm [33, 31, 17], applied to a fixed point formulation of a Uzawa algorithm for

the generalized saddle point system. In all these three algorithms, preconditioners are the

same for both the (1, 1) block and the Schur complement. By carefully designing and opti-

mizing the parameters for all of the key components of the solvers, ranging from the inexact

solvers to the robustness with respect to the physics parameters, we compare the solvers that

can readily be employed to design the novel algorithms for FE spatial discretizations of the

equations of the Biot model.

The organization of the paper is as follows. In Section 2, we introduce the weak forms

and the finite element approximations. In Section 3, preconditioners are introduced. The

spectral properties of the linear operators and the preconditioned system are analyzed. In

Section 4, the three iterative algorithms are presented. Extensive numerical experiments are

given in Section 5 and conclusions are drawn in Section 6.
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2. Weak Forms and Finite Element Approximations

For simplicity and without loss of generality, we focus on the constant-coefficient case. The

functional spaces for the displacement and the fluid pressure are given by

V := {v ∈ (H1(Ω))d : v|∂Ω = 0.},
Q := H1

0 (Ω) := {p ∈ H1(Ω), p|∂Ω = 0.}.

Multiplying the first equation of the Biot’s model by a test function v ∈ V and the second

equation by a test function q ∈ Q, we have following weak problem: find u ∈ V , p ∈ Q,

such that
{

a(u, v) + b(v, p) = (f , v) ∀v ∈ V ,

b(u, q)− d(p, q) = (g, q) ∀q ∈ Q.
(6)

Here, the bilinear forms are

a(u, v) =

∫

Ω
2µε(u) : ε(v) + λdivudivvdΩ, (7)

with

ε(u) : ε(v) =

d
∑

i=1

d
∑

j=1

εij(u)εij(v),

d(p, q) =

∫

Ω

spq + θ∇p · ∇qdΩ, (8)

b(v, q) = −
∫

Ω
divv q dΩ. (9)

The functional space V can be endowed with the conventional H1- norm, or the norm

induced by the bilinear form a(·, ·) [34, 24]. The functional space Q can be endowed with

the H1- norm or the norm induced by d(·, ·). If λ and µ are constant, there holds the

following identity.

−div(µ[∇u + ∇uT ])−∇λdivu = −µ∆u − (µ + λ)∇divu. (10)

Then, starting from the right hand side of (10), we have

a(u, v) =

∫

Ω
µ∇u : ∇v + (µ + λ)divudivvdΩ.

In the following, we shall use the Poincare’s inequality

||q||L2 ≤ CP ||∇q||L2 ,

and the first Korn inequality

||ε(v)||L2 ≥ CK ||v||H1 ∀v ∈ V . (11)

For ∀v ∈ V , there also hold

2divε(v)−∇divv = ∆v = ∇divv − curl2v,
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||curlv||2L2 + ||divv||2L2 = ||∇v||2L2 = 2||ε(v)||2L2 − ||divv||2L2,

||divv||L2 ≤ ||ε(v)||2L2 ≤ ||∇v||2L2. (12)

Noting from (11) and (12) that

a(u, u) = 2µ||∇u||2L2 + λ||divu||2L2 ≥ 2µC2
K ||u||2H1,

we see that

|a(u, u)| ≥ αA||u||2H1, with αA = 2µC2
K . (13)

The bilinear form a(·, ·) is also bounded. More clearly,

|a(u, v)| ≤ 2µ||ε(u)||L2||ε(v)||L2 + λ||divu||L2 ||divv||L2

≤ 2µ||u||H1||v||H1 + λ||u||H1||v||H1

≤ CA||u||H1||v||H1,

(14)

where CA = (2µ + λ). For the bilinear form b(·, ·), we have

|b(u, q)| ≤ ||divu||L2 ||q||L2 ≤ ||∇u||L2||q||L2

≤ ||u||H1||q||L2 ≤ CP ||u||H1||q||H1

≤ CB ||u||H1||q||H1,

(15)

where CB = CP . For the bilinear form d(·, ·), we have

|d(p, q)| ≤ |s(p, q)|+ |θ(∇p,∇q)|
≤ s||p||L2||q||L2 + θ||∇p||L2||∇q||L2

≤ sCP ||∇p||L2||∇q||L2 + θ||∇p||L2 ||∇q||L2

≤ CD ||p||H1||q||H1

(16)

with CD = sCP + θ. On the other hand, we have

d(p, p) ≥ s||p||L2 + θ||∇p||2L2

≥ θ||∇p||2L2

≥ αD||p||2H1

(17)

with αD = θCK .

In summary, from (13) to (17), for the generalized saddle point operator (4), the linear

operators induced by a(·, ·), b(·, ·), d(·, ·) are bounded, and a(·, ·) and d(·, ·) are coercive.

We apply the stabilized Mini element to approximate the generalized saddle point problem

(6). Namely, on discrete level, we have ah(uh, vh) := a(uh, vh), bh(uh, qh) := b(uh, qh),

while the bilinear form for reaction-diffusion operator in pressure space becomes

d̄h(pn+1
h , qh) = d(ph, qh) + ε

h2

∆t

1

2µ + λ

∫

Ω

∇pn+1
h ∇qh. (18)

Here, the second term is the stabilization term. Correspondingly, the right hand side of the

second equation is changed to be

(ḡ, qh) = (g, qh) + ε
h2

∆t

1

2µ + λ

∫

Ω
∇pn

h∇qh.
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In the above forms, it is suggested that ε = 1
6 for inf-sup stable FEs and ε = 1

4 for equal-

order FEs [27]. We remark here that the stabilization is quite necessary, because on con-

tinuous level if the permeability κ is small and due to the Dirichlet boundary condition

for the pressure variable, there will be non-physical oscillations in the pressure approxi-

mation. Even the conventional inf-sup stable Finite Elements are applied to discretize the

Biot model, the resulting linear system does not satisfies the M - matrix properties (which

means that the discretization scheme is monotone). The stabilization term is applied so that

the resulted numerical scheme is monotone [27].

The discrete system obtained from the mixed stabilized finite elements induces the op-

erators A, B, and D, which are associated with the bilinear forms ah(·, ·), bh(·, ·), and

d̄h(·, ·) defined in (7), (9), and (18), respectively. The boundedness and the coercivity of D

is easy to derive based on the properties of d(·, ·) and the stabilization term. We will also

denotes A0 as the linear operator associated with the vector Laplacian operator in Vh.

If conforming mixed finite element are applied to discretize the Biot problem, if the the

following stability condition [4, 27]

c0‖qh‖2 ≤< (BA−1Bt + D)qh, qh >, ∀qh ∈ Qh

holds true, we then have the wellposedness for the discrete problem [4, 27]. Here, || · || is a

properly specified norm, < ·, · > is the continuous L2 inner product.
To differentiate the differences of notations, we will also use A, B, D to denote the

resulting matrices. That is,

A(i, j) = ah(bi,bj), B(i, j) = bh(bi, φj), D(i, j) = d̄h(φi, φj), A0(i, j) =< ∇bi,∇bj > .

Here, {bi} are basis functions of Vh and {φi} are basis functions of Qh. The properties

of the above linear operators and the corresponding matrices can be derived by using the

estimates for the bilinear forms. Furthermore, for each vector u (or p), it corresponds to a

function uh (or ph), and there holds

(Au, u) =< Auh, uh > .

Here and thereafter, (·, ·) is the discrete l2− inner product.

3. Preconditioners and Analysis

In this section, we introduce the preconditioners for the linear system resulted from the

stabilized Finite Element discretization of the Biot model. The preconditioners and the

spectral properties of the preconditioned system will be presented.

The following block diagonal preconditioner and block triangular preconditioners are

frequently used for the saddle point type systems.

P1 =

[

PA 0

0 −PS

]

, or P2 =

[

PA 0

B −PS

]

, or P3 =

[

PA Bt

0 −PS

]

.

(19)

Usually, one can set PA = A. The Schur complement for the generalized saddle point

system of the form (5) is S = BA−1Bt + D. Based on the Fourier analysis approach
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[5, 6, 9], the preconditioner for the Schur complement should be

PS =
1

(2µ + λ)
Mp + D. (20)

Here, Mp, which corresponds to the identity operator in the pressure space, is the pressure

mass matrix. An alternative approximation of the Schur complement is

PS = D,

as D is spectral equivalent to PS defined in (20). When combining with Krylov subspace

methods, one can use MINRES method for M with P1, or GMRES method using P2 as a

left preconditioner or P3 as a right preconditioner. We also comment here that if PS = D

then the preconditioner is constraint based preconditioner. In the following, we give the

estimates based on the exact inverses of PA and PS.

For the block triangular preconditioner P2, it is easy to derive that

P−1
2 M =

[

I A−1Bt

0 P−1
S S

]

. (21)

Let σ and (u, p)t be the eigenvalue and the corresponding eigenvector for (21), we have

[

A Bt

B −D

][

u

p

]

= σ

[

A 0

B −PS

][

u

p

]

. (22)

If σ = 1, we see that p ∈ Ker(Bt), and

Bu −Dp = Bu− { 1

2µ + λ
Mp + D}p.

It follows that p = 0. If σ 6= 1, there holds u = 1
σ−1A

−1Btp, plugging into (22), we see

that σ is the eigenvalue of P−1
S

S.

As we use conforming finite elements, the matrix properties and the spectral proper-

ties of the preconditioned system can be analyzed by estimating the corresponding linear

operators. From the estimates of a(·, ·), we see that

αA < A0uh, uh >≤< Auh, uh >≤ (2µ + λ) < A0uh, uh > .

Therefore,
1

2µ + λ
(A−1

0 u, u) ≤ (A−1u, u) ≤ 1

αA
(A−1

0 u, u), ∀u. (23)

To show that the eigenvalues of P−1
S

S have uniform lower and upper bounds independent of

mesh refinement and physical parameters, we only need to verify that, ∀p, the Rayleigh

quotient,

((BA−1Bt + D)p, p)
(

( 1
2µ+λ

Mp + D)p, p
) (24)
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has uniform lower and upper bounds. From (23), if u = Btp, we have

1

2µ + λ
(BA−1

0 Btp, p) ≤ (BA−1Btp, p) ≤ 1

αA

(BA−1
0 Btp, p).

Plugged into (24), we have

1

2µ+λ
(BA

−1

0 Btp,p) + (Dp,p)
“

( 1

2µ+λ
Mp + D)p,p

” ≤
((BA−1Bt + D)p,p)
“

( 1

2µ+λ
Mp + D)p,p

” ≤

1

αA

(BA−1
0 Btp,p) + (Dp,p)

“

( 1

2µ+λ
Mp + D)p,p

” . (25)

On the other hand, as we use inf-sup stable conforming Finite Elements, there exists a

β > 0, independent of mesh refinement, such that

β ≤ inf
ph∈Qh

sup
vh∈Vh

b(vh, ph)

||vh||H1||ph||L2

.

Combined with the facts that the operators A0 and B are bounded, the above inf-sup stable

condition indicates that the following spectral properties of the matrices hold true [13, 6]:

β2 ≤ (BA−1
0 Btp, p)

(Mpp, p)
≤ 1. (26)

Plugging the inequality (26) into (25), we see clear that the eigenvalues of P−1
S

S have

uniform lower and upper bounds independent of mesh refinement and physical parameters.

In summary, we have the following proposition.

Theorem 3.1. For the Biot problem discretized by the stabilized Mini elements, if exact

elliptic solvers are applied in P−1
2 (or P−1

3 ), the eigenvalues of the preconditioned system

are either 1 (with the multiplicity equals to the number of unknowns for the displacement

variables) or have uniform lower and upper bounds independent of mesh refinement and

physical parameters.

Remark. We remark here that no matter there is a stabilization term or not, P−1
2 M has

eigenvalues which have uniform lower and upper bounds independent of mesh refinement

and physical parameters. However, it is crucial to add the stabilization term to ensure the

monotonicity of the discretization especially when the permeability is small.

4. Iterative Algorithms

4.1. A Preconditioned GMRES Method

For saddle point problems and generalized saddle point problems, a commonly used so-

lution strategy is applying the GMRES algorithm as the outer iteration, a preconditioner,

implemented using Multigrid solvers [34] or domain decomposition solvers [30, 10, 11] or

spare solvers, is employed as the inner iteration. The detailed algorithm of GMRES method

can be found in [28, 29]. In this paper, we also use GMRES method as the outer iteration

method. The preconditioner takes the form of (19) with P−1
A and P−1

S being implemented

as incomplete Cholesky factorizations. More efficient and advanced implementation can be
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based on overlapping Schwarz domain decomposition methods [7, 8] or Multigrid method

[16, 5, 6] for the original or the mixed reformulation of the linear elasticity operator. In

our implementation, both (almost) exact and inexact solves of P−1
A and P−1

S are applied

to check the effects of inexact solve, see the numerical experiments in Section 5 for more

details.

4.2. Variable-Relaxation Parameter Uzawa Algorithm

It is well-known that the classical Uzawa algorithm [1, 2, 3, 32] converges slowly, and is

not of practical use in many applications. A lot of works have been done to accelerate

the efficiency, see [12, 18, 20, 19, 17] and the references cited therein. For example, the

authors of [18, 20, 19] consider the classical saddle point problem (with the (2, 2) block

being zero). They introduced some variable relaxation parameters in each step of Uzawa

algorithm so that the errors are minimized under proper energy norms in each step. It is

natural to apply the variable-relaxation parameter Uzawa algorithm to the generalize saddle

point system studied in this paper. The variable-relaxation parameter Uzawa algorithm for

the generalized saddle point system reads as:

{

uk+1 = uk + ωkP
−1
A [f − (Auk + Btpk)],

pk+1 = pk − θkτkP
−1
S

[g− (Buk+1 − Dpk)].
(27)

The parameter ωk is chosen so that the error u − uk is minimized under the A- norm.

Denoting fk = f − (Auk + Btpk), ck = P−1
A fk , then a prototype choice of ωk is

ωk =
(fk, ck)

(Ack, ck)
.

The parameter τk is chosen so that the error p−pk is minimized under the PS- norm or its

equivalent norm. Denoting gk = g − (Buk+1 − Dpk), dk = −P−1
S gk , then a prototype

choice of τk is

τk =
(gk, dk)

(PSdk, dk)
or τk =

(gk, dk)

(Sdk, dk)
.

In the denominator part, PS can be replaced by any spectral equivalent matrix. For the

parameter θk , it is a damping parameter so that the convergence of the algorithm can be

guaranteed [18]. If there is no (2, 2) block, it is suggested in [18] that

θk =
1 −√

1 − ωk

2
.

However, from our numerical experience, θk = 1.0 usually leads to the best performance

if almost exact Poisson solvers are used for PA and PS, no matter whether there is a (2, 2)
block. In summary, the algorithm for variable relaxation parameter Uzawa algorithm is as

listed in Algorithm 1.

We further comment here that if ωk = 1.0 and θkτk = 1.0 in (27), the above algorithm

is the classical preconditioned Uzawa algorithm. Similar to the classical Uzawa algorithm,

the performance of these algorithms depends on the estimates of the maximal and minimal

eigenvalues of the preconditioned Schur complement [18, 20, 19].
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Algorithm 1: Uzawa algorithm with variable relaxation parameters.

1: Given the initial guesses u0 ∈ Rn and p0 ∈ Rm compute the sequences uk ,pk

for i = 1,2,... as follows.

2: Step 1. Compute fk = f − (Auk + Btpk), ck = P−1
A

fk, and

ωk =

{

(fk,ck)
(Ack,ck) , fk 6= 0,

1, fk = 0.

3: Set uk+1 = uk + ωkck

4: Step 2. Compute gk = g − (Buk+1 − Dpk), dk = −P−1
S

gk and,

τk =

{

(gk,dk)
(PSdk,dk) , gk 6= 0,

1, gk = 0.

5: Set pk+1 = pk + τkdk .

4.3. Anderson Accelerated Uzawa Algorithm

There have been some successful applications of Anderson acceleration algorithm for solv-

ing nonlinear problems [33]. Some recent progress on Anderson acceleration algorithm

can be found in [33, 31, 17]. In a theoretical paper [31], it is shown that Anderson ac-

celeration algorithm is equivalent to the GMRES method in a certain sense when they are

applied to a single linear system. In this part of research, we intend to generalize and apply

the method to Biot’s model. However, there is not enough careful comparison to clarify

whether the Anderson acceleration algorithm is superior to the GMRES method or other

iterative methods. In [17], the authors show that the preconditioned accelerated Uzawa al-

gorithm is comparable to other algorithms for Oseen equations if exact Poisson solvers are

applied in preconditioning steps. However, the comparisons of these algorithms based on

inexact Poisson solvers are not provided, even for the linear Stokes problem.

For a general fixed-point iteration,

xk+1 = g(xk),

By employing the results of previous steps, the Anderson acceleration algorithm can pro-

vide a better approximation of the true solution [33, 31]. The Anderson acceleration is

described in Algorithm 2. There have been some successful applications of Anderson

acceleration in many nonlinear problems, see [33] and the references cited therein. We

comment here that Anderson acceleration can be applied to any fixed point iteration, no

matter the iteration is linea or nonlinear. In this part of the project, we intend to apply

Uzawa algorithm and treat it as a fixed point iteration for (28). Anderson acceleration is

employed to speed up the convergence rate of the fixed point iteration. Preconditioners will

be used in each step of the Uzawa algorithm to improve the efficiency.

In a recent work [17], the authors propose to apply Anderson acceleration [33, 31]

to improve the performance of Uzawa algorithm for saddle point problems. To apply the

Anderson acceleration to the generalized saddle point system studied in this work, we can
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Algorithm 2: Anderson acceleration (AA) of fixed point iteration.

1: Given x0 and m ≥ 1. Set x1 = g(x0).

2: For k = 1, 2, ...

3: Set mk = min{m, k}.

4: Set Fk = (fk−mk
, ..., fk), where fi = g(xi) − xi.

5: Determine α(k) = (α
(k)
0 , ..., α

(k)
mk

)t that solves

min
α=(α0,...,αmk

)t
||Fkα||2 s.t.

mk
∑

i=0

αi = 1.

6: Set xk+1 =
∑mk

i=0 α
(k)
i g(xk−mk+i).

firstly rewrite the Uzawa algorithm as a fixed point iteration as follows.

{

uk+1 = uk + P−1
A (f − Auk −Btpk),

pk+1 = pk + P−1
S

(g −Buk+1 + Dpk).
(28)

Here, P−1
A and P−1

S may involve relaxation parameters or scaling factors. Rewriting (28)

as a fixed point iteration, we obtain

[

PA 0

B PS

] [

uk+1

pk+1

]

=

[

PA−A −Bt

0 PS −D

][

uk

pk

]

+

[

f

g

]

.

By employing the results of previous steps, we expect that the Anderson acceleration al-

gorithm can provide a better approximation of the true solution than the typical Uzawa

algorithm itself. We will also check whether the combination of Anderson acceleration

with Uzawa leads to good performance for the generalized saddle point problem studied in

this paper.

5. Numerical Experiments

We compare all the algorithms in this section. The computational domain is [0, 1]2, we vary

the meshsize and the physical parameters, so that we can test the robustness of our precon-

ditioners and the effects of mesh refinement, physical parameters. In our tests, we set the

Poisson ratio ν = 0.3 for testing the compressible case and set ν = 0.49 for testing the

almost incompressible case. The Young’s module E is fixed to be 1000. The permeability

is set to be 1 for testing the large permeability case and is set to be 0.0001 for testing the

small permeability case. Numerical experiments are summarized in Table 1 to Table 3. In

our tests, the stopping tolerances are either the relative errors or the relative residuals in

l2 norm need to be reduced to 1.0 × 10−6. We record the number of iterations used for

different algorithms. “DOFs” means the total number of degrees of freedom, “Nx” means

the number of elements along each direction, “No Pre” means GMRES algorithm with no

preconditioner being used, “PGMRES” means the preconditioned GMRES method, ”U”
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means the preconditioned Uzawa with the exact Poisson solvers, “AAU” means the Ander-

son accelerated Uzawa algorithm, ”VU” means the variable relaxation parameter Uzawa

algorithm. Correspondingly, “IPGMRES” means the preconditioned GMRES method with

inexact Poisson solvers, ”IU” means the preconditioned Uzawa algorithm with inexact Pois-

son solvers, “IAAU” and “IVU” means the Anderson accelerated Uzawa algorithm and the

variable relaxation parameter Uzawa algorithm with inexact Poisson solvers respectively.

For Uzawa algorithm and the inexact Uzawa algorithm, the relaxation parameter ω = 2.5
is an empirical choice (our extensive experiments show that ω = 2.5 is almost the optimal).

First of all, from Table 1 to Table 3, we see clearly that if the Poisson solvers are

implemented exactly, it only needs several iterations (GMRES only needs 4 to 5 iterations,

all the other algorithms also need less than 10 iterations). These results clearly show that

our preconditioners are very effective for the Biot operator. Moreover, from Table 1 to

Table 3, these preconditioners are very robust with respect to the mesh refinement and the

physical parameters (not only the Poisson ratio, but also the permeability). Moreover, from

the results, Anderson accelerated Uzawa (AAU) gives better performance than the Uzawa

(U) algorithm and the variable relaxation Uzawa (VU) algorithm. By comparing with the

results obtained by using the inexact Poisson solvers, it is obvious that the inexact solvers

will make the total number of iterations much larger. We will explain more details on the

effects of inexact Poisson solvers in the following.

In our implementation, although the matrix D is ill conditioned, the incomplete

Cholesky factorization is not very difficult to apply because its condition number mainly

depends on mesh refinement and will not be affected too much by the physical parameter.

In our implementation,

D = LDLt
D + tol

with the tolerance tol = 0.001. However, for the matrix A, its condition number not

only depends on mesh refinement but also depend on the physical parameter, in particular,

λ. When the Poisson ratio ν approaches to 0.5, λ becomes very large, and the condition

number of A is huge. For such kind of matrix, incomplete Cholesky factorization does

not work very well (although the matrix itself is symmetric positive definite). To make the

inexact solvers works, we apply the modified incomplete Cholesky factorization: applying

the incomplete factorization to

A + α ∗ diag(diag(A)) = LALt
A + tol.

In our implementation, we set α = 10 and the tolerance is also set to be 0.001 (cf. Matlab

function “ichol.m”). As an example to show that inexact Poisson solvers with Anderson

accelerated Uzawa (AA Uzawa) makes different, we check the preliminary results in Ta-

ble 1 to Table 3. If inexact Poisson solvers (A−1 and P−1
S are approximated by using

their incomplete Cholesky factorizations or modified incomplete Cholesky factorizations)

are applied, the advantages of Anderson accelerated Uzawa algorithm with inexact Pois-

son solvers (IAAU) is more obvious when compared with the Uzawa algorithm and the

varaible-relaxation parameter Uzawa algorithm with the inexact Poisson solvers. For both

the Uzawa algorithm and the variable-relaxation parameter Uzawa algorithm, when inex-

act Poisson solvers are applied, their performance are not good. Although the variable-

relaxation parameter Uzawa algorithm gives slightly better performance than that of Uzawa
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algorithm, its performance is much worse than that of Anderson accelerated algorithm or

GMRES algorithm.

Table 1. Numbers of iterations using different algorithms with exact (U, AAU, and

VU) Poisson solvers and inexact Poisson solvers (IU, IAAU, and IVU). E = 1000,

ν = 0.3, and all the other parameters are equal to 1

DOFs Nx No Pre PGMRES U AAU VU IPGMRES IU IAAU IVU

1891 16 475 4 8 5 8 63 > 3000 1629 762

7363 32 1462 4 8 6 8 116 > 3000 > 3000 2880

29059 64 > 3000 4 8 6 8 222 > 3000 > 3000 > 3000
115459 128 > 3000 4 8 6 9 450 > 3000 > 3000 > 3000

Table 2. Numbers of iterations using different algorithms with exact (U, AAU, and

VU) Poisson solvers and inexact Poisson solvers (IU, IAAU, and IVU). E = 1000,

ν = 0.49 and all the other parameters are equal to 1

DOFs Nx No Pre PGMRES U AAU VU IPGMRES IU IAAU IVU

1891 16 533 4 8 5 8 111 > 3000 1922 2334

7363 32 > 3000 4 8 5 8 197 > 3000 > 3000 > 3000
29059 64 > 3000 4 8 5 8 321 > 3000 > 3000 > 3000

115459 128 > 3000 4 9 5 8 515 > 3000 > 3000 > 3000

Table 3. Numbers of iterations using different algorithms with exact (U, AAU, and

VU) Poisson solvers and inexact Poisson solvers (IU, IAAU, and IVU). E = 1000,

ν = 0.3, κ = 0.0001 and all the other parameters are equal to 1

DOFs Nx No Pre PGMRES U AAU VU IPGMRES IU IAAU IVU

1891 16 269 4 8 5 8 53 > 3000 935 859

7363 32 543 4 8 6 8 78 > 3000 726 > 3000
29059 64 > 3000 4 8 6 8 139 > 3000 1332 > 3000

115459 128 > 3000 4 9 6 9 221 > 3000 2336 > 3000

By comparing the results obtained by all the algorithms, we also observe that the per-

formance of Anderson acceleration Uzawa algorithm is not that good when inexact Poisson

solvers are used. If exact Poisson solvers are employed in preconditioners, the performance

of Anderson acceleration Uzawa algorithm is comparable with that of GMRES method.

However, when the inexact Poisson solvers are employed, the performance of Anderson

acceleration Uzawa algorithm is much worse than that of GMRES method. Another ob-

servation is that the performance of variable-relaxation parameter Uzawa algorithm is not

good either. Actually, this algorithm is somehow a kind of Krylov subspace method (as the

errors are minimized in each sub-step). However, the variable-relaxation parameter Uzawa

algorithm needs many iterations to converge especially when the Poisson ratio close to 0.5
(cf. Table 2).
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When inexact Poisson solvers are employed, the physical parameters do have critical

effects on the performance of the iterative algorithms. By comparing the results from Table

1 and Table 2, we see that when the elastic material is almost incompressible, more itera-

tions are needed for all iterative algorithms compared with those for compressible elastic

material. By comparing the results from Table 1 and Table 3, we see that small permeability

actually does not make too much trouble to the performance of the all algorithms. In fact,

when the permeability becomes smaller, the numbers of iterations needed are less.

Conclusion

In this paper, we develop efficient iterative methods and robust preconditioners for solving

Biot equations. Our investigation is very comprehensive and in details. Both exact Poisson

solvers and inexact Poisson solvers are employed in in preconditioning steps. We compare

the GMRES method, Uzawa method, Anderson accelerated Uzawa algorithm and also the

variable-relaxation parameter Uzawa algorithm [18, 20, 19]. We conduct numerical analysis

and experiments to highlight the advantages and the disadvantages of each algorithm.

From the numerical experiments, it is observed that the GMRES method combined with

block triangular preconditioner still gives the best convergence rate. The possible reason is

that GMRES method has the Galerkin property and minimize the global residual in each

step of the iteration. No matter exact or inexact Poisson solvers are used, it needs the

least number of iterations among all the algorithms. From our investigation, the advantage

of combining Anderson acceleration with Uzawa algorithms is not obvious. We predict

that even for Stokes problem or Oseen problem, there is no obvious benefit of combining

Anderson acceleration with Uzawa algorithm over the GMRES method using block trian-

gular preconditioners especially when inexact Poisson solvers are employed. For variable

relaxation Uzawa algorithm, it is actually also a Krylov subspace method. Although the

convergence properties seem to be not as good as the GMRES method for saddle point

problem, the method is a memory saving method. In contrast, both GMRES method and

Anderson acceleration algorithm are memory cost approaches. For Anderson acceleration,

although we do not have very positive conclusion for the Biot model studied in this paper,

it is still very promising to apply the algorithm to nonlinear problems, in particular, those

nonlinear fixed-point problems with discontinuous Jacobians.
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