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Abstract—User-generated social media data are exploding and
of high demand in public and private sectors. The disclosure
of intact social media data exacerbates the threats to user
privacy. In this paper, we first identify a text-based user-
linkage attack on current data outsourcing practices, in which
the real users in an anonymized dataset can be pinpointed
based on the users’ unprotected text data. Then we propose
a framework for differentially privacy-preserving social media
data outsourcing for the first time in literature. Within our
framework, social media data service providers can outsource
perturbed datasets to provide users differential privacy while
offering high data utility to social media data consumers. Our
differential privacy mechanism is based on a novel notion of ✏-text
indistinguishability, which we propose to thwart the text-based
user-linkage attack. Extensive experiments on real-world and
synthetic datasets confirm that our framework can enable high-
level differential privacy protection and also high data utility.

I. INTRODUCTION

User-generated social media data are exploding. Twitter, the

most popular microblogging service, generates 500 million

tweets per day by 328 million monthly active users as of

June 2017. Facebook, the largest online social network with

about 1.3 billion daily active users as of June 2017, generates

petabytes of data per day. People use social media platforms

to communicate with their friends, share their daily life

experiences, express their opinions on political/social events

and commercial products, etc.

Closely tied to human beings in the physical world, large-

scale social media data have tremendous usages by various

data consumers and have become one of the most profitable

resources for social media service providers [1]. For example,

companies use social media data to study customer behavior,

monitor public responses to their products, deliver online

advertisements more cost-effectively, and uncover the trends

that may impact their businesses; public policy makers explore

social media data to obtain the demographic information for

making strategic decisions; and sociologists leverage social

media data to study the social behavior and establish new

social network theories. In a typical social media mining

application, a data consumer demands a set of users and their

social media data (such as profiles, recent posts, and friends),

which satisfy some desirable criterion. For example, company

A may request the data of all the users who mentioned the

company name in the past week after a public relation crisis.

The disclosure of intact social media data exacerbates the

threats to user privacy. For example, many users mention their

vacation plans in publicly visible tweets without knowing that

criminals can exploit such information for targeted break-

ins and thefts [2]. Criminals may identify potential victims

nearby by directly browsing/searching social media platforms,

and smarter ones can explore the search APIs offered by

social media platforms. The data acquired in this traditional

way are only small and random samples of all the qualifying

data. For example, Twitter claims that their Search API only

“searches against a sampling of recent tweets published in the

past 7 days” [3]. If the criminals could access intact social

media data relevant to the target area, they can identify all

potential victims to plan large-scale break-ins. In addition,

social media mining applications are increasingly sophisticated

and powerful. If intact social media data are available, lots of

sensitive information the users do not explicitly disclose could

still be inferred, such as age [4], [5], location [6], [7], language

[8], and political preferences [9].

There is a natural conflict between data utility and user

privacy in social media data outsourcing. On the one hand,

data consumers want intact social media data to maximize the

data utility, which is also the most profitable case for social

media service providers. The maximum data utility is achieved

unfortunately at the biggest sacrifice of user privacy. On the

other hand, social media service providers are also motivated

to protect user privacy due to legal concerns, public relations,

and many other reasons. For example, they may intentionally

add random noise to the data before releasing. User privacy is

thus better protected but at the loss of data utility.

A growing body of work studies privacy-preserving out-

sourcing of social graphs and falls into two directions. The

first line of research [10], [11] aims at vertex privacy by

outsourcing social graphs with anonymous user IDs, and the

effort is to prevent the adversary from linking anonymous IDs

to corresponding users in the real social network. The other

line of research targets link privacy [12]–[14], and the main

effort is to outsource social graphs with real user IDs but

perturbed links by deleting real edges and adding fake ones.

Neither line of work considers the privacy of user data and

thus cannot be directly applied in our context.

In this paper, we propose a framework for privacy-

preserving social media data outsourcing. The framework

consists of a data service provider (DSP), numerous social

media users, and a lot of data consumers. The DSP can be

either a social media service provider itself such as Twitter

or Facebook, or a third-party data company such as Gnip and



DataSift which resells the data obtained from social media ser-

vice providers. Data consumers can be an arbitrary individual

or entity in public or private sectors. They are interested in

statistical information that can be mined from social media

data, rather than real user IDs. A data consumer submits a

data request to the DSP, which specifies the query conditions.

The DSP responds with social media data satisfying the query

conditions, in which each user is anonymized.

Although there can be various attacks on social media data

outsourcing, we consider a user-linkage attack as the first

effort along this line. In this attack, a malicious data consumer

attempts to link random or selected anonymous IDs in the

received data set to real IDs on the social media platform, so

he can obtain the latest social media data about the victims or

other sensitive information not covered by his previous query.

We assume that existing sophisticated techniques such as [10],

[12]–[14] are adopted to preserve both link privacy and vertex

privacy in the anonymized data set, so the attacker cannot

uncover real IDs based on either vertexes or edges.

Our defense against the user-linkage attack in this paper

consists of three steps. First, we map the intact data of all the

users into a high-dimensional user-keyword matrix. Second,

we add controlled noise to the user-keyword matrix to satisfy

differential privacy [15], the most popular privacy model lately.

Finally, the perturbed user-keyword matrix is disclosed to the

data consumer, where each user ID is anonymized. If the social

graph corresponding to the data set is also needed, existing

defenses such as [10], [12]–[14] should be adopted to preserve

both link privacy and vertex privacy. Our defense applies to

a wide range of social media applications. For example, the

data consumer can infer demographic information about the

target population from the perturbed data set.

Our contributions can be summarized as follows.

• We are the first to coin the problem of privacy-preserving

social media data outsourcing to the best of our knowl-

edge, for which a system model is also proposed.

• We propose a novel mechanism to guarantee differential

user privacy while maintaining high data utility in social

media data outsourcing. The popular Laplacian mecha-

nism to achieve differential privacy suffers from the curse

of dimensionality [16] and can bring huge noise to the

original dataset which significantly reduces data utility.

We define a new metric called ✏-text indistinguishability

whereby to design a mechanism to break this constraint.

• We thoroughly evaluate the proposed defense on a real-

world dataset with regard to user privacy and data utility.

Our results show that high-level privacy protection can

be achieved without significantly sacrificing data utility.

For example, we show that our mechnism can reduce the

privacy leakage by as much as 64.1% by reducing only

1.61% of utility in terms of classification accuracy.

II. PROBLEM STATEMENT

A. Social Media Data Outsourcing

We consider a system with three parties: social media users,

social media data service providers, and data consumers.

Social media users use the social media to connect with

their friends and/or ones they have followed and generate

the original texts which could be set either private or public.

Public users are searchable either directly via the social media

service provider’s website or APIs or from the external tool

such as Google. By setting his/her profile private, a private

user only allows the authenticated users to access the profile

and is not searchable from other users. However, the social

media service provider still has full access to all the private

and public data per user agreements.

The social media data service provider (or DSP for short)

hosts and provides most likely paid access to social media

data. A DSP can be a social media service provider such

as Twitter or Facebook itself. It can also be an emerging

third-party data company such as Gnip or DataSift, which

partners with social media service providers to provide social

media data services. For example, Gnip and DataSift both have

authorized access to Twitter’s Firehost engine whereby to have

access to complete, intact, and realtime Twitter data. The DSP

can outsource the data according to the privacy policies and

agreements which users consent to when signing up for using

social media services. Generally, the DSP has full rights to

use all the hosted data for their businesses and also share the

data with data consumers. For example, the DSP can sample

the whole user space according to data consumers’ requests,

assign an anonymous ID to each sampled user, process the

original data from each user according to data requests, and

finally deliver the processed data to data consumers.

Data consumers purchase social media data in the user-

keyword format from the DSP whereby to run various social

media mining algorithms for extracting useful information.

Other types of social media data such as timestamps are out

of this paper’s scope. A data consumer can be an individual, a

business, a government agency, a research institution, or any

other entity in public and private sectors who is aware of the

growing importance of social media data. A data consumer

typically sends to the DSP a request specifying its query

conditions, pays for the request, and then receives the user-

keyword data. For example, company A may request the data

of all the users in the west coast who have tweeted the keyword

“company A” in the past week. After receiving the data

from the DSP, it can explore advanced social media mining

algorithms to identify critical market trends and analyze the

users’ demographic information such as age, location, educa-

tion level, income level, marital status, occupation, religion,

and family size. Data consumer currently cannot obtain intact

social media data without the DSP’s support.

B. Adversary Model (User-Linkage Attack)

The DSP is assumed to be fully trusted by both social media

users and data consumers. Some advanced social media users

may be privacy-aware and have taken some actions to protect

their privacy. For example, the statistics in [17] and [18] show

that 11.84% of Twitter users and 52.8% of Facebook users set

their accounts private, respectively. As said, the DSP still has

access to the complete data despite the users’ privacy settings.



In addition, the users’ effort to protect their privacy fails in

the presence of the attack outlined below.

Our focus is to defend against the user-linkage attack, which

can be launched by a curious or even malicious data consumer.

Assume that the DSP has anonymized every user ID in the

dataset and also taken existing defenses such as [10], [12]–[14]

to guarantee link and vertex privacy. There are two possible

versions of the user-linkage attack. In the first version, the

attacker locates some target users by random browsing or

searching via public APIs on the social media platform. It

knows that these users must be in the received dataset under

anonymous IDs. Existing defenses only consider link and

vertex privacy via various obfuscation mechanisms, and no

attention has been paid to text data. Armed with the text data

of the target users with real IDs, the attacker can easily locate

the corresponding anonymous IDs in the dataset. In the same

way, the attacker can link the real IDs of the initial target

users’s friends to the corresponding anonymized IDs, and so

on. The attacker eventually can uncover all the mappings

between real and anonymous IDs in the dataset, despite the

DSP’s anonymization effort even based on existing advanced

defenses [10], [11]. In the second version, the attacker tries

to learn more beyond the received dataset. It starts by finding

some interesting posts/tweets in the anonymized dataset and

then easily locating the real users by performing simple text

matching on the social networks. Once the real users are

located, the attacker can learn their latest information.

C. Design Objectives

We consider the following problem within the aforemen-

tioned social media data outsourcing framework. After receiv-

ing a data query from the data consumer, the DSP searches

the entire social media database to generate a dataset D,

which contains all the users satisfying the query and their

outsourced texts (e.g., tweets, retweets, and replies) during

the period specified in the query. Each user in D is assigned

an anonymous ID to provide baseline user privacy. The data

consumer may also request the social graph associated with

D, in which case we assume that existing defenses such as

[10], [12]–[14] are adopted to preserve link and vertex privacy

such that it is infeasible to link an anonymous ID to the real

user based on his/her vertex’s graphical property in the social

graph. Our focus is to let the DSP transform the raw dataset

D into a new one D0 by perturbing the user texts according

to the following three requirements.

• Completeness: each data item in D can be mapped to a

unique item in D0, and vice versa. In other words, no

user is added to or deleted from D to create D0.

• Privacy Preservation: The user texts in D0 can be used to

link any anonymous ID in D0 to the real user with neg-

ligible probability, meaning that text-based user-linkage

attacks can be thwarted with overwhelming probability.

• High Utility: D0 and D should lead to comparable utility

at the data consumer on common data mining tasks such

as statistical aggregation, clustering, and classification.

III. DIFFERENTIALLY PRIVACY-PRESERVING SOCIAL

MEDIA DATA OUTSOURCING

In this section, we present a novel technique to achieve

differentially privacy-preserving social media data outsourc-

ing with the aforementioned design goals in mind. Inspired

by geo-indistinguishability from [19], which is proposed to

protect location privacy, we propose a novel notion of text-

indistinguishability as the foundation of our technique.

A. Text Modeling

As stated before, social media service providers such as

Facebook and Twitter currently outsource the original data

set D to the data consumer, which contains the intact user

texts. We assume that there are n users in D, each assigned an

anonymous ID. There are two obvious drawbacks here. First,

although this method can enable the maximum data utility, it

is vulnerable to the text-based user-linkage attack. Second, the

data consumer cannot directly use the original texts which are

highly unstructured and noisy, as mentioned in Section I. For

example, common machine learning algorithms such as SVM

and K-means require the input for each user to be a vector.

Therefore, from the perspectives of both privacy protection and

data usability, the DSP needs to transform each user’s texts

into a numerical vector. Here we introduce text modeling, a

standard process to achieve it.

We first remove stop words in a stop-word list,1 in which the

words such as “the” and “those” are considered more general

and meaningless. Then we conduct stemming [20] to reduce

inflected words to their stem forms such that the words with

different forms can be related to the same word. For example,

“play”, “playing”, and “played” are all reduced to “play”.

Next, we represent the keyword space for the cleansed texts

using a ⌧ -gram technique, which is widely used for statistical

text analysis. The ⌧ -gram technique splits a give message into

sequences of ⌧ contiguous words, each referred to as a ⌧ -gram

with ⌧ ranging from 1 to the message length. For example,

consider a tweet {“#SuperSunscreen is really useful, and I like

its smell”}. After removing stop words and performing stem-

ming, we have {“supersunscreen really useful like smell”}.

The corresponding 1-grams are {“supersunscreen”, “really”,

“useful”, “like”, “smell”}, and the corresponding 2-grams are

{“supersunscreen really”, “really useful”, “ useful like”, “like

smell”}. We let Ni denote the ⌧ -grams of tweet corpus for

each user i 2 [1, n] for all possible values of ⌧ . Then we

choose the top m most frequent ⌧ -grams in
S

1in Ni, each

of which is referred to as a keyword hereafter.

Finally, we use Term Frequency Inverse Document Fre-

quency (TF-IDF) [21] to derive each element Di,j in the

eventual dataset. Specifically, let Γ(j) be the number of

times a ⌧ -gram j appears in the ⌧ -gram list Ni of user i,
Γ⇤
i = maxj2Ni

Γ(j), and Γ0(j) be the number of users whose

⌧ -gram lists contain j. We define

Di,j = (0.5 + 0.5 ⇤ Γ(j)

Γ⇤
i

) ⇤ log( n

Γ0(j)
) . (1)

1http://www.lextek.com/manuals/onix/



The above normalization is necessary because the users nor-

mally have very different tweet sets and thus different ⌧ -

gram lists. Interested readers are referred to [21] for more

details about TF-IDF. We abuse the notation by letting D =
[Di,j ] 2 R

n⇥m denote the dataset after text modeling as well,

which is essentially an n ⇥m user-keyword matrix. We also

let Ui := hDi,1, . . . , Di,mi denote the text vector of user i
(i 2 [1, n]), i.e., the ith row in D.

It is a common practice to use 1-grams and 2-grams only for

high computational efficiency without significantly sacrificing

the analysis accuracy. So the keyword space and user-keyword

matrix can be constructed very quickly in practice. Also note

that the DSP needs to outsource the ⌧−gram name of each

column. Otherwise, the data consumer has no idea about the

physical meaning of the released data.

B. Why Differential Privacy?

The text model above has two important implications. First,

it makes the unstructured social media data structured by

reducing the keyword dimension from unlimited to m. Second,

since the keyword space is composed of the top m most

frequent ⌧ -grams, the users’ privacy has been largely improved

in contrast to the original intact text data. For example, when

a user has a tweet saying “The last class with students at

CSE561, #MIT”, the word “CSE561” or even “MIT” has

very low probability to be selected in the keyword space.

Therefore, this critical information has been hidden by the

text modeling process. The privacy threat, however, cannot

be completely eliminated. For instance, the 1-grams such as

“last”, “class”, and “student” may still be released. These

pieces of information can at least tell that the user is a

professor or teacher. By combining other text information such

as “computer” and “software,” the attacker can further link the

target user to a college professor teaching computer science.

Such inferences can be continued until the target is linked to

one or a few real IDs on the social media platform.

Differential privacy is a powerful technique to protect such

linkage attacks. Proposed by Dwork et al. [15], differential

privacy protects the individual user’s privacy during the sta-

tistical query over a database. If each user in the database

is independent, with any side information except the target

him/herself, the attacker cannot infer whether the target user is

in the database or which record is associated with him/her [22].

Providing arguably the strongest analytical protection for user

privacy, the differential privacy model can be more formally

defined as follows, which is tailored for our social media data

outsourcing framework.

Definition 1 (✏-Differential Privacy [15]). Given a query

function f(D) with an input dataset D 2 R
n⇥m and a

desirable output range, a mechanism K(·) with an output

range R satisfies ✏-differential privacy iff

Pr[K(f(D1)) = R 2 R]

Pr[K(f(D2)) = R 2 R]
 e✏ (2)

for any datasets D1, D2 2 R
n⇥m that differ on only one row.

Here ✏ is the privacy budget. Large ✏ (e.g. 10) results in

large e✏ and indicates that the DSP can tolerate large output

difference and hence large privacy loss (because the adversary

can infer the change of the database according to the large

change of the query function f(·). By comparison, small ✏
(e.g., 0.1, e0.1 = 1.1052) indicates that the DSP can tolerate

small privacy loss.

Differential privacy models can be interactive and non-

interactive. Assume that the data consumer intends to execute

a number of statistical queries on the same dataset. In the

interactive model, the data consumer submits to the DSP the

conditions for constructing the dataset D and also a desirable

statistical query function f . Instead of returning D to the user,

the DSP only responds with K(f(D)), where K(·) perturbs

the query result. In contrast, the DSP in the non-interactive

model designs a mechanism K(·) to transform the original

dataset D into a new dataset D0 = K(f(D)). Finally, D0

is returned to the data consumer which can execute arbitrary

statistical queries locally.

C. ✏-Text Indistinguishability: a New Notion

Our problem can be formulated according to a non-

interactive differential privacy model as follows. Let us use an

identity query fI(·) as the query function such that f(D) = D.

Our goal is to find a mechanism K(·) to transform the

original user-keyword matrix (or dataset) D into a new one

D0 = K(D) such that ✏-differential privacy can be achieved.

Instead of transforming the entire dataset D as a whole, a more

straightforward approach is to perform the transformation for

each row individually, i.e., adding noise to each row Ui 2 D
to produce a new row U 0

i 2 D0.

The Curse of Dimensionality. The Laplacian mechanism [15]

is a popular technique for providing ✏-differential privacy, but

it suffers from the curse of dimensionality. To see it more

clearly, recall that ✏-differential privacy is defined over the

query function f and unrelated to the dataset because Eq. (2)

holds for all possible datasets. What matters is the maximum

difference of f(D1) and f(D2) (8D1, D2 2 R
n⇥m), which is

called the sensitivity of the query function f defined as

S(f) = max kf(D1)− f(D2)k1 . (3)

As identity query fI(·) transforms each text vector in D to a

new vector in D0, the sensitivity can be further defined as

S(fI) = max kUi − Ujk1 (4)

where Ui 2 R
m and Uj 2 R

m are any two arbitrary vectors

based on TF-IDF (see Eq. 1).

The Laplacian mechanism can achieve ✏-differential privacy

by adding the Laplacian noise to the query result [15], i.e.,

KLp(fI(Ui)) = Ui + (Yi1, · · · , Yim), i = 1, . . . , n , (5)

where Yij are drawn i.i.d. from Lap(S(fI)/✏) / e−✏|x|/S(fI).

The Laplacian mechanism unfortunately decreases the util-

ity of the transformed dataset. Specifically, the larger the

dimension m from the output of the identity query function

fI(·), the larger the sensitivity S(fI), the larger deviation of



the Laplacian noise. Moreover, the large noise accumulated

from the high dimension will be added to each single element

of KLp(fI(U)), leading to the so-called curse of dimension-

ality. Specifically, from the definition of the text vector Ui in

Eq. (1), the norm of each element in Ui should be less than

log(n)(⇡ 11.5 when n = 100000). When the dimension m
(e.g., 10000) is large enough, the added Laplacian noise has

deviation O(m), which can easily exceed the norm of original

text element (⇡ 11.5).

✏-Text Indistinguishability. The root cause of the curse of

dimensionality is that the noise added to a single element in

every text vector Ui (8i 2 [1, n]) is proportional with the L1-

sensitivity of Ui. To tackle this problem, we need to limit the

sensitivity of the whole text vector to the norm of the vector,

instead of the individual element.

To begin with, we need to generalize the concept of dif-

ferential privacy defined in Definition 1. The generalization

of differential privacy was first proposed by Andrés et al. for

location privacy [19], where the privacy budget is proportional

to the physical distance between any two users. They also

propose the concept of geo-indistinguishability such that the

service provider reports similar distribution with the difference

bounded by e✏d(loc1,loc2) for any two users at locations loc1
and loc2, respectively. Inspired by this work, we let d(Ui, Uj)
denote the Euclidean distance between Ui and Uj , which are

any pair of text vectors in the user-keyword matrix D. We

further redefine the privacy budget as ✏d(Ui, Uj) and propose

the notion of ✏-text indistinguishability.

Definition 2 (✏-Text Indistinguishability). Given the user-

keyword matrix D = [Di,j ] 2 R
n⇥m, a mechanism Kt(·)

satisfies ✏-Text Indistinguishability iff

Pr[Kt(Ui) = U⇤ 2 R
m|Ui]

Pr[Kt(Uj) = U⇤ 2 Rm|Uj ]
 e✏d(Ui,Uj) , (6)

where Ui and Uj are any user text vector pair in D, and U⇤

is a text vector in perturbed user-keyword matrix D0.

The above definition means that any two vectors Ui and

Uj in D can be transformed (or perturbed) by the mech-

anism Kt(·) into the same vector in D0 with probability

≥ e−✏d(Ui,Uj). In other words, the more similar two text

vectors are, the more non-distinguishable they are after trans-

formation, and vice versa. The maximum privacy budget is

given by ✏rmax, where rmax denotes the maximum Euclidean

distance between two text vectors in D. As in the original ✏-
differential privacy mechanism, the larger the privacy budget,

the larger the privacy loss the DSP can tolerate, and vice versa.

Theorem 1 gives the upper bound of ✏rmax, based on which

the DSP can select ✏ to ensure an acceptable privacy budget.

Theorem 1. Given the user-keyword matrix D 2 R
n⇥m built

according to Eq. (1), the maximum Euclidean distance between

two text vectors is rmax  p
m log(n).

Proof. According to the definition in Eq. (1), a text vector U
has the maximum norm

p
m log(n) when each of its element

is equal to the maximum value log(n). It follows that rmax 
kU1 − U2k  kUk  p

m log(n).

The upper bound above is almost unreachable in practice, as

it requires that all the m keywords be used by only one user.

So rmax is far less than
p
m log(n). But if the DSP chooses ✏

according to
p
m log(n), the effective privacy budget for many

text-vector pairs is very small, implying that these text-vector

pairs are very likely to be indistinguishable after perturbation.

D. Achieving ✏-Text Indistinguishability

In this section, we propose a mechanism to achieve the ✏-
text indistinguishability. To this end, we first assume rmax to

be infinite and then finite.

1) Mechanism for Infinite rmax: The mechanism Kt(fI(·)),
designed for the identity query fI(·), maps each text vector

U 2 R
m of the dataset D to a new U 0 with the same dimension

m. To that end, we write the perturbed U 0 as:

U 0 = U + dΘ

where d is a random variable indicating the Euclidean distance

between U and U 0, and Θ is an m-dimensional random

vector drawn from the m-dimensional unit hypersphere. The

mechanism is then composed of two steps: the generation

of the magnitude and the direction. Since the drawing of Θ
is straightforward, we focus on generating d. Similar to the

Laplacian mechanism [15], we let d deviate from the center

U by the Laplacian distribution,

g(d) = ✏e−✏d (7)

where d ranges from zero to infinity. It is easy to check thatR +1

0
g(d) = 1.

The CDF of d is given by

C✏(d <= r) =

Z r

0

✏e−✏xdx = 1− e−✏r. (8)

The CDF above tells us how to generate a random d.

Specifically, given a user text vector U , we want to generate

a perturbed vector which has at most d Euclidean distance

from U . Since d follows the C DF defined in Eq. (8), given a

random probability p 2 [0, 1], we can obtain

d = C−1
✏ (p) = − log(1− p)

✏
. (9)

We now show that the proposed mechanism satisfies ✏-text

indistinguishability.

Theorem 2. The mechanism Kt(fI(·)) defined above achieves

the ✏-text indistinguishability.

Proof. Given two user text vectors Ui and Uj , the probability

quotient of being perturbed to the same vector U⇤ is

Pr[U = U⇤|Ui]

Pr[U = U⇤|Uj ]
=

Pr[d(U⇤, Ui)]Θ1

Pr[d(U⇤, Uj)]Θ2

= e✏(d(U
∗,Ui)−d(U∗,Uj))  e✏(d(Ui,Uj)).

(10)
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Fig. 6: The performance of classification.

these tweets and the ground-truth users. We then manually

check the consistency between the claimed age information

and the tweets they have posted to. Finally, we found 5,710

users, which consist of 2,855 users who are at least and less

than 25 years old, respectively. We crawled one year of their

recent tweets and obtained 3,363,706 tweets. We then removed

the stopping words and conducted the stemming as stated in

Section III-A, and built the TF-IDF matrix according to Eq. (1)

for the following experiments. Because of the randomness

during the noise generation, we run each of the experiment

100 times and report the average results.

B. Privacy and Usefulness

We first check rmax in the real-world dataset above. Fig. 3

shows the loose upper bound with different dimension m
stated in Theorem 1. We set the number of users n = 5710.

The upper bound is a sublinear function with m, and increases

from 200 to 1000 when m ranges from 1000 to 10000.

We also measure rmax in the dataset as shown in Fig. 4.

Specifically, we compute rmax as the maximum L2 norm of

each row vector from the dataset D. As we can see, although

the rmax increases sublinearly with m, it is much less than the

upper bound in Fig. 3. The reason is twofold. First, as we built

the TF-IDF dataset by choosing the most m frequent grams,

the IDF term in Eq.( 1) is much less than log(n). Second, the

TF part is less than
p
m as the text vector is sparse (each user

has only used limited grams when m is large).

Given rmax, Fig. 4 demonstrates that the expected noise

strength added for each single element in the text vector is

fairly stable with the dimension m, which is consistent with

Theorem 4. Moreover, the expected noise strength ranges from

0.02 to 0.03, and is comparable to the original data. Therefore,

the proposed mechanism can tolerate an arbitrary dimension,

i.e., breaking the curse of dimensionality.

Fig. 5a and Fig. 5b show the (↵, δ)-usefulness of the

mechanism at different rmax and γ, respectively. As we

can see, with probability δ, the distance of the original and

perturbed text vector is within ↵, which verifies Theorem 5.

C. Performance on Classification

We evaluate the mechanism on classification, one of the

typical applications from the machine learning community. As

stated before, each user has the ground-truth age information.

We can then build a binary classifier to determine whether a

user is younger than 25 years old or not. We use the SVM

algorithm to evaluate the performance on both the original and

the perturbed datasets by ten-fold cross validation.

Fig. 6a demonstrate the accuracy with γ. The straight and

crooked lines represent the original and perturbed datasets,

respectively. As we can see, the smaller γ, the higher the

performance for the perturbation mechanism. This result is

expected as Theorem 4 indicates that the smaller γ, the less

the noise added to the original dataset. However, small γ will

increase the privacy budget scale ✏ and hence the privacy loss.

Fig. 6b demonstrates the accuracy of the original dataset

(straight line) and the perturbed datasets with rmax (crooked

curves). It shows that the smaller rmax, the better the accuracy

because smaller rmax will incur less noise. However, less noise

will cause a high privacy loss because the attacker can infer

the victim given the huge difference of two perturbed vectors.

Fig. 6c and Fig. 6d show the classification performance on

m = 5000. As we can see, both figures show the similar trend

for m = 1000, meaning that the mechanism works well at

various dimensions. Moreover, the performance when m =
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Fig. 7: The performance of inference attack I.
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Fig. 8: The performance of inference attack II.

5000 is slightly better than that when m = 1000. The reason

is that more keywords lead to better classification.

D. Defense Against User-Linkage Attacks

Our mechanism is designed to defend against the user-

linkage attack. The definition of ✏-text indistinguishability

in Definition 2 and the corresponding mechanism in Alg. 1

show that any user can be perturbed to other text vector with

certain probability. Therefore, the perturbation can make the

user-linkage attack more difficult to conduct. To evaluate the

effectiveness of our mechanism, we need to model the strength

of the attacker in terms of user inference. We consider two

attack models here.

In inference attack I, we assume that the attack knows t
elements of the victim’s text vector, and t vary from 0 to

m. We then build an estimated vector U 0 by keeping these

t elements and setting other unknown elements to zero, and

check whether the estimated vector U 0 is in the K-nearest

vector set in both the original D and the perturbed D0. It

is expected that the larger the t, the stronger the attack, the

higher the inference rate. We set m = 1000 and γ = 10−8. We

conduct the experiment by 1000 times and report the average.

Fig. 7 shows the inference rate among the 1-nearest and

10-nearest vectors for rmax = 100 and 200. We can make

two observations. First, all the four curves show that the

perturbation makes the user linkage attack much more difficult.

Specifically, when the t increase from 300 to 600, the inference

rate increase quickly from 0 to 100% for the original dataset.

The inference rate then stay at approximate 100% when t
is larger than 600. By comparison, the inference rate for

the perturbed dataset is at most 68.8% for rmax = 100
(K = 10) and 44.6% for rmax = 200 (K = 10), respectively.

Second, Fig. 7 demonstrate the tradeoff between the privacy

and usefulness for rmax. Specifically, on the one hand, the

mechanism’s inference rate for rmax = 200 is less than the

rate for rmax = 100 because larger rmax results in larger

noise and hence higher-level privacy protection. On the other

hand, larger rmax results in lower classification performance

as indicated in Fig. 6. The tradeoff also holds for γ.

Moreover, users’ privacy has not largely sacrifice the utility.

For example, as a typical setting, when rmax = 100 and

γ = 10−8, the inference rate with t = 600 and K = 10
is 35.9%, and the classification accuracy is reduced by only

1.61%. Therefore, the mechanism can achieve high privacy

with little utility loss.

In inference attack II, we assume that the attack knows the

noisy but the whole text vector of the victim. To that end, we

randomly select a victim vector U⇤ from D, add a noise vector

N with the magnitude s where 1/s is the attack strength, and

then check whether the noisy vector Ũ = U⇤ + N is in the

K-nearest vector set in both the original D and the perturbed

D0. We use the Euclidean distance to represent the difference

between any vector pair. Obviously, it is expected that the

weaker the attack strength, the higher the inference rate.

Fig. 8 show the inference rate among the 1-nearest and 10-

nearest vectors for rmax = 100 and 200. We can make the

similar observations as in the inference attack I. First, the

perturbation algorithm makes the user linkage attack much

more difficult. Specifically, when the reverse attack strength s
increases, the inference rate for the perturbed dataset decreases

to about 30% for K = 1 and 40% for K = 10, meaning

that the attacker has limited power to infer the victim. By

comparison, the inference rate for the original dataset is always

100% when s is less than 17. The reason is each user text



vector is very distinguishable. When s > 17, the inference

for the original dataset decreases dramatically because the

measured rmax for this dataset is 15.1 for m = 1000, as

indicated in Fig. 4. Second, Fig. 7 demonstrate the tradeoff

between the privacy and usefulness in terms of rmax, and

users’ privacy has not largely sacrifice the utility. For example,

as a typical setting, when rmax = 100 and γ = 10−8, the

inference rate with s = 15 and K = 10 is 47.7%, and the

classification accuracy is reduced by only 1.61%.

Note that there is a peak point for the inference rate on

the perturbed dataset in Fig. 8. This is because that the

perturbation also adds the noise vector in the similar way as

in the inference attack II. For different rmax, the perturbed

vectors have different Euclidean distance from the original

vectors. Recall that U 0 and Ũ are the perturbed vector and

the estimated vector from the attacker for the victim U⇤,

respectively. When the difference of d(U⇤, Ũ) and d(U⇤, U 0)
is small, the inference rate will increase. However, in reality,

the attacker has little knowledge on the whole text vector for

the victim, and it is difficult to conduct this type of inference.

V. RELATED WORK

Social media platforms host both network and text infor-

mation, of which the privacy threats both have been widely

studied. For the privacy threat from network information,

existing results show that an anonymous social graph can

be de-anonymized by seed information [25], [26], knowledge

graph [27], and the community structures [28]. As for the

privacy threat from text information, sophisticated machine

learning algorithms can be used to infer a lot of sensitive

information, such as age [4], [5], location [6], [7], language

[8], and political preference [9].

On the defense side, the research community only attempts

to protect user privacy from the perspective of network infor-

mation. The research efforts fall into two directions. The first

line of research [10], [11] aims at protecting vertex privacy

by outsourcing social graphs with anonymized user IDs, and

the research effort is to prevent the adversary from linking

anonymized IDs to corresponding real IDs in the real social

network. The other line of research targets link/edge privacy,

and the research effort is to outsource social graphs with real

user IDs but perturbed edges by outsourcing an obfuscated

social network to protect users’ privacy [12]–[14]. Our paper

is the first to protect the privacy from the text information and

is complementary to these efforts.

Privacy-preserving data outsourcing has been thoroughly

studied and surveyed in [29]. These techniques such as such as

k-anonymity and l-diversity focus on the traditional database

and cannot handle unstructured social media data.
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