
Approximate Transformations

as Mutation Operators

Farah Hariri1, August Shi1, Owolabi Legunsen1, Milos Gligoric2, Sarfraz Khurshid2, Sasa Misailovic1

1 Department of Computer Science

University of Illinois at Urbana-Champaign, IL 61801, USA

{hariri2,awshi2,legunse2,misailo}@illinois.edu
2 Department of Electrical and Computer Engineering

The University of Texas at Austin, TX 78712, USA

{gligoric,khurshid}@utexas.edu

Abstract—Mutation testing is a well-established approach for
evaluating test-suite quality by modifying code using syntax-
changing (and potentially semantics-changing) transformations,
called mutation operators. This paper proposes approximate
transformations as new mutation operators that can give novel
insights about the code and tests. Approximate transformations
are semantics-changing transformations used in the emerging
area of approximate computing, but so far they were not
evaluated for mutation testing. We found that approximate trans-
formations can be effective mutation operators. We compared
three approximate transformations with a set of conventional
mutation operators from the literature, on nine open-source
Java subjects. The results showed that approximate transfor-
mations change program behavior differently fromconventional
mutation operators. Our analysis uncovered code patterns in
which approximate mutants survivedand showed the practical
value of approximate transformations for both understanding
code amenable to approximations and discovering bad tests. We
submitted 11 pull requests to fix bad tests. Seven have already
been integrated by the developers.

I. INTRODUCTION

Mutation testing is a well-established approach for evalu-

ating the quality of a test suite [33]. It produces modified

versions of the code, called mutants, using a set of syn-

tactic transformations that also potentially change program

semantics, called mutation operators. It then runs the test

suite on the mutants to quantify how well the suite detects

the program modifications. To provide insights about how to

improve the test suites, mutation testing requires both high-

quality and diverse mutation operators that lead to different

program behaviors.

This paper proposes approximate transformations as a new

class of mutation operators that lead to different program

behaviors from those produced by conventional mutation

operators. Approximate transformations were introduced in

the emerging area of approximate computing for changing

program semantics to trade the accuracy of results for im-

proved energy efficiency or performance. Researchers pro-

posed various approximate transformations at the level of

programming languages, compilers, and computer systems [5],

[21], [22], [26], [27], [49], [50], [56], [57], [59], [65], [67],

[73]. For example, loop perforation [49], [65] is a compiler-

level approximate transformation that causes amenable loops

to execute only a subset of iterations. Degrading floating-point

precision is another common language-level [57] and system-

level approximate transformation [5], [59], [73].

Mutation operators and approximate transformations both

aim to change program semantics. Hence, approximate trans-

formations are an attractive choice for new mutation operators

that can provide novel insights about tested code and test

suites. Our analysis of three approximate transformations—

loop perforation, integer-to-short precision degradation, and

double-to-float precision degradation—shows that they often

complement conventional mutation operators. Our evaluation

on nine open-source Java subjects focuses on the following

three research questions:

RQ1: How effective are approximate transformations as

mutation operators, compared to conventional mutation op-

erators?

RQ2: What code patterns do approximate transformations

as mutation operators reveal?

RQ3: How can approximate transformations as mutation

operators help software testing practice?

To evaluate the effectiveness of approximate transformations

as mutation operators, we use a combination of techniques

established in prior work on mutation testing:

● Mutation Score: We compare mutation scores [12], [33]

of three approximate transformations with the mutation

scores of 14 conventional mutation operators from the PIT

framework [3]. Mutation scores are percentages of mutants

detected, or killed, by the test suite [33].

● Minimal Mutants: We check whether approximate transfor-

mations generate mutants that are in the minimal mutants

set, computed across mutants from both approximate trans-

formations and conventional mutation operators. Minimal

mutants dynamically subsume all other mutants (defined

in III-B), and they are considered harder to kill than all

other mutants [11], [24].

● Sufficient Mutation Operators: We check whether approx-

imate transformations are in the set of sufficient mutation

operators, computed using selective mutation analysis [51],

[52]. Tests that kill mutants generated by sufficient mutation

operators also kill mutants generated by all other operators.

1

The results (Section IV) show that approximate transforma-

tions are effective mutation operators. Loop perforation has

similar mutation scores as conventional mutation operators.

However, we observe that mutation score alone is not sufficient

for evaluating the effectiveness of approximate transforma-

tions. While precision degradation operators have significantly

lower mutation scores, our analysis shows that their low

mutation scores are not due to the mutants being semantically

equivalent to the original code. Rather, the operators expose

bad tests that do not exercise the code with boundary values.

Approximate transformations also generate mutants in the

minimal mutant sets, and they are often in the sufficient

mutation operators sets.

To better understand the pattern of computations affected by

approximate transformations, we manually inspected a sample

of mutants from the approximate transformations (Section V).

For loop perforation, we identify four code patterns, e.g.,

reductions and conditional computation on elements. For

precision degradation, we identify three code patterns, e.g.,

when computed results are within a specified error bound.

Further, the identified patterns allow us to draw more general

comparisons with a broader set of mutation operators from

recent literature [34], [43], [60]. Our analysis (Section V-C)

shows that approximate transformations complement the con-

ventional mutation operators.

Based on our inspection (Section VI), we propose a new

way of reasoning about surviving (i.e., not killed) mutants

generated by approximate transformations. In traditional mu-

tation testing, a mutant can survive either because it is

semantically equivalent to the original code, or because of

bad (buggy, inadequate, or missing) tests. We discover that,

with approximate transformations, there is a third option—a

surviving mutant can indicate the presence of approximable

code. Code is approximable if it can be transformed to

produce results different from the original code, but such

results still meet the specification. (Note that this third way

of interpreting a surviving mutant may apply to other mutants

as well.) Our inspection shows that for loop perforation,

63.83% of surviving mutants indicate bad tests, and 19.15%

indicate approximable code. We find no equivalent mutants,

and the remaining 17.02% are hard to inspect. For precision

degradation, 53.13% of surviving mutants indicate bad tests,

14.58% indicate equivalent mutants, and 11.46% indicate

approximable code. The remaining 20.83% are hard to inspect.

We identify common testing practices that help to improve

bad tests: (i) achieving greater loop coverage, (ii) exercis-

ing loop conditions, (iii) exercising boundary values, and

(iv) checking correctness of all output elements. We identify

the instances of bad tests in all nine subjects. Even though

these insights are not new to the testing community, the real

value lies in the fact that the approximate transformations help

detect those problems and bring them to the attention of the

developer who might not have such considerations in mind.

We created 11 pull requests to improve the bad tests. The

developers already integrated seven pull requests in their code.

private void doSwapTest(AMatrix m) {

if ((m.rowCount()<2)||(m.columnCount()<2)) return;

m=m.clone();

AMatrix m2=m.clone();

m2.swapRows(0, 1);

assert(!m2.equals(m));

m2.swapRows(0, 1);

assert(m2.equals(m));

...}

Fig. 2: Test of the swapRows method in Fig. 1

The paper makes the following contributions:

● Concept: We are the first to study the interplay between ap-

proximate transformations and mutation testing operators.

● Framework: We developed ApproxiMate as an extension

to the PIT framework. It supports approximate transforma-

tions as mutation operators and integrates analyses from

studies on mutation testing.

● Evaluation: Our results show that approximate transfor-

mations complement conventional mutation operators: they

generate mutants in the minimal mutants set and are often

in the sufficient mutation operators set.

● Insights: We present code patterns revealed by approximate

transformations. We discuss how to interpret the results

of mutation testing with approximate transformations and

improve bad tests. Developers already accepted seven out

of 11 pull requests that we submitted for fixing bad tests.

II. EXAMPLE

This section illustrates mutation testing and approximate

transformations and shows a surviving approximate transfor-

mation mutant that resulted in an accepted pull request.

A. Code and Test

The snippet in Figure 1a is from vectorz [4] (SHA:

9c688f1), one of the subjects in our study. The snippet shows

the instance method Matrix#swapRows; the class Matrix

represents m×n matrices of type double. swapRows takes

integers i and j, and then it changes the Matrix instance

by swapping rows i and j. A parametrized test that directly

covers swapRows is doSwapTest. It operates on instances of

AMatrix, a superclass of Matrix (Figure 2). doSwapTest

first makes a copy, m2, of the input m (when m is of type

Matrix, so is m2), swaps the first two rows in m2, and asserts

that m and m2 are not equal. Then, it swaps the first two rows

in m2 again and asserts that m2 is now equal to m.

B. Mutation Testing

Mutation testing proceeds in two steps; it generates mutants,

and then runs the tests on each mutant.

Generating mutants. Mutation testing generates mutants—

code that differ from the original by small syntactic changes,

specified by mutation operators, e.g., replacing multiplication

with division as in Figure 1b (dark background).

Executing mutants. Mutation testing executes the test suite

on each mutant. If a test exhibits different behavior when

running on a mutant than when running on the original code,

that mutant is considered killed. Typically, tests pass on the

2

1 public void swapRows(int i, int j) {
2 if (i == j) return;
3 int a = i * cols;
4 int b = j * cols;
5 int cc = columnCount();
6 for (int k = 0; k < cc; k++) {
7 int i1 = a + k;
8 int i2 = b + k;
9 double t = data[i1];

10 data[i1] = data[i2];
11 data[i2] = t;
12 } }

(a) Original code.

public void swapRows(int i, int j) {
if (i == j) return;
int a = i * cols;

int b = j / cols ;

int cc = columnCount();
for (int k = 0; k < cc; k++) {

int i1 = a + k;
int i2 = b + k;
double t = data[i1];
data[i1] = data[i2];
data[i2] = t;

} }

(b) Killed mutant changes * to /.

public void swapRows(int i, int j) {
if (i == j) return;
int a = i * cols;
int b = j * cols;
int cc = columnCount();

for (int k = 0; k < cc; k+=2) {
int i1 = a + k;
int i2 = b + k;
double t = data[i1];
data[i1] = data[i2];
data[i2] = t;

} }

(c) Surviving LPM mutant skips iterations.

Fig. 1: Code from vectorz [4], a mutation by a conventional mutation operator and a mutation by LPM

original code, so a mutant is killed when a test fails on the

mutant. For instance, when doSwapTest is run on the mutant

in Figure 1b, the mutant computes the index of the second

row in the swap as 0. The first row to swap is also 0, so no

swap happens. The non-equality assertion on m2 and m fails

when run on this mutant, suggesting that the test suite is good

enough to kill this semantically different mutant.

Mutation score. Mutation testing results in a mutation score—

the percentage of killed mutants. Higher mutation scores imply

higher-quality test suites; a test suite that is strong enough to

kill a larger percentage of mutants is likely strong enough to

detect more faults in the code under test [13], [35].

C. Approximate Transformations

Loop perforation. Loop perforation is an approximate

transformation [49], [65], which transforms loops like

for (int i = 0; i < len; i++) {...} to execute

only a subset of its iterations. In general, perforation

can change the value in the initialization expression,

the termination condition, or the increment. We consider

loop perforations that skip every other loop iteration.

Figure 1c shows an LPM (Loop Perforation Mutator)

mutant that changes the loop increment, k++, to k+=2

(light background). With this perforation, doSwapTest

executing on the mutant will only swap every other element

(at even-numbered indices) in the specified rows.

Precision degradation. Precision degradation is an approx-

imate transformation that changes the type of a numerical

expression or a variable. Specifically, we downcast results of

int or double arithmetic expressions.

The int-to-short (ITS) transformation changes result of

the expression to be of type short (values in the range

−32,768 to 32,767). An example ITS mutant is replacing a

+ k on line 7 of Figure 1a with (short)(a + k). ITS drops

higher-order bits, which may result in a large error magnitude.

If a is instead a double-precision variable, the double-

to-float (DTF) transformation changes the expression a +

k (where the type of k is automatically cast to double)

to (double)((float)(a + k)). The cast back to double

here is necessary in Java to preserve the type. The resulting

computation produces imprecise results, usually with a small

error magnitude, because it drops lower mantissa bits. Note

that our ITS and DTF transformations are finer-grained vari-

ants of the actual approximate transformations; we only cast

computations as opposed to types as performed by [57].

D. Analysis of Approximate Transformation for Mutation

For the LPM mutant in Figure 1c, doSwapTest swaps only

elements at even-numbered indices in the specified rows. Since

the assertions only check that m1 and m2 are not equal after

the first swap, and equal after the second swap, doSwapTest

passes. Since doSwapTest is the only test that covers this

mutant, the mutant survives, i.e., it is not killed. The survival

of this LPM mutant suggests that there is some weakness in

the test suite, i.e., some tests are “bad” (buggy, inadequate, or

missing). Specifically, this surviving mutant indicates that the

assertions are not strong enough to detect the skipping of every

other element during the swap. We submitted a pull request to

check whether elements in the swapped rows are as expected;

our pull request was accepted by the vectorz developers.

For the ITS mutant on line 7 (not shown in Figure 1 for lack

of space), doSwapTest is invoked only with small integers

(matrices with small dimensions), so the mutant survives. To

kill the mutant, one would write a test with large matrices

where the column count exceeds the range of short.

III. STUDY METHODOLOGY

ApproxiMate is our framework for evaluating approximate

transformations as mutation operators. In this section, we

describe ApproxiMate’s implementation and analyses, the mu-

tation operators studied, and our evaluation subjects.

A. The ApproxiMate Framework

The ApproxiMate framework extends PIT [3], implements

approximate transformations as mutation operators, and pro-

vides the matrix of tests to killed mutants, as it has been

done in previous studies [7], [62], [64]. We implement the

approximate transformations as follows:

● We implement the loop perforation mutator (LPM) to skip

every other iteration of loops, because other patterns of

skipped iterations have similar power to identify approx-

imable code [47]. We use SPOON [66] to find code locations

3

TABLE I: PIT operators

Type Name Acronym

Conditionals Boundary Mutator CBM
Increments Mutator IM
Invert Negatives Mutator INM

Default Math Mutator MM
Negate Conditionals Mutator NCM
Return Values Mutator RVM
Void Method Calls Mutator VMCM

Constructor Calls Mutator CCM
Inline Constant Mutator ICM
Member Variable Mutator MVM

Non-Default Non Void Method Calls Mutator NVMCM
Remove Conditionals Mutator RCM
Remove Increments Mutator RIM
Switch Mutator SM

of for loops that have increment (i++) or decrement (i--)

statements. These locations are passed to our modified PIT

extended with LPM, which uses the ASM library [14] to

change the iinc bytecode instruction so that increments

become i+=2 and decrements become i-=2.

● We implement precision degradation, DTF and ITS, using

casting. Recall (Section II-C) that ITS is the int-to-short

precision degradation operator; it casts results of int arith-

metic expressions to short. DTF is the double-to-float

precision degradation operator; it casts results of double

arithmetic expressions to float and then back to double

to preserve the type. The ITS and DTF implementations

perform casting at the bytecode level.

ApproxiMate uses all mutation operators available in PIT:

seven active-by-default operators and seven non-default oper-

ators (Table I), which we enabled to increase the variety of

mutation operators in our experiments. ApproxiMate computes

mutation scores using only mutants that are covered by the

tests. The comparative analyses require the exact mapping

from tests to mutants killed. Since PIT cannot capture the

test that killed a mutant because of memory or other runtime

errors, we exclude such mutants from the mutation score

computations and the comparative analyses.

B. Comparative Analyses in ApproxiMate

In mutation testing, it is desirable to use as few mutants

as possible while still resulting in the same confidence in

the mutation testing results. Prior research investigated means

to identify the subset of mutants that are harder to kill and

representative of the other mutants [11], [24], [51], [74]. If

approximate transformations generate mutants that are harder

to kill than mutants generated by conventional mutation op-

erators, it suggests that they are relatively effective as muta-

tion operators. We use two techniques from the literature to

compare the mutants from approximate transformations with

those from conventional mutation operators: minimal mutants

analysis [11], [24] and selective mutation analysis [46], [52].

Minimal mutants analysis. Minimal mutants [11], [24] are

used as proxies for finding what mutants are harder to kill

compared with the other mutants [9]. We use minimal mutants,

which are based on dynamic subsumption:

● Definition: A mutant m dynamically subsumes another

mutant m′ if the set of tests that kill m is a subset of the

set of tests that kill m′. Intuitively, m is harder to kill than

m
′ because only some tests that kill m′ can kill m.

● Condition: If mutants generated from approximate trans-

formations are in the set of minimal mutants, then they

subsume (and are therefore harder to kill than) mutants from

some conventional mutation operators.

● Computation: We apply the algorithm proposed by

Gopinath et al. [24] to compute the set of minimal mutants.1

Selective mutation analysis. Selective mutation analysis is a

heuristic technique for reducing the number of mutants to be

run [46], [51], [52]. The general idea in selective mutation

analysis is to find a set of sufficient mutation operators:

● Definition: Sufficient mutation operators are a subset of

all mutation operators, such that tests which kill mutants

generated by the sufficient mutation operators also kill

all mutants generated by the operators that are in the

complement of the sufficient set.

● Condition: If approximate transformations are in the set of

sufficient mutation operators, it indicates that they are part

of operators that are representative of all mutation operators.

● Computation: We analyze only the mutants killed by the

existing tests, assuming that all other mutants cannot be

killed [23]. Our algorithm for selecting sufficient operators

is close to what was done in prior work using existing test

suites [23], but there are two main differences. First, we do

not restrict the number of iterations for removing mutation

operators. Second, we apply test-suite reduction on each

iteration to create a tailored test suite which is sufficient

to kill only mutants generated by the currently-selected

operators. This is close to previous studies on selective

mutation testing [51], [52] where, on each iteration, a test

suite is generated to kill only mutants from the selected

operators, and the generated tests are checked to see that

they kill all mutants.

Each iteration of the algorithm starts by finding and re-

moving the operator that generates the most number of

mutants. The second step in each iteration is to apply test-

suite reduction [75] to construct a reduced test suite which

kills only mutants generated from the remaining operators.

If the reduced test suite kills all mutants (not just mutants

generated from the remaining operators), the algorithm con-

tinues to the next iteration by greedily removing the operator

which generates the next highest number of mutants. If a

reduced test suite that kills all mutants cannot be generated,

we continue the same iteration by putting the removed

operator back in the set and removing the next highest

mutant-generating operator. The algorithm halts when we

cannot remove any more operators and still kill all mutants.

The operators that remain after the algorithm halts form the

set of sufficient mutation operators.

1Gopinath et al. refer to minimal mutants as surface mutants in their work.

4

TABLE II: Subjects Used in Our Study

Subject SLOC Tests Short Description

commons-imaging 31377 169 Imaging library
commons-io 9957 1098 IO library
HikariCP 4256 96 Database connectivity pool
imglib2 31839 337 Image processing library
vectorz 44009 453 Vector and matrix library
jblas 10356 39 Matrix library
OpenTripPlanner 64202 356 Trip planner
la4j 9368 801 Linear algebra library
meka 36512 306 Machine learning library

TABLE III: Number of Mutants Per Operator

Project Conv. Avg LPM ITS DTF

commons-imaging 1577.43 275 1097 362
commons-io 653.31 37 191 0
HikariCP 192.69 6 17 1
imglib2 646.54 264 296 245
vectorz 2426.93 1009 1991 1466
jblas 323.79 155 147 29
OpenTripPlanner 2265.71 160 623 478
la4j 644.93 311 569 487
meka 593.85 266 192 153

Average 1036.13 275.89 569.22 357.89

C. Evaluation Subjects

We use nine open-source Java subjects in our evaluation

of the approximate transformations as mutation operators. Ta-

ble II shows for each subject the source lines of code (SLOC)

it has, the total number of test methods, and a description.

The subjects vary widely in size and come from different

domains: image processing, machine learning, linear algebra,

and databases applications. The subjects are from GitHub and

are a mix of (1) subjects used in previous software testing

papers [39], [42], and (2) computationally-intensive subjects

that may have more opportunities for applying approximate

transformations because they come from domains (e.g., linear

algebra, image processing, machine learning) that may benefit

more from approximate computing techniques [18], [65].

IV. QUANTITATIVE ANALYSIS RESULTS

This section contains answers to RQ1: how effective are ap-

proximate transformations as mutation operators, compared to

conventional mutation operators, in terms of mutation scores,

minimal mutants analysis, and selective mutation analysis.

A. Effectiveness by Mutation Scores

Table III shows the number of mutants generated and

covered by tests per mutation operator for all subjects. There,

the “Conv. Avg” column shows the average number of mutants

generated by conventional mutation operators for each subject.

Columns “LPM”, “ITS” and “DTF” show the number of mu-

tants generated by the approximate transformations. (We show

only averages for conventional mutation operators due to space

limits.) Figure 3 shows the average mutation score per operator

across all subjects. Each bar represents a mutation operator;

the rightmost three bars for approximate transformations—

LPM, ITS, and DTF. The y-axis shows average mutation score

CBM
CCM ICM IM INM MM

MVM
NCM

NVMCM
RC

M RIM RV
M SM

VMCM LP
M ITS DTF

0

20

40

60

80

100

M
ut

at
io

n
Sc

or
e

(%
)

Fig. 3: Mutation scores per operator

per operator across all subjects. The red horizontal line is the

average mutation score of all conventional mutation operators

across all subjects. The error margin on each bar shows the

standard deviation.

Loop perforation. On average, LPM generates only 275.89

mutants, compared with 1036.13 for conventional mutation

operators. This is because there are much fewer loops (the

only locations that LPM can mutate) relative to the number

of locations that conventional mutation operators can mutate.

The average mutation score for LPM (72.78%) is slightly

lower than that of conventional mutation operators (79.65%)

but it is not a low outlier, compared to other operators.

Precision degradation. The number of mutants generated

by ITS and DTF are similar to that of LPM, relative to

conventional mutation operators—an average of 569.22 and

357.89, respectively. These are significantly fewer than the av-

erage number of mutants generated by conventional mutation

operators (1036.13). The average mutation scores for ITS and

DTF are 15.49% and 27.39%, respectively (Figure 3). These

are significantly lower than the average score of 79.65% for

conventional mutation operators. In fact, ITS and DTF scores

are the lowest among all operators (including LPM).

Discussion. The LPM mutation scores are closer to the muta-

tion scores of conventional mutation operators, suggesting that

LPM mutants are as easy/hard to kill as mutants generated

from conventional mutation operators. The mutation scores

for ITS and DTF are very low compared to the scores for

conventional mutation operators. A further analysis of survived

mutants in Section VI shows that this is not due to a high

number of equivalent mutants, but rather to bad tests that do

not exercise the code with large values crossing the precision

boundaries. We perform a more detailed qualitative analysis

on LPM, ITS, and DTF mutants in Section V.

B. Effectiveness by Minimal Sets of Mutants

We compute minimal mutant sets, as described in Sec-

tion III-B, to see if mutants generated by approximate trans-

formations are in the minimal mutant set, meaning they are not

subsumed by other mutants. Table IV shows, for each subject,

the breakdown of the counts of the minimal mutants. The

column “Conv. Avg” shows the average number of minimal

mutants generated from conventional mutation operators; the

remaining columns show the number of minimal mutants for

5

TABLE IV: Minimal Mutants Per Operator

Project Conv. Avg LPM ITS DTF

commons-imaging 6.79 1 0 0
commons-io 37.07 1 1 0
HikariCP 4.57 1 0 0
imglib2 13.79 4 5 3
vectorz 18.36 14 1 9
jblas 2.21 2 0 1
OpenTripPlanner 15.29 2 0 1
la4j 13.57 17 3 17
meka 7.00 2 2 2

Average 13.18 4.89 1.33 3.67

TABLE V: Selective Mutation Operator Analysis

Project # Conv. Approx
Operators Operators

commons-imaging 7 n/a
commons-io 9 ITS
HikariCP 8 n/a
imglib2 9 LPM,DTF
vectorz 10 LPM,ITS,DTF
jblas 4 DTF
OpenTripPlanner 8 n/a
la4j 9 LPM,ITS,DTF
meka 5 LPM,DTF

each approximate transformation. (We show only averages for

conventional mutation operators due to the space constraints.)

Approximate transformations show up in the minimal set of

mutants—at least one of the last three columns, LPM, ITS,

and DTF, is not 0—for all subjects The average numbers of

mutants contributed by LPM, ITS, and DTF to the set of

minimal mutants are 4.89, 1.33, and 3.67, respectively. We

conclude that, when used as mutation operators, approximate

transformations can generate mutants that are not subsumed

by mutants generated from conventional mutation operators.

C. Effectiveness by Selective Mutation Analysis

Table V presents the sets of sufficient mutation operators

computed using the greedy selective mutation analysis algo-

rithm presented in Section III-B. For each subject, we show the

number of conventional mutation operators (“# Conv. Opera-

tors”) and the selected approximate transformations (“Approx

Operators”) that are in the sufficient mutation operator set.

Approximate transformations appear among the sufficient

mutation operators in six of the nine subjects (commons-io,

imglib2, vectorz, jblas, la4j, and meka). The fact that

approximate transformations end up in the sufficient mutation

operator sets shows that they are important, since sufficient

mutation operators are meant to be representative of all oper-

ators; tests good enough to kill these mutants are good enough

to kill the mutants from all the other operators (Section III-B).

Furthermore, when we perform selective mutation analysis

with only conventional mutation operators, we find that the

sufficient mutation operators for most subjects are the same

as those corresponding to the number of conventional mutation

operators from the “# Conv. Operators” column in Table V;

the only exception was meka. From these subjects where ap-

proximate transformations are in the set of sufficient mutation

Set<Integer> toSet() {

TreeSet<Integer> ss=new TreeSet<Integer>();

for (int i=0; i<data.length; i++) {

ss.add(data[i]);

}

return ss; }

void testSetCreate() {

Index ind=Index.of(1,3,3,3,5);

Set<Integer> s=ind.toSet();

assertEquals(3,s.size());

assertEquals(Index.createSorted(ind.toSet()),

Index.of(1).includeSorted(s)); }

Fig. 4: Initialization Loop LPM code pattern from

vectorz [4] and its corresponding test

operators, it seems approximate transformations are necessary

to represent themselves, as the conventional mutation operators

do not subsume the approximate transformations.

V. CODE PATTERNS

This section provides answers to RQ2, on code patterns that

approximate transformations reveal. We describe the results of

our qualitative analysis to answer these questions:

RQ2.1: What code patterns do LPM mutants reveal?

RQ2.2: What code patterns do ITS/DTF mutants reveal?

RQ2.3: How are approximate transformations different

from conventional mutation operators and how can they help

mutation testing?

Answers to these questions help with understanding the type of

computations affected by the proposed operators. Further, the

answers guide the analysis in Section VI on practical impact.

Methodology. For LPM, we randomly sampled and inspected

5% of killed mutants and 5% of surviving mutants for each

subject. ITS and DTF generate significantly higher numbers

of mutants than LPM in some subjects, so we sampled and

inspected only 1% (121 mutants) of their killed and surviving

mutants. Table VI shows code patterns we found during in-

spection. Sections V-A and V-B further explain these patterns.

A. RQ2.1 Code patterns for LPM mutants

Initialization loop. When a loop is used to initialize elements

in a data structure, an LPM mutant that skips loop iterations

may leave some elements uninitialized. Mutants of this pattern

are killed by tests that rely on all elements to be initialized.

However, we also find cases where such mutants survived, e.g.,

in method Index#toSet() of vectorz, shown in Figure 4.

LPM skips some iterations in the loop that initializes elements

of set ss. The only test for this method, testSetCreate,

passes when LPM skips an iteration that adds a duplicated

value to ss. The mutant produces the same result as the

original code and reasoning about its survival can help improve

the test suite with tests that kill this mutant by not having

duplicated data.

Conditional computation on elements. As a loop it-

erates over all elements in a data structure, the loop

body checks whether a property holds before performing

some computation. We find examples of this pattern in

commons-imaging, vectorz, and jblas. Consider the ex-

ample in class DoubleMatrix of jblas shown in Figure 5.

6

TABLE VI: Code Patterns for Killed and Survived Loop Perforation and Precision Degradation Mutants

Approximate
Transformation

Surviving Code Patterns #Mutants Killed Code Patterns #Mutants

Loop Perforation

Initialization loop 3 Initialization loop 2
Conditional computation on elements 14 Conditional computation on elements 22
Computation on all elements 17 Computation on all elements 56
Reduction 2 Reduction 9

Precision Degradation
Result is within a precision range 95 Result is outside a precision range 15
Computing large values 1 Computing large values 8

Indexing beyond the size of short 2

Total 132 114

public int argmin() {

if (isEmpty()) { return -1; }

double v = Double.POSITIVE_INFINITY;

int a = -1;

for (int i = 0; i < length; i++) {

if (!Double.isNaN(get(i)) && get(i) < v) {

v = get(i); a = i;

} }

return a; }

@Test

public void testArgMinMax() {

A = new DoubleMatrix(4, 3, 1.0, 2.0, 3.0, 4.0, 5.0,

6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0);

assertEquals(0, A.argmin(), eps);

assertEquals(11, A.argmax(), eps); }

Fig. 5: Conditional Computation on Elements LPM code

pattern and its corresponding test from jblas [2]

The LPM mutant is not killed by testArgMinMax(), because

the index with the minimum element is not skipped. The test

suite can be improved by adding more tests with input data

where the minimum element(s) are in a variety of different

indices. In general, mutants that involve checking a property

(or searching for a value) and potentially exiting the loop

early tend to survive when tests do not check for both the

cases when the property holds and when it does not (e.g., they

only assertTrue but do not have some assertFalse for a

different input). We find such surviving mutants in vectorz,

jblas, meka, and OpenTripPlanner. Killed mutants of this

pattern often modify data structures where most elements

satisfy the property; skipping iterations misses important com-

putations that affect test outcomes.

Computation on all elements. As a loop iterates over the

elements in a data structure, its body performs an independent

computation on each element. For example, the computation

may involve setting values at corresponding indices in another

array, or modifying the current element in the input array.

Tests tend to kill LPM mutants for this code pattern when the

test assertion iterates over all elements in the resulting array

to check that the value at each index is correct. We observe

loops of this pattern often in image-processing applications,

which process matrices of pixels (e.g., commons-imaging

and imglib2). In math applications with vector and matrix

operations (e.g., jblas, la4j, and vectorz), these LPM

mutants are commonly killed because the assertions check that

every element has the expected value.

public double reduce(double init, double[] data,

int offset, int length) {

double result=init;

for (int i=0; i<length; i++) {

result=apply(result,data[offset+i]);

}

return result;

}

Fig. 6: Reduction LPM code pattern from vectorz [4]

Reduction. As a loop iterates over all elements in a data struc-

ture, the loop body applies a “reduce” operation, aggregating

all values in the data structure to one representation. This

pattern commonly occurs in math applications (e.g., vectorz

and jblas). An example in class Op2 of vectorz is shown

Figure 6. The reduce method applies an operation apply to

each element in a subarray of the data array. Tests typically

kill such LPM mutants because the final result is a single

value and the tests assert that the resulting value is equal to

an expected value. It is also uncommon that the input array is

such that the elements skipped are all identity elements w.r.t

the applied operation. Most mutants of this pattern are killed;

the few that survived are such that test inputs exercise only

one loop iteration; therefore applying LPM is of no effect. To

kill these mutants, developers need to add tests that execute

the loop with more than one iteration.

B. RQ2.2 Code patterns for ITS & DTF mutants

Result is within/outside a precision range. When the spec-

ification of the operation is such that, for all allowed inputs,

the result is always going to be within the degraded precision

range, then such mutants should always survive. An example

of a surviving DTF mutant is in ColorConversions#conve

rtHSLtoRGB in commons-imaging, which converts HSL to

RGB pixels by multiplying each pixel (a double between 0.0

and 1.0) by 255. Degrading precision only slightly changes

the accuracy of the result, within the tolerance bound of the

test. On the other hand, when the test execution leads to

values that go outside the precision range, such mutants are

killed. We find surviving mutants of this pattern for DTF in

vectorz, OpenTripPlanner, and la4j. We find instances

where mutants of this pattern are killed in meka, la4j,

OpenTripPlanner, jblas, and imglib2.

7

Computing large values. When computations involve large

numbers, degrading the precision easily leads to different

results, e.g., due to overflow. Hence, ITS mutants involving

such computations tend to be killed by tests that expect

a much larger value than the mutant returns. However, in

OpenTripPlanner, we find an ITS mutant of this pattern

that survived because the tests do not check that computed

hash code values are correct and there is no collision in the

hash codes computed at lower precision.

Indexing beyond the size of short. ITS mutants get killed

when they cause the indices of data structures to exceed

their bounds when large int values are cast to short values

that overflow. For instance, class CRSMatrix in la4j has

a method set. The test that kills the ITS mutant creates

a matrix with dimensions greater than Short.MAX_VALUE.

When the ITS mutant is run on the input matrix, the int

to short precision degradation causes overflow, leading to

an ArrayOutOfBoundsException (AOOBE). Also, in class

CellRandomAccess of imglib2, an overflow occurs when

an int value used to walk through all positions in a large

matrix is cast to a short, causing an AOOBE.

C. RQ2.3 Comparing approximate transformations with con-

ventional mutation operators

LPM vs. conventional mutation operators. We check

whether mutants generated by conventional mutation operators

apply to each loop header on which an LPM mutant was gen-

erated. In total, seven conventional mutation operators (CBM,

ICM, IM, NCM, NVMCM, RIM, RCM) can be applied on

the same lines as LPM. Only two of these seven conventional

mutation operators generate mutants that behave somewhat

similarly to LPM mutants: Inline Constant Mutator (ICM)

and Negate Conditionals Mutator (NCM). ICM changes the

constant of the loop initialization to skip only the first iteration.

NCM changes the loop condition to skip the entire loop body.

LPM falls between the ICM and NCM in terms of the number

of skipped iterations.

We conclude that LPM is complementary to conventional

mutation operators; reasoning about their killed/surviving mu-

tants helps developers generate new tests that exercise the code

in new ways, improving their test suites (Section VI). Our

conclusion holds for mutation operators in three other Java

mutation tools: MuJava [43], Javalanche [60], and Major [34].

Replace Constant from Javalanche and Constant Value Re-

placement from Major produce similar effects as PIT’s ICM;

Negate Jump, and Unary Operator from Javalanche, and

Unary Operator Replacement, and Branch Condition Manipu-

lation from Major have similar effects as PIT’s NCM. Our

understanding of code patterns exercised by LPM mutants

enable us to perform such an analysis on mutation operators

from other frameworks.

ITS/DTF vs. conventional mutation operators. We do not

compare the precision degradation operators with the conven-

tional mutation operators because the mutants they generate

are not matched by any of the conventional mutation oper-

ators that modify arithmetic expressions. As our inspection

in Section VI shows, these mutants provide guidance towards

writing better tests that exercise boundary values.

Patterns for approximate transformations and tailored

mutation. The patterns we identified open up a research op-

portunity to achieve additional savings in mutation testing. Our

findings related to code patterns can enable performing tailored

mutation testing [10] or specialized selective mutation [37] to

find (parts of) applications where approximate transformations

can be effective as mutation operators.

VI. IMPACT ON SOFTWARE TESTING PRACTICES

This section answers RQ3, on the practical impact on

software testing of approximate transformations as mutation

operators. We describe the results of our qualitative analysis

to answer these questions:

RQ3.1: How often do surviving mutants from approximate

transformations indicate that tests are bad, mutant is equiv-

alent, or code is approximable?

RQ3.2: Do insights from inspecting surviving mutants from

approximate transformations help developers?

A. RQ3.1 Bad test, equivalent mutant, or approximable code?

Surviving mutants are traditionally regarded as either

(1) signaling buggy, inadequate, or missing tests (BadTest) or

(2) semantically equivalent to the original code, i.e., equivalent

mutants. However, inspecting mutants generated from approx-

imate transformations, we discovered a third possibility: the

mutant survived because the original code is approximable

(ApproxCode). That is, the mutant is semantically different

from the original code but produces acceptable outcomes that

are within a tolerable range. This third interpretation applies

to mutants from all operators, not just the ones generated

by approximate transformations, changing the way mutation

testing results should be interpreted in general.

Of our inspected LPM mutants, 63.83% indicate bad tests

(BadTest) and 19.15% indicate approximable code (Approx-

Code); we find no equivalent mutants, and the remaining

17.02% are hard to inspect. Of our inspected ITS and

DTF mutants, 53.13% indicate bad tests, 14.58% are equiva-

lent, 11.46% indicate approximable code, and the remaining

20.83% are hard to inspect. Section V discussed the pat-

terns that approximate transformations reveal, explaining the

contexts in which those patterns signal approximable code.

Section VI-B describes how BadTests inspired better testing,

and describes some pull requests we made to fix BadTests.

We find mutants indicating ApproxCode in vectorz,

la4j, jblas, and meka. An example from la4j is method

Matrix#shuffle(), which makes a copy of an input ma-

trix and uses a loop to randomly shuffle elements in the

copy. Applying LPM to the shuffling loop is practically not

observable, since the specification of the expected output is

non-deterministic [63]. For ITS the surviving mutants for

ApproxCode are equivalent, while for DTF the surviving

ApproxCode mutants are within the precision range defined

in the application.

8

Determining whether code is approximable is not an easy

task. It is highly dependent on the quality of the oracles in

the test suites that determine the ranges of acceptable output.

Approximate computing often relies on the usage context

(i.e., specific applications and application-level requirements)

to determine if code is approximable. Such usage context is

not available for the developers of general-purpose libraries

(like most of our subjects) that can be used in a myriad of

contexts. Therefore, the tests for these libraries are written

in a conservative way, and consequently, our set of identified

approximable patterns are necessarily conservative as well.

B. RQ3.2 Do insights from surviving mutants help improve

testing practice?

We find that surviving mutants of the BadTest category can

be killed by adding tests that (1) achieve better loop coverage,

(2) achieve better coverage of the loop condition, (3) exercise

the code with larger inputs that cross the precision boundaries,

or (4) check all output elements. Even though these insights are

not new to the testing community, the real value lies in the fact

that the approximate transformations are able to detect those

problems, bringing them to the attention of the developer who

might not have such considerations in mind. We also submitted

pull requests that fix bad tests, to evaluate whether these

insights can help developers improve their test suites. Seven of

the 11 pull requests that we submitted were already integrated

by developers into vectorz, HikariCP, commons-imaging,

imglib2 and commons-io. We next discuss the categories

and the pull requests.

Achieve better loop coverage. 11 out of 30 LPM BadTest

cases have tests that do not achieve full loop coverage, i.e.,

they do not have tests that exercise zero, one, and more than

one loop iterations. As Table VII shows, the tests frequently

cover either zero or one iteration. We discover the lack of

full loop coverage while inspecting surviving LPM mutants

in vectorz, jblas, OpenTripPlanner, and commons-io.

The causes of low loop coverage that we observed are when

(1) a test exercises the code with small inputs (e.g., one

dimensional matrices) and (2) a test searches for a value that

always happens to be the first element in the input data, so

that the loop iterates only once before exiting. For example,

in jblas, the method argmin() returns the index of the

minimum element in a matrix. All tests that cover argmin()

use input that is sorted in ascending order, so argmin()

always returns 0.

Achieve better coverage of loop condition. While inspecting

the 14 surviving LPM mutants for the code pattern “Condi-

tional computation on elements” (Section V-A), we find 12

of them are cases of BadTest in two categories: either the

conditional check on the elements is never performed, or

the conditional check is only performed on even-numbered

iterations. In several cases the tests exercise the loop with

only valid inputs, so the conditional check for errors that

happen in the loop body is never performed. LPM helps

direct the developer’s attention into those critical parts of

the code. An example from commons-io (SHA:733dc26)

TABLE VII: Lessons Learned For Better Testing Practices

From LPM BadTest Cases

Bad Testing Pattern #Cases Learned Testing Practice

Zero iterations 7 Better loop coverage
One iteration 4 Better loop coverage
Loop condition (LC) Not Taken 8 Better coverage of LC
LC taken on even iterations 4 Better coverage of LC
Weak or no assertion 6 Check all output elements
Small Inputs 51 Exercise boundary values

Other2 1 -

Total 81

protected Class<?> resolveProxyClass(final String[] ints) {

final Class<?>[] iClasses = new Class[ints.length];

for (int i = 0; i < ints.length; i++) {

iClasses[i] = Class.forName(ints[i], false, loader);

}

try {

return Proxy.getProxyClass(loader, iClasses);

} catch (final IllegalArgumentException e) {

return super.resolveProxyClass(ints);

} }

@Test

public void testResolveProxyClass() throws Exception {

...

ClassLoaderObjectInputStream c =

new ClassLoaderObjectInputStream(...);

String[] i = new String[]{Comparable.class.getName()};

Class<?> r = c.resolveProxyClass(i);

assertTrue("...", Comparable.class.isAssignableFrom(r));

c.close(); }

Fig. 7: Bad test example from commons-io [1]

is shown in Figure 7. The method resolveProxyClass()

from the class ClassLoaderObjectInputStream is only

exercised by the test testResolveProxyClass. The test

passes only one interface (Comparable.class) to the loop in

resolveProxyClass. Thus, applying LPM to that loop will

not cause testResolveProxyClass to fail, i.e., the resulting

mutant survives, unless more than one interface is passed to

resolveProxyClass(). Our pull request containing such a

test was accepted by the commons-io developers.

Exercise boundary values. All BadTest cases for ITS and

DTF are due to tests using small inputs. This means that

the current tests do not use values that exceed the precision

bounds of short for ITS and float for DTF, and we can

write a test that can kill the mutant. A DTF example from

vectorz is in the class Quaternions, which represents

numbers from the quaternions number system using double

precision. The method mul() computes the product of two

quaternions. Mutants casting any of the arithmetic operations

involved in the computation survive because the numerical

values are very small.

Check all output elements. Multiple mutants are not killed

because of the weakness or absence of assertions in the tests.

For example, meka is a machine learning library. The tests

cover the mutants, but most of the tests do not have assertions,

2This is a case in meka; a setter method resets the values in a matrix, but
the new values are almost equal to the old values, so the effect of skipping
iterations is not observable. A better test would exercise the function such
that the difference between the new and old values is observable.

9

and coming up with strong assertions is non-trivial. Another

example is in vectorz (shown in Figure 1a). The only test

that covers the method Matrix#swapRows() does not check

that all elements in the swapped rows are as expected (detailed

discussion is in Section II). We submitted a pull request to add

assertions and it has been accepted.

VII. THREATS TO VALIDITY

The conventional mutation operators we use in comparison

may not be representative of all mutation operators. Since

ours is an initial study of the effectiveness of approximate

transformations as mutation operators, we have used the set

of conventional mutation operators that are available in PIT,

which are used in both research and practice. Furthermore, in

our qualitative analysis we examine mutation operators from

three other popular mutation frameworks [34], [43], [60] and

find our conclusions to still hold for those.

The approximate transformations that we evaluated are

a subset of all approximate transformations and they may

not be representative. To mitigate that, we model popular

transformations that have been widely used in the approximate

computing literature. Each transformation that we implement

models some key properties of the original approximate trans-

formations, i.e., dropping parts of computation (LPM), large

magnitude errors (ITS), and small magnitude errors (DTF).

VIII. RELATED WORK

A. Approximate computing

Approximate computing is an emerging area of research

focusing on trading off (slightly) inaccurate results for per-

formance gains (e.g. for energy usage). Some approximate

computing techniques involve approximate hardware [40],

[48], data types [58], sampling [6], [41], or code perfora-

tion [49], [65], all of which obtained significant performance

with tolerable errors in specific domains. However, most of

the existing work in approximate computing does not make

explicit connections to software testing research. While our

recent position paper argues in favor of using approximate

computing to improve various software testing tasks [22],

this work shows that approximate transformations are indeed

useful in mutation testing.

Researchers also proposed sensitivity profilers [16], [48],

[49], [56], [69], [72], which transform code, run it using

representative input/output pairs, compare any differences, and

suggest which parts of computations are approximable. Like

sensitivity profiling, our approach transforms code and runs

them on a set of tests, but our goal is different in several

ways: (1) we study approximate transformations for mutation

testing and compare with conventional mutation operators,

(2) we execute programs on finer-grained unit tests, not coarse-

grained integration tests, and (3) our results provide hints for

improving tests, not just code.

B. Mutation testing

Mutation testing has been widely-studied for decades [20],

[76]; Jia and Harman [33] provide a thorough background.

Multiple techniques were developed for mutation testing

at different levels and for different languages (e.g., source

code [13], [24], [32], [60], intermediate representation [3],

[28], [61]), etc. Many tools were also introduced for mul-

tiple programming languages, e.g., including C [19], [32],

C++ [38], Java [36], [44], [45], [60], and others [15], [17],

[29]. Many optimizations have been developed for mutation

testing, including mutant schemata [70], weak mutation [54],

and higher-order mutation [32]. Researchers have also pro-

posed new mutation operators for different domains and use

cases, such as for GUI-based applications [8], [53], embedded

systems [68], class diagrams [25], Android applications [71],

or fault-localization tasks [30]. We are the first to study

approximate transformations in the context of mutation testing.

Researchers have studied how to improve the efficiency of

mutation testing by techniques to only use the mutants that are

hard-to-kill and representative of all mutants. Some heuris-

tics for finding hard-to-kill mutants include minimal mutant

analysis [11], [24], static analysis [55], or use of historical

data [31]. Offutt et al. [51], [52] empirically found the set

of sufficient operators, operators whose generated mutants are

representative of mutants generated by the other operators,

and others have extended this idea to various languages and

paradigms, like concurrent code [23]. While these works have

the goal to improve the efficiency of mutation testing, that

is not the goal of our paper. We are focused on improving

the quality of mutation testing by utilizing new mutation

operators that give different insights into improving the test

suite. We do, however, use the established existing techniques

to evaluate how effective approximate transformations are

compared against conventional mutation operators.

IX. CONCLUSIONS

We propose approximate transformations as mutation op-

erators, and we compare them with conventional mutation

operators. Specifically, we integrated loop perforation and

precision degradation into an existing mutation testing frame-

work, and we compared and analyzed the quality of those

transformations when used as mutation operators. Our results

show that approximate transformations generate mutants that

are not subsumed by mutants generated by conventional mu-

tation operators. Our qualitative analysis of a number of killed

and surviving approximate transformations uncovered several

code patterns that developers could use to enhance their test

suites. The surviving mutants inspired proposing better testing

practices and helped us submit 11 pull requests to fix bad tests.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their valuable feed-

back and the participants of CS 591SE at the University of

Illinois for constructive discussions on the material presented

in this paper. This work was partially supported by the

US National Science Foundation under Grants Nos. CCF-

1409423, CCF-1421503, CCF-1566363, CCF-1629431, CCF-

1652517, CCF-1703637, and CCF-1704790.

10

REFERENCES

[1] Commons-io. https://github.com/apache/commons-io.

[2] Jblas. https://github.com/mikiobraun/jblas.

[3] Real world mutation testing. http://pitest.org.

[4] Vectorz. https://github.com/mikera/vectorz.

[5] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, et al. Tensorflow: Large-scale
machine learning on heterogeneous distributed systems. arXiv preprint

arXiv:1603.04467, 2016.

[6] S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden, and I. Stoica.
BlinkDB: Queries with bounded errors and bounded response times on
very large data. In EuroSys, pages 29–42, 2013.

[7] I. Ahmed, R. Gopinath, C. Brindescu, A. Groce, and C. Jensen. Can
testedness be effectively measured. In FSE, pages 547–558, 2016.

[8] E. Alegroth, Z. Gao, R. Oliveira, and A. Memon. Conceptualization and
evaluation of component-based testing unified with visual GUI testing:
An empirical study. In ICST, pages 1–10, 2015.

[9] M. A. Alipour, A. Shi, R. Gopinath, D. Marinov, and A. Groce.
Evaluating non-adequate test-case reduction. In ASE, pages 16–26, 2016.

[10] M. Allamanis, E. T. Barr, R. Just, and C. Sutton. Tailored mutants fit
bugs better. arXiv preprint arXiv:1611.02516, 2016.

[11] P. Ammann, M. E. Delamaro, and J. Offutt. Establishing theoretical
minimal sets of mutants. In ICST, pages 21–30, 2014.

[12] P. Ammann and J. Offutt. Introduction to Software Testing. Cambridge
University Press, 2008.

[13] J. Andrews, L. Briand, and Y. Labiche. Is mutation an appropriate tool
for testing experiments? In ICSE, pages 402–411, 2005.

[14] ASM. http://asm.ow2.org/.

[15] T. A. Budd, R. J. Lipton, R. DeMillo, and F. Sayward. The design
of a prototype mutation system for program testing. In AFIPS, pages
623–629, 1899.

[16] M. Carbin and M. C. Rinard. Automatically identifying critical input
regions and code in applications. In ISSTA, pages 37–48. ACM, 2010.

[17] W. Chan, S. C. Cheung, and T. Tse. Fault-based testing of database
application programs with conceptual data model. In QSIC, pages 187–
196, 2005.

[18] V. K. Chippa, S. T. Chakradhar, K. Roy, and A. Raghunathan. Analysis
and characterization of inherent application resilience for approximate
computing. In DAC, page 113. ACM, 2013.

[19] M. E. Delamaro and J. C. Maldonado. Proteum-A tool for the assessment
of test adequacy for C programs users guide.

[20] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on test data
selection: Help for the practicing programmer. Computer, 11(4):34–41,
1978.

[21] Y. Ding, J. Ansel, K. Veeramachaneni, X. Shen, U.-M. O’Reilly, and
S. Amarasinghe. Autotuning algorithmic choice for input sensitivity. In
PLDI, 2015.

[22] M. Gligoric, S. Khurshid, S. Misailovic, and A. Shi. Mutation testing
meets approximate computing. In ICSE NIER, pages 3–6, 2017.

[23] M. Gligoric, L. Zhang, C. Pereira, and G. Pokam. Selective mutation
testing for concurrent code. In ISSTA, pages 224–234, 2013.

[24] R. Gopinath, A. Alipour, I. Ahmed, C. Jensen, and A. Groce. Measuring
effectiveness of mutant sets. In ICSTW, pages 132–141, 2016.

[25] M. F. Granda, N. Condori-Fernández, T. E. J. Vos, and O. Pastor.
Mutation operators for UML class diagrams. In CAiSE, pages 325–341,
2016.

[26] V. Gupta, D. Mohapatra, S. P. Park, A. Raghunathan, and K. Roy.
Impact: imprecise adders for low-power approximate computing. In
Proceedings of the 17th IEEE/ACM international symposium on Low-

power electronics and design, pages 409–414. IEEE Press, 2011.

[27] J. Han and M. Orshansky. Approximate computing: An emerging
paradigm for energy-efficient design. In Test Symposium (ETS), 2013

18th IEEE European, pages 1–6. IEEE, 2013.

[28] F. Hariri, A. Shi, H. Converse, S. Khurshid, and D. Marinov. Evaluating
the effects of compiler optimizations on mutation testing at the compiler
IR level. In ISSRE, pages 105–115, 2016.

[29] S. Hong, T. Kwak, B. Lee, Y. Jeon, B. Ko, Y. Kim, and M. Kim.
MUSEUM: debugging real-world multilingual programs using mutation
analysis. IST, 82:80–95, 2017.

[30] S. Hong, B. Lee, T. Kwak, Y. Jeon, B. Ko, Y. Kim, and M. Kim.
Mutation-based fault localization for real-world multilingual programs
(t). In ASE, pages 464–475, 2015.

[31] L. Inozemtseva, H. Hemmati, and R. Holmes. Using fault history to
improve mutation reduction. In ESEC/FSE 2013, pages 639–642, 2013.

[32] Y. Jia and M. Harman. MILU: A customizable, runtime-optimized higher
order mutation testing tool for the full C language. In TAIC PART, pages
94–98, 2008.

[33] Y. Jia and M. Harman. An analysis and survey of the development of
mutation testing. TSE, 37(5):649–678, 2011.

[34] R. Just. The Major mutation framework: Efficient and scalable mutation
analysis for Java. In ISSTA, pages 433–436, 2014.

[35] R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst, R. Holmes, and G. Fraser.
Are mutants a valid substitute for real faults in software testing? In FSE,
pages 654–665, 2014.

[36] R. Just, F. Schweiggert, and G. M. Kapfhammer. MAJOR: An efficient
and extensible tool for mutation analysis in a Java compiler. In ASE,
pages 612–615, 2011.

[37] B. Kurtz, P. Ammann, J. Offutt, M. E. Delamaro, M. Kurtz, and
N. Gökçe. Analyzing the validity of selective mutation with dominator
mutants. In FSE 2016, pages 571–582, 2016.

[38] M. Kusano and C. Wang. CCmutator: A mutation generator for
concurrency constructs in multithreaded C/C++ applications. In ASE,
pages 722–725, 2013.

[39] O. Legunsen, F. Hariri, A. Shi, Y. Lu, L. Zhang, and D. Marinov. An
extensive study of static regression test selection in modern software
evolution. In FSE, pages 583–594, 2016.

[40] S. Liu, K. Pattabiraman, T. Moscibroda, and B. G. Zorn. Flikker: Saving
DRAM refresh-power through critical data partitioning. In ASPLOS,
pages 213–224, 2011.

[41] L. Lou, P. Nguyen, J. Lawrence, and C. Barnes. Image perforation:
Automatically accelerating image pipelines by intelligently skipping
samples. SIGGRAPH, 35(5):153:1–153:14, 2016.

[42] Y. Lu, Y. Lou, S. Cheng, L. Zhang, D. Hao, Y. Zhou, and L. Zhang.
How does regression test prioritization perform in real-world software
evolution? In ICSE, pages 535–546, 2016.

[43] Y.-S. Ma, J. Offutt, and Y. R. Kwon. MuJava: An automated class
mutation system. STVR, 15(2):97–133, 2005.

[44] Y.-S. Ma, J. Offutt, and Y.-R. Kwon. MuJava: a mutation system for
Java. In ICSE, pages 827–830, 2006.

[45] L. Madeyski and N. Radyk. Judy-A mutation testing tool for Java. IET

software, 4(1):32–42, 2010.

[46] A. P. Mathur. Performance, effectiveness, and reliability issues in
software testing. In COMPSAC, pages 604–605, 1991.

[47] S. Misailovic. Exploring the Effectiveness of Loop Perforation for
Quality of Service Profiling. Technical report, MIT, 2010.

[48] S. Misailovic, M. Carbin, S. Achour, Z. Qi, and M. Rinard. Chisel:
Reliability- and accuracy-aware optimization of approximate computa-
tional kernels. In OOPSLA, pages 309–328, 2014.

[49] S. Misailovic, S. Sidiroglou, H. Hoffmann, and M. Rinard. Quality of
service profiling. In ICSE, pages 25–34, 2010.

[50] S. Mitra, M. K. Gupta, S. Misailovic, and S. Bagchi. Phase-aware
optimization in approximate computing. In CGO, 2017.

[51] A. J. Offutt, A. Lee, G. Rothermel, R. H. Untch, and C. Zapf. An
experimental determination of sufficient mutant operators. TOSEM,
5(2):99–118, 1996.

[52] A. J. Offutt, G. Rothermel, and C. Zapf. An experimental evaluation of
selective mutation. In ICSE, pages 100–107, 1993.

[53] R. A. P. Oliveira, E. Algroth, Z. Gao, and A. Memon. Definition and
evaluation of mutation operators for GUI-level mutation analysis. In
ICSTW, pages 1–10, 2015.

[54] M. Papadakis and N. Malevris. Automatically performing weak mutation
with the aid of symbolic execution, concolic testing and search-based
testing. Software Quality Control, 19(4):691–723, 2011.

[55] M. Patrick, M. Oriol, and J. A. Clark. Messi: Mutant evaluation by
static semantic interpretation. In ICST, pages 711–719, 2012.

[56] P. Roy, R. Ray, C. Wang, and W. F. Wong. Asac: Automatic sensitivity
analysis for approximate computing. In SIGPLAN/SIGBED LCTES,
2014.

[57] C. Rubio-González, C. Nguyen, H. D. Nguyen, J. Demmel, W. Kahan,
K. Sen, D. H. Bailey, C. Iancu, and D. Hough. Precimonious: Tuning
assistant for floating-point precision. In SC, page 27, 2013.

[58] A. Sampson, W. Dietl, E. Fortuna, and D. Gnanapragasam. EnerJ:
Approximate data types for safe and general low-power computation.
In PLDI, pages 164–174, 2011.

11

[59] E. Schkufza, R. Sharma, and A. Aiken. Stochastic optimization of
floating-point programs with tunable precision. ACM SIGPLAN Notices,
49(6):53–64, 2014.

[60] D. Schuler and A. Zeller. Javalanche: Efficient mutation testing for Java.
In FSE, pages 297–298, 2009.

[61] E. Schulte. llvm-mutate. http://eschulte.github.io/llvm-mutate/.

[62] A. Shi, A. Gyori, M. Gligoric, A. Zaytsev, and D. Marinov. Balancing
trade-offs in test-suite reduction. In FSE, pages 246–256, 2014.

[63] A. Shi, A. Gyori, O. Legunsen, and D. Marinov. Detecting assumptions
on deterministic implementations of non-deterministic specifications. In
ICST, 2016.

[64] A. Shi, T. Yung, A. Gyori, and D. Marinov. Comparing and combining
test-suite reduction and regression test selection. In FSE, pages 237–247,
2015.

[65] S. Sidiroglou, S. Misailovic, H. Hoffmann, and M. Rinard. Managing
performance vs. accuracy trade-offs with loop perforation. In FSE, pages
124–135, 2011.

[66] Spoon. http://spoon.gforge.inria.fr/.

[67] X. Sui, A. Lenharth, D. S. Fussell, and K. Pingali. Proactive control of
approximate programs. In ASPLOS, 2016.

[68] A. Sung, B. Choi, W. E. Wong, and V. Debroy. Mutant generation
for embedded systems using kernel-based software and hardware fault
simulation. IST, 53(10):1153–1164, 2011.

[69] A. Thomas and K. Pattabiraman. Llfi: An intermediate code level fault
injector for soft computing applications. In SELSE, 2013.

[70] R. H. Untch, A. J. Offutt, and M. J. Harrold. Mutation analysis using
mutant schemata. In ISSTA, pages 139–148, 1993.

[71] M. L. Vásquez, G. Bavota, M. Tufano, K. Moran, M. D. Penta, C. Ven-
dome, C. Bernal-Cárdenas, and D. Poshyvanyk. Enabling mutation
testing for android apps. In ESEC/FSE, pages 233–244, 2017.

[72] R. Venkatagiri, A. Mahmoud, S. K. S. Hari, and S. V. Adve. Approxi-
lyzer: Towards a systematic framework for instruction-level approximate
computing and its application to hardware resiliency. In MICRO, pages
1–14. IEEE, 2016.

[73] S. Venkataramani, V. K. Chippa, S. T. Chakradhar, K. Roy, and
A. Raghunathan. Quality programmable vector processors for ap-
proximate computing. In Proceedings of the 46th Annual IEEE/ACM

International Symposium on Microarchitecture, pages 1–12. ACM, 2013.
[74] X. Yao, M. Harman, and Y. Jia. A study of equivalent and stubborn

mutation operators using human analysis of equivalence. In ICSE, pages
919–930, 2014.

[75] S. Yoo and M. Harman. Regression testing minimization, selection and
prioritization: A survey. STVR, 22(2):67–120, 2012.

[76] H. Zhu, P. A. V. Hall, and J. H. R. May. Software unit test coverage
and adequacy. CSUR, 29(4):366–427, 1997.

12

