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Abstract Basic science is integral to medical education be-
cause it teaches future physicians the fundamental principles
of biology they need to become lifelong learners and keep up
with expanding medical knowledge. One of these fundamen-
tal principles is evolution, which has many practical applica-
tions in medicine. Consequently, there is increasing interest in
integrating evolutionary biology into medical education. To
realize this goal, educators should focus on practical aspects
of how knowledge of evolution improves a physician’s ability
to prevent, diagnose, and treat disease. This perspective
should be woven throughout the curriculum, so evolution
comes to be seen as a broadly relevant concept rather than a
distinct and peripheral discipline. In particular, we suggest that
three general learning objectives be integrated broadly into
medical education. First, medical students should be able to
apply knowledge of human evolutionary history to explain
how genetic variation within and among human populations
affects risk, diagnosis, and treatment of disease. Second,

students should understand how evolution has led to variation
within and between pathogen populations (and tumors), af-
fecting diagnosis and treatment. Third, students should under-
stand how analytical tools from evolutionary genetics are used
to determine patient ancestry, disease risk, and pathogen ori-
gins. We provide multiple specific topics, case studies, and
learning activities within each of these three objectives. The
evolutionary medicine learning objectives listed here meet
multiple competencies and objectives outlined in the
Association of American Medical Colleges (AAMC)/
Howard Hughes Medical Institute (HHMI) 2009 report on
the Scientific Foundations for Future Physicians.
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Why Integrate Evolutionary Biology into Medical
Education?

Evolutionary biology and medicine have long been viewed
as separate, disconnected disciplines. The study of evolution
is often associated with abstract questions concerning the
historical origins of current-day biological phenomena, with
limited focus on practical applications. Medical school cur-
ricula have therefore devoted little attention to evolution.
However, evolutionary biology does provide vital conceptual
tools that improve learning and practice of medicine.
Consequently, the past two decades have seen a proliferation
of evolutionary medicine textbooks [1–6] and review articles
[7–14].

Nevertheless, few medical schools have effectively incor-
porated evolution into their curriculum. This continued resis-
tance to evolutionary medicine comes from several sources.
The first and major barrier is that medical curricula are
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already overburdened by the fast-expanding body of relevant
biomedical knowledge. Medical knowledge is simply too
large to convey in a 4-year curriculum, and adding a new
topic (evolutionary medicine) will inevitably meet resistance.
However, the growing body of biomedical knowledge makes
it ever more important that medical education give students
the intellectual tools they need to be lifelong learners. We
argue that evolutionary biology’s integrative view of biology
helps students assimilate and understand new biological in-
formation. Just as organic chemistry is an essential tool to
allow medical students to understand key principles, a foun-
dation in evolutionary biology helps students contextualize
new information about anatomy, genetics, physiology, micro-
biology, or immunology, aiding understanding and memory.

A second source of resistance is a widespread assumption
that students have already learned evolution, so it does not
need to be covered in medical school. But, an advanced un-
dergraduate evolution class is not required for admission to
any US medical school [15], nor is it a required part of many
undergraduate biology curricula. In a nationwide survey of
403 biology programs in the USA, less than 20% of programs
required an advanced evolution class, and only 70% even
offered such a class [16]. Thus, many medical students may
not have studied evolution since a brief exposure in an intro-
ductory undergraduate biology class. Nor can we assume that
US medical students learned evolution in secondary school,
where a third of teachers promote creationist concepts and
many more avoid the topic entirely [17]. As a result, many
medical students harbor fundamental misconceptions about
how evolution works and its implications [18]. These miscon-
ceptions will persist unless specifically addressed within the
context of their medical education.

Third, many evolution courses focus on broad conceptual
principles and do not directly address the relevance of evolu-
tion to medical practice. Even students (or, instructors) who
understand evolution well may not know how it applies to
their chosen career. The growing field of evolutionary medi-
cine does not always help in this regard, when it focuses on
explaining the historical origins of disease (e.g., BWhy does
menopause occur?,^ BWhy do we experience lower back
pain?^) as opposed to guiding physicians’ decision-making.
The historical origins of human traits can be intellectually
fulfilling and might even facilitate student learning but does
not necessarily change daily medical practice. Educators with
limited classroom time are thus likely to omit such topics.

However, evolutionary biology provides more than just an
intellectual framework to explain the origins of human condi-
tions.We suggest that there are three very general reasons why
evolution is relevant to the daily practice of medicine:

1. Understanding the evolutionary origins of genetic diver-
sity within and among human populations helps physi-
cians make appropriate diagnoses and plan treatments.

2. Pathogens and tumors are evolving populations. We must
account for their evolution during diagnosis, treatment,
and control

3. Evolution provides analytical tools, such as phylogenetics
and population genetics, that are used in diagnostics to
identify pathogens, trace sources of infection, determine
patient ancestry, and interpret genetic markers of disease
risk.

We suggest that teaching these ideas in medical school will
improve medical practice in three ways. First, understanding
evolution can improve diagnosis. For example, familiarity
with human evolutionary history and genetic diversity can
help physicians avoid racial stereotyping that can lead to mis-
diagnosis of genetic disorders (case study in box 1). Second,
understanding evolution can improve preventative or treat-
ment plans. For example, physicians should have an accurate
understanding of natural selection when treating pathogens or
tumors that may evolve resistance to drugs (case study in box
2). Third, evolution provides an integrated conceptual frame-
work that helps students learn medical concepts, particularly
via comparative anatomy and physiology, and understanding
the genetic, environmental, and pathogenic causes of disease.

In recognition of these benefits, the Association of
American Medical Colleges (AAMC) and Howard Hughes
Medical Institute (HHMI) specifically called for greater inclu-
sion of evolution in medical training in their report, BScientific
foundations for future physicians^ [19]. The report asserted
that Bintegration of clinical education and basic science often
lacks sufficient emphasis on fundamental scientific principles
that are key to lifelong learning and biomedical scientific lit-
eracy. Understanding these principles is essential to empower
physicians to continue to comprehend their own disciplinary
literature and to evaluate critically claims of therapeutic
effectiveness…^. Consequently, the AAMC/HHMI report
specifically lists evolutionary concepts within various compe-
tencies. The goal of this paper is to elaborate on those com-
petencies and make specific suggestions for how evolutionary
biology can be integrated into medical education to meet the
AAMC/HHMI recommendations. We do so by identifying
broad learning objectives, within which we list specific learn-
ing objectives and competencies, supported by case studies
and activities to teach and achieve those objectives. Our spe-
cific learning objectives and case studies are summarized in
Supplementary Appendix Table 1, indexed to relevant
AAMC/HHMI competencies.

Evolution as a Thread Woven Throughout Medical
Training

The first USmedical schools to incorporate evolutionarymed-
icine have typically done so by offering an elective class on
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the subject. Courses in evolutionary medicine are available or
pending at medical schools at a number of institutions includ-
ing Yale University, the University of California at Los
Angeles, Arizona State University, and the University of
Texas at Austin. However, the practice of offering evolution-
ary medicine as a distinct class, particularly as an elective,
reinforces the misconception that this is an optional topic sep-
arate from mainstream medical practice (note, this is not
intended as a criticism of these courses, which needed to gain
a foothold within a packed curriculum). Instead, we reiterate
the oft-stated point that evolution is a recurrent organizing
theme of biology that has applications in many contexts
throughout basic biological training and medical practice.
Accordingly, evolution should be seamlessly woven through-
out the medical curriculum at frequent intervals within each of
many topics (e.g., anatomy, genetic disorders, microbiology,
immunology, population health). We therefore advocate that
medical educators promoting evolutionary medicine work
with a broad swath of instructors throughout the curriculum
to identify topics relevant to each of many subjects. To facil-
itate this integration, we present a set of learning objectives
and illustrative case studies here that span many areas al-
ready within typical medical curricula. These case studies
are common to most medical school curricula and highlight
the ease with which an evolutionary medicine thread can be
incorporated into established programs. We envision the in-
clusion of evolutionary medicine learning objectives in short

discussions, lecture modules, or exercises. Furthermore, con-
sidering the value of evolutionary thinking in patient diagno-
sis and treatment, we encourage the application of these con-
cepts in case-based and problem-based learning activities.

Learning Objectives in Applied Evolutionary
Medicine

Below, we outline three general learning objectives
concerning evolutionary medicine (Fig. 1). In developing
these learning objectives, we emphasized the application of
evolution to medical decision-making related to prevention,
diagnosis, and/or treatment. We do note, in places, where evo-
lution can provide an intellectual scaffold to facilitate learning
medical topics (e.g., evolutionary comparative anatomy may
aid students in learning about human anatomy), but that is not
our focus.

Within each of these, we present multiple specific learning
objectives. Each specific learning objective is described in
greater detail in the online Supplemental Materials (S.M.),
where we describe multiple relevant case studies, cite relevant
sources, and suggest activities and exercises.We cannot, in the
interest of space, provide an exhaustive list of relevant cases,
but we provide an extended online S.M. section that elabo-
rates on the ideas introduced below and provides more case
studies. The learning objectives we propose are cross-

Fig. 1 An overview of our recommendation for learning objectives for evolutionary medicine
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referenced in the S.M. to competencies and objectives in the
AAMC/HHMI 2009 report. Notably, some of the objectives
listed below are in fact already part of manymedical curricula,
albeit not explicitly acknowledging that they are evolutionary
concepts.

General Learning Objective 1

Physicians should be able to explain how past and contempo-
rary human evolution has led to genetic variation within and
among human populations and how this variation affects de-
cisions regarding disease prevention, diagnosis, and/or
treatment.

Specific Learning Objective 1a: Students should be able to
explain how genetic variation arises within populations,
distinguishing among different kinds of genetic variation.
This competency illustrates students’ understanding of the
spectrum of mutational processes including point mutations,
insertion/deletions, repetitive sequences [20, 21], mobile ge-
netic elements [22, 23], selfish genomic parasites [21], copy
number variation [24–26], chromosomal duplications or rear-
rangements [25, 27, 28], uniparentally inherited variants (e.g.,
mitochondrial diseases; [29–31]), and heritable epigenetic
modification of the genome [32]. Students should be able to
identify (i) genetic disorders arising from each type of genetic
variant, (ii) how the variant causes disease, (iii) genetic tests
for disease risk, and (iv) prevention or treatment options. In
addition to these comparatively simple single-gene disorders,
it is essential that students learn about complex polygenic
diseases that entail many possible mutations at many different
genes [33]. They should be able to distinguish between spon-
taneous de novo mutations (e.g., from non-homologous re-
combination during gametogenesis) versus standing genetic
variation within populations. Related specific objectives, de-
scribed in the S.M., address the geographic origins of muta-
tions and consequent variation in disease risk among human
populations. The next specific learning objectives address
why such mutations persist within populations.

Specific Learning Objective 1b: Students should be able to
accurately describe the mechanism and consequences of nat-
ural selection. A correct understanding of this subject is a
prerequisite for many subsequent learning objectives in evo-
lutionary medicine, as well as key topics in microbiology and
immunology. Addressing this topic early on in a curriculum
allows an instructor to identify and correct misconceptions
common to biology majors graduating from university. In
the S.M., we elaborate on several common misconceptions
about selection, as they apply to human health, illustrated with
specific biomedically relevant case studies.

Specific Learning Objective 1c: Students should be able to
apply their understanding of natural selection to explain med-
ically relevant genetic variation within and among human

populations. Students should know how the history of natural
selection can help identify patients at risk for genetic disorders
based on their ancestry, geography, and ethnicity.

Specific Learning Objective 1d: Students should under-
stand the process of genetic drift and its relevance to the fate
of new mutations [34, 35], the persistence or loss of deleteri-
ous alleles, the genetic divergence among populations, and the
evolutionary dynamics of most genetic markers.
Understanding the role of random processes in evolution helps
physicians appreciate that not all genetic variants and human
traits are adaptive and provides essential background to un-
derstand the logic of ancestry testing and associationmapping.
Importantly, when students engage with the details of recent
human evolution, they can develop a sophisticated under-
standing of the distribution of genetic variation that transcends
overly simplistic racial categories (see S.M. for examples).

Specific Learning Objective 1e: Students should be able to
explain the evolutionary genetic reasons for differences among
human populations and ethnic groups, with reference to their
respective environments. Students should be able to integrate
principles of population genetics (natural selection, genetic
drift, migration) to accurately explain patterns of human genetic
variation among populations [36] and apply this knowledge to
evaluate patients’ disease risk using genetic ancestry data.

Specific Learning Objective 1f: It is essential that physicians
learn to distinguish between environmental versus genetic
causes of disease. The former can often be treated by environ-
mental modification, while the latter cannot. The distinction
between genetics and environment is often blurred during dis-
cussions of ethnicity, race, and racial health disparities in med-
ical classrooms and in biomedical research more generally
[37–40]. Thus, a clear understanding of evolutionary genetics
can help physicians evaluate the relative roles (or, interaction)
of genetics and environment in disease and implications for
diagnosis and treatment.

Physicians should be able to clearly identify diseases with
substantial environmental contributions. This includes the ef-
fects of social conditions and environment on risk of exposure
to toxins or pathogens, to identify patients that are at high risk
and identify strategies to minimize that risk. Evolutionary ge-
netics (particularly quantitative genetics) provides a formal
framework for measuring and identifying such environmental
effects on individuals’ traits, including Bgenotype by environ-
ment interactions^ (when environmental effects differ among
genotypes). Training in evolutionary genetics therefore gives
physicians a rigorous framework for understanding the com-
plex interplay between individuals’ environment and multi-
locus genotype in determining disease risk, thereby informing
strategies to prevent or treat disease.

Specific Learning Objective 1g: There is one final aspect of
human evolutionary history that we view as a valuable compo-
nent of medical education, but which does not have direct ap-
plication to medical practice in the form of prevention,
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diagnosis, or treatment. We believe that physicians should un-
derstand how long-term trends in the evolution of metazoans,
vertebrates, mammals, primates, and ultimately humans can
explain current features of human biology, ranging from dere-
lict genes to features of embryogenesis, anatomy, and physiol-
ogy [41]. We posit that a working knowledge of comparative
anatomy or physiology, and evolutionary history, provides a
logical context to understand how features of human biology
arose. Furthermore, evolutionary comparative anatomy pro-
vides a conceptual framework that we predict will appreciably
aid medical students in learning and retaining basic details of
human anatomy or function. We do not advocate implementing
this objective blindly, as at present, it is merely our supposition.
We require well-controlled studies that test our suggestion that
an evolutionary scaffold can in fact improve medical student
learning.

General Learning Objective 2:

Physicians should be able to explain the medical significance
of evolution in disease-causing agents including microorgan-
isms, protists, helminths, and neoplasias. Medical students
should be able to identify therapeutic strategies that minimize
or compensate for pathogen evasion of host immunity, vac-
cines, or drugs. The following specific learning objectives
elaborate on these ideas, again with details and suggested case
studies relegated to the S.M.

Specific Learning Objective 2a: Students should be able to
identify the causes and implications of genetic diversity within
and among pathogen populations, including mutation, recom-
bination, horizontal gene transfer, etc. This objective is to train
physicians to view pathogens not as invariant entities but as
diverse and changing populations, whose treatment must be
modified accordingly.

Specific Learning Objective 2b: Physicians should be able
to identify the medical consequences of host-pathogen coevo-
lution, with particular reference to immune evasion and path-
ogenesis. This provides a conceptual grounding for under-
standing why many pathogens alter their surface antigens,
establish infections in immune-privileged host tissues, active-
ly manipulate host immune function, and/or exploit host im-
mune cells [42–46]. This immune escape explains, for exam-
ple, many helminths’ ability to establish long-lived infection
in immunologically active host tissues.

Specific Learning Objective 2c: Pathogens evolve not just in
response to host defenses (objective 2b) but also in response to
therapeutic measures including vaccination and chemotherapy.
A particularly dramatic visual example of evolutionary escape
from antibiotics was recently provided by a new study [47].
Physicians must clearly understand the role of evolution in the
spread of therapy resistance (most notably, antibiotic resistance
[48–56]) and how evolutionary principles can guide more

appropriate use of therapies. Physicians should be prepared to
explain these concepts to patients, for example (i) to induce
them to complete full courses of antibiotics, (ii) to understand
why antibiotics should not be over-used, or (iii) to understand
why some vaccines must be renewed regularly (e.g., influenza).

Specific Learning Objective 2d: Physicians should know
countermeasures that reduce the risk of pathogen evolution or
cope with changing pathogen traits when evolution occurs.
Physicians should anticipate that resistance is likely to evolve
and can do so within a single patient [57]. Physicians should
know how to identify this within-patient evolution and know
when it is most likely to happen (e.g., in patients with com-
promised immune systems or those battling novel pathogens,
e.g., H5N1).

Specific Learning Objective 2e: Genetic drift is also appli-
cable to pathogens, and the resulting neutral evolution has
relevance to host immunity and diagnostic tests. Drift can be
especially strong in pathogens because they often go through
large bottlenecks during transmission among hosts. This can
lead to the accumulation of deleterious mutations within some
pathogen lineages or may drive evolution of new pathological
effects (e.g., pandemic influenza [58]). The bottlenecks also
mean that different hosts may be infected with different genet-
ic variants, and different amounts of genetic diversity, leading
to patient-specific potential for within-host evolution.

Specific Learning Objective 2f: Neoplasias are assem-
blages of genetically and phenotypically diverse cells that
are capable of evolving through time and during metastasis
via clonal selection ([59] see S.M. for details). Physicians
should understand the role of natural selection in cancer orig-
ination, identification, progression, metastasis, and treatment.
Treatment plans must keep this evolutionary potential inmind,
both to mitigate the potential for evolutionary escape from
chemotherapy and to improve treatment and prognosis by
tailoring plans to the particular cancer lineages currently ex-
tant within a patient.

Specific Learning Objective 2g: In recent years, there has
been fast-growing interest in the observation that many mi-
crobes are mutualists rather than parasites. Beneficial symbi-
onts (including macroparasites, bacteria, viruses, and fungi)
have coevolved mutually helpful relationships with humans
and other vertebrates, often involving highly regulated molec-
ular interactions between the host and microbes [60].
Physicians should understand that past coevolution has led
to this beneficial interaction which, when perturbed
(dysbiosis), can lead to a variety of disease states. Physicians
should be able to distinguish between a healthy and unhealthy
microbiota (a fast-changing area of research) and understand
the mechanisms by which these microbes can undermine or
improve human health. This includes the role of the normal
microbiota in the development, immunity, nutrition, and ho-
meostasis, including mechanisms of immune tolerance
[60–75].
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General Learning Objective 3:

Medical informatics is transforming medical practice in many
respects. Evolutionary biology has contributed a variety of
bioinformatic tools that are applied in biomedical research
and, increasingly, in medical practice. In particular, the evolu-
tionary fields of phylogenetics, population genetics, and quan-
titative genetics have seen fast-expanding applications inmed-
icine. Students should understand how these tools work and
can be used by physicians to make decisions concerning di-
agnosis or treatment.

Specific Learning Objective 3a: Students should be able to
correctly explain the basic concepts of phylogenetics and use
simple phylogenetic analyses, in a clinical context. Examples
of phylogenetic applications include the phylogenetic identi-
fication of unknown symbionts (e.g., metagenomic analysis of
gut microbes [76, 77]) or pathogens [78–80] using phyloge-
netic comparative analyses of DNA sequences.

Specific Learning Objective 3b: Population and quantita-
tive genetics are evolutionary subdisciplines designed to study
changes in genotypes and phenotypes through time or across a
landscape. In a biomedical context, these disciplines have
yielded analytical tools for studying infectious disease evolu-
tion including the evolution of virulence and drug resistance.
For instance, drug treatments of HIV patients have been
shown to induce rapid evolution of the virus within single
patients [81]. Monitoring sequence evolution in a patient’s
viral population can therefore alert a physician to viral escape,
before new symptoms arise, and can guide subsequent treat-
ment decisions [82]. Physicians who are aware of these tools
will be able to apply them to identify rare diseases or antici-
pate a pathogen’s evolutionary escape.

Specific Learning Objective 3c: Genetic ancestry tests are
widely used by individual patients, both to obtain genealogi-
cal insights and to detect disease risks. Direct-to-consumer
genetic testing is built on statistical analyses that rely on hu-
man evolutionary history. Future physicians will have to pro-
vide well-informed counseling to patients who have obtained
their own genetic data. As with all the above learning objec-
tives, we elaborate on these ideas in the S.M.

Conclusions

Many of the recommendations listed above touch on topics
already covered in medical education (e.g., the evolution of
antibiotic resistance, issues pertaining to ancestry, genetic var-
iation in disease risk). These are not just disparate topics,
however. They share a common theme: Past and ongoing
evolution has generated genetic variation within and among
populations of humans, pathogens, immune cells, and even
within tumors in individual patients. This genetic variation
can mean that a one-size-fits-all strategy may not be effective

at treating a disease. Instead, physicians may need to adopt
new approaches to disease prevention, diagnosis, or treatment.
This response may be tailored to the particular genotypes of
the patient or disease, or the new response might represent a
pre-emptive strategy to inhibit disease evolution. In essence,
evolutionary biology is the raison d’etre of personalized med-
icine. But the application of evolutionary ideas goes far be-
yond this emerging medical concept. Evolution affects how
drugs are designed, what drugs we administer, and when and
to whom they are prescribed. Understanding evolution can
alter physician’s perceptions of race and ethnicity, thereby
changing and improving how they interact with patients.

Perhaps most importantly, but less concretely, evolution
gives a scientific explanation for why humans and pathogens
function as they do. We propose that this explanatory frame-
work should help medical students learn material by organiz-
ing facts into a broader context and can help physicians as-
similate new biomedical findings throughout their career after
medical school. To date, studies directly examining the impact
of an evolutionary framework on student learning and clinical
skills have not yet been performed. We propose that such
studies would provide valuable insight into curriculum design
in undergraduate medical education. In short, we suggest that
evolution represents a key biological concept that should be
integrated, where relevant, throughout a medical curriculum.
Not because we wish physicians to appreciate the intellectual
elegance of the idea, nor because they need to know about
peppered moths, or Galapagos finches, or the Cambrian ex-
plosion, but because evolution helps doctors learn biology and
apply that knowledge correctly when treating their patients.

Box 1: Teaching Human Evolution to Avoid Racial
Stereotyping

Cystic fibrosis is a disease of the secretory glands caused by
the dysfunction of the CFTR gene, which codes for chloride
ion channels in epithelial cell membranes. The disease is much
more common in people with European ancestry (1 in 3300)
compared to those with African and Asian ancestry (1 in
15,300 and 1 in 32,100, respectively) [83]. Cystic fibrosis
causes the buildup of thick, sticky mucous in the airways,
which results in frequent attacks of bronchitis and pneumonia
in the early stages of the disease. More than 71% of cystic
fibrosis cases are diagnosed before the age of 1 [83]. Because
the symptoms of CF are relatively common, physicians some-
times miss the diagnosis of cystic fibrosis in an individual who
they classify as non-white if they mistakenly believe that CF
occurs only in white patients. For example, in California, a 2-
year-old black female patient was described by her doctors as
presenting a fever and cough. Two years later, this same girl
presented with Banother pneumonia.^ However, her physi-
cians never considered the possibility of cystic fibrosis due
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to her race. This patient only received the proper diagnosis at
the age of 8 when a passing radiologist, with no knowledge of
the case, saw her chest X-ray and asked about the BCF case^
[84]. The initial physicians had not appreciated the role of
gene flow among populations and the consequent presence
of CF in non-European populations. If these physicians had
had a better understanding of the tenuous relationship between
population genetics and race, the patient may have been diag-
nosed and treated earlier. At present, there are few formal
analyses of the extent to which racial stereotyping leads to
misdiagnosis. However, it is clear that racial profiling is cur-
rently common in medicine and can affect physicians’ diag-
nostic and treatment decisions [85–87].

Box 2

Cancer treatment is an area of clinical medicine that stands to
gain the most from an increased understanding and applica-
tion of evolutionary theory. Tumors are heterogenous popula-
tions of cells that evolve over time and adapt to environmental
stressors such as the introduction of drug therapy. This knowl-
edge can lead to novel therapies, as in the case of glioblasto-
ma, an aggressive form of brain cancer. Chromosomal ampli-
fications of epidermal growth factor receptor gene (EGFR) are
characteristic of glioblastoma. Tumor cell populations that
possess both chromosomal amplifications of EGFR and a rare
mutation of the gene (EGFRvIII/DEGFR) are correlated with
increased tumor cell proliferation [88]. A 2010 study by Inda
et al. found that a small group of tumor cells possessing these
variants greatly increases the growth of the tumor as a whole,
through the activation of IL-6 and LIF cytokines which acti-
vate the expression of EGFR in neighboring cells through
gp130, a subunit of the IL-6 receptor. These researchers dem-
onstrated that tumor growth could be stopped by interfering
with IL-6, LIF, or gp130 [89]. Understanding a tumor as a
variable population of cells and applying the tools of molecu-
lar and evolutionary genetics could lead to better patient
outcomes.
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