

1 **Drought in the northern Bahamas from 3300 to 2500 years ago**

2
3 *Peter J. van Hengstum^{1,2,*}, Gerhard Maale¹, Jeffrey P. Donnelly³, Nancy A. Albury⁴, Bogdan P. Onac⁵,*
4 *Richard M. Sullivan², Tyler S. Winkler², Anne E. Tamalavage², Dana MacDonald⁶*

5 1. Department of Marine Science, Texas A&M University at Galveston, Galveston, Texas, USA, 77554

6 2. Department of Oceanography, Texas A&M University, College Station, Texas, USA, 77843

7 3. Coastal Systems Group, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA,
8 02543

9 4. National Museum of The Bahamas, PO Box EE-15082, Nassau, The Bahamas

10 5. School of Geosciences, University of South Florida, Tampa, Florida, USA, 33620

11 6. Department of Geosciences, University of Massachusetts-Amherst, Amherst, Massachusetts, USA,
12 01003

13 *. Corresponding author: vanhengp@tamug.edu

14 **Abstract**

15 Intensification and western displacement of the North Atlantic Subtropical High (NASH) is
16 projected for this century, which can decrease Caribbean and southeastern American rainfall on seasonal
17 and annual timescales. However, additional hydroclimate records are needed from the northern
18 Caribbean to understand the long-term behavior of the NASH, and better forecast its future behavior.
19 Here we present a multi-proxy sinkhole lake reconstruction from a carbonate island that is proximal to
20 the NASH (Abaco Island, The Bahamas). The reconstruction indicates the northern Bahamas experienced
21 a drought from ~3300 to ~2500 Cal yrs BP, which coincides with evidence from other hydroclimate and
22 oceanographic records (e.g., Africa, Caribbean, and South America) for a synchronous southern
23 displacement of the Intertropical Convergence Zone and North Atlantic Hadley Cell. The specific cause
24 of the hydroclimate change in the northeastern Caribbean region from ~3300 to ~2500 Cal yrs BP was
25 probably coeval southern or western displacement of the NASH, which would have increased
26 northeastern Caribbean exposure to subsiding air from higher altitudes.

29 **1. Introduction**

30 Multiple proxy-based climate archives document significant hydroclimate variability in the
31 tropical North Atlantic region during the Holocene. These include oxygen isotopic variability in
32 speleothems (Mangini et al., 2007; Medina-Elizalde et al., 2010; Winter et al., 2011; Fensterer et al.,
33 2013) and microfossils (Hodell et al., 1991; Hodell et al., 2001), compound-specific stable isotope
34 analysis (Lane et al., 2014), lake-level records (Holmes, 1998; Fritz et al., 2011; Burn et al., 2016),
35 microfossils and sedimentology of inland saline ponds (Teeter and Quick, 1990; Teeter, 1995b; Dix et al.,
36 1999), coastal lagoon sedimentology, mineralogy, and water level variability (Hodell et al., 2005a;
37 Malaizé et al., 2011; Gregory et al., 2015; Peros et al., 2015), terrestrial landscape change through pollen
38 analysis (Kjellmark, 1996; Leyden et al., 1998; Higuera-Gundy et al., 1999; Kennedy et al., 2006; Lane et
39 al., 2009; Slayton, 2010; Torrescano-Valle and Islebe, 2015), the Ti flux into the Cariaco Basin (Haug et
40 al., 2001), among others. The available Holocene-scale hydroclimate records document a general increase
41 in regional precipitation during the Holocene Climatic Optimum when boreal summer occurred near
42 perihelion (~8000 to 6000 years ago), which was followed by an overall drying pattern over the last
43 ~5000 years (Hodell et al., 1991; Hodell et al., 1995; Higuera-Gundy et al., 1999; Haug et al., 2001;
44 Fensterer et al., 2013). Superimposed upon this long-term trend, the Caribbean has experienced multiple
45 centennial-scale droughts whose spatial pattern and associated forcing mechanisms remain under
46 investigation.

47 Previous droughts on the Yucatan Peninsula in Mexico are well documented. In the current climate
48 regime, there is a regional precipitation gradient from the dryer northern region (~900 mm yr⁻¹, ~21°N) to
49 the wetter south (1700 mm yr⁻¹, ~17°N) (Hodell et al., 2005b). This gradient is driven by seasonal
50 migration of the Intertropical Convergence Zone (ITCZ), where oceanic warming during the boreal
51 summer displaces the Atlantic ITCZ and the tropical rain belt northward (Hastenrath, 1976, 1984; Hu et
52 al., 2007). As such, Yucatan droughts documented by lake level, pollen, and geochemical reconstructions
53 at 4700-3600 Cal yrs BP, 3400-2500 Cal yrs BP, 2300-2100 Cal yrs BP, 1900-1700 Cal yrs BP, 1400-
54 1300 Cal yrs BP, 730 Cal yrs BP, and 560 Cal yrs BP (Hodell et al., 2005a; Hodell et al., 2005b;
55 Torrescano-Valle and Islebe, 2015) are likely linked to meridional ITCZ displacements. However, the
56 ITCZ is just one component of the Hadley Cell, so other areas in the tropical North Atlantic may
57 experience different hydroclimate changes if Hadley circulation moves meridionally. As such, the precise
58 regional-scale expression, ocean-atmospheric forcing, and specific timing of Yucatan droughts on other
59 Caribbean islands remains under investigation (Lane et al., 2014).

60 Compared with the Yucatan, knowledge of Holocene hydroclimate variability on Little Bahama
61 Bank and Great Bahama Bank is still limited. A pollen-based reconstruction of landscape change on

62 Andros Island (Church's Bluehole) indicates a dominance of salt- and drought tolerant shrubs typical in
63 modern open and rocky sites (e.g., *Piscidia*-type, *Dodonaea*) from 3000 to 1500 years ago, which then
64 shift to hardwoods and palms, and a final transition to the modern pine-dominated landscape by ~750
65 years ago (Kjellmark, 1996). In a pollen record from Emerald Pond (sinkhole) on Abaco, an increase in
66 *Pinus* and a decrease in palm pollen during the last ~700 years was the most significant floral change over
67 the last ~8000 years (Slayton, 2010), which was also noted by van Hengstum et al. (2016) in the pollen
68 record from Blackwood Sinkhole. However, an increase in grass on the landscape from ~3200 to 2300
69 Cal yrs BP led Slayton (2010) to suggest this was a possible arid period in Abaco.

70 Here we present evidence for a megadrought from ~3300 to ~2500 years ago on the Little
71 Bahama Bank (Fig. 1). This is documented through a multi-proxy (i.e., microfossils, geochemistry,
72 sedimentology) sinkhole-lake level reconstruction using sediment cores from No Man's Land (NML) on
73 Abaco Island (26.592° , -77.279°). The potential climatological forcing of this drought is also discussed,
74 given that other Caribbean localities (e.g., Yucatan, Dominican Republic) have experienced synchronous
75 aridity and Abaco Island is geographically far removed from precipitation caused directly by ITCZ
76 convective activity (Figs. 1C, 1D). In contrast, the Little Bahama Bank is a key geographic locality to
77 monitor the behavior of the NASH given its proximity to this large atmospheric feature (Fig. 1B).

78

79 **2. Regional rainfall**

80 Many large-scale ocean and atmospheric influences in the Pacific and Atlantic region impact
81 Caribbean rainfall and evaporation (Hastenrath, 1976, 1984; Enfield and Alfaro, 1999; Gamble and
82 Curtis, 2008), such as: the intensity and position of the North Atlantic Subtropical High (Davis et al.,
83 1997; Giannini et al., 2000; Li et al., 2011; Li et al., 2012a; Li et al., 2012b), the position of the Caribbean
84 Low Level Jet (Wang, 2007; Whyte et al., 2008; Martin and Schumacher, 2011a; Herrera et al., 2015), the
85 Madden-Julian Oscillation (Martin and Schumacher, 2011b), seasonal migration of the ITCZ (Hastenrath,
86 1976), El Niño/Southern Oscillation (Nyberg et al., 2007; Jury, 2009), the North Atlantic Oscillation
87 (Jury et al., 2007), hurricane activity, orographic effects (e.g., Cuba, Hispaniola) (Jury et al., 2007;
88 Gamble and Curtis, 2008; Martin and Fahey, 2014), and sea surface temperatures in the North Atlantic
89 warm pool (Wang et al., 2006).

90 On millennial timescales, meridional displacements of the ITCZ are thought to be important
91 drivers of Caribbean rainfall. The ITCZ is a band of strong convective activity and precipitation caused by
92 the convergence of the trade winds, which oscillates seasonally between $\sim 0^{\circ}$ N to 13° N (see fig. 2G in Hu
93 et al., 2007). The zonally-averaged ITCZ position is suggested to have only moved $< 2^{\circ}$ latitude during the

94 Holocene based on time-sliced estimates of cross-equatorial atmospheric transport (McGee et al., 2014).
95 However, there is evidence for Caribbean megadroughts across 18°N to 26°N during the Holocene.
96 Therefore, regional ocean-atmospheric drivers of rainfall must be considered for understanding Caribbean
97 hydroclimate variability on Holocene timescales.

98 In general, annual Caribbean rainfall is bimodal with dry season from November through April
99 and a wet season from May to October. However, the wet season is interrupted by a rainfall decrease
100 known as the ‘Mid-Summer Drought’ (Magaña et al., 1999; Jury et al., 2007; Gamble et al., 2008). It is
101 thought that the Mid-Summer Drought is caused by seasonal intensification and southwestern
102 displacement of the NASH in the Caribbean region during boreal summer (Hastenrath, 1976, 1984;
103 Gamble et al., 2008), in addition to potential amplifying effects from local vertical wind shear and
104 atmospheric dust from Africa (Angeles et al., 2010). Gamble and Curtis (2008) presented a 5-part
105 conceptual model to describe synoptic scale atmospheric drivers of annual and regional Caribbean rainfall
106 patterns: (1) summertime expansion of the NASH, which decreases rainfall especially in the northeastern
107 Caribbean, (2) large-scale subsidence concentrated at 70-75°W that decreases local precipitation [Zone 2
108 in Fig. 1B, see fig. 4a Magaña and Caetano (2005)], (3) the Caribbean Low Level Jet that impacts the
109 north coast of South America and the Lesser Antilles, (4) vertical wind shear, and (5) localized
110 divergence of surface winds near Jamaica. Hastenrath (1976) observed that an early southward
111 displacement and intensification of the NASH, stronger Trade Winds, and an equator-ward shift of the
112 east Pacific ITCZ occurs during the winter preceding a particularly dry Caribbean summer. Likewise, the
113 anomalously dry Caribbean decade from 1979-1989 CE has been largely attributed to intensification of
114 the NASH (McLean et al., 2015).

115 Still further, the timing and amplitude of rainfall across the western tropical North Atlantic margin
116 is also variable. In the northeastern-most Bahamian Archipelago (e.g., Little and Great Bahama Banks)
117 and northwestern Cuba, annual rainfall exceeds 1300 mm yr⁻¹, as do the islands of Hispaniola, and those
118 in the northern Lesser Antilles. However, Jury et al. (2007) documented that the southern Bahamian
119 Archipelago, eastern Cuba, and Jamaica (Zone 2, Fig. 1B) receive only ~870 mm yr⁻¹ of rainfall. It is
120 thought that reduced annual mean precipitation in the central Caribbean (Zone 2) relates to local
121 subsidence caused by large-scale divergence as the anticyclone flow splits between an axis south of Cuba
122 and one re-curving towards Florida (Jury et al., 2007; Gamble and Curtis, 2008). The Mid-Summer
123 Drought occurs in July, August, and September in the northern Bahamas; but it happens in June, July, and
124 August in the lower Bahamian Archipelago (Fig. 1E).

125

126 **3. Study Site**

127 The Bahamian Archipelago is a group of carbonate islands and banks along the western tropical
128 North Atlantic margin that began forming in the late Jurassic, and this region has since weathered into a
129 mature karst landscape (Mullins and Lynts, 1977; Mylroie and Carew, 1995; Mylroie et al., 1995a;
130 Mylroie et al., 1995b). Sinkholes and blueholes are an important source of paleoenvironmental and
131 paleohydrological information because sediment and fossils deposited into these systems can remain
132 protected from subsequent bioturbation or physical reworking (Crotty and Teeter, 1984; Kjellmark, 1996;
133 Alvarez Zarikian et al., 2005; Steadman et al., 2007; van Hengstum et al., 2016).

134 No Man's Land on Great Abaco Island is one of the largest diameter inland lakes in the northern
135 Bahamas (Fig. 2). In its modern state, the site is shallow (3 m deep), brackish (20.6 psu), 170 m in
136 diameter, and ~700 m from the coastline. Although definitive evidence is lacking (e.g., speleothems along
137 peripheral cliff wall), the circularity of No Man's Land suggests that it is a destructional lake formed by
138 karst processes, according to the model of carbonate lake formation of Park Bousch et al. (2014).
139 Furthermore, destructive lakes can be subdivided into either lotic (open) systems that are well-connected
140 into local groundwater systems (i.e., hydraulically-open), versus the lentic (closed) systems whose
141 hydrologic conditions are independent from the local coastal aquifer (i.e., hydraulically-
142 closed) (Schmitter-Soto et al., 2002). No Man's Land should not be considered a closed basin due to the
143 high porosity and permeability of the upper stratigraphy (i.e., Lucayan Aquifer) of the antecedent
144 carbonate (Whitaker and Smart, 1997).

145

146 **4. Methods**

147 A seismic reflection survey was completed with an Edgetech 424 CHIRP to image the subbottom
148 stratigraphy, generate a bathymetric map, and identify targets for sediment coring (Fig. 2). Two-way
149 travel time was converted to depth in meters using an assumed speed of sound in water of 1500 m/s. Five
150 push cores were collected (70 to 120 cm in length) that all terminated on a terrestrial peat deposit, which
151 correlates with a prominent acoustic reflector in the seismic reflection survey (Fig. 3, see Results below).
152 After collection, sediment cores were split lengthwise in the laboratory, visually described following
153 Schnurrenberger et al. (2003), photographed, X-radiographed to image sediment density, and
154 subsequently stored at 4°C until further analysis. Given the heterogeneity of the recovered sediment, the
155 variability in the coarse fraction was analyzed using the Sieve-first Loss-on-Ignition (Sieve-first LOI)
156 procedure (van Hengstum et al., 2016). This procedure is well suited to investigating the variability of the
157 coarse sediment fraction in highly heterogeneous sediments from carbonate landscapes. Contiguous 1-cm
158 sediment sub-samples with a standardized initial volume of 2.5 cm³ were first wet sieved over a 63-µm

159 mesh and dried for 12 hours in an oven at 60°C, and weighed to determine the original sediment mass.
160 After they were dried and re-weighed, samples were ignited for 4.5 hours at 550°C in a muffle furnace to
161 remove organic matter from the sediment samples to concentrate the remaining mineral residue. The
162 variability in coarse sediment was then expressed as mass per unit volume ($D_{>63\text{ }\mu\text{m}}$ mg cm $^{-3}$). A classic
163 LOI procedure was then performed on new sediment sub-samples at contiguous 1-cm intervals downcore
164 to determine bulk organic matter variability as per standard methods (550°C for 4.5 hrs) (Dean Jr, 1974;
165 Heiri et al., 2001).

166 The stable carbon isotopic value ($\delta^{13}\text{C}_{\text{org}}$) and C:N ratio of bulk organic matter from the recovered
167 sapropel unit in core 4 and 5 ($n = 30$) was measured to investigate the possible salinity of the lake during
168 its genesis (Rasmussen et al., 1990; Lamb et al., 2006; van Hengstum and Scott, 2011; van Hengstum et
169 al., 2011). For comparative purposes, sediment samples ($n = 20$) were obtained from previously collected
170 sediment cores from Mangrove Lake in Bermuda, which has been accumulating marine sapropel through
171 the late Holocene (see Section 5.4). Carbonates were first digested from 1-cm sample sub-samples with a
172 10% HCl for 24 hrs, followed by residue desiccation at 80°C and powdering. Measurements on samples
173 from NML were then performed on a Costech ECS4010 Elemental Analyzer interfaced to a
174 ThermoFisher Scientific Delta V Advantage Isotope Ratio Mass Spectrometer at the University of South
175 Florida, with the samples from Mangrove Lake in Bermuda measured at the Baylor University Stable
176 Isotope Laboratory by a Thermo-Electron Delta V Advantage Isotope Ratio Mass Spectrometer. Final results
177 are expressed as ratios in the standard delta (δ) notation in per mil (‰) against Vienna PeeDee Belemnite
178 (VPDB).

179 Cores 3, 4, and 5 were selected for detailed microfossil analysis to document changes in
180 groundwater salinity on millennial timescales (Crotty, 1982; Teeter, 1989, 1995b; van Hengstum et al.,
181 2008; van Hengstum et al., 2010; van Hengstum and Scott, 2012). No testate amoebae (thecamoebians) or
182 agglutinated foraminifera (e.g., *Trochammina inflata* or *Jadammina macrescens*) were observed during
183 initial inspection of wet sediment residues that were concentrated on a 45- μm mesh, but ostracodes were
184 abundant. Ostracodes are crustaceans that are highly sensitive to salinity in their environment (Keyser,
185 1977), and their shell has a high preservation potential following death of the animal. During ostracodes
186 analysis, calcareous foraminifera were enumerated in cores 4 and 5, and charophyte gyrogonites (reported
187 as individuals per cm 3) were counted from core 5. Charophytes are submerged macro-algae that are found
188 in fresh to oligohaline waters, so their calcified fructifications (i.e., gyrogonites) are indicators of limnic
189 to slightly brackish conditions (Soulié-Märsche, 2008; Soulié-Märsche and García, 2015).

190 Ostracodes were concentrated by wet-sieving a sediment sub-sample (1.25 to 2.5 cm³) over a 63-
191 µm mesh to achieve census counts generally exceeding 120 valves per sample. The remaining coarse
192 fraction was then dried overnight, and ostracodes valves were picked from the dried residue and mounted
193 onto standard micropaleontological slides. Taxonomy was verified with a Hitachi TM3000 desktop
194 scanning electron microscope (Fig. 4), and followed available references (Furtos, 1936; Swain, 1955; Van
195 Morkhoven, 1963; Krutak, 1971; Keyser, 1975, 1977; Teeter, 1980; Teeter, 1995a; Keyser and Schöning,
196 2000; Pérez et al., 2010). Only 13 different taxonomic units of ostracodes were observed, thus, the
197 estimated 2σ standard error on the ostracode relative abundance never exceeds 10%, with most standard
198 error estimates in the range of 1-5% (Patterson and Fishbein, 1989). An original data matrix of 85 samples
199 × 13 ostracode observations was produced for Q-mode cluster analysis. Raw relative abundance data was
200 first log transformed to emphasize broader ecological community patterns (Legandre and Legandre,
201 1998), and this data matrix was then subjected to unconstrained Q-mode cluster analysis using a Euclidian
202 Distance coefficient to identify biofacies in the cores.

203 Wood fragments were submitted for radiocarbon dating to National Ocean Sciences Accelerator
204 Mass Spectrometry when available, but bulk organic material was dated when terrestrial plant
205 macrofossils were absent at key stratigraphic horizons. The bulk organic matter dated was sapropel
206 produced by aquatic algae. To help characterize the possible hardwater effect that was imparted on the
207 bulk organic matter generated by algae living in groundwater, the conventional ¹⁴C age of the twig sample
208 from NML-C5 24 to 25 cm (3090 ± 20 conventional years ago) was subtracted from the bulk organic
209 sample of NML-C4 46 to 47 cm (3730 ± 20 conventional years ago). It is assumed that these samples
210 were deposited synchronously given the small size of the basin and their positioning below the same
211 salient stratigraphic contact. This hardwater effect (640 ± 40 conventional years ago) was subtracted from
212 the conventional ages obtained on other bulk organic matter samples. All radiocarbon ages were then
213 calibrated into years before present (Cal yrs BP₁₉₅₀), where present refers to 1950 CE, using IntCal13
214 (Reimer et al., 2013). Only the highest probability 1σ calibration results are used in interpretations, but all
215 calibration results are provided in Table 1. Detailed age models were not developed for the sediment cores
216 because the most significant observation is the emplacement history for the primary stratigraphic units.
217

218 **5. Results: stratigraphy, chronology, and microfossils**

219 *5.1. Terrestrial Peat: prior to 6500 years ago*

220 The basal sedimentary unit in the cores was a peat deposit (>70% organic matter, Figs. 3, 5) that
221 was accumulating until 6440 ± 40 Cal yrs BP, based on the limiting age on a twig from near the top

222 contact with the carbonate mud unit in core 4. The deposit is a fragmental granular to woody peat because
223 plant fragments ranged from 0.1 to >2 mm, and rootlets were not commonly observed (Schnurrenberger
224 et al., 2003). No microfossils or invertebrate remains were observed in this unit.

225

226 *5.2. Carbonate mud: 6500 to 4200 years ago*

227 In all the cores, the basal peat deposit passes into a sequence of weakly-laminated carbonates that
228 were deposited from ~6500 to ~4200 Cal yrs BP. The carbonate mud has a light grey to whitish hue, and
229 contains gastropods tentatively placed within the families Planorbidae (c.f. *Heliosoma* sp. (Pilsbry, 1934)
230 and Hydrobidae (not identified). Organic content generally ranges from 4-15%, but was higher in
231 occasional organic-rich horizons (e.g., core 1, 52-54 cm: 40%), and coarse sediment content was
232 generally low ($D_{>63\text{ um}} \text{ mg cm}^{-3}$: 0-25). Charophyte gyrogonites were present throughout the unit, but were
233 most abundant towards the base of the facies (Fig. 6). The only foraminifera observed in this unit were
234 *Helenina davescottensis* from 70 to 80 cm in core 4, which is a low salinity taxa previously described
235 from palustrine-lacustrine marsh environments in Grand Bahamas (van Hengstum and Bernhard, 2016).
236 No evidence of desiccation was observed (i.e., indurated or gypsum horizons).

237 Ostracodes were abundant, well preserved, and formed three biofacies in the carbonate mud unit
238 (Fig. 6). The Freshwater Biofacies is from 95 to 112 cm in core 5, which is dominated by *Darwinula*
239 *stevensoni* (mean 89.3%) and *Cypridopsis vidua* (mean 7.6%). The lack of a Freshwater Biofacies in
240 cores 3 and 4 indicates that sedimentation was not uniform during initial inundation of the basin, and that
241 there is likely a depositional hiatus (i.e., disconformity) in cores 3 and 4 between the basal peat deposits
242 and the carbonate mud. In core 5, the Freshwater Biofacies passes upsection into the Low Diversity
243 Oligohaline Biofacies that is also present in cores 3 and 4. The Low Diversity Oligohaline Biofacies has a
244 higher diversity than the Freshwater Biofacies, and is dominated by *Candonia annae* (mean 25.8%),
245 *Cypridopsis vidua* (mean 34.1%), *Darwinula stevensoni* (mean 19.3%), and *Limnocythere floridensis*
246 (mean 19.2%). Finally, the uppermost biofacies in the carbonate mud unit is the High Diversity
247 Oligohaline Biofacies, which is dominated by *Cypridopsis vidua* (87.2%) and *Candonia annae* (10%),
248 along with limited abundance of *Cytheridella ilyosvai* and an unidentified ostracode (Unknown sp.).
249

250 *5.3. Laminated unit: 4200 to 3200 years ago*

251 In the cores from the deeper part of the basin (cores 3, 4, and 5), the carbonate mud transitions
252 upsection into 15 to 25 cm of laminated carbonate sediment that retained hues of green, purple, and
253 brown. Deposition is temporally constrained by a radiocarbon dated twig in core 5 at 39 cm (4180 ± 30
254 Cal yrs BP), and at the upper contact with the algal sapropel unit in cores 5 and 4 (3270 ± 20 , 3300 ± 70

255 Cal yrs BP). Organic matter content increases from approximately 10% to >40%, and negligible vertical
256 sediment mixing occurred based on the intact laminations throughout. The only ostracodes present were
257 *Physocypris globula* (mean 68.3%) and *Cyprideis americana* (mean 31.5%), which comprise the Low
258 Oxic Biofacies. *Physocypris globula* is a nektonic freshwater ostracode (Pérez et al., 2010b) that is
259 diagnosed by the tuberculated margins of the right valve (Furtos, 1933). *Physocypris globula* dominates
260 the assemblage at the onset of the Low Oxic Biofacies (e.g., 96% in core 4, 55.5 cm), but the topmost 1-2
261 samples of the biofacies (which were physically obtained from the algal sapropel unit: see Fig. 7) are
262 dominated by *C. americana* (e.g., 100% at 39.5 cm in core 3) with highly friable valves.

263

264 *5.4. Algal sapropel unit: ~3200 to 2500 years ago*

265 Cores from slightly deeper water depths preserve an organic-rich algal sapropel unit (core 3: 17-
266 40 cm, core 4: 20-48 cm, core 5: 12-26 cm). Onset of deposition is constrained by a radiocarbon date on a
267 twig in core 5 to 3270 ± 30 Cal yrs BP, and dates at the upper contact with the carbonate sand unit in
268 cores 3 and 4 of 2540 ± 50 and 2550 ± 60 Cal yrs BP, respectively. A leaf dated to 2920 ± 30 Cal yrs BP
269 in core 3 at 23 cm is in stratigraphic succession with these minimum and maximum constraining ages
270 (Fig. 3).

271 The sapropel could be divided into a lower light brown interval that was separated from a dark
272 brown layer by a contact that is both visually distinct and present in the X-radiograph (core 3: 37 cm, core
273 4: 39 cm, core 5: 19 cm, Fig. 3). Overall, the algal sapropel had a mean $\delta^{13}\text{C}_{\text{org}}$ and C:N value of $-23.8\text{\textperthousand}$
274 and 15.3 ($n = 30$), respectively. However, organic matter in each separate layer of the algal sapropel unit
275 had a slightly different geochemical signature. The stratigraphically lower, light brown layer had a mean
276 $\delta^{13}\text{C}_{\text{org}}$ and C:N value of approximately $-22\text{\textperthousand}$ and 14, versus the stratigraphically higher dark brown
277 layer that had values of approximately $-25\text{\textperthousand}$ and 14 (Fig. 8). Previously published $\delta^{13}\text{C}_{\text{org}}$ values indicate
278 that organic matter generated by planktonic primary producers in marine versus freshwater aquatic
279 settings are approximately $-23\text{\textperthousand}$ and $-35\text{\textperthousand}$, respectively (France, 1995). For example, the $\delta^{13}\text{C}_{\text{org}}$ values
280 are more depleted from a late Holocene freshwater sapropel from Carwash Cave System, Mexico (<4 psu)
281 that accumulated over the last 6500 years ($n = 153$) (Fig. 8). The freshwater sapropel in Carwash Cave is
282 derived from organic matter particles that are either transported into the cave from the terrestrial surface,
283 or produced in the adjacent freshwater pond-like setting (van Hengstum et al., 2010). Furthermore, the
284 $\delta^{13}\text{C}_{\text{org}}$ values and C:N ratio from the light brown NML sapropel are more enriched like the upper
285 sapropel sediment from Mangrove Lake, Bermuda ($n = 20$, mean $\delta^{13}\text{C}_{\text{org}} = -18.6\text{\textperthousand}$, mean C:N = 10.5).
286 Mangrove Lake is shallow (<2 m depth), with currently marine and anoxic benthic conditions, and a

similar marine sapropel has been accumulating in Mangrove Lake through the late Holocene (Hatcher et al., 1982; Hatcher et al., 1984; Watts and Hansen, 1986). These results indicate that salinity in NML during production and deposition of the lighter brown sapropel layer was slightly elevated in comparison to the darker brown layer, with a likely more marine salinity in the basin during deposition of the light brown sapropel unit.

The only microfossils preserved were the 1-2 samples dominated by *C. americana* at the base of the unit (as described above), which formed a visually distinct layer in the core. Taphonomically, the ostracode valves from the basal 1-2 cm of the algal sapropel unit were notably friable with evidence of dissolution on their shell surface (e.g., pitting). No other microfossils or carbonate particles were observed (e.g., testate amoebae, charophytes, or ostracodes), which is striking, given that microfossils are highly prolific in oxygenated Bahamian lakes, sinkholes, and coastal lagoons of any salinity regime (Dwyer and Teeter, 1991; Dix et al., 1999). At the top of the unit in the darker brown-hued layer were vertical burrows below the contact with the carbonate sand unit above.

300

301 5.5. *Carbonate sand: ~2500 years ago until present*

All core tops are characterized by a carbonate sand deposit (Fig. 3), and the contact between this unit and the underlying algal sapropel in cores 3 and 4 was 2540 ± 50 and 2550 ± 60 Cal yrs BP, respectively. The sand content decreases towards the top of each core because the modern sediment-water interface is covered by algae (Fig. 5). This indicates that the carbonate sand began deposition by 2500 Cal yrs BP. Both pelcypods and gastropods are abundant, which have been tentatively identified as *Anomalocardia* and *Batillaria*. The benthic foraminifera *Ammonia beccarii*, *Elphidium poeyanum*, and *Elphidium gunteri* were dominant (Fig. 7), with lesser abundances of *Triloculina oblonga*, and rare *Spirillina vivipara*. The carbonate sand unit contained the highest diversity ostracodes assemblage with the Polyhaline Biofaces (species richness of 10), and was dominated by *Malzella floridana* (mean 59.8%), *Cyprideis americana* var. “nodes” (mean 11%), *Loxoconcha matagordensis* (mean 11.5%), *Candona annae* (mean 7.7%), *Haplocytheridea setipunctata* (mean 4.6%), and *Perissocytheridea bicelliforma* (mean 4.5%). The presence of the ecophenotype *C. americana* var. “nodes” indicates this taxon is living near its lower limit of salinity tolerance because the development of nodes (tubercles, hollow protuberances) are a biological adaptation to lower salinity conditions (Meyer et al., 2016).

316

317 **6. Discussion**

318 **6.1 Paleoenvironmental reconstruction of No Man’s Land**

319 The transition at ~6500 Cal yrs BP (core 4) from terrestrial peat deposition to carbonate mud with
320 freshwater invertebrates (e.g., *Planorbis*) and charophytes indicates the onset of aquatic conditions in
321 NML (Fig. 9). The ostracode assemblage is dominated by *Darwinula stevensoni* (Freshwater Biofacies),
322 which is a widespread taxon that prefers salinities <2 psu (Keyser, 1977; Holmes, 1997; Pérez et al.,
323 2010a). Along the periphery of the basin (cores 1 and 2), carbonate mud deposition is interspaced with
324 brown organic-rich units containing plant fragments. The sediment and microfossils reflect palustrine-
325 lacustrine environmental conditions in NML during the middle Holocene, which develop when carbonate-
326 saturated groundwater floods a subaerial surface and promotes carbonate precipitation, but intermittent
327 drying or localized vegetation can initiate some pedogenesis (e.g., cores 1 and 2) to create organic-rich
328 horizons (Alonso-Zarza and Wright, 2010).

329 The onset of aquatic conditions in NML at ~6500 years ago was likely related to increased
330 regional precipitation from a more northerly displaced ITCZ (Hodell et al., 1991; Hodell et al., 1995;
331 Fensterer et al., 2013). In general, the absolute elevation of the water table in porous eogenetic carbonate
332 aquifers is dictated by local sea level. There is no stratigraphic evidence in NML for basin desiccation,
333 suggesting that the shallow, freshwater aquatic environments were maintained after 6500 Cal yrs BP. A
334 recent compilation of Bahamian sea-level indicators (Neumann and Land, 1975; Rasmussen and
335 Neumann, 1988; Khan et al., 2017) that conform well to modeled estimates of relative sea-level rise
336 (Milne and Peros, 2017, Fig. 10A) suggest that the bedrock bottom of NML may have been up to +1.5 m
337 above sea level at ~6500 Cal yrs BP (Fig. 10A). Indeed, obtaining higher resolution local sea level
338 indicators may help resolve this uncertainty. Nevertheless, aquatic freshwater environments would have
339 been promoted by a more northerly ITCZ during the middle Holocene, which would have increased
340 moisture delivery to the northern Bahamas, increased Ti flux to the Cariaco Basin (Haug et al., 2001),
341 depleted $\delta^{18}\text{O}$ values in a Cuban speleothem (Fensterer et al., 2013) and lacustrine ostracodes from Haiti
342 (Hodell et al., 1991). These proxies from elsewhere all indicate that ~7000 to ~5000 years ago was one of
343 the wettest periods during the Holocene in the Caribbean. The additional supply of precipitation to the
344 northern Bahamas likely promoted an increased flux of meteoric water and groundwater through NML,
345 which likely initiated the mantling of carbonate sediment in the basin. At some point between ~5500 and
346 4500 Cal yrs BP, however, subsequent maintenance of the aquatic environments in NML would have
347 been maintained by upward vertical migration of the coastal aquifer in response to Holocene sea-level
348 rise.

349 Other ostracode biofacies in the carbonate mud unit (the High Diversity Oligohaline and Low
350 Diversity Oligohaline Biofacies) most likely reflect habitat variability in NML between 6500 to 4200

351 years ago from (a) deepening of NML from concomitant Holocene sea-level and ground-water level rise,
352 and (b) subtle climate-driven salinity variations in the oligohaline range (1-3.5 psu). The older, Lower
353 Diversity Oligohaline Assemblage is dominated by *Cypridopsis vidua*, which is a cosmopolitan taxa that
354 inhabits well-oxygenated lacustrine habitats across North America. It is also common in shallow,
355 oligohaline waters in Florida (Keyser, 1977). In the Higher Diversity Oligohaline Assemblage, additional
356 taxa appear that have a slightly higher salinity tolerance (e.g., *Cytheridella ilsosvyi* in Core 5). Based on
357 the ostracode fauna in the most expanded section of core 5, the increase in ostracode diversity through
358 time (i.e., upsection) suggest that although the environment was primarily oligohaline, benthic conditions
359 were likely fluctuating to slightly higher salinity regimes towards ~4200 Cal yrs BP.

360 It is worth noting that carbonate sedimentation does not appear uniform throughout the basin from
361 6500 Cal yrs BP until deposition of the carbonate sand unit at the top. There is likely a depositional hiatus
362 between the peat and carbonate mud units in core 4, and the laminated and sapropel units are absent from
363 cores 1 and 2. Given the bathymetric map and depth at which the hardground was encountered (Figs. 2,
364 3), there appears to be a deepening of the hardground surface towards the center of the basin. As such, the
365 deepest areas of the basin would have been inundated first by ponding water (core 5) relative to the basin
366 margin (cores 1 and 2), and the variability in this surface likely lead to the hiatus in core 4. Despite the
367 overall subtle relief on the hardground surface (< 1 m), the recovered successions indicate that there was
368 contemporary lateral facies transitions in NML. For example, pedogenic horizons were prevalent on the
369 basin periphery (cores 1 and 2) than in deeper areas (cores 4 and 5, see Fig. 9). Overall, carbonate
370 sedimentation in NML decreased as hydroclimate conditions began to shift towards aridity (discussed
371 further below). First, carbonate sedimentation ceased along the periphery first to create a hiatus in cores 1
372 and 2 (no laminated mud unit), then in the deeper areas during deposition of sapropel. It is possible that
373 enough fetch is available on NML to allow wave action to concentrate organic matter accumulation in the
374 deepest areas of the base (cores 3, 4 and 5) during deposition of the sapropel. These results indicate just
375 how sensitive sedimentation in inland tropical carbonate lakes is to both internal (e.g., basin geometry,
376 bathymetry) and external factors (e.g., hydroclimate balance, local groundwater elevation and salinity
377 changes).

378 At ~4200 Cal yrs BP, laminated carbonate sediment with gastropods began accumulating in
379 deeper areas of NML. Microbialites in hypersaline lakes have deposited similar looking strata in the lower
380 Bahamian islands (e.g., San Salvador) (Sipahioglu, 2008; Glunk et al., 2011), and freshwater
381 microbialites are extremely rare (Garcia-Pichel et al., 2004; Gischler et al., 2008). The dominant
382 ostracode in the laminated carbonate unit is the limnic *Physocypris globula* (>75%, Low Oxic Biofacies),
383 but upsection in all cores the abundance of *P. globula* decreases and the relative abundance of *C.*

384 *americana* increases to >90% (Fig. 6). Rather than microbialites, a more plausible explanation is that the
385 laminated unit was deposited when a pycnocline was present near the sediment-water interface, and the
386 benthos was seasonally, or intermittently, flooded by either a freshwater lens or anoxic saline
387 groundwater. In Lago Petén Itzá (0.2 psu), *P. globula* was found tolerant of lower dissolved oxygen
388 concentrations (to 2-4 mg/L), and to be an indicator of lake water below the thermocline in the
389 hypolimnion (Pérez et al., 2010b). In Laguna de Yaxhá (25 m depth), Deevey et al. (1980) found *P.*
390 (*globula* (misidentified as *Cypria petenesis*) to exhibit a planktic life mode, and tolerated deeper water
391 with lower dissolved oxygen concentrations. Based on relative sea-level rise (Fig. 10A), concomitant
392 vertical migration of the coastal aquifer and Holocene sea-level rise likely ensured that NML was
393 permanently flooded by the upper section of the local coastal aquifer (i.e., meteoric lens) by 4200 Cal yrs
394 BP, so the water column should have been ~1-2 m deep in NML (Figs. 9, 10). The dominance of *P.*
395 (*globula* likely indicates a stratified freshwater column with lower dissolved oxygen concentrations in the
396 hypolimnion during accumulation of the laminated unit. However, the upcore increase in *C. americana*
397 likely indicates salinity was continually increasing at the sediment-water interface. Additional regional
398 hydroclimate records will be required to resolve uncertainty as to whether this upcore microfossil trend is
399 driven by Holocene sea-level rise (i.e., upward movement of freshwater lens), changing hydroclimate
400 from an initial southern migration of the ITCZ at 4200 Cal yrs BP (see Figs. 9, 10), or both. Nevertheless,
401 the most significant observation is that *P. globula* indicates that NML was primarily limnic from ~4200 to
402 3300 Cal yrs BP, with potentially stratified oxygenation.

403 At ~3300 years ago, the stratigraphic and microfossil evidence collectively indicate that a
404 shallow, stratified basin with a freshwater cap abruptly transitioned into an anoxic marine setting at 3200
405 Cal yrs BP. First, there is an abrupt increase in marine-tolerant ostracodes at the base of the sapropel unit
406 in all cores whose shells are pitted and friable (90-100% samples of *C. americana* plot on the dendrogram
407 with Low Oxic Biofacies in Fig. 6), which indicates a rapid increase in salinity and exposure to corrosive
408 conditions. Second, the absence of benthic invertebrates in NML from 3300 to 2500 Cal yrs BP most
409 likely indicates benthic anoxia, given the widespread distribution of freshwater to hypersaline-tolerant
410 invertebrates (i.e., ostracodes, bivalves, gastropods) in the tropical North Atlantic lakes. Lastly, the
411 $\delta^{13}\text{C}_{\text{org}}$ ratios indicate that phytoplankton living in marine conditions (lower light brown sapropel layer)
412 initially produced the algal sapropel unit (Fig. 8). Perhaps some of the organic matter in the sapropel unit
413 was generated during a seasonal brackish water-cap thereafter, but overall it was not produced by
414 freshwater phytoplankton, as one would expect if a freshwater lens was present in NML. Based on local
415 sea-level indicators, no abrupt change in sea-level occurred at 3300 Cal yrs BP, and NML should have

416 been a stabilized aquatic environment by ~4200 Cal yrs BP (Fig. 9). Therefore, in order for the benthos in
417 NML to become flooded by anoxic saline groundwater for a multi-centennial time period, the local
418 meteoric lens (freshwater lens) that was previously flooding NML must have abruptly contracted in
419 response to decreased rainfall (discussed further below).

420 The final environmental transition in NML was the shift to the modern polyhaline (~20 psu) and
421 well-oxygenated environment at ~2500 years ago. From a hydrogeological perspective, NML became
422 flooded by a ‘brackish water lens’, which have developed elsewhere when meteoric water and saline
423 groundwater are able to rapidly mix (Cant and Weech, 1986). At 2500 Cal yrs BP, NML was re-colonized
424 by brackish gastropods (*Batillaria*), foraminifera (*Ammonia beccarii*, *Elphidium gunteri*, *Triloculina*
425 *oblonga*), and ostracodes (*Malzella floridana*, *Loxoconcha matagordensis*), and infaunal bivalves
426 (*Anomalocardia*) that bioturbated into the sapropel unit below. Continual shoreline migration associated
427 with sea-level rise means that the land area (i.e., catchment) surrounding NML is no longer capable of
428 generating and supporting an extensive freshwater lens, however, enough freshwater is available such that
429 a local brackish water lens has become established.

430

431 **6.2 Evidence and drivers of Caribbean drought and rainfall from 3300 to 2500 Cal yrs BP**

432 On Holocene timescales, relative sea-level rise causes the upward vertical migration of
433 groundwater on carbonate platforms, which systematically causes landscape inundation and facies
434 succession on exposed carbonate banktops. For example, the greatest depression on the antecedent Little
435 Bahama Bank platform occurs in the Bight of Abaco, between Abaco Island and Grand Bahama Island.
436 During its Holocene inundation, the local facies succession proceeded as follows: paleosol, limnic,
437 brackish, hypersaline and finally marine (Rasmussen et al., 1990). In a similar depression on the Bermuda
438 carbonate banktop (Port Royal Bay), Holocene facies progression included: freshwater peat, freshwater to
439 oligohaline sapropel, followed by marine micrite deposition (Ashmore and Leatherman, 1984). In the case
440 of NML, Holocene relative sea-level rise alone can not account for the observed facies succession (e.g.,
441 Section 6.1, onset of limnic conditions at ~6500 Cal Yrs BP, Fig. 10A).

442 Most importantly, the transition of NML from an oxic freshwater basin to an anoxic marine basin
443 from 3300 to 2500 Cal yrs BP, followed by a reversion to a brackish basin is consistent with an abrupt
444 change to a negative regional water balance. Both changes in land surface area and rainfall can influence
445 the salinity at the water table on millennial timescales, assuming changes in topography and hydraulic
446 conductivity of the coastal aquifer remain negligible (Cant and Weech, 1986). Intense hurricane activity
447 can also be a significant factor to cause salinization of coastal carbonate aquifers (Holding and Allen,
448 2015), but 3300 to 2500 Cal yrs BP coincides with a less active period in terms of intense hurricane

activity on the western tropical North Atlantic margin (Donnelly and Woodruff, 2007; van Hengstum et al., 2016). Indeed, smaller islands are associated with smaller freshwater lenses (Cant and Weech, 1986), but even Little Exuma Island has a freshwater lens (~1.6 km at widest point, 25.9 km² of land area, 0.89 km² of freshwater, less annual rainfall than Abaco: ~1000 mm yr⁻¹), whereas a brackish lens surrounds the area of NML (2.4 km wide, rainfall: ~1500 mm yr⁻¹). No abrupt sea-level change occurred during the last 3000 years to explain a concomitant reduction in land area and increased salinity at the water table (Fig. 10A). Indeed, inundation of tidal creeks and generation of wetlands to the north and south of NML would promote local groundwater salinization through increased aquifer evaporation, which likely explains the modern local brackish lens instead of a freshwater lens. However, this does not explain the loss of a freshwater lens at 3300 Cal yrs BP, then subsequent regeneration of a brackish water lens in NML after 2500 Cal yrs BP. In the modern climate, brackish water lenses typically develop on Bahamian islands with rainfall below 900 mm yr⁻¹ (Cant and Weech, 1986). By extension, a decrease in regional rainfall, which was superimposed upon the long-term signal of relative sea-level rise, would explain the abrupt loss of a freshwater lens in NML from 3300 to 2500 Cal yrs BP.

3300 to 2500 Cal yrs BP is a known period of aridity in the tropical North Atlantic, but the drivers of aridity versus deluges at the island-scale remain an active area of research. This interval has been previously referred to as the ‘Pan-Caribbean Dry Period’ due to widespread evidence for aridity (Berman and Pearsall, 2000). It is likely that the Hadley Cell in the tropical North Atlantic region likely initiated a long-term, low-frequency southern oscillation at ~4000 Cal yrs BP, as evidenced by increased terrigenous runoff into the Cariaco Basin, decreased extratropical hemispheric temperature difference, and increased intense precipitation events in Laguna Pallcacocha in Ecuador (Fig. 10B, C, D). A shift of the ITCZ to the southern hemisphere is also supported by a cooling of sea surface temperatures (SSTs) in the western equatorial Atlantic from ~3700 to 2500 years ago at both 2°N (Waldeab et al., 2005) and 20°N (deMenocal et al., 2000). In the high latitudes, the most significant late Holocene reduction in North Atlantic Deep Water formation occurred at ~2800 Cal yrs BP (Oppo et al., 2003), suggesting linked ocean and atmospheric changes at this time. Also, Gasse (2000) reviewed increased aridity in equatorial Africa from ~4200 to 2200 years ago based on lowering of regional lake levels (e.g., Lake Bosumtwi, Bahr-el-Ghazal, Lake Abhé), and the most extreme changes in moisture balance occurred from 4200 to 4000 years ago. The cooling of the western equatorial Atlantic SSTs and changes in African terrestrial water balance are consistent with a southern displacement of the ITCZ from 4200 to 2500 years ago.

A southern displacement of the ITCZ from 4200 to 2500 Cal yrs BP and the rest of the northern Hadley Cell likely caused differential impacts on regional Caribbean hydroclimate, assuming late Holocene rainfall in the western tropical North Atlantic was like today and geographically variable (Fig.

482 1). Based on available records: (1) regions where modern rainfall is linked to seasonal ITCZ
483 displacements appear to have rapidly responded to a lack of seasonal moisture delivery when the ITCZ
484 moved southwards at ~4000 Cal yrs BP (e.g., Yucatan Peninsula, equatorial Africa), (2) regions where
485 modern intensification or displacement of the NASH cause increased aridity seem to have become even
486 more arid at ~3200 Cal yrs BP (Little Bahama Bank, Florida), and (3) regions where modern synchronous
487 intensification of the NASH, easterlies, and Caribbean Low Level Jet deliver increased seasonal
488 precipitation conversely become wetter during the Pan-Caribbean Dry Period (e.g., Grenada).

489 Building on the modern rainfall zones of Jury et al. (2007), precipitation in the northeastern
490 Bahamas and Cuba is significantly linked to season southwestern expansion of the NASH (Fig. 1). The
491 collapse of the freshwater lens flooding NML from 3300 to 2500 years indicates that a change to the
492 water balance in Abaco occurred. Previous pollen-reconstructions from Abaco (Blackwood Sinkhole and
493 Emerald Pond) suggest that terrestrial vegetation (tropical hardwoods and palms) changed negligibly from
494 3200 to 2500 Cal yrs BP (Slayton, 2010; van Hengstum et al., 2016), other than a potential increase in
495 grasses in the understory (Slayton, 2010). However, at least 4 species of bats on Abaco became extirpated
496 after 3600 years ago (Soto-Centeno and Steadman, 2015), which may be related to the change in regional
497 water balance that is documented by NML. On nearby Florida where rainfall is also linked to seasonality
498 of the NASH, Glaser et al. (2012) documented a marked shift to drier conditions in the Everglades after
499 2800 Cal yrs BP. In northern Cuba, a speleothem collected from Dos Anas Cave abruptly ceased growth
500 from 3300 to 2500 Cal yrs (Fensterer et al., 2013). While speleothem growth hiatuses can also be driven
501 entirely by stochastic processes, decreasing regional rainfall is also a significant environmental cause for
502 disrupting speleothem growth. Elsewhere, shallow coastal lagoons in northern Cuba (Playa Bailen, Punta
503 de Cartas) likely became anoxic and gypsum precipitated from approximately 3500 to 2500 years ago
504 (Gregory et al., 2015), both of which could be caused by increased evaporation, decreased precipitation,
505 and upward displacement of local saline groundwater.

506 Precipitation on the island of Hispaniola in the current climate is driven by both synoptic-scale
507 atmospheric circulation and regional orographic effects from the Cordillera Central (Kennedy et al., 2006,
508 Jury et al., 2007)(Martin and Fahey, 2014). Hydroclimate records from 3500 to 2500 Cal yrs BP on
509 Hispaniola appear equivocal, but they do document an anti-phased hydroclimate shift between the
510 northern versus southern regions that may elude to the combined effects of changing intensity of the trade
511 winds and orographic effects. A pollen record from a high altitude bog (Valle de Boa) in the Cordillera
512 Central indicates diminished moist-forest taxa and low water levels from ~3700 to 1200 Cal yrs BP
513 (Kennedy et al., 2006). However, organic matter sedimentation did reinitiate at ~2500 Cal yrs BP, which
514 suggests that the local watershed re-adjusted to some external forcing. Along the northern coast in the

515 Dominican Republic, Laguna Saladilla documents a significant environmental change from ~3500 to
516 2500 years ago, but local geomorphologic effects introduce uncertainty on the specific magnitude and
517 sign of water balance change (Caffrey et al., 2015). On the southside of the Hispaniola, a pollen record
518 from Lake Miragoâne in Haiti documents the greatest relative abundance of pollen from mesic forest from
519 ~7000 to 3200 years, after which a drying trend was initiated that likely caused extinction of local
520 mammals, including bats, rodents, and a primate (Morgan and Woods, 1986; Higuera-Gundy et al., 1999).
521 Stable oxygen isotopic ratios measured on benthic ostracodes (*Candona*) from Lake Miragoâne have a
522 two-step enrichment from ~3200 to 2400 Cal yrs BP, then ~2400 to 1500 Cal yrs BP (Hodell et al., 1991).
523 Similarly, there is a dominance of shrubs (e.g., *Piscidia*-type, *Dodonaea*) and minimal hardwoods or
524 pinewoods on the low-lying Andros Island in the Bahamas from 3200 to 1500 years ago, which has been
525 traditionally interpreted as indicating increasing aridity (Kjellmark, 1996). Still further, it remains
526 uncertain how increased intense hurricane activity along the western tropical North Atlantic margin from
527 2500 to 1000 Cal yrs BP (Donnelly and Woodruff, 2007; van Hengstum et al., 2016) may be acting as a
528 lurking variable impacting both terrestrial vegetation and lake hydrological records at this time.

529 Both lake hydrology and landscape flora indicate increased aridity on the Yucatan Peninsula (Mexico,
530 Belize) from ~4000 to 2500 years ago and especially centered around ~3500 Cal yrs BP. In a 7900 year
531 pollen record from Lake Silvituc, Mexico, a drought interval was inferred from 3400 to 2500 Cal yrs BP
532 based on the decline of local tropical forest taxa Moraceae, *Brosimum alicastrum*, *Ficus*, among others
533 (Torrescano-Valle and Islebe, 2015). The driest conditions of the last 8700 years in Lago Puerto Arturo
534 was observed at ~3000 Cal yrs BP, based on enriched oxygen isotopic values on the gastropod
535 *Pyrgophorus* (Wahl et al., 2014). Aguada X'caamal is a semi-closed sinkhole lake in the northern
536 Yucatan whose lake water $\delta^{18}\text{O}$ ratio over the last 5000 years reflects both climate change and physical
537 alteration of its hydrological budget (Hodell et al., 2005b). Notably, an abrupt shift to more ^{18}O -enriched
538 subfossil ostracodes and gastropod shells from ~3200 to 2700 Cal yrs BP likely reflects decreased
539 regional precipitation. In Lake Tzib, there is a shift to more enriched $\delta^{18}\text{O}$ values on the gastropod
540 *Assiminea* from 3500-2600 Cal yrs BP, with the appearance of disturbance taxa *Cecropia peltata*, *Croton*,
541 and *Merremia* at 3500 Cal yrs BP (Carrillo-Bastos et al., 2010). On Turneffe Atoll, Belize, a vegetation
542 shift from mangroves (*Rhizophora*) to Chenopodiaceae-Amaranthaceae and *Myrica* from 4100 to 2900
543 Cal yrs BP has been interpreted as environmental change driven by aridity (Wooller et al., 2009).

544 The impacts of decreased rainfall during this time also affected the subterranean component of the
545 hydrologic cycle on the eastern Yucatan Peninsula in Mexico. Based on a 4-year hydrogeologic
546 monitoring project (Coutino et al., 2017; Kovacs et al., 2017), increasing precipitation and salinity of the

547 meteoric lens in the coastal aquifer covary because rainfall enhances mixing of the meteoric lens with the
548 lower saline groundwater. As such, wetter climatic conditions can be expected to increase the net salinity
549 of the coastal meteoric lens on millennial timescales (Kovacs et al., 2017). Using sediment cores collected
550 from an underwater cave flooded by the coastal aquifer near Tulum on the Yucatan (Carwash Cave), van
551 Hengstum et al. (2010) used microfossils to document a low-frequency stepwise-decrease in the salinity
552 of the meteoric lens over the last 5000 years, most likely in response to southern migration of the ITCZ
553 (Hodell et al., 1991, Haug et al., 2001). Indeed, the sedimentation rate is variable in Carwash Cave
554 through time, but the microfossils documented three salinity phases: (i) High Oligohaline (>3.5 psu):
555 6500-4300 Cal yrs BP, (ii) Medium Oligohaline (2-3.5 psu): 4200 to ~2700 Cal yrs BP, and (iii) Low
556 Oligohaline (1.5 psu): 2700 Cal yrs BP to present. The stepwise and low-frequency salinity decreases in
557 Carwash Cave from 4200-2700 Cal yrs BP do partially overlap with the Pan-Caribbean Drought (3200 to
558 2600 Cal yrs BP). It is possible that the proximity of Carwash Cave to the ITCZ may be responsible for
559 the earlier onset for the effects of decreased rainfall, and its subsequent impact on decreased aquifer
560 salinity (Kovacs et al., 2017), similar to equatorial African locales.

561 In contrast to higher Caribbean latitudes, the southern Lesser Antilles experienced increasing
562 rainfall from 3300 to 2500 Cal yrs BP. In Lake Antoine in Grenada (Fig. 1A), increasing abundance of the
563 diatom *Pseudostaurosirella brevistriata* indicates the lake deepened from increased rainfall from 3200 to
564 2600 years ago (Fritz et al., 2011). Despite observations of drought elsewhere in the tropical North
565 Atlantic at this time, the local response in the Lesser Antilles can be reconciled with both intensification
566 and southern displacement of the NASH from a southern Hadley Cell displacement. In the modern
567 climate, seasonal precipitation in the Lesser Antilles is more unimodal in comparison to elsewhere in the
568 tropical North Atlantic, with a poorly developed Mid-Summer Drought during the wet season (Jury et al.,
569 2007). Coincident with the seasonal intensification of the NASH causing the Mid-Summer drought in
570 Zone 1 (Fig. 1), intensification the Caribbean Low Level Jet (CLLJ) in the lower tropical latitudes causes
571 a seasonal precipitation maximum. The CLLJ is a localized amplification of easterly zonal winds at 925
572 hPa that positively co-vary with intensification of the NASH, and the CLLJ plays a critical role
573 transporting moisture from the tropical North Atlantic Ocean into the Caribbean Sea (Wang, 2007; Martin
574 and Schumacher, 2011a). Indeed, intensified easterly trade winds can be inferred from an increase in the
575 upwelling indicator *Globigerina bulloides* in the Cariaco Basin from 3300 to 2500 Cal yrs BP (Peterson et
576 al., 1991). Based on modern relationships between the NASH and CLLJ, one would expect that rainfall in
577 the lower Lesser Antilles and northern Bahamas may be anti-phased over the last several millennia, but
578 additional hydroclimate records are needed to test this hypothesis.

579

580 **7.0 Conclusions**

- 581 • A sinkhole-lake level reconstruction from Abaco Island on the Little Bahama Bank documents an
582 abrupt shift from a freshwater environment that is low oxic, to a marine environment with benthic
583 anoxia from 3300 to 2500 Cal yrs BP.
- 584 • Given constraints from low rates of relative sea-level rise during the late Holocene, the change in
585 bottom water conditions is most likely linked to contraction of the local freshwater lens from a change
586 in local water balance (decreased precipitation or increased evaporation).
- 587 • This suggests that the Little Bahama Bank experienced a drought from 3300 to 2500 years ago,
588 similar to other Caribbean islands. However, it remains uncertain how the seasonality of precipitation
589 changed.
- 590 • When considering the geographic location of Abaco Island and regional drivers of Caribbean rainfall,
591 this change in local water balance from 3300 to 2500 years ago on the Little Bahama Bank is likely
592 linked to decreased moisture delivery to Abaco from southward or westward expansion of the NASH
593 synchronous with southern ITCZ displacement.
- 594 • These results further contribute to our growing knowledge on the geographic and temporal variability
595 of Holocene hydroclimate extremes in the tropical North Atlantic, and provide several testable
596 hypotheses for further numerical and climate modeling and paleoclimate reconstructions.

597 **Acknowledgements**

598 Fieldwork in The Bahamas was supported by the Friends of the Environment and permits issued by The
599 Bahamas National Trust and The Bahamas Environment, Science and Technology (BEST) Commission.
600 This research was supported by NSF grants OCE-1356509 and EAR-1703087 (PvH) and OCE-1356708
601 and EAR-1702946 (JPD), and the John W. Hess Student Research Grant from the Geologic Society of
602 America (to GM, EAR-1354519). Additional field and technical support was provided by Shawna Little,
603 Victoria Keeton, Brian Albury, and Karl Kaiser. We benefited from discussions with Jason Gulley, and
604 we thank Davin Wallace for providing the sediment samples from Mangrove Lake for geochemical
605 analysis. The final version of this manuscript was improved through thoughtful evaluation by an
606 anonymous reviewer and Sally Horn.

608

609 **References**

610 Alonso-Zarza, A.M., Wright, V.P., 2010. Palustrine Carbonates, in: Alonso-Zarza, A.M., Tanner, L.H.
611 (Eds.), *Carbonates in Continental Settings*. Elsevier, Amsterdam, pp. 103-131.

612 Alvarez Zarikian, C.A., Swart, P.K., Gifford, J.A., Blackwelder, P.L., 2005. Holocene paleohydrology of
613 Little Salt Spring, Florida, based on ostracod assemblages and stable isotopes. *Palaeogeography,
614 Palaeoclimatology, Palaeoecology* 225, 134-156.

615 Angeles, M.E., González, J.E., Ramírez-Beltrán, N.D., Tepley, C.A., Comarazamy, D.E., 2010. Origins of
616 the Caribbean rainfall bimodal behaviour. *Journal of Geophysical Research-Atmospheres* 115,
617 D11106.

618 Ashmore, S., Leatherman, S.P., 1984. Holocene sedimentation in Port Royal Bay, Bermuda. *Marine
619 Geology* 56, 289-298.

620 Berman, M.J., Pearsall, D.M., 2000. Plants, people, and culture in the Prehistoric Central Bahamas: a
621 view from the Three Dog Site, an early Lucayan Settlement on San Salvador Island, Bahamas. *Latin
622 American Antiquity* 11, 219-239.

623 Burn, M.J., Holmes, J., Kennedy, L.M., Bain, A., Marshall, J.D., Perdikaris, S., 2016. A sediment-based
624 reconstruction of Caribbean effective precipitation during the 'Little Ice Age' from Freshwater Pond,
625 Barbuda. *The Holocene* 26, 1237-1247.

626 Cant, R.V., Weech, P.S., 1986. A review of the factors affecting the development of Ghyben-Hertzberg
627 lenses in the Bahamas. *Journal of Hydrology* 84, 333-343.

628 Carrillo-Bastos, A., Islebe, G.A., Torrescano-Valle, N., González, N.E., 2010. Holocene vegetation and
629 climate history of central Quintana Roo, Yucatan Peninsula, Mexico. *Review of Paleobotany and
630 Palynology* 160, 189-196.

631 Coutino, A., Stastna, M., Kovacs, S.E., Reinhardt, E., 2017. Hurricanes Ingrid and Manuel (2013) and
632 their impact on the salinity of the Meteoric Water Mass, Quintana Roo, Mexico. *Journal of Hydrology*
633 551, 715-729.

634 Crotty, K.J., 1982. Paleoenvironmental interpretation of ostracod assemblages from Watlings Blue Hole,
635 San Salvador Island, Bahamas. University of Akron, Akron, Ohio, p. 79.

636 Crotty, K.J., Teeter, J.W., 1984. Post Plesitocene salinity variations in a Blue Hole, San Salvador Island,
637 Bahamas as interpreted from ostracode fauna, in: Teeter, J. (Ed.), *Proceedings of the 2nd Symposium
638 on the Geology of The Bahamas, San Salvador Island, The Bahamas*, pp. 3-16.

639 Davis, R.E., Hayden, B.P., Gay, D.A., Phillips, W.L., Jones, G.V., 1997. The North Atlantic subtropical
640 anticyclone. 10, 728-744.

641 Dean Jr, W.E., 1974. Determination of carbonate and organic matter in calcareous sediments and
642 sedimentary rocks by loss on ignition: comparison with other methods. *Journal of Sedimentary
643 Research* 44.

644 Deevey, E.S., Deevey, G.B., Brenner, M., 1980. Structure of zooplankton communities in the Peten Lake
645 District Guatemala, in: Kerfoot, W.C. (Ed.), *The Evolution and Ecology of Zooplankton
646 Communities*. University Press of New England, Hannover, New Hampshire, pp. 669-678.

647 deMenocal, P., Ortiz, J., Guilderson, T., Sarnthein, M., 2000. Coherent high- and low-latitude climate
648 variability during the Holocene Warm Period. *Science* 288, 2198-2202.

649 Dix, G.R., Patterson, R.T., Park, L.E., 1999. Marine saline ponds as sedimentary archives of late
650 Holocene climate and sea-level variation along a carbonate platform margin: Lee Stocking Island,
651 Bahamas. *Palaeogeography, Palaeoclimatology, Palaeoecology* 150, 223-246.

652 Donnelly, J.P., Woodruff, J.D., 2007. Intense hurricane activity over the past 5,000 years controlled by El
653 Niño and the West African Monsoon. *Nature* 447, 465-468.

654 Dwyer, G.S., Teeter, J.W., 1991. Salinity history of a coastal salina, West Caicos, British West Indies, in:
655 Bain, R.J. (Ed.), *Proceedings of the Fifth Symposium on the Geology of the Bahamas. Bahamian
656 Field Station, San Salvador, The Bahamas*, pp. 65-73.

657 Enfield, D.B., Alfaro, E., 1999. The dependance of Caribbean rainfall on the interaction of the tropical
658 Atlantic and Pacific Oceans. *Journal of Climate* 12, 2093-2103.

659 Fensterer, C., Scholz, D., Hoffman, D.L., Spotl, C., Schroder-Ritzrau, A., Horn, C., Pajon, J.M., Mangini,
660 A., 2013. Millennial-scale climate variability during the last 12.5 ka recorded in a Caribbean
661 speleothem. *Earth and Planetary Science Letters* 361, 143-151.

662 France, R.L., 1995. Carbon-13 enrichment in benthic compared to planktonic algae: foodweb
663 implications. *Marine Ecology Progress Series* 124, 307-312.

664 Fritz, S.C., Bjork, S., Rigsby, C.A., Baker, P.A., Calder-Church, A., Conley, D.J., 2011. Caribbean
665 hydrological variability during the Holocene as reconstructed from crater lakes on the island of
666 Grenada. *Journal of Quaternary Science* 26, 829-838.

667 Furtos, N.C., 1936. Fresh-water ostracoda from Florida and North Carolina. *American Midland Naturalist*
668 17, 491-522.

669 Gamble, D.W., Curtis, S., 2008. Caribbean precipitation: a review, model and prospect. *Progress in
670 Physical Geography* 32, 265-276.

671 Gamble, D.W., Parnell, D.B., Curtis, S., 2008. Spatial variability of the Caribbean mid-summer drought
672 and relation to the north Atlantic high circulation. *International Journal of Climate* 28, 343-350.

673 Garcia-Pichel, F., Al-Horani, A.F., Farmer, J.D., Ludwig, R., Wade, B.D., 2004. Balance between
674 microbial calcification and metazoan bioerosion in modern stromatolitic oncolites. *Geobiology* 2, 49-
675 57.

676 Gasse, F., 2000. Hydrological changes in the African tropics since the Last Glacial Maximum. *Quaternary
677 Science Reviews* 19, 189-211.

678 Giannini, A., Kushnir, Y., Cane, M.A., 2000. Interannual Variability of Caribbean Rainfall, ENSO, and
679 the Atlantic Ocean. *Journal of Climate* 13, 297-311.

680 Gischler, E., Gibson, M.A., Oschmann, W., 2008. Gian Holocene freshwater microbialites, Laguna
681 Bacalar, Quintana Roo, Mexico. *Sedimentology* 55, 1293-1309.

682 Glaser, P.H., Hansen, B.C.S., Donovan, J.J., Givnish, T.J., Stricker, C.A., Volin, J.C., 2012. Holocene
683 dynamics of the Florida Everglades with respect to climate, dustfall, and tropical storms. *Proceedings
684 of the National Academy of Sciences* 110, 17211-17216.

685 Gregory, B.R.B., Peros, M., Reinhardt, E.G., Donnelly, J.P., 2015. Middle-late Holocene Caribbean
686 aridity inferred from foraminifera and elemental data in sediment cores from two Cuban lagoons.
687 *Palaeogeography, Palaeoclimatology, Palaeoecology* 426, 229-241.

688 Hastenrath, S., 1976. Variations in low-latitude circulation and extreme climatic events in the tropical
689 Americas. *Journal of the Atmospheric Sciences* 33.

690 Hastenrath, S., 1984. Interannual variability and annual cycle: Mechanisms of circulation and climate in
691 the tropical Atlantic Sector. *Monthly Weather Review* 112, 1097-1107.

692 Hatcher, P.G., Simoneit, B.R.T., Mckenzie, F.T., Neumann, A.C., Thorstenson, D.C., Gerchakov, S.M.,
693 1982. Organic geochemistry and pore water chemistry of sediments from Mangrove Lake, Bermuda.
694 *Organic Geochemistry* 4, 93-112.

695 Hatcher, P.G., Spiker, E.C., Szezerenyi, N.M., Maciel, G.E., 1984. Selective preservation and origin of
696 petroleum-forming aquatic kerogen. *Nature* 305, 498-501.

697 Haug, G.H., Hughen, K.A., Sigman, D.M., Peterson, L.C., Röhl, U., 2001. Southward migration of the
698 intertropical convergence zone through the Holocene. *Science* 293, 1304-1308.

699 Heiri, O., Lotter, A.F., Lemcke, G., 2001. Loss on ignition as a method for estimating organic and
700 carbonate content in sediments: reproducibility and comparability of results. *Journal of
701 Paleolimnology* 25, 101-110.

702 Herrera, E., Magaña, V., Caetano, E., 2015. Air-sea interactions and dynamical processes associated with
703 the midsummer drought. *International Journal of Climatology* 35, 1569-1578.

704 Higuera-Gundy, A., Brenner, M., Hodell, D.A., Curtis, J.H., Leyden, B.W., Binford, M.W., 1999. A
705 10,300 14C yr record of climate and vegetation change from Haiti. *Quaternary Research* 52, 159-170.

706 Hodell, D.A., Brenner, M., Curtis, J.H., 2005a. Terminal Classic drought in the northern Maya lowlands
707 inferred from multiple sediment cores in Lake Chichancanab (Mexico). *Quaternary Science Reviews*
708 24, 1413-1427.

709 Hodell, D.A., Brenner, M., Curtis, J.H., Gonzalez-Medina, R., CAn, E.I.-C., Guilderson, T.P., 2005b.
710 Climate change on the Yucatan Peninsula during the Little Ice Age. *Quaternary Research* 63, 109-
711 121.

712 Hodell, D.A., Brenner, M., Curtis, J.H., Guilderson, T., 2001. Solar forcing of drought frequency in the
713 Maya Lowlands. *Science* 292, 1367-1370.

714 Hodell, D.A., Curtis, J.H., Brenner, M., 1995. Possible role of climate in the collapse of Classic Maya
715 civilization. *Nature* 375, 391-394.

716 Hodell, D.A., Curtis, J.H., Jones, G.A., Higuera-Gundy, A., Brenner, M., Binford, M.W., Dorsey, K.T.,
717 1991. Reconstruction of Caribbean climate change over the past 10,500 years. *Nature* 352, 790-793.

718 Holding, S., Allen, D.M., 2015. From days to decades: numerical modeling of freshwater response to
719 climate change stressor on small low-lying islands. *Hydrology and Earth System Sciences* 19, 933-
720 949.

721 Holmes, J.A., 1997. Recent non-marine ostracoda from Jamaica, West Indies. *Journal of*
722 *Micropalaeontology* 16, 137-143.

723 Holmes, J.A., 1998. A late Quaternary ostracod record from Wallywash Great Pond, a Jamaican marl
724 lake. *Journal of Paleolimnology* 19, 115-128.

725 Hu, Y., Li, D., Liu, J., 2007. Abrupt seasonal variation of the ITCZ and the Hadley circulation.
726 *Geophysical Research Letters* 34, L18814.

727 Jury, M., Malmgren, B.A., Winter, A., 2007. Subregional precipitation climate of the Caribbean and
728 relationships with ENSO and NAO. *Journal of Geophysical Research* 112, 11.

729 Jury, M.R., 2009. A quasi-decadal cycle in Caribbean climate. *Journal of Geophysical Research:*
730 *Atmospheres* 114, 8.

731 Kennedy, L.M., Horn, S.P., Orvis, K.H., 2006. A 4000-year record of fire and forest history from Valle de
732 Bao, Cordillera Central, Dominican Republic. *Palaeogeography, Palaeoclimatology, Palaeoecology*
733 231, 279-290.

734 Keyser, D., 1975. Ostracoden aus den mangrovegebieten von Südwest-Florida. *Abhandlungen und*
735 *Verhandlungen des Naturwissenschaftlichen Vereins in Hamburg* 18/19, 255-290.

736 Keyser, D., 1977. Ecology of zoogeography of recent brackish-water ostracods (crustacea) from south-
737 west Florida, in: Löffler, H., Danielopol, D. (Eds.), *Aspects of the Ecology and Zoogeography of*
738 *Recent and Fossil Ostracoda*. Dr. W. Junk Publishers, The Hague, pp. 207-222.

739 Keyser, D., Schöning, C., 2000. Holocene ostracoda (crustacea) from Bermuda. *Senckenbergiana Lethaea*
740 80, 567-591.

741 Khan, N.S., Ashe, E., Horton, B.P., Dutton, A., Kopp, R.E., Brocard, G., Engelhart, S.E., Hill, D.F.,
742 Peltier, W.R., Vane, C.H., Scatena, F.N., 2017. Drivers of Holocene sea-level change in the
743 Caribbean. *Quaternary Science Reviews* 155, 13-36.

744 Kjellmark, E., 1996. Late Holocene climate change and human disturbance on Andros Island, Bahamas.
745 *Journal of Paleolimnology* 15, 133-145.

746 Kovacs, S.E., Reinhardt, E.G., Stastna, M., Coutino, A., Werner, C., Collins, S.V., Devos, F., Le Maillet,
747 C., 2017. Hurricane Ingrid and Tropical Storm Hanna's effects on the salinity of the coastal aquifer,
748 Quintana Roo, Mexico. *Journal of Hydrology* 551, 732-714.

749 Krutak, P.R., 1971. The Recent Ostracoda of Laguna Mandinga, Veracruz, Mexico. *Micropaleontology*,
750 1-30.

751 Lamb, A.L., Wilson, G.P., Leng, M.J., 2006. A review of coastal paleoclimate and relative sea-level
752 reconstructions using $\delta^{13}\text{C}$ and C/N ratios in organic material. *Earth Science Reviews* 75, 29-57.

753 Lane, C.S., Horn, S.P., Kerr, M.T., 2014. Beyond the Mayan Lowlands: impacts of the Terminal Classic
754 Drought in the Caribbean Antilles. *Quaternary Science Reviews* 86, 89-98.

755 Lane, C.S., Horn, S.P., Mora, C.I., Orvis, K.H., 2009. Late-Holocene paleoenvironmental change at mid-
756 elevation on the Caribbean slope of the Cordillera Central, Dominican Republic: a multi-site, multi-
757 proxy analysis. *Quaternary Science Reviews* 28, 2239-2260.

758 Legandre, P., Legandre, L., 1998. *Numerical Ecology*. Elsevier, Amsterdam.

759 Leyden, B.W., Brenner, M., Dahlin, B.H., 1998. Cultural and climatic history of Coba, a Lowland Maya
760 city in Quintana Roo, Mexico. *Quaternary Research* 49, 833-839.

761 Li, L., Li, W., Kushnir, Y., 2012a. Variation of the North Atlantic subtropical high western ridge and its
762 implication to Southeastern US summer precipitation. *Climate Dynamics* 39.

763 Li, W., Li, L., Fu, R., Deng, Y., Wang, H., 2011. Changes to the North Atlantic Subtropical High and its
764 Role in the Intensification of Summer Rainfall Variability in the Southeastern United States. *Journal
765 of Climate* 24, 1499-1506.

766 Li, W., Li, L., Ting, M., Liu, Y., 2012b. Intensification of Northern Hemisphere subtropical highs in a
767 warming climate. *Nature Geoscience* 5, 830-834.

768 Magaña, V., Amdor, J.A., Medina, S., 1999. The midsummer drought over Mexico and Central America.
769 *Journal of Climate* 12, 1577-1588.

770 Malaizé, B., Bertran, P., Carbonel, P., Bonnissent, D., Charlier, K., Galop, D., Limbert, D., Serrand, N.,
771 Stouvenot, C., Pujol, C., 2011. Hurricanes in the Caribbean during the past 3700 years BP. *The
772 Holocene* 21, 911-924.

773 Mangini, A., Blumbach, P., Verdes, P., Spotl, C., Scholz, D., Machel, H., Mahon, S., 2007. Combined
774 records from a stalagmite from Barbados and from lake sediments in Haiti reveal variable seasonality
775 in the Caribbean between 6.7 and 3 ka BP. *Quaternary Science Reviews* 26, 1332-1342.

776 Martin, E.R., Schumacher, C., 2011a. The Caribbean Low-level jet and its relationships with precipitation
777 in IPCC AR4 Models. *American Meteorological Society* 24, 5935-5950.

778 Martin, E.R., Schumacher, C., 2011b. Modulation of Caribbean precipitation by the Madden-Julian
779 Oscillation. *Journal of Climate* 24, 813-824.

780 Martin, P.H., Fahey, T.J., 2014. Mesoclimatic Patterns Shape the Striking Vegetation Mosaic in the
781 Cordillera Central, Dominican Republic. *Arctic, Antarctic, and Alpine Research* 46, 755-765.

782 McGee, D., Donohoe, A., Marshall, J., Ferreira, D., 2014. Changes in ITCZ location and cross-equatorial
783 heat transport at the Last Glacial Maximum, Heinrich Stadial 1, and the mid-Holocene. *Earth and
784 Planetary Science Letters* 390, 69-79.

785 McLean, N.M., Stephenson, T.S., Taylor, M.A., Campbell, J.D., 2015. Characterization of Future
786 Caribbean Rainfall and Temperature Extremes across Rainfall Zones. *Advances in Meteorology*, 18.

787 Medina-Elizalde, M., Burns, S.J., Lea, D.W., Asmerom, Y., von Gunten, L., Polyak, V., Vuille, M.,
788 Karmalkara, A., 2010. High resolution stalagmite climate record from the Yucatán Peninsula
789 spanning the Maya terminal classic period. *Earth and Planetary Science Letters* 298, 255-262.

790 Meyer, J., Wrozyne, C., Gross, M., Leis, A., Piller, W.E., 2016. Morphological and geochemical
791 variations of *Cyprideis* (Ostracoda) from modern waters of the northern tropics. *Limnology*.

792 Morgan, G.S., Woods, C.A., 1986. Extinction and the zoogeography of West Indian land mammals.
793 *Biological Journal of the Linnean Society* 28, 167-203.

794 Moy, C.M., Seltzer, G.O., Rodbell, D.T., Anderson, D.M., 2002. Variability of El Niño/Southern
795 Oscillation activity at millennial timescales during the Holocene. *Nature* 420, 162-165.

796 Mullins, H.T., Lynts, G.W., 1977. Origin of the northwestern Bahama Platform: Review and
797 interpretation. *Geological Society of America Bulletin* 88, 1447-1461.

798 Mylroie, J.E., Carew, J.L., 1995. Geology and karst geomorphology on San Salvador Island, Bahamas.
799 *Carbonates and Evaporites* 10, 193-206.

800 Mylroie, J.E., Carew, J.L., Moore, A.I., 1995a. Blue holes: definitions and genesis. *Carbonates and
801 Evaporites* 10, 225-233.

802 Mylroie, J.E., Carew, J.L., Vacher, H.L., 1995b. Karst development in the Bahamas and Bermuda, in:
803 Curran, H.A., White, B. (Eds.), *Terrestrial and shallow marine geology of the Bahamas and Bermuda*.
804 Geologic Society of America, pp. 251-267.

805 Neumann, A.C., Land, L.S., 1975. Lime mud deposition and calcareous algae in the bight of Abaco,
806 Bahamas. *Journal of Sedimentary Petrology* 45, 763-786.

807 Nyberg, J., Malmgren, B.A., Winter, A., Jury, M.R., Kilbourne, K.H., Quinn, T.M., 2007. Low Atlantic
808 hurricane activity in the 1970s and 1980s compared to the past 270 years. *Nature* 477, 698-701.

809 Oppo, D.W., McManus, J.F., Cullen, J.L., 2003. Deep water variability in the Holocene epoch. *Nature*
810 422, 277-278.

811 Park Bousch, L.E., Myrbo, A., Michelson, A., 2014. A qualitative and quantitative model for climate-
812 driven lake formation on carbonate platforms based on examples from the Bahamian archipelago.
813 *Carbonates and Evaporites* 29, 409-418.

814 Patterson, R.T., Fishbein, E., 1989. Re-examination of the statistical methods used to determine the
815 number of point counts needed for micropaleontological quantitative research. *Journal of*
816 *Paleontology* 63, 245-248.

817 Pérez, L., Lorenschat, J., Brenner, M., Scharf, B., Schwalb, A., 2010. Extant freshwater ostracodes
818 (Crustacea: Ostracoda) from Lago peten itza, Guatemala. *Revista de Biología Tropical* 58, 871-895.

819 Pérez, L., Lorenschat, J., Brenner, M., Scharf, B., Schwalb, A., 2010a. Extant freshwater ostracodes
820 (Crustacea: Ostracoda) from Lago Petén Itzá, Guatemala. *International Journal of Tropical Biology*
821 58, 871-895.

822 Pérez, L., Lorenschat, J., Bugja, R., Brenner, M., Scharf, B.S., Schwalb, A., 2010b. Distribution, diversity
823 and ecology of modern freshwater ostracodes (Crustacea), and hydrochemical characteristics of Lago
824 Petén Itzá, Guatemala. *Journal of Limnology* 69, 146-159.

825 Peros, M., Gregory, B., Mateos, F., Reinhardt, E., Desloges, J., 2015. Late Holocene record of lagoon
826 evolution, climate change, and hurricane activity from southeastern Cuba. *The Holocene*, 1-15.

827 Peterson, L.C., Overpeck, J.T., Kipp, N.G., Imbrie, J., 1991. A high-resolution Late Quaternary upwelling
828 record from the anoxic Carico Basin, Venezuela. *Paleoceanography* 6, 99-119.

829 Pilsbry, H.A., 1934. Review of the Planorbidae of Florida, with notes on other members of the family.
830 *Proceedings of the Academy of Natural Sciences of Philadelphia* 86, 29-66.

831 Rasmussen, K.A., Haddad, R.I., Neuman, A.C., 1990. Stable-isotope record of organic carbon from an
832 evolving carbonate banktop, Bight of Abaco, Bahamas. *Geology* 18, 790-794.

833 Rasmussen, K.A., Neumann, A.C., 1988. Holocene overprints of Pleistocene paleokarst: Bight of Abaco,
834 Bahamas, in: James, N.P., Choquette, P.W. (Eds.), *Paleokarst*. Springer-Verlag, New York, pp. 132-
835 148.

836 Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk Ramsey, C., Buck, C.E., Cheng,
837 H., Edwards, R.L., Friedrich, M., Grootes, P.M., Guilderson, T.P., Haflidason, H., Hajdas, I., Hatte,
838 C., Heaton, T.J., Hoffman, D.L., Hogg, A.G., Hughen, K.A., Kaiser, K.F., Kromer, B., Manning,
839 S.W., Niu, M., Reimer, R.W., Richards, D.A., Scott, E.M., Southon, J.R., Stafford, R.A., Turney,
840 C.S.M., van der Plicht, J., 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0-50,000
841 years Cal BP. *Radiocarbon* 55, 1869-1887.

842 Schmitter-Soto, J.J., Comín, F.A., Escobar-Briones, E., Herrera-Silveira, J., Alcocer, J., Suárez-Morales,
843 E., Elías-Gutiérrez, M., Díaz-Arce, V., Marín, L.E., Steinich, B., 2002. Hydrogeochemical and
844 biological characteristics of cenotes in the Yucatan Peninsula (SE Mexico). *Hydrobiologia* 467, 215-
845 228.

846 Schneider, T., Bischoff, T., Haug, G.H., 2014. Migrations and dynamics of the intertropical convergence
847 zone. *Nature* 513, 46-53.

848 Schnurrenberger, D., Russell, J., Kelts, K., 2003. Classification of lacustrine sediments based on
849 sedimentary components. *Journal of Paleolimnology* 29, 141-154.

850 Slayton, I., 2010. A Vegetation History from Emerald Pond, Great Abaco Island, The Bahamas, Based on
851 Pollen Analysis. University of Tennessee, Knoxville, p. 85.

852 Soto-Centeno, J.A., Steadman, D.W., 2015. Fossils reject climate change as the cause of extinction in
853 Caribbean bats. *Scientific Reports* 5.

854 Soulié-Märsche, I., 2008. Charophytes, indicators for low salinity phases in North African sebkhet.
855 *Journal of African Earth Sciences* 51, 69-76.

856 Soulié-Märsche, I., García, A., 2015. Gyrogonites and oospores, complementary viewpoints to improve
857 the study of the charophytes (Charales). *Aquatic Botany* 120, 7-17.

858 Steadman, D.W., Franz, R., Morgan, G.S., Albury, N.A., Kakuk, B., Broad, K., Franz, S.E., Tinker, K.,
859 Pateman, M.P., Lott, T.A., Jarzen, D.M., Dilcher, D.L., 2007. Exceptionally well preserved late
860 Quaternary plant and vertebrate fossils from a blue hole on Abaco, The Bahamas. *Proceedings of the*
861 *National Academy of Sciences* 104, 19897-19902.

862 Swain, F.M., 1955. Ostracoda of San Antonio Bay, Texas. *Journal of Paleontology* 29, 561-646.

863 Teeter, J., 1980. Ostracoda of the Lake Flirt formation (Pleistocene) of southern Florida.
864 *Micropaleontology*, 337-355.

865 Teeter, J.W., 1989. Holocene salinity history of the saline lakes of San Salvador Island, Bahamas, in:
866 Curran, H.A., Bain, R.J., Carew, J.L., Mylroie, J., Teeter, J.W., White, B. (Eds.), *Pleistocene and*
867 *Holocene Carbonate Environments on San Salvador Island, Bahamas*, San Salvador, The Bahamas, pp.
868 35-39.

869 Teeter, J.W., 1995a. Holocene saline lake history, San Salvador Island, Bahamas. *Special Papers*
870 *Geological Society of America*, 117-124.

871 Teeter, J.W., 1995b. Holocene saline lake history, San Salvador Island, Bahamas, in: Curan, H.A., White,
872 B. (Eds.), *Terrestrial and Shallow Marine Geology of the Bahamas and Bermuda*, pp. 117-124.

873 Teeter, J.W., Quick, T.J., 1990. Magnesium-salinity relation in the saline lake ostracode *Cyprideis*
874 *americana*. *Geology* 18, 220-222.

875 Torrescano-Valle, N.A., Islebe, G.A., 2015. Holocene paleoecology, climate history and human influence
876 in the southwestern Yucatan Peninsula. *Review of Paleobotany and Palynology* 217, 1-8.

877 van Hengstum, P.J., Bernhard, J.M., 2016. A new species of benthic foraminifera from an inland
878 Bahamian carbonate marsh. *Journal of Foraminiferal Research* 46, 193-2000.

879 van Hengstum, P.J., Donnelly, J.P., Fall, P.L., Toomey, M.R., Albury, N.A., Kakuk, B., 2016. The
880 intertropical convergence zone modulates intense hurricane strikes on the western North Atlantic
881 margin. *Scientific Reports* 6, 21728.

882 van Hengstum, P.J., Reinhardt, E.G., Beddows, P.A., Gabriel, J.J., 2010. Investigating linkages between
883 Holocene paleoclimate and paleohydrogeology preserved in a Yucatan underwater cave. *Quaternary*
884 *Science Reviews* 29, 2788-2798.

885 van Hengstum, P.J., Reinhardt, E.G., Beddows, P.A., Huang, R.J., Gabriel, J.J., 2008. Thecamoebians
886 (testate amoebae) and foraminifera from three anchialine cenotes in Mexico: Low salinity (1.5 - 4.5
887 psu) faunal transitions. *Journal of Foraminiferal Research* 38, 305-317.

888 van Hengstum, P.J., Scott, D.B., 2011. Ecology of foraminifera and habitat variability in an underwater
889 cave: distinguishing anchialine versus submarine cave environments. *Journal of Foraminiferal*
890 *Research* 41, 201-229.

891 van Hengstum, P.J., Scott, D.B., 2012. Sea-level rise and coastal circulation controlled Holocene
892 groundwater development and caused a meteoric lens to collapse 1600 years ago in Bermuda. *Marine*
893 *Micropaleontology* 90-91, 29-43.

894 van Hengstum, P.J., Scott, D.B., Gröcke, D.R., Charette, M.A., 2011. Sea level controls sedimentation
895 and environments in coastal caves and sinkholes. *Marine Geology* 286, 35-50.

896 Van Morkhoven, F.P.C.M., 1963. Post-Palaeozoic Ostracoda: Their morphology, taxonomy, and
897 economic use, Volume 2: Generic Descriptions. Elsevier Publishing Company, Amsterdam.

898 Wahl, D., Byrne, R., Anderson, L., 2014. An 8700 year paleoclimate reconstruction from the southern
899 Maya lowlands. *Quaternary Science Reviews* 103, 19-25.

900 Waldeab, S., Schneider, R.R., Kölling, M., Wefer, G., 2005. Holocene African droughts relate to eastern
901 equatorial cooling. *Geology* 33, 981-984.

902 Wang, C., 2007. Variability of the Caribbean low-level jet and its relations to climate. *Climate and
903 Dynamics* 29, 411-422.

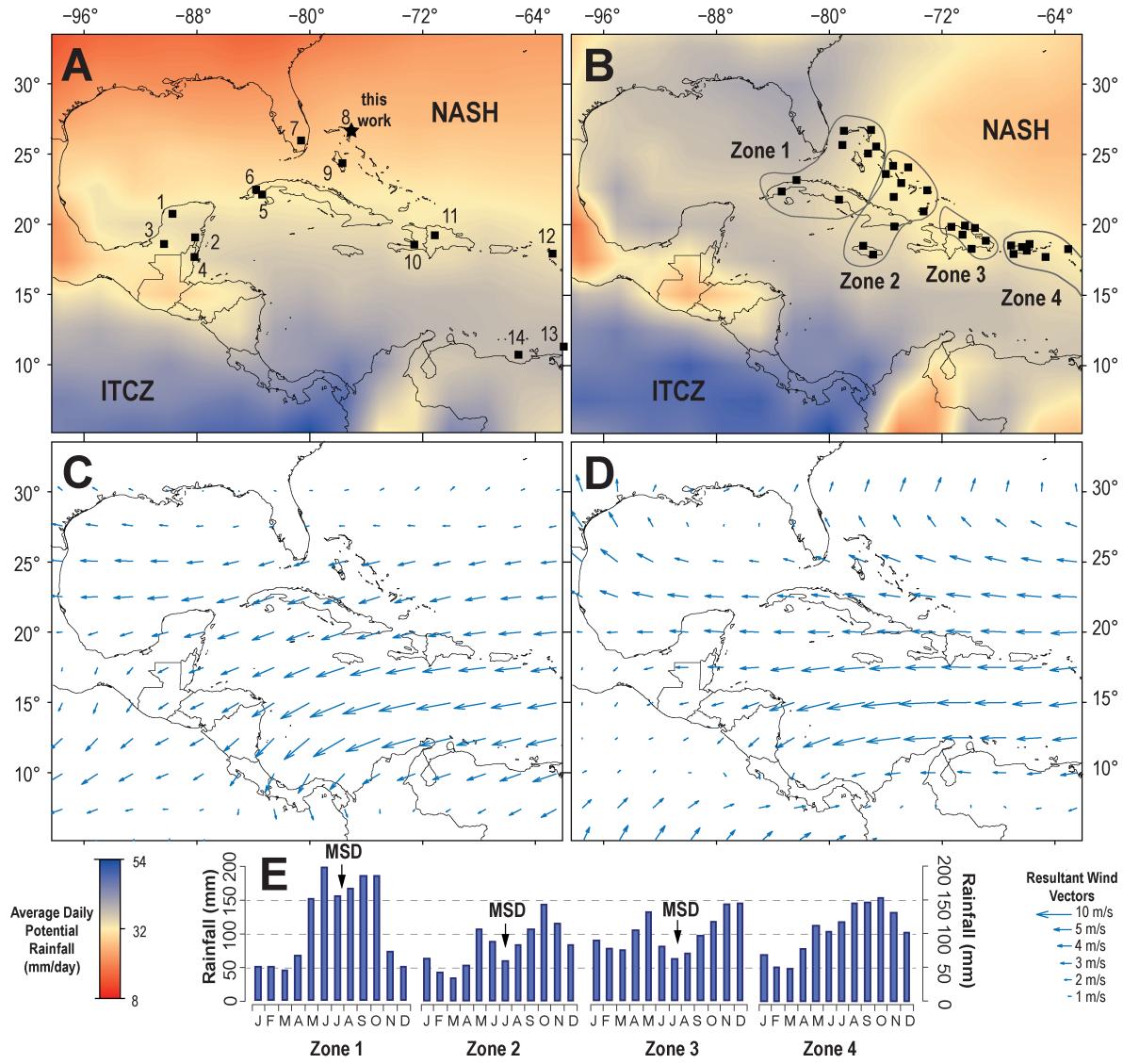
904 Wang, C., Enfield, D.B., Lee, S.-K., Landsea, C.W., 2006. Influences of the Atlantic Warm Pool on
905 Western Hemisphere Summer Rainfall and Atlantic Hurricanes. *Journal of Climate*, 3011-3028.

906 Watts, W.A., Hansen, B.C.S., 1986. Holocene climate and vegetation of Bermuda. *Pollen et Spores* 28,
907 355-364.

908 Whitaker, F.F., Smart, P.L., 1997. Hydrogeology of the Bahamian archipelago, in: Vacher, H.L., Quinn,
909 T.M. (Eds.), *Geology and Hydrogeology of Carbonate Islands*. Elsevier, Amsterdam, pp. 183-216.

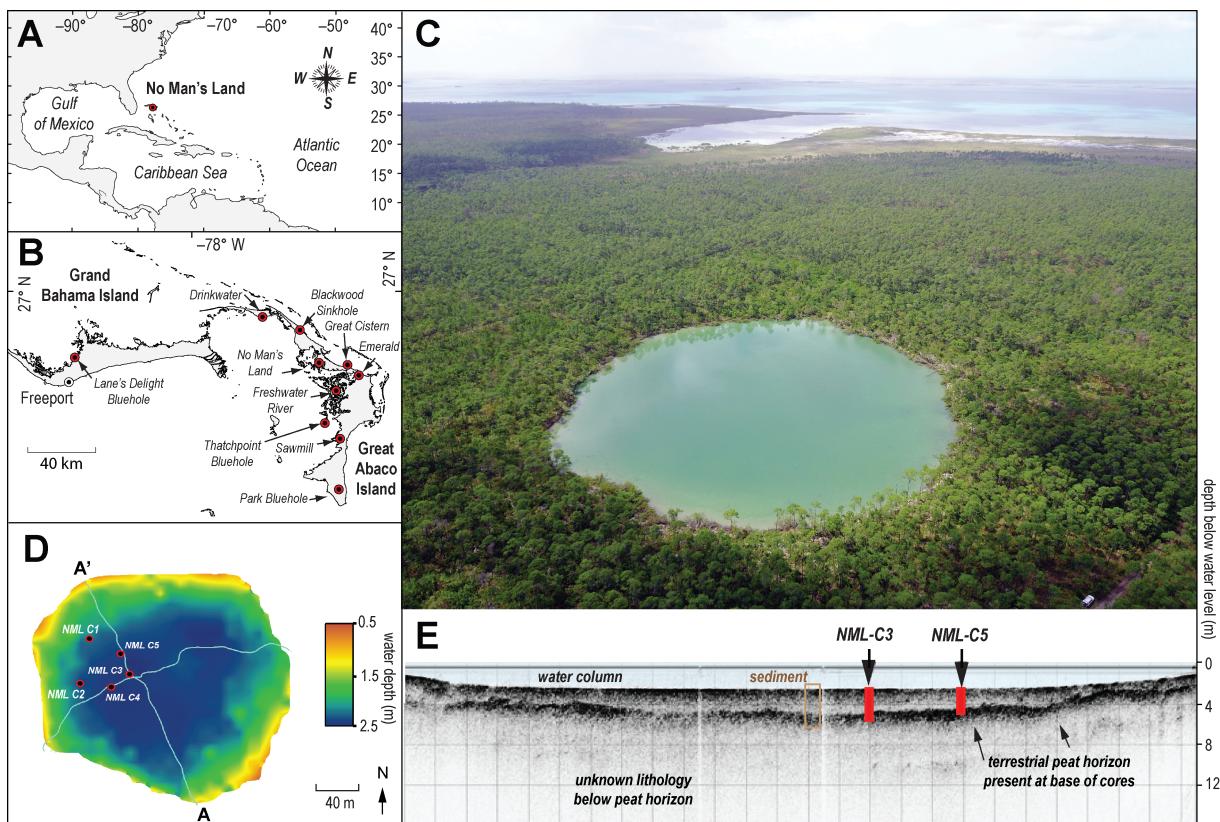
910 Whyte, F.S., Taylor, M.A., Stephenson, T.S., Campbell, J.D., 2008. Features of the Caribbean low level
911 jet. *International Journal of Climatology* 28, 119-128.

912 Winter, A., Miller, T., Kushnir, Y., Sinha, A., Timmermann, A., Jury, M.R., Gallup, C., Cheng, H.,
913 Edwards, R.L., 2011. Evidence for 800 years of North Atlantic multi-decadal variability from a
914 Puerto Rican speleothem. *Earth and Planetary Science Letters* 308, 23-28.


915 Wooller, M.J., Behling, H., Guerrero, J.L., Jantz, N., Zweigert, M.E., 2009. Late Holocene hydrologic and
916 vegetation changes at Turneffe Atoll, Belize, compared with records from mainland Central America
917 and Mexico. *Palaeos* 24, 650-656.

918

919


Figure and Table Captions

Dry season: November to April

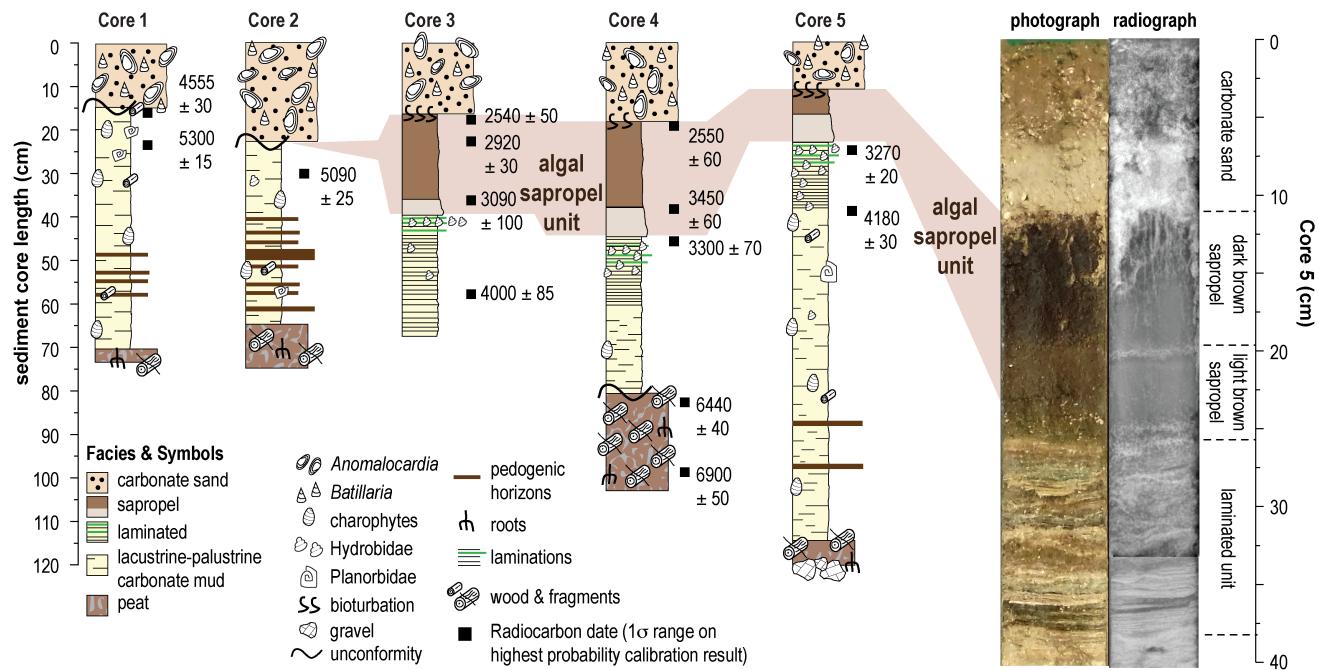
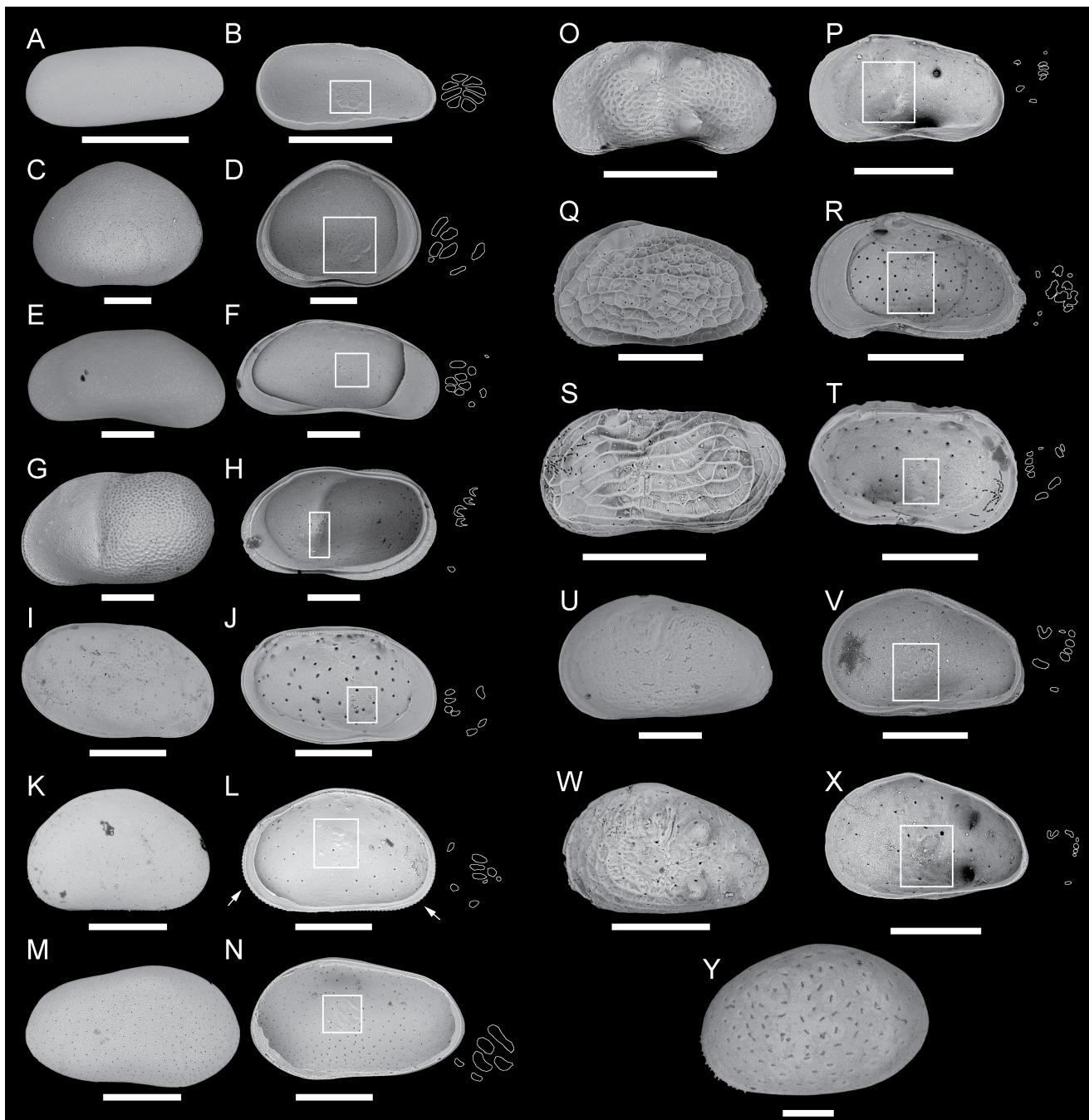
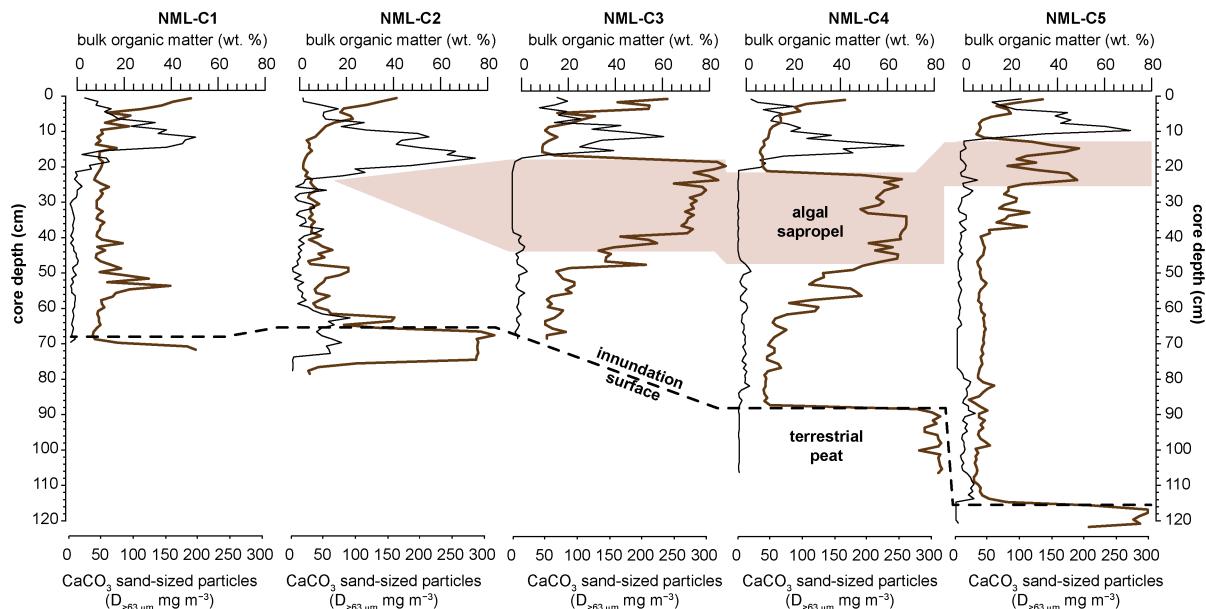


Fig. 1. Maximum daily potential rainfall (mm/day, 1948 to 2016 CE, Panel A and B) and resultant vectors of monthly mean wind (u/v) at 1000 millibars (m/s, 1986 to 2016 CE, Panel C and D) in the Caribbean region from the NCEP/NCAR Reanalysis Project, averaged over the November to April dry season, and the Mid-Summer drought from July and August on the Little Bahama Bank during the wet season. Panel A notes locations of other Caribbean climate records: (1) Aquada X'caamal, Mexico (Hodell et al., 2005a), (2) Lake Tzib, Mexico (Carrillo-Bastos et al., 2010), (3) Laguna Silvituc, Mexico (Torrescano-Valle and Islebe, 2015), (4) Turneffe Atoll, Belize (Wooller et al., 2009), (5) Playa Bailen and Punta de Cartas, Cuba (Gregory et al., 2015), (6) Dos Anas Cave, Cuba (Fensterer et al., 2013), (7) Northeast Shark River Slough, Florida (Glaser et al., 2012), (8) This work (No Man's Land), and Emerald Pond (Slayton, 2010), and Blackwood Sinkhole (van Hengstum et al., 2016), (9) Church's Bluehole, Andros (Kjellmark, 1996), (10) Lake Miragoane, Haiti (Hodell et al., 1991; Higuera-Gundy et al., 1999), (11) Valle de Bao, Dominican Republic (Kennedy et al., 2006), (12) Grand-Case Pond, Saint Martin (Malaizé et al., 2011), (13) Lake Antoine, Grenada (Fritz et al., 2011), (14) Cariaco Basin, Venezuela (Haug et al., 2001). The appearance of significant aridity above ~25°N is an artifact of long term averaging of the variable position of the western boundary of the NASH (Li et al., 2011). Panel B

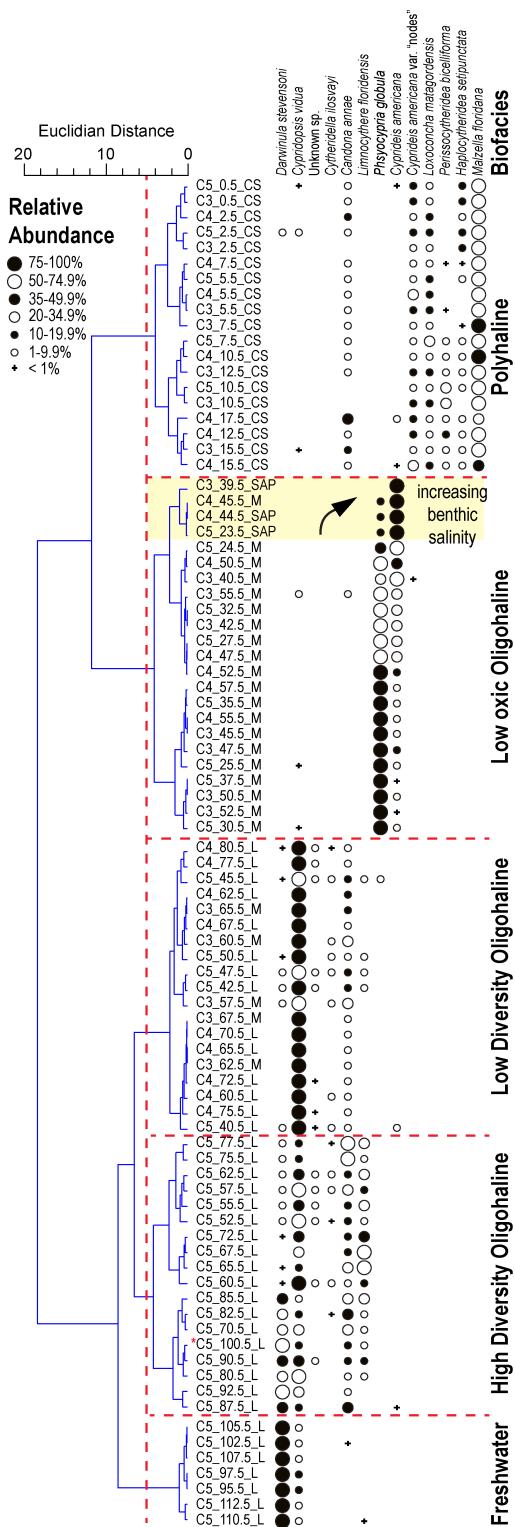
936 illustrates the four eastern Caribbean hydroclimate zones based on meteorological data from 1951 to 1981 CE
 937 from 35 stations (black squares, Jury et al., 2007), with Panel E describing the annual cycles for each zone.
 938 *Acronyms:* ITCZ: Intertropical Convergence Zone, NASH: North Atlantic Subtropical High, MSD: Mid-
 939 Summer Drought.
 940

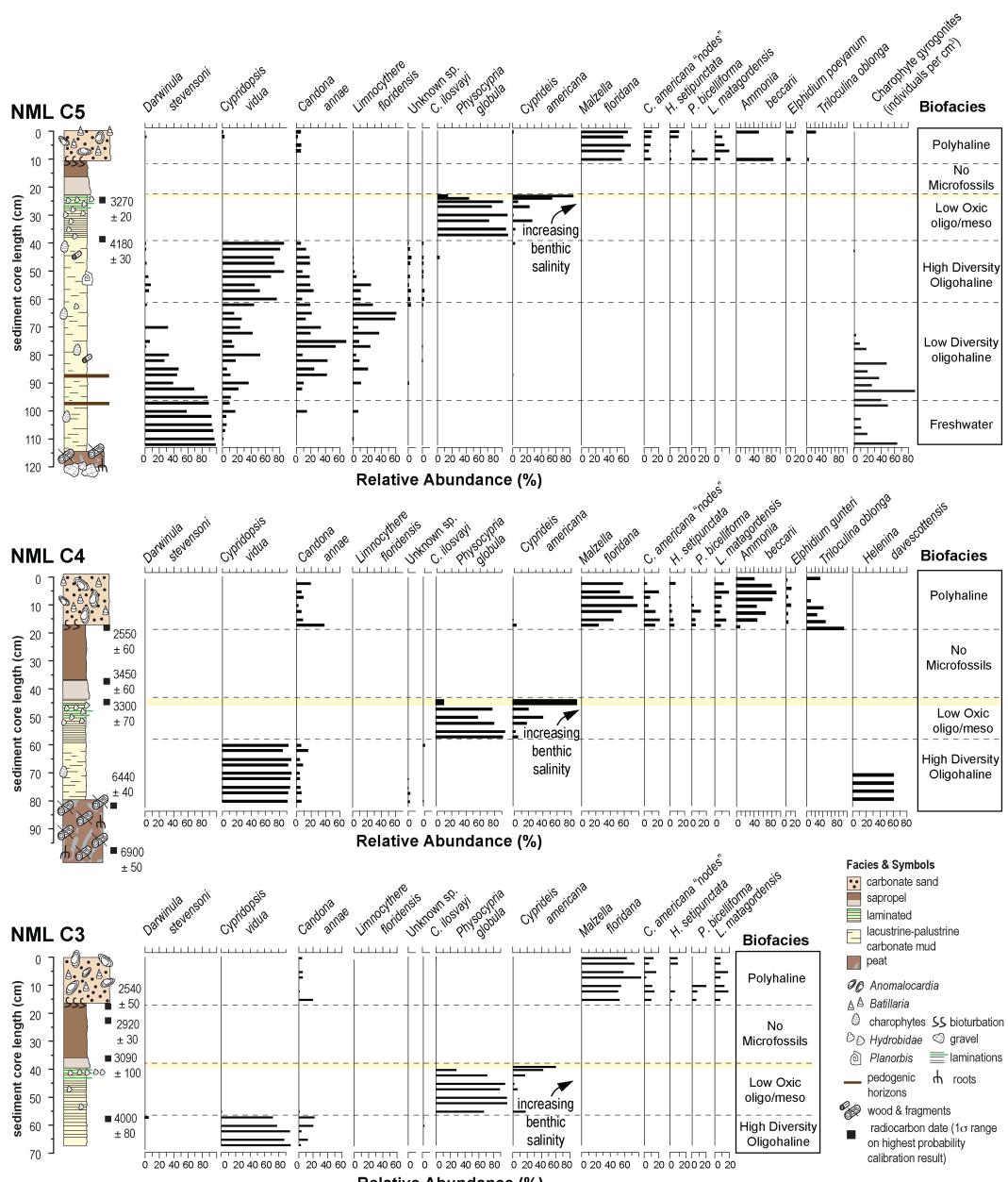


941
 942 **Fig. 2.** (A) No Man's Land is located in the Northern Bahamas in the tropical North Atlantic Ocean. (B)
 943 Locations of prominent blueholes and sinkholes on the major islands of the Little Bahama Bank. (C) Aerial
 944 photograph of No Man's Land facing the west ('The Marls', and out to the Bight of Abaco). (D) Bathymetric
 945 map of No Man's and core locations. (E) Representative seismic reflection image along cross section A-A'
 946 from Panel B.



947
948
949


Fig 3. Core logs for sediment cores from No Man's Land (A) and representative photograph of upper section of core 4.


950
 951 **Fig. 4.** Scanning electron micrographs of representative ostracodes and their dominant internal muscle scar
 952 pattern. (A, B) *Darwinula stevensoni* (Brady and Robertson, 1870); (C, D) *Cypridopsis vidua* (Müller, 1776),
 953 (E, F) *Candonia annae* (Mehes, 1914), (G, H) *Cytheridella ilosvayi* Daday, 1905, (I, J) *Loxoconcha*
 954 *matagordensis* Swain, 1955, (K, L) *Physocypris globulus* Furtos, 1933, arrows point to tuberculated margins
 955 on right valve, (M, N) Unknown sp., (O, P) *Limnocythere floridensis* Keyser, 1975, (Q, R) *Malzella floridana*
 956 (Benson and Coleman, 1963), (S, T) *Perissocytheridea bicelliforma* Swain, 1955, (U, V) *Cyprideis americana*
 957 (Sharpe, 1908), (W, X), *Cyprideis americana* var. nodes; (Y) *Haplocytheridella setipunctata* (Brady, 1969).
 958 Scale bar represents 250 μ m.

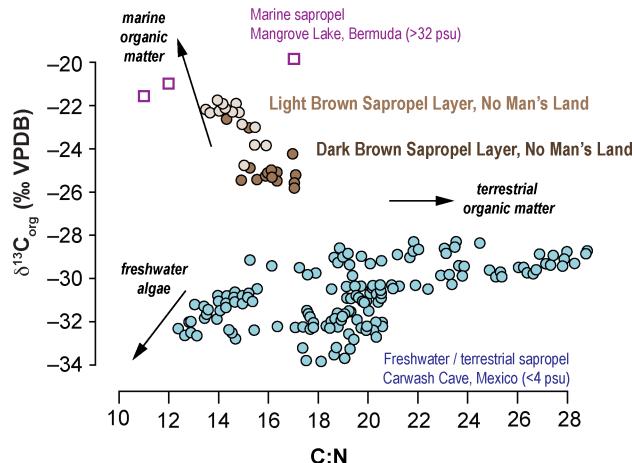
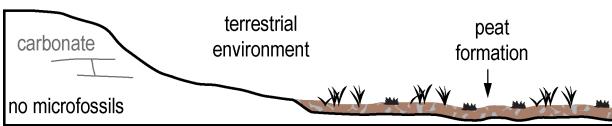
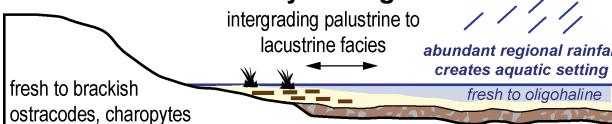
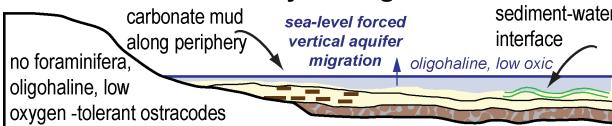


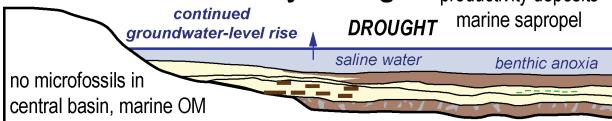
Fig. 5. Downcore bulk organic matter and textural variability. Brown line refers to bulk organic matter.

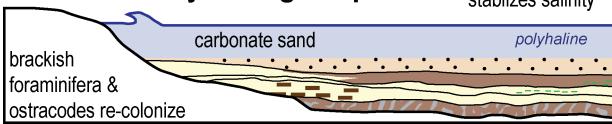

Fig. 6. Dendrogram produced from Q-mode cluster to identify biocenoses in the ostracode data.

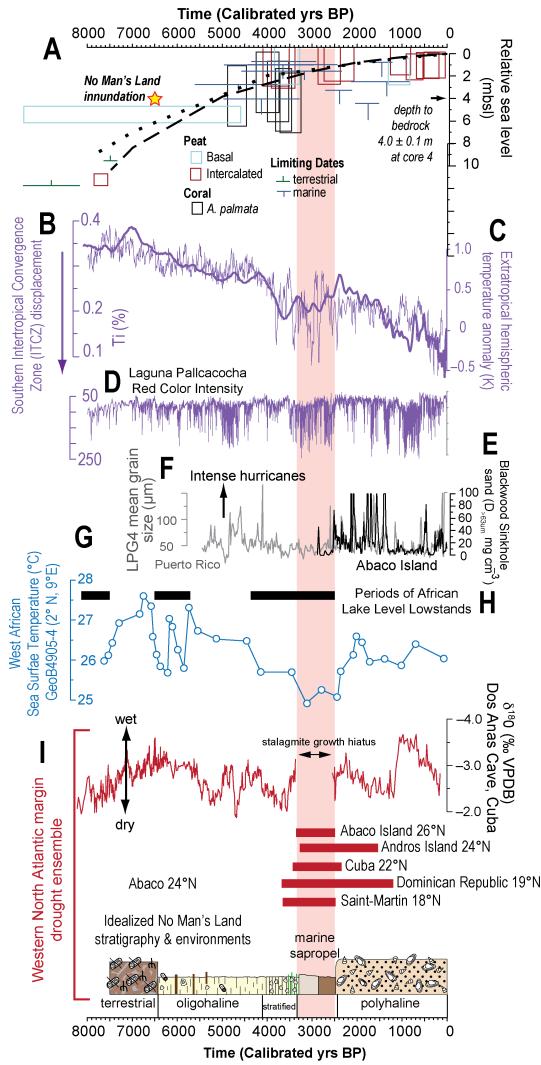


967
968 **Fig 8.** Stable carbon isotopic value ($\delta^{13}\text{C}_{\text{org}}$ in ‰ VPDB) and C:N ratio of bulk organic matter from the algal sapropel unit
969 in No Man's Land compared with those from a marine sapropel from Mangrove Lake in Bermuda ($n = 20$, 32-
970 35 psu) and a freshwater sapropel from Carwash Cave in Mexico (1.5 psu)(van Hengstum et al., 2010).


Phase 1. Prior to 6500 years ago


Phase 2. 6500 to 4200 years ago


Phase 3. 4200 to 3300 years ago


Phase 4. 3300 to 2500 years ago

Phase 5. 2500 years ago to present

971
972 **Fig. 9.** Conceptual model describing paleoenvironmental changes in No Man's Land from 6500 years ago until
973 present.

Fig. 10. Comparison of regional hydroclimate records with an idealized stratigraphic column from No Man's Land, Abaco Island, The Bahamas. **(A)** Regional sea-level framework after Khan et al. (2017), with additional older sea-level indicators from Abaco Island (Neumann and Land, 1975; Rasmussen et al., 1990), and ICE-5G model results with an upper mantle viscosity (UMV) = 5×10^{21} Pas and lower mantle viscosity (LMV) of 5×10^{22} Pas (dotted line) and EUST3 with an UMV = 2×10^{21} Pas and LMV = 5×10^{22} Pas (dashed line) (after Milne and Person, 2013); evidence for southern displacement of the ITCZ based on **(B)** terrigenous runoff into the Cariaco Basin (light purple) and **(C)** inter-hemispheric extratropical temperature contrast (dark purple) (Haug et al., 2001; Schneider et al., 2014); **(D)** increased intense rainfall events around Laguna Pallcacocha, Ecuador (Moy et al., 2002); Intense hurricane activity on the western North Atlantic margin as recorded in Abaco **(E)** (van Hengstum et al., 2016) and Puerto Rico **(F)** (Donnelly and Woodruff, 2007); eastern equatorial Atlantic (off West Africa) sea surface temperature variability **(G)** (Waldeab et al., 2005) and evidence for African equatorial lake-level lowering **(H)** (Gasse, 2000), indicators of drought from ~3300 to 2500 on the Western North Atlantic **(I)**, including speleothem growth hiatus in Dos Anas Cave in Cuba, (Fensterer et al., 2013), increased aridity-tolerant plants in Andros (Kjellmark, 1996) Abaco (Slayton, 2010), and the Dominican Republic (Kennedy et al., 2006), gypsum precipitation and anoxia in Cuban lagoons (Gregory et al., 2015), and coastal pond lowstand in Saint Martin, northern Lesser Antilles (Malaizé et al., 2011), and idealized stratigraphic column from No Man's Land with respect to time (this study).