
Towards Traceability Link Recovery for Self-Adaptive Systems

Reihaneh H. Hariri and Erik M. Fredericks
Oakland University

Rochester, MI 48309
{rhosseinzadehha, fredericks}@oakland.edu

Abstract

Self-adaptive systems (SAS) automatically mitigate environ-
mental changes and unexpected system issues at run time by
adapting towards optimal configurations that enable contin-
ual requirements satisfaction. The increasing proliferation of
SASs presents engineering challenges that reflect issues ex-
perienced by non-adaptive systems, more specifically, ensur-
ing that continuing assurance for software artifacts is pro-
vided. In particular, ensuring that requirements traceability
links are appropriately managed at run time in SASs can be
an error-prone procedure and may require significant effort
from a requirements engineer. Natural language processing
(NLP) techniques have been used to recover broken or miss-
ing traceability links efficiently between requirements and
other artifacts, however, performing traceability link recov-
ery can introduce significant overhead for SASs. Specifically,
the state-space explosion of possible combinations of envi-
ronmental states, system parameters, and expressed behav-
iors can lead to states in which no traceability link exists,
thereby necessitating recovery. This paper proposes Adap-
tive Requirements Traceability (ART), a conceptual frame-
work for handling traceability recovery in terms of SASs. We
motivate this framework with an illustrative example in the
networking domain.

Introduction

Self-adaptive systems (SAS) are often exposed to combina-
tions of system and environmental conditions (i.e., operating
contexts) that may prevent satisfaction of its requirements.
To manage unexpected changes, an SAS self-adapts to new
configurations at run time through continuous monitoring
of itself and its environment (Kephart and Chess 2003), in-
cluding adaptations to run-time software artifacts (Freder-
icks, DeVries, and Cheng 2014; Fredericks and Cheng 2015;
Ghannem et al. 2016; Dömges and Pohl 1998). Given the
relative complexity of an SAS’s implementation, software
maintenance becomes a highly-demanding task, resulting
in the necessity of promoting typically design-time tech-
niques to be first-class entities in the SAS framework.
As such, this paper focuses on enhancing assurance, sup-
ported by natural language processing (NLP) techniques, by
considering requirements traceability to be a run-time en-

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

tity that self-adapts alongside an SAS (Cheng et al. 2009;
Andersson et al. 2009).

Gotel and Finkelstein described requirements traceabil-
ity as “the ability to describe and follow the life of a re-
quirement, in both a forwards and backwards direction (i.e.,
from its origins to its subsequent deployment and use, and
through all periods of on-going refinement and iteration in
any of these phases)” (Gotel and Finkelstein 1994). Trace-
ability is used to describe relationships between related ar-
tifacts, such as requirement-to-test case links, code-to-code
links, and code-to-document links, and is critical during de-
sign and run-time for both software development and main-
tenance. Insufficient traceability in software has been shown
to be less maintainable, leading to failures and defects re-
sulting from inconsistencies from artifacts to implementa-
tion (Parizi, Lee, and Dabbagh 2014; Dömges and Pohl
1998). Moreover, extracting appropriate information from
artifacts to create a relevant traceability link is a highly chal-
lenging task (Arunthavanathan et al. 2016), however such a
task is often necessary to enhance assurance.

This paper describes our conceptual approach to recon-
structing traceability links, at run time, in the SAS domain.
Specifically, we consider the situations in which traceabil-
ity links are broken at run time as a result of a system re-
configuration. For instance, test cases and/or requirements
may be disabled at run time as a result of an adaptation, re-
sulting in a broken traceability link that must be resolved
for the dangling artifact (i.e., either the test case or require-
ment left enabled). As such, our approach aims to leverage
NLP techniques for automatically discovering and resolv-
ing possible traceability links at run time. To support this
endeavor, we incorporate techniques from the NLP domain
for use in recovering traceability links between different
types of software artifacts (Borg, Runeson, and Ardö 2014;
Arunthavanathan et al. 2016).

Therefore, we introduce Adaptive Requirement Trace-
ability (ART), a conceptual framework for SASs to support
automated maintenance of traceability links between arti-
facts as the system self-adapts, in particular, focusing on
both extraction and discovery of links between requirements
and test cases at run time. In this view, traceability link re-
covery can be considered a search problem that, based on the
identified operating context, may require a different search
technique to realize an appropriate recovery strategy.



The remainder of this paper is organized as follows. First,
we motivate the need for automatic link recovery at run-
time. Following, we describe the proposed ART framework.
Lastly, we summarize this work and future directions.

Motivation

This section motivates the need for adaptive requirement
traceability at run-time. In particular, we describe an illustra-
tive example from the networking domain, the remote data
mirroring (RDM) application, that is used to clarify chal-
lenges in maintaining traceability for SASs.

Remote data mirroring application. RDM is data pro-
tection technique for ensuring uninterrupted access to
data and providing fault tolerance via data replication on
physically-remote servers (Ji, Veitch, and Wilkes 2003;
Keeton et al. 2004). The RDM application is represented as a
large network of interconnected servers that has been mod-
eled as an SAS. Specifically, the network can reconfigure
itself in terms of its network topology (e.g., in case of a net-
work link failure) and its data transmission protocols (e.g.,
from synchronous to asynchronous, based on monitored net-
work traffic conditions).

Run-time Traceability Recovery Link Challenges.
Broadly, traceability can refer to linking any type of
software artifacts. In this paper, however, we focus on
traceability between requirements and test cases. Tra-
ditional techniques establish traceability links between
requirements and artifacts during software development.
An SAS, however, can change frequently over time and
must continuously monitor changes and react accordingly.
Existing traceability recovery techniques may need to be
extended to handle run-time concerns. Specifically, we
consider the cases where new requirements and/or test cases
may be added to and/or removed from the SAS online,
resulting in a traceability framework that must automatically
discover a link at run time. Moreover, requirements and test
cases are considered to be first-class entities in the SAS
framework to enable run-time reasoning and validation, and
may be adaptive to support additional flexibility.

Requirements And Test Cases in RDM. For the RDM
application, consider a traceability matrix that has been de-
veloped to track links between requirements and test cases.
Such a matrix is often used to graphically demonstrate links.
In a non-adaptive system, a traceability matrix is gener-
ally fixed in size. However, in the SAS domain it can be
more common for requirements and/or test cases to adapt
at run time as a result of the self-reconfiguration process.
Such traceability adaptations can include adding, deleting,
enabling, and disabling artifacts at run time. These changes
pose severe challenges for traceability. In terms of a trace-
ability matrix, an SAS may require a three-dimensional rep-
resentation to demonstrate changes in traceability over time
by representing requirements, test cases, and system config-
urations over time. Moreover, such a system would require
a fully-automated process for link discovery and recovery.

For example, consider the RDM application. In response
to unexpectedly-dense network traffic, several data mirrors
have adapted to use asynchronous message processing. As
such, any requirements and/or test cases that focus specifi-
cally on synchronous messages processing will no longer be
relevant and may be disabled entirely while the current oper-
ating context is in effect. As such, any traceability links that
exist where one or more artifacts are now disabled/removed
must be updated online.

When and Where to Perform Traceability Recovery.
We anticipate that traceability recovery would mimic the
SAS MAPE-K loop (Kephart and Chess 2003). Specifically,
the monitoring phase would determine that an operating
context change has occurred, necessitating an update to the
state of run-time artifacts. Following, the analyzing phase
would determine that a traceability link is broken or oth-
erwise needs to be recovered. The planning phase would
consider tradeoffs in selecting an appropriate recovery strat-
egy, and executing would then execute the recovery plan. In
this regard, the SAS adaptation engine could be augmented
to mitigate not only contextual uncertainty, but uncertainty
within assurance.

How to Recover Traceability Links. Several automated
and semi-automated techniques and tools exist for require-
ment traceability recovery at software development life-
cycle (Falessi, Cantone, and Canfora 2013). We next present
techniques that we consider relevant to the SAS domain, in
particular, those that leverage NLP techniques to aid in pars-
ing prose requirements and test cases.

Requirement Traceability Recovery Approaches using
NLP and IR. Information Retrieval (IR) and NLP have
been used for traceability recovery for many years. Trustrace
has been proposed as a trust-based traceability recovery
technique which combines data mining with IR to improve
recovery accuracy (Ali, Guéhéneuc, and Antoniol 2013).
Moreover, a comprehensive study of traceability link recov-
ery indicates that algebraic IR models, such as latent seman-
tic indexing (LSI) and the vector space model (VSM), are
used more often than probabilistic models (Borg, Runeson,
and Ardö 2014). Generally, NLP techniques will compute
similarity between textual artifacts and use a similarity rank
for candidate link consideration. VSM, by comparison, auto-
matically calculates the degree of relevance between source
and targets to identify links.

According to Falessi et al., NLP techniques for trace-
ability recovery can be categorized into four main dimen-
sions: algebraic model, term condition, weighting schema,
and similarity metrics (Falessi, Cantone, and Canfora 2013;
Falessi et al. 2017). Based on their presented results, a com-
bination of techniques comprising VSM, raw frequency,
Stanford, and cosine provide ideal results in terms of NLP-
based link recovery. As a result, we propose to use a similar
approach for recovery in the SAS domain.





Discussion

This paper proposed a vision for traceability link recovery
for adaptive software artifacts in the SAS domain. ART is
a traceability recovery process that leverages a composition
of NLP and search-based techniques to improve accuracy
and performance of the recovery process. ART mimics the
SAS MAPE-K loop to provide adaptive recovery alongside
an SAS’s adaptation engine. Moreover, considerations for
elevating recovery to run time have been provided in terms
of identified lightweight algorithms and possibilities for of-
floading tasks to additional agents.

Future work for this research includes a full evaluation of
ART in terms of SAS applications in multiple domains. We
also plan to examine how different search-based techniques
can affect recall and precision of NLP-based automated re-
covery procedures.

Acknowledgements

This research has been supported in part by NSF grant
CNS-1657061, the Michigan Space Grant Consortium, the
Comcast Innovation Fund, and Oakland University. Any
opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the authors and do not
necessarily reflect the views of Oakland University or other
research sponsors.

References
Ali, N.; Guéhéneuc, Y.-G.; and Antoniol, G. 2013. Trustrace:
Mining software repositories to improve the accuracy of require-
ment traceability links. IEEE Trans. on Software Engineering
39(5):725–741.

Andersson, J.; De Lemos, R.; Malek, S.; and Weyns, D. 2009.
Modeling dimensions of self-adaptive software systems. Software
engineering for self-adaptive systems 27–47.

Arunthavanathan, A.; Shanmugathasan, S.; Ratnavel, S.; Thiya-
garajah, V.; Perera, I.; Meedeniya, D.; and Balasubramaniam, D.
2016. Support for traceability management of software artefacts
using natural language processing. In Moratuwa Engineering Re-
search Conference (MERCon), 18–23.

Borg, M.; Runeson, P.; and Ardö, A. 2014. Recovering from
a decade: a systematic mapping of information retrieval ap-
proaches to software traceability. Empirical Software Engineering
19(6):1565–1616.

Bredeche, N.; Haasdijk, E.; and Eiben, A. 2010. On-line, on-
board evolution of robot controllers. In Collet, P.; Monmarché, N.;
Legrand, P.; Schoenauer, M.; and Lutton, E., eds., Artificial Evolu-
tion, volume 5975 of Lecture Notes in Computer Science. Springer
Berlin Heidelberg. 110–121.

Cheng, B. H. C.; Lemos, R.; Giese, H.; Inverardi, P.; Magee, J.; and
et al. 2009. Software engineering for self-adaptive systems: A re-
search roadmap. In Software engineering for self-adaptive systems.
Berlin, Heidelberg: Springer-Verlag. chapter Software Engineering
for Self-Adaptive Systems: A Research Roadmap, 1–26.

Deb, K.; Pratap, A.; Agarwal, S.; and Meyarivan, T. 2002. A fast
and elitist multiobjective genetic algorithm: Nsga-ii. Evolutionary
Computation, IEEE Transactions on 6(2):182 –197.

Dömges, R., and Pohl, K. 1998. Adapting traceability envi-
ronments to project-specific needs. Communications of the ACM
41(12):54–62.

Falessi, D.; Di Penta, M.; Canfora, G.; and Cantone, G. 2017. Esti-
mating the number of remaining links in traceability recovery. Em-
pirical Software Engineering 1–32.

Falessi, D.; Cantone, G.; and Canfora, G. 2013. Empirical prin-
ciples and an industrial case study in retrieving equivalent require-
ments via natural language processing techniques. IEEE Transac-
tions on Software Engineering 39(1):18–44.

Fredericks, E. M., and Cheng, B. H. C. 2015. Automated gener-
ation of adaptive test plans for self-adaptive systems. In Proceed-
ings of 10th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems, SEAMS ’15.

Fredericks, E. M.; DeVries, B.; and Cheng, B. H. C. 2014. Towards
run-time adaptation of test cases for self-adaptive systems in the
face of uncertainty. In Proceedings of the 9th International Sym-
posium on Software Engineering for Adaptive and Self-Managing
Systems, SEAMS ’14.

Ghannem, A.; Hamdi, M. S.; Kessentini, M.; and Ammar, H. H.
2016. Search-based requirements traceability recovery. In Pro-
ceedings of SAI Intelligent Systems Conference, 156–171.

Ghannem, A.; Hamdi, M. S.; Kessentini, M.; and Ammar, H. H.
2017. Search-based requirements traceability recovery: A multi-
objective approach. In 2017 IEEE Congress on Evolutionary Com-
putation (CEC), 1183–1190.

Goldberg, D. E. 1989. Genetic Algorithms in Search, Optimization
and Machine Learning. Addison-Wesley Longman Publishing Co.,
Inc.

Gotel, O. C., and Finkelstein, C. 1994. An analysis of the require-
ments traceability problem. In Proceedings of the First Interna-
tional Conference on Requirements Engineering, 94–101.

Grechanik, M.; McKinley, K. S.; and Perry, D. E. 2007. Recovering
and using use-case-diagram-to-source-code traceability links. In
Proceedings of the the 6th joint meeting of the European software
engineering conference and the ACM SIGSOFT symposium on The
foundations of software engineering, 95–104.

Holland, J. H. 1992. Adaptation in Natural and Artificial Systems.
Cambridge, MA, USA: MIT Press.

Ji, M.; Veitch, A.; and Wilkes, J. 2003. Seneca: Remote mirroring
done write. In USENIX 2003 Annual Technical Conference, 253–
268. Berkeley, CA, USA: USENIX Association.

Keeton, K.; Santos, C.; Beyer, D.; Chase, J.; and Wilkes, J. 2004.
Designing for disasters. In Proceedings of the 3rd USENIX Con-
ference on File and Storage Technologies, 59–62. Berkeley, CA,
USA: USENIX Association.

Kephart, J., and Chess, D. 2003. The vision of autonomic comput-
ing. Computer 36(1):41 – 50.

Kirkpatrick, S.; Gelatt, C. D.; and Vecchi, M. P. 1983. Optimization
by simulated annealing. Science 220(4598):671–680.

Lehman, J., and Stanley, K. O. 2004. Exploiting open-endedness
to solve problems through the search for novelty. In Proceedings
of the Eleventh International Conference on Artificial Life, ALIFE
XI. MIT Press.

Mills, C. 2017. Automating traceability link recovery through
classification. In Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering, 1068–1070.

Panichella, A.; Dit, B.; Oliveto, R.; Di Penta, M.; Poshyvanyk, D.;
and De Lucia, A. 2013. How to effectively use topic models for
software engineering tasks? an approach based on genetic algo-
rithms. In Proceedings of the 2013 International Conference on
Software Engineering, 522–531.

Parizi, R. M.; Lee, S. P.; and Dabbagh, M. 2014. Achievements and
challenges in state-of-the-art software traceability between test and
code artifacts. IEEE Transactions on Reliability 63(4):913–926.


